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Abstract

Neuroimaging markers have been widely used to predict the cognitive functions relevant to the

progression of Alzheimer’s disease (AD). Most previous studies identify the imaging markers

without considering the brain structural correlations between neuroimaging measures. However,

many neuroimaging markers interrelate and work together to reveal the cognitive functions, such

that these relevant markers should be selected together as the phenotypic markers. To solve this

problem, in this paper, we propose a novel network constrained feature selection (NCFS) model to

identify the neuroimaging markers guided by the structural brain network, which is constructed by

the sparse representation method such that the interrelations between neuroimaging features are

encoded into probabilities. Our new methods are evaluated by the MRI and AV45-PET data from

ADNI-GO and ADNI-2 (Alzheimer’s Disease Neuroimaging Initiative). In all cognitive function

prediction tasks, our new NCFS method outperforms other state-of-the-art regression approaches.

Meanwhile, we show that the new method can select the correlated imaging markers, which are

ignored by the competing approaches.
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1 Introduction

Alzheimer’s disease (AD) is the most common dementia that has acquired tremendous

research attention due to its wide range of effects and mysterious underlying mechanisms.

AD is a neurodegenerative disorder characterized by progressive impairment of cognitive

functions, and thus it is crucial to understand how structural and functional changes in brain

can influence cognitve performance. As a powerful tool for capturing neurodegenerative

process in AD progression, neuroimaging data have been widely studied for classification of
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disease status [9, 3] and more recently for prediction of disease-relevant cognitive scores

[13, 10].

Regression analyses were commonly used to predict cognitive scores from imaging

measures. In [13], stepwise regression was performed in a pairwise way to associate the

Magnetic Resonance Imaging (MRI) and FDG-PET (Positron Emission Tomography)

measures to memory scores. Because the univariate model was used in this study, their

results neglected the interrelated structures within both imaging and clinical data. As a

special case of a sparse linear model, the relevance vector regression method was applied to

relate the Voxel-Based Morphometry (VBM) features to selected clinical scores [10]. This

approach was connected to the combination of Bayesian model and least absolute shrinkage

and selection operator (LASSO) model [12]. Another study [14] used the structured sparsity-

inducing norm, ℓ2,1-norm, to select neuroimaging markers that are important to most

prediction tasks. Later work [15, 16] presented joint sparse multi-task models to identify the

imaging markers related to both cognitive scores and outcomes. In most recent work, we

introduced the high-order low-rank sparse learning models to select the longitudinal

neuroimaging markers associated to genetic basis [17] or cognitive scores [18].

Most existing studies selected the neuroimaging features totally based on their influences on

the prediction results, i.e. in a model-driven way. However, from the functional brain

circuitry point of view, many neuroimaging markers interrelate with each other and work

together to reveal the brain cognitive functions. Thus, it is desired to explore and utilize such

interrelation structures and select these important and structurally correlated features

together.

In this paper, we propose a new brain network constrained feature selection (NCFS) method

to naturally integrate the structural brain network into cognitive function prediction model.

As a result, our selected imaging markers not only have prediction power, but also indicate

the feature interrelations in structural brain network. We apply the new method to analyze

the MRI, AV45-PET and cognitive data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database. The neuroimaging markers are identified to predict the cognitive

scores from five sets of different neuropsychological tests.

2 Structural Brain Network Construction Using A New Sparse

Representation Model

To understand and characterize the underlying architectures of complex brain networks,

previous neuroscience studies utilized the Pearson correlation coefficients of cortical

thickness measurements from MRI to create the network of anatomical connections [2, 6].

Thus, given the neuroimaging measures, we can create the structural brain network using

their correlation coefficients. In this constructed brain network, each vertex represents one

neuroimaging feature and each edge between two vertices encodes their correlation.

However, this simple correlation analysis may not effectively construct the brain anatomical

structure. To solve this problem, we propose a new sparse representation model to construct

an effective structural brain network among neuroimaging measures.

Denote the neuroimaging features are F = [f1, f2,···, fd] ∈ ℜn×d, where n is the number of

subject and d is the number of features. Our goal is to construct a connectivity matrix A, in

which Ai,j encodes the correlation between features fi and fj. A popular method to compute A

is using the Gaussian kernel function. The major disadvantage of this method is that the

hyper-parameter σ in the Gaussian kernel function is very sensitive and is difficult to tune in

practice.
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Recently, as an approximate formulation for Gaussian graphical modeling [7], the sparse

coding method was applied to compute the similarity matrix A. The similarity vector αi

includes the similarities between the i-th feature and the rest features, and is calculated by

the sparse representation as follows:

(1)

where F−i = [f1, ···, fi−1, fi+1, ···, fd] ∈ ℜn×(d−1). However, the above model is not shift-

invariant. We propose to impose two new constraints:  and αi ≥ 0, such that

. More important, based on these two new

constraints, the learned similarities in αi can be interpreted as probabilities. Interestingly, the

new constraints make the second term be constant. So the sparse representation model is to

solve:

(2)

Because the parameter λ is canceled, our new model doesn’t require any parameter tuning

and is suitable for practical applications. Our new objective is a non-smooth convex

problem. We use the accelerated projected gradient method to solve this problem.

3 Structural Brain Network Constrained Neuroimaging Feature Learning

To identify biologically meaningful markers, we integrate the structural brain network into

cognitive function prediction model. The structural brain network can constrain and guide

the machine learning model to identify important and correlated biomarkers, which

potentially play the key roles in memory and cognition circuitry. To predict cognitive scores,

we use regression methods, but it is challenging to incorporate the network connectivity

matrix A into a regression model. To solve this problem, we introduce a novel structural

brain network constrained feature selection (NCFS) method with new optimization

algorithm.

To select the correlated features, in the regression model, if the i-th and j-th features have

high similarity in A, their coefficient vectors wi and wj (wi ∈ ℜc×1 is the transpose of the i-th

row of parameter matrix W) should be both large or both small, i.e., similar to each other.

Because the similarity vector αi encodes the similarity between the i-th feature and other

features, the coefficient vector wi and the rest coefficient vectors W−i = [w1, …, wi−1, wi+1,

…, wd] ∈ ℜc×(d−1) should also have similar sparse representation with αi. Thus, we should

minimize:

(3)

where A = [α̃1, …, α̃d] ∈ ℜd×d, in which α̃i ∈ ℜd×1 is an augmented αi ∈ ℜ(d−1)×1 with the i-

th element as 0.

Denoting L = (I − A)T (I − A), our new NCFS objective is to solve:

(4)
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In our new objective, the first regularization term imposes the structural brain network

constraint, and the second regularization term is the structured sparse mixed norm to select

features which are important to all prediction tasks. Thus, the features identified by our

NCFS model are important to all cognitive functions prediction and also correlated in the

structural brain network.

Taking the derivative w.r.t. b and setting to zero, we have . Thus, our

objective becomes:

(5)

where  is the centering matrix. This new objective is a non-smooth convex

problem with two regularization terms. We will derive an efficient algorithm to optimize the

new objective.

3.1 New Optimization Algorithm to Solve Problem (5)

By taking the derivative of Eq. (5) w.r.t. W and setting to zero, we have:

(6)

where P is a diagonal matrix, the i-th diagonal element is . Eq. (6) leads to the solution

W as:

(7)

Note that P is not a constant and depends on the unknown W. We propose an iterative

algorithm to solve W based on Eq. (7). As initialization, we guess a solution W, then we

calculate P with current W and update W with Eq. (7). The detailed algorithm is summarized

in Algorithm 1.

If Algorithm 1 converges, then the converged solution W satisfies Eq. (6). Since problem (5)

is convex, the converged solution W is the global optimal solution to problem (5). In next

subsection, we will prove that Algorithm 1 indeed converges.

3.2 Convergence Analysis on Our New Algorithm

For the Algorithm 1, we have the following theorem:

Theorem 1—In each iteration, Algorithm 1 will decrease the objective value of problem

(5) till the algorithm converges.

Proof—In the Step 2 of Algorithm 1, we denote the updated solution W as W̃. According to

Step 2, we have

(8)

Since W ̃ is the optimal solution in Eq. (8), we have
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According to the definition of P in Step 1 of Algorithm 1, we have

(9)

Based on a inequality  for any vectors w and w ̃, we have

(10)

Summing over Eq. (9) and Eq. (10) on both sides, we arrive at

(11)

Thus, our algorithm will decrease the objective value of problem (5) in each iteration till it

converges.

Because the objective value of problem (5) has a lower bound 0, the algorithm will

converge. As mentioned before, the algorithm will converge to the global optimal solution

of problem (5).

4 Experimental Results and Discussions

4.1 Neuroimaging and Cognition Data Descriptions

We have applied and evaluated the proposed new models on the neuroimaging and cognitive

data downloaded from the ADNI database (adni.loni.ucla. edu). One goal of ADNI has been

to test whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-

info.org.

We downloaded corrected 3T structural MRI scans [4], pre-processed AV-45 PET scans [5],

and cognitive data from the ADNI website. Our analysis focused on the baseline MRI,

AV45-PET and cognitive data at the ADNI-GO/2 phase. All the participants with a baseline

diagnosis were involved in the study, including 105 health control (HC), 237 MCI and 18

AD participants (Table 1).

VBM in SPM8 [1] was applied to preprocess structural MRI scans, as previously described

[8]. Briefly, scans were aligned to a T1-weighted template image, segmented into gray

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) maps, normalized to MNI

space, and smoothed with an 8mm FWHM kernel. Besides, all scans were also processed

through automated segmentation and parcellation using Freesurfer version 5.1.

AV-45 PET scans were pre-processed using techniques identical to the previous techniques

for processing ADNI PiB PET scans [5]. Standardized uptake value ratio (SUVR) AV-45
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PET images were created by intensity normalizing to a mean cerebellar GM region of

interest (ROI). Downloaded scans were co-registered to the structural MRI scan from the

corresponding visit and normalized to MNI space using SPM8, as described in [11]. Mean

AV-45 measures were calculated for ten ROIs, including frontal lobe, parietal lobe, temporal

lobe, Limbic lobe, occipital lobe, anterior cingulate, poster cingulate, precuneus, and

cerebellum. In addition, a summarized measure were calculated based on the ROIs that best

differentiate AD and HC in previous experiment.

Overall, we had 90 VBM measures, 95 Freesurfer measures, and eleven AV45 measures for

each subject. Based on these imaging measures, we performed different regression models

to predict five types of cognitive scores: (1) Alzheimer’s Disease Assessment Scale-

Cognitive test (ADAS); (2) Rey Auditory Verbal Learning Test (RAVLT); (3) FLUENCY;

(4) Mini-Mental State Examination (MMSE); and (5) Trail Making Test (TRAILS).

4.2 Experimental Setting

We compared our new method (NCFS) with several competing regression models:

multivariate linear regression (MVLR), ridge regression, structured sparsity-inducing norm

regularized regression [14] (denoted as ℓ2,1), and Lasso regularized regression. The

evaluation metric used was the standard root mean square error (RMSE), which has been

widely used in performance evaluation of regression analysis. For each method, five-fold

cross-validation was performed to obtain the average RMSE. In each of five trials, an

internal five-fold cross-validation was done to tune the parameters using grid search for

different methods. The range of each parameter varied from 10−5 to 105. The reported

results were the best results of each method with the optimal parameter.

4.3 Cognitive Functions Prediction Performance Comparisons

The cognitive scores prediction results were reported in Table 2. The proposed method

NCFS consistently outperformed other methods by predicting five cognitive scores more

accurately with lower RMSEs. The key difference between NCFS and other methods was

that the NCFS method utilized the correlation between features by incorporating the

structural brain network as the regularization term, whereas other methods tended to select

individual feature and ignored other less important but correlated features. Thus, NCFS had

a built-in mechanism to select structural correlated features which acted together to impact

human cognitive functions. MVLR had the largest RMSEs than all other methods, because it

was prone to overfit the training data. Table 2 also indicated that FreeSurfer measures were

more powerful for predicting cognitive performance than VBM and AV45 measures.

We also evaluated the average correlation values of top ranked features in all methods. For

each method, we extracted top 5, 10 and 20 features for FreeSurfer and VBM measures.

Because AV45 only had 11 features, we selected top 2 features (i.e. top 20% of all features)

for each method. The correlation of features was computed from the structural brain network

obtained by the sparse representation model, which reflected the similarity between features.

Table 3 showed the average correlations of top ranked features by different methods. In

most case, top ranked features by NCFS method were more correlated than that of other

methods. The correlations of top ranked features in ℓ2,1 and Lasso approaches were

relatively low because they tended to select a single feature from a group of correlated

features. NCFS selected more (correlated) features in structural brain network, which helped

achieve better prediction performance.

4.4 Imaging Markers Analysis and Discussions

Figure 1 visualized the resulting structural brain network of 95 FreeSurfer measures as a

connectivity matrix. Indices 1–7 corresponded to seven unilateral measures, which were
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listed in blue (from BrainStem to CSF) on the x axis of Figures 2. Indices 8–51 (52–95)

corresponded to 44 bilateral measures on the left (right) hemisphere, which were listed in

black (from AccumVol to TransvTemporal) on the x axis of Figures 2. The white lines

separated the unilateral and bilateral measures as well as left and right measures. It was

obvious that the left and right hemispheres demonstrated a very similar pattern.

The results of linear regression and ridge regression were not sparse, making it difficult for

biomarker identification. Thus, here we only compared the feature selection results between

NCFS and ℓ2,1. Both NCFS and ℓ2,1 were sparse models that were able to identify a compact

set of relevant imaging markers and to explain the underlying brain structural changes

related to cognitive status. Shown in Figure 2 were the maps of regression weights for

predicting various cognitive scores (from top to bottom: Fluency, ADAS, TRAIL, RAVLT

and MMSE) using the FreeSurfer measures. Average regression weights of 5-fold cross-

validation trials were plotted for NCFS (the even panels) and ℓ2,1 (the odd panels). In each

panel, the odd (even) rows showed the weights from left (right) hemisphere. Note that the

first seven measures (from BrainStem to CSF, colored in blue) were unilateral, and thus

their left and right measures were set to be the same. Blue indicated negative correlation,

while red indicated positive correlation. The bigger the magnitude of a coefficient was, the

more important its imaging measure was in predicting the corresponding cognitive score.

Clearly, ℓ2,1 yielded more sparse patterns than NCFS. However, for highly correlated

features, ℓ2,1 tended to identify one and ignore the others. This was in-adequate for yielding

a biologically meaningful interpretation. In contrast, NCFS did seem to work in terms of

structuring the identified patterns. For example, the hippocampal volume and amygdala

volume were correlated (Fig. 1). They were selected together by NCFS for predicting ADAS

and RAVLT scores, while ℓ2,1 only selected hippocampal volume in this case. In addition,

bilateral measures of the same structure were often highly correlated. The NCFS yielded a

more symmetric pattern than ℓ2,1 in many cases.

Finally, the identified patterns were in fact expected based on our prior knowledge. For

example, RAVLT measured verbal learning memory; and the identified regions included

hippocampus, fusiform, entorhinal cortex, and other regions relevant to learning and

memory.

5 Conclusions

In this paper, we have proposed two new machine learning models, one for constructing a

structural brain network and the other for identifying cognition-releveant neuroimaging

markers using the constructed brain network. This framework discovers imaging biomarkers

that are not only important to the cognitive outcomes but also interrelating with each other in

the structural brain network. We have applied the new computational models to predicting

cognitive outcomes using FreeSurfer, VBM, and AV45 data from the ADNI database. All

the empirical results have demonstrated consistently improved performance of our method

over the state-of-the-art competing approaches.
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Fig. 1.

The resulting structural brain network of 95 freesurfer measures is shown as a connectivity

matrix. Indices 1–7 correspond to seven unilateral measures, which are listed in blue (from

BrainStem to CSF) on the x axis of Figure 2. Indices 8–51 (52–95) correspond to 44 bilateral

measures on the left (right) hemisphere, which are listed in black (from AccumVol to

TransvTemporal) on the x axis of Figure 2.
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Fig. 2.

Heat maps of regression weights for predicting cognitive scores (from top to bottom:

Fluency, ADAS, TRAIL, RAVLT and MMSE) from FreeSurfer measures using NCFS (the

even panels) and ℓ2,1 (the odd panels) methods. In each panel, the odd (even) rows show the

weights from left (right) hemisphere. Note that the first seven measures (from BrainStem to

CSF, colored in blue) are unilateral, and thus their left and right measures are set to be the

same. Blue indicates negative correlation, while red indicates positive correlation.
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Table 1

Participant characteristics

Category HC MCI AD

Number 105 237 18

Gender (M/F) 53/52 137/100 11/7

Handness (R/L) 98/7 208/29 16/2

Baseline age (mean±std) 74.2±5.7 71.1±7.5 76.2±11.0

Education (mean±std) 16.4±2.6 16.2±2.6 15.3±2.7
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Algorithm 1

Optimization algorithm to solve problem (5)
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