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Abstract

The purpose of this study was to investigate if multi-domain cognitive training, especially

robot-assisted training, alters cortical thickness in the brains of elderly participants. A con-

trolled trial was conducted with 85 volunteers without cognitive impairment who were 60

years old or older. Participants were first randomized into two groups. One group consisted

of 48 participants who would receive cognitive training and 37 who would not receive train-

ing. The cognitive training group was randomly divided into two groups, 24 who received tra-

ditional cognitive training and 24 who received robot-assisted cognitive training. The

training for both groups consisted of daily 90-min-session, five days a week for a total of 12

weeks. The primary outcome was the changes in cortical thickness. When compared to the

control group, both groups who underwent cognitive training demonstrated attenuation of

age related cortical thinning in the frontotemporal association cortices. When the robot and

the traditional interventions were directly compared, the robot group showed less cortical

thinning in the anterior cingulate cortices. Our results suggest that cognitive training can mit-

igate age-associated structural brain changes in the elderly.
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Introduction

The growing population of elderly coupled with the absence of definitive treatments for age-

related cognitive decline has prompted efforts to find strategies that can potentially reduce this

decline. Several studies have reported that cognitive training may help maintain or improve

cognition in the elderly [1] and could therefore be an effective means by which late life cogni-

tive impairment can be abated [2].

In addition to cognitive decline, studies have revealed that with aging there is thinning of the

cerebral cortex [3] and studies have also investigated structural brain plasticity after cognitive

training in the elderly [4, 5], demonstrating that cognitive training increases regional gray mat-

ter volume. However, in most studies, cognitive training only targeted a single cognitive domain,

such as memory [4, 5]. Single domain cognitive intervention may have theoretical importance

since it may allow researchers to investigate direct training-related effects [6] but multi-domain

training could potentially have more practical advantages than single-domain training because

multiple cognitive functions are required for humans to live in the world [6, 7]. In addition, in-

dividuals receiving multi-domain cognitive training may benefit more in terms of maintenance

of training effects than those receiving single-domain training perhaps because of the transfer

effect [7, 8]. The transfer effect refers to improvement on an untrained cognitive domain after

receiving a specific cognitive training [9]. It is therefore possible that multi-domain cognitive

training would elicit more synergistic transfer effects across domains than single-domain cogni-

tive training since it targets multiple cognitive functions [10, 11]. Despite these findings, there

has been only one study that evaluated the structural brain changes following multi-domain

cognitive training, and this study examined a relatively small number of participants [12].

With the advent of robotics, service robots that can interact with humans have attracted both

industry and academic interest [13]. In particular, robots to assist the elderly may be important

given the rapid increase in the aging population and the exorbitant healthcare costs associated

with caring for older individuals with cognitive decline. Furthermore, traditional cognitive train-

ing with paper and pencil usually needs experienced instructors [9], but those qualified instruc-

tors may be unavailable in some chronic care facilities or community centers. For this reason,

we have developed a total of 17 robot-assisted cognitive training programs for the elderly.

The goal of this study was to test the hypothesis that multi-domain cognitive training would

delay age-associated cortical thinning and structural network alterations in the brains of the el-

derly. In addition, we also wanted to investigate if robot-assisted cognitive training would result

in greater effects than traditional cognitive training since exposure to new technology is likely

to be more challenging for the elderly than familiar technologies and novelty may increase

brain activity [10, 11]. To test these hypotheses, we compared changes in cortical thickness and

structural connectivity of cognitive training groups to a control group without cognitive train-

ing. Then, we compared the effects of our newly developed, robot-assisted, multi-domain cog-

nitive training programs on brain structures to traditional human-assisted cognitive

training programs.
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Methods

Study design

This randomized controlled study on the effects of 12 week- cognitive training on changes of

cortical thickness in healthy elderly participants was conducted between June 2011 and May

2012 at Samsung Medical Center in Seoul, Republic of Korea. This trial was registered at

“ClnicalTrials.gov” as NCT01596205.

Participants

Community-dwelling volunteers aged 60 years or older were recruited from the Gangnam

Center for Dementia, one of the public facilities for dementia prevention in Seoul. Normally

this center, as a service to the community, screens about 6000 elderly annually using the Mini-

Mental State Examination (MMSE) for early detection of dementia. Among a total of 2877 in-

dividuals who were screened fromMarch to August in 2011 at Gangnam Center for Dementia,

534 who had Korean version of MMSE scores (K-MMSE) [14]� 26 and more than 6 years of

education were initially contacted for participation. Among them, 120 agreed to participate in

this study. A neurologist evaluated eligibility using the following inclusion criteria: literacy, no

known history of dementia or significant cognitive impairment, no visual or hearing im-

pairment severe enough to interfere with cognitive testing/cognitive training, no history of

major neurological or psychiatric illnesses, no history of medication that could affect cognitive

function and no major medical problems. Of those 120 participants,12 individuals were ex-

cluded for the following reasons: five had a history of stroke, four were taking antidepressants

and three had thyroid dysfunction. To minimize the influence of subclinical degenerative con-

ditions, three participants were excluded who scored two standard deviations (SD) or more

below population norm on the tests of immediate learning and/or delayed recall scores of Seoul

Verbal Learning Tests [15]. Another 18 were excluded because they refused MRI. Two persons

were additionally excluded after taking MRI because one had pituitary adenoma while the

other had an old posterior cerebral artery territorial infarction on MRI. Therefore, the final

sample consisted of 85 participants (Fig 1). Written informed consent was obtained from all

participants and the study protocol was approved by the institutional review board of Samsung

Medical Center (IRB 2011-04-080).

Randomization

After baseline assessments, 85 participants were randomly assigned into the two groups: an in-

tervention group of 48 patients and non-intervention group of 37 patients using simple random

sampling. Twenty-four patients from the intervention group were randomly selected and as-

signed to a robot-assisted intervention group (robot group), while the others were assigned to a

traditional intervention group (traditional group) using SPSS software (Fig 1). The randomiza-

tion process was performed by a researcher who was blinded to intervention. The intervention

groups did not differ in terms of age, sex, years of education, baseline neuropsychological test re-

sults, physical activity, and cardiovascular risk factors, or number of carriers of the APOE ε4 al-

lele compared to the control group (Table 1).

Interventions

Participants in both intervention groups were subdivided into three groups of eight partici-

pants. Each individual participant from the groups attended a total of 60 sessions, with each

session being 90 minutes, five days a week for 12 weeks. Each intervention session consisted of

an introduction (10 minutes), cognitive training (70 minutes), and final closing (10 minutes).
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Fig 1. Flow of participants in this study. The similarity index was defined as follows:similarity index = 2 * nnz(A and B)/(nnz(A) + nnz(B)) where A and B
are the baseline and post-intervention connectivity from binary matrices, respectively and nnz refers to the number of non-zero elements in a matrix. If the two
binary matrices were the same, the similarity index was assigned a value of 1. We excluded subjects with a similarity index lower than 0.5 in our statistical
analyses to reduce the artifactual effects related to the different times of scanning.

doi:10.1371/journal.pone.0123251.g001
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The cognitive training portion of both intervention groups consisted of 2 training blocks that

included five cognitive domains: memory, language, calculation, visuospatial function, and ex-

ecutive function. All participants in both intervention groups received 44 blocks for memory

training, 14 for language, 12 for calculation, 16 for visuospatial function and 34 for executive

function. All 85 participants received 10-hours of education about dementia prevention before

undergoing baseline assessments. This education program was conducted for 2 hours per day

fromMonday to Friday. On Monday, the participants learned about human brain structures as

well as cognitive functions, and on Tuesday, the prevention and treatments of dementia. On

Wednesday, they were educated about the importance of cognitive training and they were pro-

vided with several examples of cognitive training they could perform at home. The healthy

foods for brain as well as aerobic exercise and stretching [16, 17] that could be performed at

home were discussed on Thursday and finally individual presentation of one’s thoughts about

the overall program and laughter therapy [18] took place on Friday.

Two experienced psychometricians served as a facilitator or instructor in both traditional

and robot-assisted cognitive training; therefore each psychometrician was in charge of three

subgroups in the two intervention groups. The two psychometricians familiarized themselves

with the manuals for cognitive training before study inception, and were instructed to adhere

to these manuals, but were allowed to distribute the time flexibly among programs within the

same cognitive domain. The details of traditional and robot interventions are provided in the

S1 Methods. Table 2 contains a summary of the traditional and robot-assisted interventions.

Traditional interventions. In traditional cognitive training, the psychometricians dis-

played questions on a screen positioned in the front of the intervention room. The participants

attempted to answer these questions either verbally or in written form. The psychometricians

then presented the correct answers on the screen.

Table 1. Demographic and clinical characteristics of the participants.

Intervention group (n = 48) Control (n = 37) P value (Intervention Vs. Control)

Traditional (n = 24) Robot (n = 24) P value

Gender (Male: Female) 6:18 10:14 0.359 9:28 0.473

Age (years) 67.7 ± 5.4 68.0 ± 6.1 0.823 66.9 ± 4.0 0.353

Education (years) 14.0 ± 3.3 13.2 ± 3.9 0.466 13.2 ± 3.7 0.619

K-MMSE 29.1 ± 0.9 28.9 ± 1.5 0.502 29.0 ± 1.3 0.924

ADAS-Cog 7.5 ± 3.5 6.8 ± 3.8 0.503 6.3 ± 3.6 0.310

Risk factors, n (%)

Diabetes Mellitus 1 (4.2) 2 (8.7) 0.609 1 (2.7) 0.635

Hypertension 7 (29.2) 6 (25.0) 1.000 12 (32.4) 0.806

Hyperlipidemia 4 (16.7) 6 (25.0) 0.527 8 (21.6) 0.673

APOE ε4 allele, n (%)a 0.698 0.408

0 (-/-) 18 (85.7) 17 (77.3) 27 (84.4)

1(ε4 /-) 3 (14.3) 5 (22.7) 4 (12.5)

2 (ε4 / ε4) 0 (0) 0 (0) 1 (3.1)

Physical activity (METs) 3232.3 ± 2292.1 2714.7 ± 2545.5 0.769 3606.2 ± 3525.9 0.709

Cortical thickness (mm) 2.562 ± 0.125 2.561 ± 0.918 0.758 2.594 ± 0.106 0.174

ICV(cm3) 9944.0 ± 732.3 10217.1 ± 850.4 0.239 1007.9 ± 844.6 0.992

K-MMSE, Korean version of the Mini-Mental State Examination; ICV, intracerebral volume; MET, metabolic equivalent.
a
APOE was analyzed only in 75 patients because 10 patients refused the test.

doi:10.1371/journal.pone.0123251.t001
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Robot-assisted interventions. Silbot and Mero were the robots used in the robot-assisted

cognitive training (S1 Fig). Except for three programs for which the robots detected and evalu-

ated the participants’motion, participants in the robot group responded to instructions using

an individual smart pad (Galaxy tab 10.1, Samsung Electronics, Seoul, Korea). The same psy-

chometricians instructed the participants in procedures used for cognitive training with these

robots. The main roles of the psychometrician in the robot group were to select programs for

participants as well as giving or repeating program instructions if necessary. Unlike the tradi-

tional training, robot-assisted training rewarded participants by giving participants individual

feedback to each question immediately after entering the answers on their smart pads. Individ-

ual scores were saved at this point, and the winner of a day or the winner of a month was an-

nounced after completing each program. A total of 17 cognitive training programs were used

in the robot-assisted cognitive training including five programs for memory, two for language,

two for calculation, four for visuospatial function and four for executive function.

Assessments and outcome measures

All participants underwent brain MRI and neuropsychological testing before and after training.

All assessment and scans were conducted within 2 weeks before and after the intervention. The

baseline physical activity of all participants was evaluated by the international physical activity

Table 2. Comparisons of traditional and robot intervention.

Traditional Robot

N of participants 8 persons each group 8 persons each group

N of psychometrician 1 1

Role of psychometrician Instructor Assistant

Methods of instruction Dictation (from screen) by psychometrician Dictation (from screen) by robot

Response methods Paper and pencil Smart pad

Scoring system By psychometrician By robot

Individual task scores Not stored Stored

Feedback Per group Per individual and/or per group

Contents

Memory (44 blocks)

Verbal memory (Word learning) 10 10 (4 with motion)

Visual memory 8 8 (4 with motion)

Logical/story memory 8 8

Paired associate learning 10 10

Memory with song 8 8

Language (14 blocks)

Word generation 6 6

Word comprehension 8 8

Calculation (12 blocks)

Addition/subtraction/multiplication/division 12 12

Visusospatial function (16 blocks)

Visuoconstruction 8 8 (4 with motion)

Topographical orientation 8 8 (4 with motion)

Frontal executive function (34 blocks)

Working memory 14 14 (6 with motion)

Reasoning 8 8

Speed of processing/Attention 12 12 (8 with motion)

doi:10.1371/journal.pone.0123251.t002
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questionnaire (IPAQ) [19]. The investigators who scored the neuropsychological tests and ana-

lyzed the MRI imaging were blinded to the participants’ intervention.

The primary outcome was the changes in cortical thickness as assessed by surface based

morphometry (SBM), a method known to be one of the most sensitive and accurate means of

measuring cortical thickness [20]. The secondary outcomes were changes in the structural

brain network as assessed by a graph theoretical approach [21] and cognitive functions. Cogni-

tive functions were assessed by Alzheimer’s Disease Assessment Scale—total score of the cogni-

tive subscale (ADAS-cog) [22] and the seven subtests from the Cambridge Neuropsychological

Test Automated Battery (CANTAB), which included the three visual memory tasks of Delayed

Matching to Sample (DMS), Pattern Recognition Memory (PRM), and Paired Associates

Learning (PAL), two executive function or working memory tests, namely Spatial Working

Memory (SWM) and Stockings of Cambridge (SOC), and two attention tests, namely Reaction

Time (RTI) and Rapid Visual Information Processing (RVIP). Detailed descriptions of the

tests are available on Cambridge Cognition's website (http://www.cambridgecognition.com/

academic/cantabsuite/tests) and S2 Methods.

MRI acquisition. All participants underwent brain MRI using identical imaging protocols

on a 3.0 Tesla MRI scanner (Achieva, Philips 3.0T, Eindhoven, Netherlands). All participants

were sent to Samsung Medical Center for MR imaging that was performed employing six dif-

ferent techniques (3D T1 TFE, FLAIR, T1 REF, T2, FFE and DTI) using the same imaging pro-

tocols and the same 3.0-Tesla MRI scanner (Achieva, Philips 3.0T, Eindhoven, Netherlands).

For the analysis of cortical thickness, 3D T1 turbo field echo (TFE) MR images were acquired

with the following imaging parameters: sagittal slice thickness, 1.0 mm; no gap; repetition time

(TR), 9.9 ms; echo time (TE), 4.6 ms; flip angle, 8°; and a matrix size of 480x480 pixels. The

second technique we used to evaluate the abnormal white matter hyperintensities was fluid at-

tenuated inversion recovery (FLAIR) MR images, which were acquired with an axial slice thick-

ness of 2 mm; no gap; TR of 11000.0 ms; TE of 125.0 ms; flip angle of 90°; and a matrix size of

512x512 pixels. The third technique was T1 reference (REF) MR imaging; images were ac-

quired with an axial slice thickness of 4 mm; no gap; TR of 545 ms; TE of 10 ms; flip angle of

70°; and a matrix size of 512x512 pixels. To evaluate if there were abnormal signal intensities

including lacunes, T2 MR images were acquired using an axial slice thickness of 5.0 mm; inter-

slice thickness of 1.5 mm; TR of 3000.0 ms; TE of 80.0 ms; flip angle of 90°; and a matrix size of

512 x 512 pixels. To obtain the information about microbleeds, T2 fast field echo(FFE) images

were obtained using the following parameters: axial slice thickness, 5.0 mm; inter-slice thick-

ness, 2 mm; TR, 669 ms; TE 16 ms; flip angle, 18°, and a matrix size of 560x 560 pixels. All axial

sections were obtained parallel to the anterior commissure-posterior commissure line. For the

graph analysis of structural brain network, the diffusion tensor images (DTI) were acquired by

diffusion-weighted single shot echo-planar imaging with the following parameters: TE, 60 ms;

TR, 7,696 ms; flip angle, 90°; b-factor, 600 s/mm2; matrix dimensions, 128 x 128; 70 axial sec-

tions. With the baseline image without weighting, diffusion-weighted images were acquired

from 45 different directions.

Data processing and analyses of MRI images were independently performed at the Compu-

tational Neuroimage Analysis Laboratory of Hanyang University, Seoul in Korea.

Cortical thickness measurements. Processing details are described in our previous studies

[23, 24]. Briefly, native MRI images were registered into a standardized stereotaxic space using

linear transformation [25]. The N3 algorithm was used to correct images for intensity nonunifor-

mities resulting from inhomogeneities in the magnetic field [26]. The registered and corrected

volumes were classified into white matter, grey matter, cerebrospinal fluid, and background

using a 3D stereotaxic brain mask and the Intensity-Normalized Stereotaxic Environment for

Classification of Tissues (INSECT) algorithm [27]. The surfaces of the inner and outer cortices
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were automatically extracted using the Constrained Laplacian-based Automated Segmentation

with Proximities (CLASP) algorithm [28]. Cortical thickness was defined as the Euclidean dis-

tance between linked vertices of the inner and outer surfaces [29], because Lerch and Evans con-

sidered this method for the measurement of cortical thickness as the simplest and most precise

among the several methods they evaluated [29].

Structural connectivity network construction and analyses. Nodes and edges are the two

basic elements of a network. We defined nodes using an automated anatomical labelling (AAL)

template [30] and edges as connections between two nodes. We measured nodal strength, glob-

al efficiency and the clustering coefficient using a similar procedure used in a previous study

[31]. The procedure is described in S3 Methods.

Even though we used the sameMRI scanner and the same imaging protocol, scanning subjects

twice at two different time points may potentially result in differences of matricies between the

pre- and post-intervention, which might not reflect real biological differences but rather imaging

induced artifacts. To address this, we first converted weighted connectivity matrices into binary

matrices and measured the similarity index between the baseline and the post-intervention for

each subject. The similarity index was defined as follows: similarity index = 2 � nnz(A AND B)/

(nnz(A) + nnz(B)) where A and B are the baseline and post-intervention connectivity from binary

matrices, respectively and nnz refers to the number of non-zero elements in a matrix. If the two

binary matrices were the same, the similarity index was assigned a value of 1. We excluded sub-

jects with a similarity index lower than 0.5 in these statistical analyses to reduce the artificial ef-

fects related to the different times of scanning.

Statistical analyses

We calculated our sample size based on a comparison of changes in cortical thickness from

baseline to follow-up between the control and the intervention groups, as well as within the

training groups comparing the traditional and the robot groups. For the normal age-associated

cortical thinning, we referred to a longitudinal study from our group that compared changes of

cortical thickness between normal control versus early or late-onset Alzheimer’s disease de-

mentia, which showed that the mean change of cortical thinning in the normal control group

(mean age 72.6 ± 2.7) was -0.021 ± 0.004 mm per year [32]. Based on this study, we regarded a

cortical thinning of 0.005 mm per three months as significant in normal aging. A prior study

from other group demonstrated that the control group (mean age 60.3± 9.1) showed an average

cortical thinning by 0.005 mm for two months while the intervention group showed cortical

thickening by 0.004 mm (the difference of between the two groups were 0.009 mm) [4]. Anoth-

er study, however, showed that there were no significant changes of cortical thickness between

the control and the intervention group in the elderly [5]. Taken these results together, we as-

sumed that the difference in changes of cortical thickness between the control and the interven-

tion group more than 0.004 mm is significant, which was about the average of those reported

in the two previous studies.

Assuming the standard deviation (SD) of 0.004 mm for changes in cortical thickness from

our previous study [32], and we expected changes in cortical thinning of -0.005 mm (0.6 months

required for change of -0.001mm) for the control group, -0.004 mm (0.74 months required for

change of -0.001 mm) for the traditional intervention group, and -0.001 mm (3 months required

for change of -0.001 mm) for the robot-assisted intervention group. Therefore, the planned en-

rolment for the study was 24 per intervention group, and 37 for control group to account for

10% drop-out rate, which had 80% power under the 5% significance level.

Statistical analyses were implemented using SurfStat Matlab library (http://www.math.mcgill.

ca/keith/surfstat; MathWorks, Natick, MA) and PASW 18 (SPSS Inc., Chicago, IL, USA). For
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the baseline demographic data, student t-test was used to analyze continuous variables and the

Chi-square test to analyze dichotomous variables. Global and topographical changes in mean

cortical thickness and global network topology were compared between the groups using a gener-

al linear model (GLM) with age, gender and intracranial volume as covariates. Statistical signifi-

cance was assessed by a permutation-based test with a threshold of uncorrected P< 0.005

[33, 34]. Changes in cognitive functions between the pre and post-intervention in each group

were assessed by paired t-test while difference of changes in cognitive function between the

groups were compared using a GLMwith age, gender and years of education as covariates. Two-

sided P< 0.05 was considered as statistical significance. Correlation between changes of cortical

thickness and change of cognitive functions within each group was analyzed by GLMwith age,

gender and years of education as covariates, of which a permutation-based test was also used to

assess the statistical significance with a threshold of uncorrected P< 0.001.

Results

Participants in the final analysis

The flow of participants through the study is depicted in Fig 1. One participant in the robot

group and two in the control group withdrew consent. All 47 participants in the two interven-

tion groups attended 51 or more (� 85%) of the 60 sessions and the attendance rate was not

different between these two groups (56.0 ± 3.0 in the traditional vs. 55.9 ± 3.8 in the robot

group, P = 0.864). Among the 82 participants who completed the intervention, one participant

from the robot group was excluded since the extraction of cortical thickness had failed. For the

secondary outcomes, one participant from the traditional group, two from the robot group,

and seven from the control group, were excluded due to the similarity index lower than 0.5.

Therefore, 71 participants were analyzed in the final analysis. Results of continuous variables

were demonstrated as mean ± SD.

Effects of cognitive training on cortical thickness

Global changes of cortical thickness. The mean changes of cortical thickness over 12

weeks in the control group were -0.056 ± 0.115 mm (95% CI, - 0.097 ~ - 0.016), which was signif-

icantly greater than those observed in the intervention group showing-0.011± 0.072 mm (95%

CI, - 0.033 ~ 0.011) (delta for group differences = -0.046 ± 0.053, 95% CI, -0.150 ~ 0.058, P for

group = 0.015). However, changes in the mean cortical thickness did not differ between the tradi-

tional (-0.013 ± 0.067 mm, 95% CI, - 0.042 ~ 0.016) and the robot group (- 0.008 ± 0.079 mm,

95% CI, -0.045 ~ 0.029), (delta for group differences = -0.006 ± 0.072 mm, 95% CI, - 0.147~

0.135, P for group = 0.567).

As stated, we found an attenuation of cortical thinning in the intervention group compared to

the control group. Therefore we investigated what would be the equivalent time of this attenua-

tion in terms of brain-age. Given that the control group showed cortical thinning of 0.056 mm ±

0.115 mm for 3 months while the intervention group showed cortical thinning of 0.011 ± 0.072

mm, this difference was translated into 15.3 months, suggesting that the intervention group may

take as long as 15.3 months to reach the same cortical thinning as in the control group.

Topographical changes of cortical thickness. Fig 2A illustrates brain areas that showed

significant changes in cortical thickness between the control and intervention group. Com-

pared to the control group, the intervention group showed attenuated cortical thinning of het-

eromodal association cortices such as the bilateral medial prefrontal and right middle temporal

gyrus (Fig 2A). When the robot and the traditional group were directly compared, the robot

group had significantly reduced cortical thinning in the right and left anterior cingulate cortices

(ACC) and small areas of right inferior temporal cortex compared to the traditional group
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Fig 2. Topographical changes in cortical thickness. (A) Compared to the control group, the intervention
group shows attenuated cortical thinning on heteromodal association cortices such as the bilateral medial
prefrontal and right middle temporal gyrus. (B) When the traditional and robot groups were directly compared,
significantly reduced cortical thinning on the bilateral anterior cingulate cortices and right inferior temporal
cortex was evident in the robot group. No area demonstrated less cortical thinning in the traditional group
than the robot group.

doi:10.1371/journal.pone.0123251.g002
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whereas no area showed significantly reduced cortical thinning in the traditional group com-

pared to the robot group (Fig 2B).

Effects of cognitive training on structural network

Global changes of nodal strength. Global topological organization of white matter corti-

cocortical networks such as nodal strength, global efficiency and clustering coefficient was de-

creased in the control group. There was no significant differences in the global topolgy of

networks between traditional and robot intervention group although the rate of decrease was

significantly less in the intervention groups (S1 Table).

Regional changes of nodal strength. There were no significant changes in regional nodal

strength in the intervention group compared to the control group (Fig 3A). Direct comparison

of the traditional and robot groups indicated that the latter had greater nodal strength in the

left rectus gyrus (Fig 3B).

Effects of cognitive training on cognitive performance

The intervention group showed a greater improvement only in the executive function (SOC

task) scores than the control group (P< 0.001) (Table 3). When the two intervention groups

were directly compared to each other (Table 4), scores for the ADAS-cog (general cognitive

scores) and PRM task (visual memory) revealed greater improvement in the traditional inter-

vention group than in the robot group. In contrast, the robot group did not outperform the tra-

ditional group on any neuropsychological test.

Correlation of changes in cognitive performance with those in cortical
thickness

In the traditional group (Fig 4A), changes in the raw scores of visual memory (PRM task) were

positively correlated with those of cortical thickness in the right inferior temporal gyrus and right

subgenual cingulate region (uncorrected P< 0.001), whereas other changes in cognitive scores

such as ADAS-cog and SWM task were not correlated with those in cortical thickness. For the

robot group (Fig 4B), changes in the raw scores of executive function (SOC task) were positively

correlated with those of left temoporo-parietal junction as well as left inferior temporal gyrus

(uncorrected P< 0.001). Other scores were not correlated with changes in cortical thickness.

Discussion

The first major finding of our study was that the groups of participants who received cognitive

training showed less cortical thinning than the control group. More specifically, when the in-

tervention group is compared to the control group, the intervention group showed less cortical

thinning in heteromodal association cortices such as the right and left medial prefrontal and

right middle temporal cortex (Fig 2). Heteromodal association cortices are responsible for inte-

grating information from unimodal association cortex and paralimbic areas, which are impor-

tant for facilitating learning [35]. The cognitive training programs used in this study may

require strong integration of information as well as active interactions between neuronal net-

works because these interventions target multiple cognitive domains, which require activation

and processing by the heteromodal association cortices. A previous study showed that lateral

and medial prefrontal cortices as well as superior and middle temporal gyri were consistently

affected during the aging process [36]. Therefore, reduced cortical thinning of the medial pre-

frontal cortex and middle temporal cortex in the intervention group suggests that multi-do-

main targeted cognitive training, such as those used in the current study, may counteract the
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age-associated structural changes in the elderly. The precise neurobiological mechanisms re-

sponsible for the changes of cortical thickness in older adults after cognitive training are not

known. However, previous studies have suggested several explanations, such as changes in the

Fig 3. Topographical changes in nodal strength. (A) There are no significant differences in regional nodal
strength between the control and the intervention group. (B)The robot group shows increased nodal strength
in the rectus gyrus than the traditional group.

doi:10.1371/journal.pone.0123251.g003
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size of neurons or glial cells as well as genesis of neurons or glial cells, or changes in vasculariza-

tion [4, 5, 37, 38].

Our second major finding was that, although changes in the overall mean cortical thickness

were not significantly different between the two groups that received cognitive interventions,

the robot group, when compared to the traditional group, had attenuated cortical thinning bi-

laterally in the dorsal ACCs. There are several possible explanations for this difference. First,

the robot-assisted intervention included more exercise-related programs than traditional train-

ing (Table 1). Physical exercise is known to promote cerebral blood flow especially in the ACC

[39]. Therefore, the increased amount of physical activity in the robot group might have re-

sulted in decreased cortical thinning in the ACC. Second, interaction with robots could have

provided extra motivation for the elderly who had never been exposed to such advanced tech-

nology. According to prior studies, older individuals participating in cognitive intervention

using a computerized or video game mentioned that these people were willing to learn new

technology in the hope that they can empathize better with their grandchildren as well as im-

proving their cognitive function [10]. It is well known that the ACC serves to motivate goal-di-

rected behaviors [40]. Many patients with medial frontal lobe dysfunction are more impaired

in self-initiated physical and cognitive activities than externally mediated activities (akinesia

paradoxica) [41]. Hence, the greater motivation in the robot group may have activated the

ACC more than the traditional training would have. Third, interacting with robots as well as

using tablet computers could be sufficiently novel to induce additional brain activity in the el-

derly because using a computer requires multi-tasking abilities such as the allocation and

Table 3. Changes in cognitive functions between the control and the intervention group.

Control (n = 28) Intervention group (n = 43) P value

for group

R^2

Baseline Post-

Intervention

Delta

(Post-Pre)

P value

for delta

Baseline Post-

intervention

Delta

(Post-Pre)

P value

for delta

ADAS-Cog a 6.3 ± 3.6 4.6 ± 2.2 -1.6 ± 2.7 0.002 7.1 ± 3.6 5.2 ± 2.8 -1.9 ± 2.8 < 0.001 0.832 0.083

Cambridge Neuropsychological Test Automated Battery

Memory

Delayed Matching to Sample (DMS)

Correct response (%) 72.9 ± 11.0 77.7 ±11.3 4.6 ± 12.9 0.054 72.5 ± 13.2 77.2 ± 14.1 4.8 ± 16.0 0.044 0.829 0.042

DMS errors a 0.1 ± 0.2 0.1 ± 0.2 -0.0 ± 0.2 0.918 0.2 ± 0.2 0.1 ± 0.2 -0.0± 0.2 0.164 0.458 0.020

Pattern Recognition Memory (PRM)

Correct response (%) 89.0 ± 7.6 91.1 ± 6.9 1.7 ±8.0 0.239 87.3 ± 15.0 92.5 ± 8.8 5.1± 14.7 0.020 0.279 0.098

Paired Associate Learning (PAL)

Total errors(adjusted) a 28.9 ± 25.3 25.6 ± 20.7 -0.7± 16.7 0.826 31.5 ±21.2 24.0 ± 17.0 -7.4 ± 18.2 0.008 0.053 0.125

Attention

Rapid Visual Information

Processing (RVIP)

0.9 ± 0.0 0.9 ± 0.0 0.0 ± 0.0 0.536 0.9 ± 0.1 0.9 ± 0.1 0.0 ± 0.1 0.110 0.124 0.052

Reaction Time (RTI) a 360.1 ± 41.4 349.1 ± 48.9 -11.6 ± 49.3 0.192 344.7 ± 65.3 339.3 ± 59.9 -6.5 ± 55.4 0.427 0.385 0.051

Executive Function

Spatial Working Memory (SWM)

Between errors a 46.8 ± 17.0 44.9 ± 14.5 -1.6 ± 15.9 <0.001 50.5 ± 21.6 45.8± 24.5 -4.7 ± 23.4 <0.001 0.750 0.134

Strategy a 37.4 ± 3.1 37.0 ± 3.2 -0.2 ± 3.4 <0.001 38.2 ± 4.3 37.0 ± 3.5 -1.2 ± 4.7 <0.001 0.389 0.005

Stocking of Cambridge (SOC)

Problems solved 7.7 ± 1.6 7.2 ± 1.7 -0.7 ± 1.5 0.019 6.5 ± 1.6 7.5 ± 1.6 1.0 ± 2.1 0.004 <0.001* 0.208

*P value < 0.05 adjusted by age, gender and education,
aLower scores represent better performance.

doi:10.1371/journal.pone.0123251.t003
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shifting of attention [42]. Lesions studies of humans [43] and ablations studies in monkeys

[44] as well as imaging studies in normal subjects [45] have revealed that the ACC plays an im-

portant role in the cortical network critical for allocating visual attention.

Another major finding was that the intervention group showed less reduction of global

structural network topology, namely nodal strength, global efficiency, and clustering coeffi-

cient. Previous studies have shown that these characteristics of brain networks decrease signifi-

cantly with normal aging [46, 47], which was replicated in our control group. Clustering

coefficient is an index of segregation that is associated with local efficiency of information

transfer and robustness; high global efficiency represents integration, which also suggests effi-

cient conveyance of parallel information [21, 46]. The attenuated decline in nodal strength,

global efficiency and clustering coefficient in our intervention groups suggests that the cogni-

tive training might delay age-related alterations of brain networks.

We also found that the nodal strength in the left rectus gyrus was increased in the robot

group compared to the traditional group. The ventromedial orbitofrontal cortex including the

rectus gyrus has previously been shown to contribute to reward-based decision-making and

motivation [48–51]. It is possible that more frequent individual feedback including announcing

the winner of the month in the robot group could have activated the reward system more than

the traditional group. It is also plausible that engaging in new technology such as the robotic

system or computers may provide greater motivation for the elderly who have not been

Table 4. Changes in cognitive functions between the traditional and the robot group.

Traditional (n = 23) Robot (n = 20) P value for

group

R^2

Baseline Post-

Intervention

Delta (Post-

Pre)

P value

for delta

Baseline Post-

intervention

Delta (Post-

Pre)

P value

for delta

ADAS-Cog a 7.5 ± 3.5 4.6± 2.6 -2.9 ± 2.3 <0.001 6.8 ± 3.8 5.7 ± 2.9 -0.9 ± 2.8 0.157 0.014* 0.234

Cambridge Neuropsychological Test Automated Battery

Memory

Delayed Matching to Sample (DMS)

Correct response (%) 74.6 ± 10.0 76.4 ± 15.2 2.5 ± 15.6 0.440 71.1 ± 15.8 78.0 ± 13.1 7.3 ± 16.4 0.045 0.093 0.052

DMS errors a 0.2 ± 0.2 0.1 ± 0.2 -0.0 ± 0.2 0.537 0.2 ± 0.2 0.1 ± 0.2 - 0.1 ± 0.2 0.149 0.337 0.057

Pattern Recognition Memory (PRM)

Correct response (%) 85.4 ± 18.9 94.8 ± 5.8 9.4 ± 18.5 0.021 89.3 ± 9.3 90.0 ± 10.7 0.7± 7.2 0.633 0.017* 0.174

Paired Associate Learning (PAL)

Total errors(adjusted) a 28.7 ± 21.1 22.4 ± 12.2 -6.3 ± 18.7 0.115 34.4 ± 21.3 25.7 ± 18.3 -8.6 ± 18.0 0.032 0.942 0.109

Attention

Rapid Visual

Information

Processing (RVIP)

0.9 ± 0.1 0.9 ± 0.0 0.0 ± 0.1 0.065 0.9 ± 0.1 0.9 ± 0.1 0.0 ± 0.0 0.007 0.904 0.177

Reaction Time (RTI) a 344.0 ± 69.2 348.8 ± 74.2 -3.9 ± 55.8 0.732 335.0 ± 59.2 327.3 ± 38.5 -9.4± 56.2 0.441 0.807 0.065

Executive Function

Spatial Working

Memory (SWM)

Between errors a 52.0 ± 22.1 47.0 ± 21.4 -5.0 ± 24.0 <0.001 49.0 ± 21.4 44.6 ± 27.7 -4.4 ± 23.2 <0.001 0.906 0.093

Strategy a 38.5 ± 4.4 36.7 ± 3.3 -1.8 ± 4.2 <0.001 37.9 ± 4.0 37.4 ± 3.8 -0.5 ± 5.1 <0.001 0.302 0.056

Stocking of Cambridge (SOC)

Problems solved 6.7 ± 1.5 7.3 ± 1.6 0.5 ± 2.2 0.245 6.4 ± 1.7 7.7 ± 1.6 1.4 ± 2.0 0.003 0.230 0.080

* P value < 0.05 adjusted by age, gender and education,
aLower scores represent better performance.

doi:10.1371/journal.pone.0123251.t004
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exposed to those novel environments, which could result in strengthened neural connectivity

in the rectus gyrus, contributing to motivation control of goal-directed behavior [48, 51]. It is

also noteworthy that the rectus gyrus is an extension of the ACC to the frontal lobe [52], which

may help explain the simultaneous changes in both regions that we observed.

When the intervention group was compared to the control group, the intervention group

showed greater improvement in the executive function (SOC task). The SOC subtest was de-

signed to measure the planning efficiency and problem solving ability [53]. Therefore, the im-

provement of SOC task in the intervention group would suggest that multi-domain cognitive

training might help improve executive functions in the elderly. These results could be compati-

ble with the previous results showing that multi-domain cognitive training improves executive

functions such as reasoning and processing speed [7, 54]. Direct comparison of the traditional

and the robot groups indicated larger improvement in visual memory and general cognitive

function in the traditional group. The reasons are unknown and further study is required to

elucidate such differences.

Finally, changes of visual memory scores in the traditional group were positively correlated

with changes in cortical thickness of the right inferior temporal and the right subgenual ventro-

medial prefrontal cortex, while improvements of the executive function in the robot group

were significantly correlated with cortical thickening in the left temporo-parietal junction and

Fig 4. Correlation of changes in cognitive functions and changes in cortical thickness. (A) In the
traditional group, changes in the raw scores of visual memory are positively correlated with those of cortical
thickness in the right inferior temporalgyrus and right subgenual cingulate region (uncorrected P < 0.001). (B)
For the robot group, changes in the raw scores of executive function are positively correlated with those of left
temoporo-parietal junction as well as left inferior temporal gyrus (uncorrected P <0.001).

doi:10.1371/journal.pone.0123251.g004
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right inferior temporal gyrus. Correlation does not directly imply causation, but perhaps the

correlation in the traditional group can be explained by the fact that the inferior temporal cor-

tex is involved in visual shape categorization [55] while the subgenual ventromedial prefrontal

cortex plays a role in memory consolidation [56, 57]. Interestingly, all of the correlated areas

that we observed were located in the right hemisphere which predominantly processes visual

information [58]. On the other hand, the improvement of executive functions in the robot

group may be related to the changes in the left temporo-parietal junction that mediates the al-

location of attention to task-relevant information [59], which is critical for planning and prob-

lem solving [60].

This study has several limitations. First, it was not possible to control participants’ daily cogni-

tive activity at home such as using computers or reading books. Second, although there was no

significant difference in proportions of gender between the control and two intervention groups,

the larger portion of women in the control group might have influenced our results since previ-

ous studies have revealed that cortical thinning occurs faster in women than in men [61]. Howev-

er, we adjusted the gender as a covariate to minimize gender effects on cortical thinning.

In conclusion, although several studies have revealed that social robots improve the mood

of the elderly [62], prior to this study, there have been no studies that have investigated the ef-

fects of robot-assisted cognitive training on structural brain changes in the elderly. The results

of this study have revealed that cognitive training can mitigate cortical thinning and network

alterations in the elderly, providing evidence that training-driven plasticity can occur in the el-

derly. Furthermore, our results suggest that robot-assisted cognitive training can help alleviate

cortical thinning in the ACC compared to the traditional one, which is important in initiation

and persistence of goal-directed activities as well as the allocation of attention. Although fur-

ther research is needed to improve these cognitive training robots, with the dramatic increase

in the number of older people, robot-assisted cognitive training, as well as the traditional one,

may help reduce the cognitive disabilities associated with aging.
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