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This article considers the problem of modeling a class of nonstationary time series using piecewise autoregressive (AR) processes. The num-

ber and locations of the piecewise AR segments, as well as the orders of the respective AR processes, are assumed unknown. The minimum

description length principle is applied to compare various segmented AR fits to the data. The goal is to find the “best” combination of the

number of segments, the lengths of the segments, and the orders of the piecewise AR processes. Such a “best” combination is implicitly

defined as the optimizer of an objective function, and a genetic algorithm is implemented to solve this difficult optimization problem.

Numerical results from simulation experiments and real data analyses show that the procedure has excellent empirical properties. The

segmentation of multivariate time series is also considered. Assuming that the true underlying model is a segmented autoregression, this

procedure is shown to be consistent for estimating the location of the breaks.
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1. INTRODUCTION

In this article we consider the problem of modeling a non-

stationary time series by segmenting the series into blocks of

different autoregressive (AR) processes. The number of break-

points, denoted by m, as well as their locations and the orders of

the respective AR models are assumed unknown. We propose

an automatic procedure for obtaining such a partition.

To describe the setup, for j = 1, . . . ,m, denote the breakpoint

between the jth and ( j + 1)st AR processes as τj, and set τ0 = 1

and τm+1 = n + 1. Then the jth piece of the series is modeled

as an AR process,

Yt = Xt,j, τj−1 ≤ t < τj, (1)

where {Xt,j} is the AR( pj) process

Xt,j = γj + φj1Xt−1,j + · · · + φj,pj Xt−pj,j + σjεt,

ψ j := (γj, φj1, . . . , φj,pj , σ
2
j ) is the parameter vector corre-

sponding to this AR( pj) process, and the noise sequence {εt}

is iid with mean 0 and variance 1. Given an observed se-

ries {yi}
n
i=1, the objective is to obtain a “best”-fitting model

from this class of piecewise AR processes. This is equiva-

lent to finding the “best” combination of the number of pieces

m + 1, the breakpoint locations τ1, . . . , τm, and the AR orders

p1, . . . ,pm+1. We propose an automatic piecewise autoregres-

sive modeling procedure, referred to as Auto-PARM, for ob-

taining such a partition.

Note that once these parameters are specified, maximum like-

lihood estimates of the AR parameters, ψ j, for each segment

are easily computed. The primary objective of the methodol-

ogy developed in this article is to actually estimate structural

breaks for a time series. Under this scenario, it is assumed that

some aspect of a time series changes at various times; such a

change might be a shift in the mean level of the process, a

change in variance, and/or a change in the dependence struc-

ture of the process. The sequence of time series between two
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changepoints is assumed to be modeled as a sequence of sta-

tionary processes, each of which can be adequately modeled

by an AR process. Potential applications of this setup can be

found in social sciences, in which time series may be impacted

by changes in government policies and time series from signal

processing, engineering, and manufacturing, where production

processes are often subject to unpredictable changes in the man-

ufacturing process.

As a secondary objective, our methodology can also be

viewed as a procedure for approximating locally stationary time

series by piecewise AR processes. To see this, note that the

piecewise AR process considered in (1) is a special case of the

piecewise stationary process (see also Adak 1998)

Ỹt,n =

m+1
∑

j=1

Xt,jI[τj−1/n,τj/n)(t/n),

where {Xt,j}, j = 1, . . . ,m + 1, is a sequence of stationary

process. Ombao, Raz, Von Sachs, and Malow (2001) ar-

gued that under certain conditions, locally stationary processes

(in the sense of Dahlhaus 1997) can be well approximated by

piecewise stationary processes. Roughly speaking, a process

is locally stationary if its time-varying spectrum at time t

and frequency ω is |A(t/n,ω)|2, where A(u,ω), u ∈ [0,1],

ω ∈ [−1/2,1/2], is a continuous function in u. Because AR

processes are dense in the class of weakly stationary (purely

nondeterministic) processes, the piecewise AR process is dense

in the class of locally stationary processes.

The foregoing problem of finding a “best” combination of m,

τj’s, and pj’s can be treated as a statistical model selection prob-

lem, in which candidate models may have different numbers of

parameters. To solve this selection problem, we apply the min-

imum description length (MDL) principle of Rissanen (1989)

to define a best-fitting model. (See Saito 1994 and Hansen and

Yu 2000 for comprehensive reviews of MDL.) The basic idea

behind the MDL principle is that the best-fitting model is the

one that enables maximum compression of the data. Successes

in applying MDL to a various practical problems have been

widely reported in the literature (e.g., Lee 2000; Hansen and

Yu 2001; Jornsten and Yu 2003).
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As demonstrated later, the best-fitting model derived by the

MDL principle is defined implicitly as the optimizer of some

criterion. Practical optimization of this criterion is not a trivial

task, because the search space (consisting of m, τj’s and pj’s) is

enormous. To tackle this problem, we use a genetic algorithm

(GA), described by, for example, Holland (1975). GAs are be-

coming popular tools in statistical optimization applications

(e.g., Gaetan 2000; Pittman 2002; Lee and Wong 2003) and

seem particularly well suited for our MDL optimization prob-

lem, as can be seen in our numerical studies.

Various versions of the aforementioned breakpoint detection

problem have been considered in the literature. For example,

Bai and Perron (1998, 2003) examined the multiple change-

point modeling for the case of multiple linear regression, Inclan

and Tiao (1994) and Chen and Gupta (1997) considered the

problem of detecting multiple variance changepoints in a se-

quence of independent Gaussian random variables, and Kim

and Nelson (1999) provided a summary of various applications

of the hidden Markov approach to econometrics. Kitagawa and

Akaike (1978) implemented an “on-line” procedure based on

the Akaike information criterion (AIC) to determine segments.

To implement their method, suppose that an AR( p0) model

has been fitted to the dataset {y1, y2, . . . , yn0
} and that a new

block {yn0+1, . . . , yn0+n1
} of n1 observations becomes available,

which can be modeled as an AR( p1) model. Then the time n0

is considered a breaking point when the AIC value of the two

independent pieces is smaller than the AIC of the AR that re-

sults when the dataset {y1, . . . , yn0+n1
} is modeled as a single

AR model of order p2. Each pj, j = 0,1,2, is selected among

the values 0,1, . . . ,K (where K is a predefined value) that min-

imizes the AIC. The iteration is continued until no more data

are available. Like K, n1 is a predefined value.

Ombao et al. (2001) implemented a segmentation procedure

using the SLEX transformation, a family of orthogonal trans-

formations. For a particular segmentation, a “cost” function is

computed as the sum of the costs at all of the blocks that de-

fine the segmentation. The best segmentation is then defined as

the one with minimum cost. Again, because it is not computa-

tionally feasible to consider all possible segmentations, Ombao

et al. (2001) assume that the segment lengths follow a dyadic

structure, that is, an integer power of 2. Bayesian approaches

have also been studied (see, e.g., Lavielle 1998; Punskaya,

Andrieu, Doucet, and Fitzgerald 2002). Both of these proce-

dures choose the final optimal segmentation as the one that

maximizes the posterior distribution of the observed series. Nu-

merical results suggest that both procedures have excellent em-

pirical properties; however, theoretical results supporting these

procedures are lacking.

For most of the aforementioned procedures, including

Auto-PARM, the “best” segmentation is defined as the opti-

mizer of an objective function. Sequential-type searching algo-

rithms for locating such an optimal segmentation are adopted

by some of these procedures (e.g., Kitagawa and Akaike 1978;

Inclan and Tiao 1994; Ombao et al. 2001). On the one hand, one

would expect that these sequential procedures, when compared

with our GA approach, would require less computational time

to locate a good approximation to the true optimizer. On the

other hand, because the GA approach examines a much bigger

portion of the search space for the optimization, one should also

expect the GA approach to provide better approximations to the

true optimizer. A detailed comparison of the Auto-PARM pro-

cedure and the Auto-SLEX procedure of Ombao et al. (2001)

is given in Section 4.

The rest of this article is organized as follows. In Section 2

we derive an expression for the MDL for a given piecewise AR

model. In Section 3 we give an overview of the GA and discuss

its implementation to the segmentation problem. In Section 4

we study the performance of the GA via simulation, and in Sec-

tion 5 we apply the GA to two test datasets that have been used

in the literature. We discuss the case of a multivariate time se-

ries and an application in Section 6. In Section 7 we summarize

our findings and discuss the relative merits of Auto-PARM and

other structural break detection procedures. Finally, we provide

some theoretical results supporting our procedure in the Appen-

dix.

2. MODEL SELECTION USING MINIMUM
DESCRIPTION LENGTH

2.1 Derivation of Minimum Description Length

This section applies the MDL principle to select a best-

fitting model from the piecewise AR model class defined by (1).

Denote this whole class of piecewise AR models by M and any

model from this class by F ∈ M. In the current context, the

MDL principle defines the “best”-fitting model from M as the

one that produces the shortest code length that completely de-

scribes the observed data y = ( y1, y2, . . . , yn). Loosely speak-

ing, the code length of an object is the amount of memory space

required to store the object. In the applications of MDL, one

classical way to store y is to split y into two components, a fit-

ted model F̂ plus the portion of y that is unexplained by F̂ . This

latter component can be interpreted as the residuals, denoted by

ê = y − ŷ, where ŷ is the fitted vector for y. If CLF (z) denotes

the code length of object z using model F , then we have the

following decomposition:

CLF (y) = CLF (F̂) + CLF (ê|F̂),

where CLF (F̂) is the code length of the fitted model F̂ and

CLF (ê|F̂) is the code length of the corresponding residuals

(conditional on the fitted model F̂ ). In short, the MDL prin-

ciple suggests that a best-fitting piecewise AR model F̂ is the

one that minimizes CLF (y).

Now the task is to derive expressions for CLF (F̂) and

CLF (ê|F̂). We begin with CLF (F̂). Let nj := τj − τj−1 denote

the number of observations in the jth segment of F̂ . Because

F̂ is composed of m, τj’s, pj’s, and ψ̂ j’s, we further decompose

CLF (F̂) into

CLF (F̂) = CLF (m) + CLF (τ1, . . . , τm)

+ CLF (p1, . . . ,pm+1)

+ CLF (ψ̂1) + · · · + CLF (ψ̂m+1)

= CLF (m) + CLF (n1, . . . ,nm+1)

+ CLF (p1, . . . ,pm+1)

+ CLF (ψ̂1) + · · · + CLF (ψ̂m+1).

The last expression was obtained by the fact that complete

knowledge of (τ1, . . . , τm) implies complete knowledge of
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(n1, . . . ,nm+1), and vice versa. In general, to encode an inte-

ger I whose value is not bounded, approximately log2 I bits are

needed. Thus CLF (m) = log2 m and CLF (pj) = log2 pj. But if

the upper bound (say IU) of I is known, then approximately

log2 IU bits are required. Because all nj’s are bounded by n,

CLF (nj) = log2 n for all j. To calculate CLF (ψ̂ j), we use the

following result of Rissanen: A maximum likelihood estimate

of a real parameter computed from N observations can be ef-

fectively encoded with 1
2

log2 N bits. Because each of the pj + 2

parameters of ψ̂ j is computed from nj observations,

CLF (ψ̂ j) =
pj + 2

2
log2 nj.

Combining these results, we obtain

CLF (F̂) = log2 m + (m + 1) log2 n

+

m+1
∑

j=1

log2 pj +

m+1
∑

j=1

pj + 2

2
log2 nj. (2)

Next, we derive an expression for CLF (ê|F̂), that is, the code

length for the residuals ê. From Shannon’s classical results in

information theory, Rissanen demonstrated that the code length

of ê is given by the negative of the log-likelihood of the fit-

ted model F̂ . To proceed, let yj := ( yτj−1
, . . . , yτj−1) be the

vector of observations for the jth piece in (1). For simplicity,

we consider that µj, the mean of the jth piece in (1), is 0.

Denote the covariance matrix of yj as V−1
j = cov{yj}, and let

V̂j be an estimate for Vj. Even though the εj’s are not assumed

to be Gaussian, inference procedures are based on a Gaussian

likelihood. Such inference procedures are often called quasi-

likelihood. Assuming that the segments are independent, the

Gaussian likelihood of the piecewise process is given by

L(m, τ0, τ1, . . . , τm,p1, . . . ,pm+1,ψ1, . . . ,ψm+1;y)

=

m+1
∏

j=1

(2π)−nj/2|Vj|
1/2 exp

{

−
1

2
yT

j Vjyj

}

,

and hence the code length of ê given the fitted model F̂ is

CLF (ê|F̂)

≈ − log2 L(m, τ0, τ1, . . . , τm, ψ̂1, . . . , ψ̂m+1;y)

=

m+1
∑

j=1

{

nj

2
log(2π) −

1

2
log |V̂j| +

1

2
yT

j V̂jyj

}

log2 e. (3)

Combining (2) and (3) and using logarithm base e rather than

base 2, we obtain the approximation for CLF (y),

log m + (m + 1) log n +

m+1
∑

j=1

log pj +

m+1
∑

j=1

pj + 2

2
log nj

+

m+1
∑

j=1

{

nj

2
log(2π) −

1

2
log |V̂j| +

1

2
yT

j V̂jyj

}

. (4)

Using the standard approximation to the likelihood for AR

models [i.e., −2 log(likelihood) by nj log σ̂ 2
j , where σ̂ 2

j is the

Y–W estimate of σ 2
j (Brockwell and Davis 1991)], we define

MDL(m, τ1, . . . , τm,p1, . . . ,pm+1)

= log m + (m + 1) log n +

m+1
∑

j=1

log pj

+

m+1
∑

j=1

pj + 2

2
log nj +

m+1
∑

j=1

nj

2
log(2πσ̂ 2

j ). (5)

We propose selecting the best-fitting model for y as the model

F ∈ M that minimizes MDL(m, τ1, . . . , τm, p1, . . . ,pm+1).

2.2 Consistency

To this point, we have not assumed the existence of a true

model for the time series. But to study theoretical properties

of these estimates, an underlying model must first be speci-

fied. Here we assume that there exist true values m0 and λ0
j ,

j = 1, . . . ,m0, such that 0 < λ0
1 < λ0

2 < · · · < λ0
m0

< 1. The

observations y1, . . . , yn are assumed to be a realization from

the piecewise AR process defined in (1) with τi = [λ0
i n],

i = 1,2, . . . ,m0, where [x] is the greatest integer that is less

than or equal to x. In estimating the breakpoints τ1, . . . , τm0
,

it is necessary to require that the segments have a sufficient

number of observations to adequately estimate the specified AR

parameter values. Otherwise, the estimation is overdetermined,

resulting in an infinite value for the likelihood. So to ensure suf-

ficient separation of the breakpoints, choose ǫ > 0 small such

that ǫ ≪ mini=1,...,m0+1(λ
0
i − λ0

i−1) and set

Am =
{

(λ1, . . . , λm),0 < λ1 < λ2 < · · · < λm < 1,

λi − λi−1 ≥ ǫ, i = 1,2, . . . ,m + 1
}

,

where λ0 := 0 and λm+1 := 1. Setting λ := (λ1, . . . , λm) and

p = (p1, . . . ,pm+1), the parameters m, λ, and p are then es-

timated by minimizing MDL over m ≤ M0, 0 ≤ p ≤ P0, and

λ ∈ Am. That is,

m̂, λ̂, p̂ = arg min
m≤M0,0≤p≤P0

λ∈Am

2

n
MDL(m,λ,p),

where M0 and P0 are upper bounds for m and pj. In the Appen-

dix we prove the following consistency result.

Proposition 1. For the model specified in (1), when m0,

the number of breakpoints, is known, then λ̂j → λ0
j , a.s., j =

1,2, . . . ,m0.

In Proposition 1, the true number of breaks, m0, is assumed

known. As the simulation studies in Section 4 show, for un-

known m0, the estimator m̂0 obtained with our procedure seems

to be consistent, although we do not have a proof. Even in the

independent case, the consistency of m̂0 is known in only some

special cases (e.g., Lee 1997; Yao 1988).

3. OPTIMIZATION USING GENETIC ALGORITHMS

Because the search space is enormous, optimization of

MDL(m, τ1, . . . , τm,p1, . . . ,pm+1) is a nontrivial task. In this

section we propose using a GA to effectively tackle this prob-

lem.
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3.1 General Description

The basic idea of the canonical form of GAs can be de-

scribed as follows. An initial set, or population, of possible so-

lutions to an optimization problem is obtained and represented

in vector form. These vectors, often called chromosomes, are

free to “evolve” in the following way. Parent chromosomes

are randomly chosen from the initial population, and chromo-

somes having lower (higher) values of the objective criterion

to be minimized (maximized) would have a higher likelihood

of being chosen. Then offspring are produced by applying

a crossover or a mutation operation to the chosen parents.

Once sufficient numbers of such second-generation offspring

are produced, third-generation offspring are produced from

these second-generation offspring in a similar fashion. This

process continues for a number of generations. If one believes

in Darwin’s Theory of Natural Selection, then the expectation

is that objective criterion values of the offspring will gradually

improve over generations and approach the optimal value.

In a crossover operation, one child chromosome is produced

from “mixing” two parent chromosomes. The aim is to al-

low the possibility of the child receiving different best parts

from its parents. A typical “mixing” strategy is that every child

gene location has an equal chance of receiving either the cor-

responding father gene or the corresponding mother gene. This

crossover operation is the distinct feature that makes GAs dif-

ferent from other optimization methods. (For possible variants

of the crossover operation, see Davis 1991.)

In a mutation operation, one child chromosome is produced

from one parent chromosome. The child is essentially the same

as its parent except for a small number of genes in which ran-

domness is introduced to alter the types of genes. Such a mu-

tation operation prevents the algorithm from being trapped in

local optima.

To preserve the best chromosome of a current generation, an

additional step, called the elitist step, may be performed. Here

the worst chromosome of the next generation is replaced with

the best chromosome of the current generation. Including this

elitist step guarantees the monotonicity of the algorithm.

There are many variations of the foregoing canonical GA.

For example, parallel implementations can be applied to speed

up the convergence rate as well as to reduce the chance of con-

vergence to suboptimal solutions (Forrest 1991; Alba and Troya

1999). In this article we implement the island model. Rather

than run only one search in one giant population, the island

model simultaneously runs NI (number-of-islands) canonical

GAs in NI different subpopulations. The key feature is, peri-

odically, a number of individuals are migrated among the is-

lands according to some migration policy. The migration can be

implemented in numerous ways (Martin, Lienig, and Cohoon

2000; Alba and Troya 2002). In this article we adopt the fol-

lowing migration policy: After every Mi generations, the worst

MN chromosomes from the jth island are replaced by the best

MN chromosomes from the ( j − 1)st island, j = 2, . . . ,NI. For

j = 1, the best MN chromosomes are migrated from the NIth

island. In our simulations we used NI = 40, Mi = 5, MN = 2,

and a subpopulation size of 40.

3.2 Implementation Details

This section provides details of our implementation of the

GAs that is tailored to our piecewise AR model fitting.

Chromosome Representation. The performance of a GA

certainly depends on how a possible solution is represented

as a chromosome, and for the current problem a chromosome

should carry complete information for any F ∈ M about the

breakpoints, τj, as well as the AR orders, pj. Once these quanti-

ties are specified, maximum likelihood estimates of other model

parameters can be uniquely determined. Here we propose us-

ing the following chromosome representation: a chromosome

δ = (δ1, . . . , δn) is of length n with gene values δt defined as

δt =







−1 if no break point at t

pj if t = τj−1 and the AR order

for the jth piece is pj.

Furthermore, the following “minimum span” constraint is im-

posed on δ: say if the AR order of a certain piece in F is p, then

the length of this piece must have at least mp observations. This

predefined integer mp is chosen to guarantee that there are suffi-

cient observations to obtain quality estimates for the parameters

of the AR( p) process. Also, in the practical implementation of

the algorithm, one needs to impose an upper bound P0 on the

order pj’s of the AR processes. There seems to be no univer-

sal choice for P0, because for complicated series one needs a

large P0 to capture for example seasonality, whereas for small

series P0 cannot be larger than the number of observations n.

For all of our numerical examples, we set P0 = 20, and the cor-

responding minimum span mp’s are listed in Table 1.

Our empirical experience suggests that the foregoing repre-

sentation scheme, together with the minimum span constraint,

is extremely effective for the purpose of using GAs to minimize

MDL(m, τ1, . . . , τm,p1, . . . ,pm+1). This is most likely due to

the fact that the location information of the breakpoints and the

order of the AR processes are explicitly represented.

Initial Population Generation. Our implementation of the

GA starts with an initial population of chromosomes generated

at random. For this procedure, the user value πB, the probabil-

ity that the “jth location” of the chromosome being generated

is a breakpoint, is needed. A large value of πB makes the ini-

tial chromosomes have a large number of break points; thus

a small value is preferred. We use πB = min(mp)/n = 10/n.

(We present a sensitivity analysis for this parameter in Sec. 4.)

Once a location is declared to be a break, an AR order is se-

lected from the uniform distribution with values 0,1, . . . ,P0.

The following strategy is used to generate each initial chromo-

some. First, select a value for p1 from {0, . . . ,P0} with equal

probabilities and set δ1 = p1; that is, the first AR piece is of or-

der p1. Then the next mp1
− 1 genes δi’s (i.e., δ2, . . . , δmp1

) are

set to −1, so that the foregoing minimum span constraint is im-

posed for this first piece. Now the next gene in line, δmp1
+1, will

either be initialized as a breakpoint (i.e., assigned a nonnegative

integer p2) with probability πB or be assigned −1 with proba-

bility 1 − πB. If it is to be initialized as a breakpoint, then we

set δmp1
+1 = p2, where p2 is randomly drawn from {0, . . . ,P0}.

This implies that the second AR process is of order p2, and

Table 1. Values of mp Used in the Simulations

p 0–1 2 3 4 5 6 7–10 11–20
mp 10 12 14 16 18 20 25 50
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the next mp2
− 1 δi’s will be assigned −1 so that the minimum

span constraint is guaranteed. But if δmp1
+1 is to be assigned

with −1, then the initialization process will move to the next

gene in line and determine whether this gene should be a break-

point gene or a “−1” gene. This process continues in a simi-

lar fashion, and a random chromosome is generated when the

process hits the last gene, δn.

Crossover and Mutation. Once a set of initial random

chromosomes is generated, new chromosomes are generated by

either a crossover operation or a mutation operation. In our im-

plementation we set the probability for conducting a crossover

operation as πC = 1 − min(mp)/n = (n − 10)/n.

For the crossover operation, two parent chromosomes are

chosen from the current population of chromosomes. These two

parents are chosen with probabilities inversely proportional to

their ranks sorted by their MDL values. In other words, chromo-

somes with smaller MDL values will have a higher likelihood

of being selected. From these two parents, the gene values, δi’s,

of the child chromosome will be inherited in the following man-

ner. First, for t = 1, δt takes on the corresponding δt value from

either the first or the second parent with equal probabilities.

If this value is −1, then the same gene-inheriting process is

repeated for the next gene in line (i.e., δt+1). If this value is

not −1, then it is a nonnegative integer pj denoting the AR order

of the current piece. In this case the minimum span constraint is

imposed (i.e., the next mpj − 1 δt’s are set to −1), and the same

gene-inheriting process is applied to the next available δt.

For mutation, one child is reproduced from one parent.

Again, this process starts with t = 1, and every δt (subject to

the minimum span constraint) can take one of the following

three possible values: (a) with probability πP, it takes the cor-

responding δt value from the parent; (b) with probability πN ,

it takes the value −1; and (c) with probability 1 − πP − πN , it

takes the a new randomly generated AR order pj. In the exam-

ples that follow we set πP = .3 and πN = .3.

Declaration of Convergence. Recall that we adopt the is-

land model in which migration is allowed for every Mi = 5

generations. At the end of each migration, the overall best chro-

mosome (i.e., the chromosome with smallest MDL) is noted.

If this best chromosome does not change for 10 consecutive mi-

grations, or if the total number of migrations exceeds 20, then

this best chromosome is taken as the solution to this optimiza-

tion problem.

4. SIMULATION RESULTS

We conducted five sets of simulation experiments to evaluate

the practical performances of Auto-PARM. The experimental

setups of the first two simulations are from Ombao et al. (2001),

who used them to test their Auto-SLEX procedure. In the first

simulation, the pieces of the true process follow a dyadic struc-

ture; that is, the length of each segment is a integer power

of 2. In the second and fourth simulations the true process does

not contain any structural breaks, but its time-varying spectrum

changes slowly over time. In the third simulation the process

contains three pieces, one of which is an autoregressive moving

average [ARMA(1,1)] process and another of which is a mov-

ing average [MA(1)] process. In the last simulation the process

has two distinctive features: The pieces do not follow a dyadic

structure, and the length of one of the pieces is very short.

For the results reported in this section and in Section 5, we

obtained slightly better results by minimizing MDL based on

the exact likelihood function evaluated at Yule–Walker esti-

mates. That is, we used MDL as defined by (5) in all of the

simulation results in this section. Throughout the section we

obtained the results reported for Auto-SLEX using computer

code provided by Dr. Hernando Ombao.

4.1 Piecewise Stationary Process With Dyadic Structure

In this simulation example, the target nonstationary series is

generated with the model

Yt =







.9Yt−1 + εt if 1 ≤ t ≤ 512

1.69Yt−1 − .81Yt−2 + εt if 513 ≤ t ≤ 768

1.32Yt−1 − .81Yt−2 + εt if 769 ≤ t ≤ 1,024,

(6)

where εt ∼ iid N(0,1). The main feature of this model is that

the lengths of the pieces are a power of 2. This in fact is ideally

suited for the Auto-SLEX procedure of Ombao et al. (2001).

A typical realization of this process is shown in Figure 1. For

ω ∈ [0, .5), let fj(ω) be the spectrum of the jth piece, that is,

fj(ω) = σ 2
j

∣

∣1 − φj1 exp{−i2πω} − · · ·

− φjpj exp{−i2πpjω}
∣

∣

−2
. (7)

Then for t ∈ [τj−1, τj), the time-varying spectrum of the

process Yt in (1) is f (t/n,ω) = fj(ω). The true spectrum of the

process in (6) is shown in the middle part of Figure 2, where

darker shades represent higher power.

We applied Auto-PARM to the realization in Figure 1 and

obtained two breakpoints located at τ̂1 = 512 and τ̂2 = 769, in-

dicated by the dotted vertical lines in the figure. Auto-PARM

correctly identified the AR orders ( p̂1 = 1, p̂2 = 2, and p̂3 = 2)

for this realization. From this segmentation, the time-varying

spectrum of this realization was estimated as f̂t/n(ω) = f̂j(ω),

where f̂j(ω) is obtained by replacing parameters in (7) with

their corresponding estimates. The estimated time-varying

spectrum is displayed in Figure 2(a). Our implementation of

Figure 1. A Realization From the Piecewise Stationary Process

in (6).
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(a) (b) (c)

Figure 2. True Time-Varying Log-Spectrum of the Process in (6) (b) and Auto-PARM (a) and Auto-SLEX (c) Estimates From the Realization of

Figure 1.

Auto-PARM, written in Compaq Visual Fortran, took 2.34 sec-

onds on a 1.6-GHz Intel Pentium M processor. The Auto-SLEX

time-varying spectrum of this realization is shown in Fig-

ure 2(c).

Next, we simulated, 200 realizations of the process in (6),

and applied Auto-PARM to segment each of these realiza-

tions. Table 2 lists the percentages of the fitted number of

segments. For comparative purposes, the table also gives the

corresponding values of the Auto-SLEX method. Notice that

Auto-PARM gave the correct number of segments for 96% of

Table 2. Summary of the Estimated Breakpoints From Both the

Auto-SLEX and Auto-PARM Procedures for the Process (6)

Number
of
segments

Auto-SLEX Auto-PARM

Breakpoints
(%)

Breakpoints

ASE (%) Mean SE ASE

2 2.5 .396 0
(.019)

3 73.0 .121 96.0 .500 .007 .049
(.027) .750 .005 (.030)

4 11.0 .146 4.0 .496 .004 .140
(.040) .566 .108 (.036)

.752 .003
5 9.5 .206 0

(.045)
≥6 4.0 .253 0

(.103)

All 100.0 .144 100.0 .052
(.064) (.035)

NOTE: For Auto-PARM, the means and standard errors of the relative breakpoints are also

reported.

the 200 realizations, whereas Auto-SLEX gave the correct seg-

mentation for 73% of the realizations. Table 2 also reports, for

each m̂, the mean and standard deviation of λ̂j := (τ̂ − 1)/n,

j = 1, . . . , m̂ − 1, where τ̂j is the Auto-PARM estimate of τj.

For convenience we refer to λ̂j as the relative breakpoint.

Table 3 lists the relative frequencies of the AR order p esti-

mated by the Auto-PARM procedure for the 96% of the real-

izations with three pieces. Of the 200 realizations, 44% have

2 breaks and AR orders 1, 2, and 2. For these realizations,

the means and the standard errors of the estimated parameters

φ1, . . . , φpj , σ 2
j are given in Table 4. From these tables, we can

see that Auto-PARM applied to the foregoing piecewise station-

ary process performs extremely well, especially for locating the

breakpoints.

4.1.1 Sensitivity Analysis. We also considered the sen-

sitivity of the GA to the probabilities of initialization (πB)

and crossover (πC). To assess the sensitivity we applied

Auto-PARM to the same realizations used in Table 2 for each

combination of values of πB ∈ {.01, .1} and πC = {.90, .99}.

The other parameter values in the implementation of Auto-

PARM are as described in Section 3.

Table 3. Relative Frequencies of the AR Order Estimated by the

Auto-PARM Procedure for the Realizations of Model (6)

Order 0 1 2 3 4 5 6 ≥7

p1 0 99.0 1.0 0 0 0
p2 0 0 67.7 16.7 9.9 3.6 .5 1.5
p3 0 0 60.4 22.9 5.7 6.8 2.1 2.1
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Table 4. Summary of Parameter Estimates Obtained by Auto-PARM

for the Realizations That Have Two Breaks and Pieces With

Orders 1, 2, and 2

Parameter

Segment Model φ1 φ2 σ 2

I AR(1) True .90 1.00
Mean .89 1.02

SE (.02) (.07)

II AR(2) True 1.69 −.81 1.00
Mean 1.65 −.78 1.12

SE (.05) (.05) (.19)

III AR(2) True 1.32 −.81 1.00
Mean 1.30 −.79 1.07

SE (.04) (.04) (.13)

NOTE: For each segment, the true parameters, the mean, and the standard errors (in parenthe-

ses) are given.

The relative frequency of the number of breakpoints esti-

mated by Auto-PARM is shown in Table 5 (columns 4 and 5).

For the replicates with three pieces, the means of the break-

points and standard errors are given in columns 6 and 7. The

frequencies of the correct AR order estimated by Auto-PARM

for each piece are given in columns 8, 9, and 10. The averages

of the MDL values and the standard error are given in the last

two columns. The column labeled “time” gives the average time

in seconds to implement Auto-PARM.

From Table 5, we see that distinct values of πB and πC give

comparable values of MDL. Notice that Auto-PARM runs the

fastest for the values selected for πB and πC in Section 3, that is,

πB = min(mp)/n and πC = 1−min(mp)/n. As this table shows,

there is little impact on the choice of initial values for πB and

πC in executing Auto-PARM.

4.2 Slowly Varying AR(2) Process

The true model considered in this second simulation exper-

iment does not have a structural break. Rather, the process

has a slowly changing spectrum given by the following time-

dependent AR(2) model:

Yt = atYt−1 − .81Yt−2 + εt, t = 1,2, . . . ,1,024, (8)

where at = .8{1 − .5 cos(π t/1,024)} and εt ∼ iid N(0,1).

A typical realization of this process is shown in Figure 3,

whereas the spectrum of this process is shown in Figure 5(b).

For the realization in Figure 3, the Auto-PARM procedure

segmented the process into three pieces with breakpoints lo-

cated at τ̂1 = 318 and τ̂2 = 614 (the vertical dotted lines in

Figure 3. Realization From the Process in (8).

this figure). In addition, Auto-PARM modeled each of the three

pieces as an AR(2) process. The run time for this fitting was

1.79 seconds. Based on the model found by Auto-PARM, the

time-varying spectrum of this realization was computed and is

shown in Figure 4(a). The Auto-SLEX time-varying spectrum

of this realization is shown in Figure 4(b).

Next, we generated 200 realizations of the foregoing process,

and obtained the corresponding Auto-PARM estimates. Be-

cause there are no true structural breaks in such realizations,

we follow Ombao et al. (2001) and use the average squared er-

ror (ASE) as a numerical error measure of performance. The

ASE is defined by

ASE = {n(MJ/2 + 1)}−1

×

n
∑

t=1

MJ/2
∑

k=0

{

log f̂ (t/n,ωk) − log f (t/n,ωk)
}2

,

where f̂ (·, ·) is an estimate of the true time-dependent spec-

trum f (·, ·) of the process, J is a prespecified scale satisfying

J < L = log2(n), and MJ := n/2J [see eq. (19) in Ombao et al.

2001]. In this simulation we took J = 4.

The number of segments, locations of the breakpoints, and

the ASEs of the Auto-PARM estimates are summarized in

Table 6. Also listed in Table 6 are the ASE values of the

Auto-SLEX procedure. From this table, two main observa-

tions can be made. First, for each of the simulated processes,

Table 5. Sensitivity Analysis (NI × popsize = 40 × 40): Summary of Sensitivity Analysis of πB and πC

of Auto-PARM Based on 200 Realizations of (6)

Number of
breaks (%)

Auto-PARM
breakpoints

AR order

p̂1 p̂2 p̂3

πB πC Time 2 3 Mean SE 1 2 2 MDL

.01 .90 14.97 91.5 8.5 .500 .008 99.5 57.4 60.1 1,520.45
.749 .007

.01 .99 3.0 95.5 4.5 .499 .009 99.5 56.5 60.2 1,520.56
.750 .007

.10 .90 16.85 95.5 4.5 .499 .010 98.4 53.4 53.4 1,519.41
.750 .008

.10 .99 4.9 94.5 5.5 .499 .008 97.9 57.1 57.1 1,519.22
.750 .007
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(a) (b)

Figure 4. Auto-PARM and Auto-SLEX Estimates of Log-Spectrum of Process in (8) for the Realization From Figure 3.

Auto-PARM produces either two or three segments that are of

roughly the same length, whereas the Auto-SLEX procedure

tends to split the process into a larger number of segments. Sec-

ond, the ASE values from Auto-PARM are smaller than those

from Auto-SLEX.

To show a “consistency”-like property of Auto-PARM, we

computed the average of all of the time-varying spectra of

the 200 Auto-PARM and Auto-SLEX estimates. The averaged

Auto-PARM spectrum is displayed in Figure 5(a) and looks re-

markably similar to the true time-varying spectrum. The aver-

aged Auto-SLEX spectrum is shown in Figure 5(c). Finally,

Table 7 summarizes the Auto-PARM estimates of the AR or-

ders for the foregoing process. Notice that most of the segments

were modeled as AR(2) processes.

Table 6. Breakpoints and ASE Values From the Auto-PARM and the

Auto-SLEX Estimates Computed From 200 Realizations of (8)

Number
of
segments

Auto-PARM
Auto-SLEX breakpoints

(%) ASE (%) Mean SE ASE

1 0 — 0 — — —
2 40.5 .191 37.5 .496 .055 .129

(.019) (.015)
3 37.0 .171 62.0 .365 .074 .081

(.022) .662 .079 (.016)
4 15.0 .174 .5 .308 — .10

(.029) .538 — —
.875 —

5 5.0 .202
(.045)

≥6 2.5 .223
(.037)

All 100.0 .182 100.0 .099
(.027) (.028)

NOTE: Numbers inside parentheses are standard errors of the ASE values.

4.3 Piecewise ARMA Process

Recall that the Auto-PARM procedure assumes that the

observed process is composed of a series of stationary AR

processes. This third simulation, designed to assess the perfor-

mance of Auto-PARM when the AR assumption is violated, has

a data-generating model given by

Yt =







−.9Yt−1 + εt + .7εt−1 if 1 ≤ t ≤ 512

.9Yt−1 + εt if 513 ≤ t ≤ 768

εt − .7εt−1 if 769 ≤ t ≤ 1,024,

(9)

where εt ∼ iid N(0,1). Notice that the first piece is an

ARMA(1,1) process, whereas the last piece is a MA(1)

process. A typical realization of this process is shown in Fig-

ure 6.

We applied the Auto-PARM procedure to the realization in

Figure 6 and obtained three pieces. The breakpoints are at

τ̂1 = 513 and τ̂2 = 769 (the dotted vertical lines in the fig-

ure), whereas the orders of the AR processes are 4, 1, and 2.

The total run time for this fit was 1.53 seconds. The time-

varying spectrum (not shown here) based on the model found

by Auto-PARM is reasonably close to the true spectrum (not

shown here), even though two of the segments are not AR

processes.

To assess the large-sample behavior of Auto-PARM, we gen-

erated 200 realizations from (9), and obtained the correspond-

ing Auto-PARM estimates. An encouraging result is that for all

200 realizations, Auto-PARM always gave the correct number

of stationary segments. The estimates of the breakpoint loca-

tions are summarized in Table 9. Table 10 gives the relative

frequency of the AR order pj selected to model the pieces of

the realizations. As expected, quite often large AR orders were

selected for the ARMA and MA segments.
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(a) (b) (c)

Figure 5. True Time-Varying Log-Spectrum of the Process in (8) (b) and Auto-PARM (a) and Auto-SLEX (c) Log-Spectrum Estimate. (Average

of log-spectrum estimate obtained from 200 realizations.)

Table 7. Relative Frequencies of the AR Order Selected by Auto-PARM

for the Realizations From the Process (8)

Order 0 1 2 3 4 ≥5

Two-segment realizations
p1 0 0 97.3 1.3 1.3 0
p2 0 0 93.3 5.3 1.3 0

Three-segment realizations
p1 0 0 100.0 0 0 0
p2 0 0 94.4 4.8 .8 0
p3 0 0 91.1 8.1 .8 0

Table 8. Summary of Parameter Estimates of Slowly Varying AR(2)

Process Realizations Segmented by Auto-PARM as Two and Three

Pieces, Where Each Piece Is an AR(2) Process

Parameter

jth piece φ1 φ2 σ 2

Two-piece realizations with AR(2) pieces: 68
1 True −.81 1.00

Mean .54 −.79 1.05
SE (.04) (.03) (.07)

2 True −.81 1.00
Mean 1.05 −.79 1.05

SE (.04) (.03) (.07)

Two-piece realizations with AR(2) pieces: 106
1 True −.81 1.00

Mean .46 −.80 1.03
SE (.06) (.03) (.08)

2 True −.81 1.00
Mean .82 −.81 1.01

SE (.08) (.04) (.10)

3 True −.81 1.00
Mean 1.14 −.80 1.06

SE (.05) (.04) .10

NOTE: For each segment, the true parameters, their mean, and standard deviation (in paren-

theses) are shown.

4.4 Time-Varying MA(2) Process

Like the example in Section 4.2, the true model considered in

this last simulation experiment does not have a structural break.

Rather, the process has a changing spectrum given by the fol-

lowing time-dependent MA(2) model:

Yt = εt + atεt−1 + .5εt−2, t = 1,2, . . . ,1,024, (10)

where at = 1.122{1 − 1.781 sin(π t/2,048)} and εt ∼
iid N(0,1). A typical realization of this process is shown in

Figure 7, whereas the spectrum of this process is shown in Fig-

ure 9(b).

For the realization in Figure 7, Auto-PARM produced four

segments with AR orders 5, 3, 5, and 3, and breakpoints located

Figure 6. A realization From the Piecewise Stationary Process in (9).
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Table 9. Summary of Auto-PARM Estimated Breakpoints Obtained

From 200 Realizations From the Process in (9)

Number of
segments

Relative break points

% Mean SE

3 100.0 .50 .005
.75 .003

Table 10. Relative Frequencies of the AR Order Selected by

Auto-PARM for the Realizations From the Process (9)

Order 0 1 2 3 4 5 6 7 ≥8

p1 0 4.0 22.5 40.0 23.5 8.5 1.0 .5 0
p2 0 89.5 8.5 1.5 .5 0 0 0 0
p3 0 .5 22.0 45.0 19.5 7.5 4.5 1.0 0

Figure 7. Realization From the Process in (10).

at τ̂1 = 109, τ̂2 = 307, and τ̂3 = 712 (the vertical dotted lines in

this figure). The run time for this model fit was 3.76 seconds.

Based on the model found by Auto-PARM, the time-varying

spectrum of this realization is shown in Figure 8(a). For com-

parison, the Auto-SLEX time-varying spectrum estimate of this

realization is shown in Figure 8(b).

Next we generated 200 realizations of the above process,

and the corresponding Auto-PARM estimates. The number

of segments, locations of the breakpoints, and the ASEs of

Auto-PARM estimates are summarized in Table 11.

From this table, we observe that for most of the realizations,

Auto-PARM produces three segments. We computed the aver-

age of all of the time-varying spectra of the 200 Auto-PARM

estimates; the averaged spectrum is displayed in Figure 9(a)

and the average of the 200 Auto-SLEX estimates of the time-

varying spectra is shown in Figure 9(c).

The true spectrum in Figure 9 is well estimated by Auto-

PARM and Auto-SLEX. Remarkably, Auto-PARM estimates

the true spectrum well, despite the fact that it splits the real-

izations into fewer pieces than Auto-SLEX does.

Table 12 summarizes the Auto-PARM estimates of the AR

orders for the foregoing process for those realizations with three

pieces. In general, the segments were modeled as AR processes

of high order.

4.5 Short Segments

To complement the foregoing simulation experiments, in this

section we assess the performance of Auto-PARM with the fol-

lowing process containing a short segment:

Yt =

{

.75Yt−1 + εt if 1 ≤ t ≤ 50

−.50Yt−1 + εt if 51 ≤ t ≤ 1,024,
(11)

(a) (b)

Figure 8. Auto-PARM (a) and Auto-SLEX (b) Estimates of Log-Spectrum of Process in (10) for the Realization From Figure 7.
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Table 11. Summary of the Estimated Breakpoints From the Auto-SLEX

and Auto-PARM Procedures for the Process (10)

Number
of
segments

Auto-SLEX Auto-PARM

Breakpoints
(%)

Breakpoints

ASE (%) Mean SE ASE

2 3.0 .374 .040 .307
(.023)

3 3.5 .187 89.0 .238 .072 .211
(.027) .548 .089 (.029)

4 6.5 .157 8.0 .156 .045 .182
(.017) .391 .062 (.021)

.667 .093
5 15.5 .170

(.028)
6 17.0 .163

(.025)
7 20.0 .158

(.030)
8 15.0 .180

(.029)
9 11.5 .203

(.032)
≥10 11.0 .223

(.035)

All 100.0 .18 .211
(.036) (.034)

NOTE: For Auto-PARM, the means and standard errors of the relative breakpoints are also

reported. Numbers inside parentheses are standard errors of the ASE values.

where εt ∼ iid N(0,1). A typical realization of this process

is shown in Figure 10. For the realization in Figure 10,

Auto-PARM gives a single breakpoint at τ̂1 = 51, which is

shown as the vertical dotted line in Figure 10. Both pieces are

modeled as AR(1) processes. The run time for this realization

was 2.70 seconds.

Table 12. Relative Frequencies of the AR Order Selected by

Auto-PARM for the Realizations (with three segments)

From the Process (10)

Order 1 2 3 4 5

p1 10.0 40.0 20.0 20.0
p2 40.0 20.0 30.0
p3 10.0 10.0 70.0 10.0

We further applied the Auto-PARM procedure to 200 realiza-

tions of this process. For all of these realizations, Auto-PARM

found one breakpoint. The mean of the relative position esti-

mates of this changepoint is .042 (the true value is .049), with

a standard error of .004. The minimum, median, and maximum

of the breakpoints are 34, 51, and 70. Table 13 gives the relative

frequency of the orders p1 and p2 of each of the two pieces se-

lected by Auto-PARM. The Auto-PARM procedure correctly

segmented 92.5% of the realizations (two AR pieces of or-

der 1). This is exceptional performance for a process in which

the break occurs near the beginning of the series.

4.6 Further Remarks on Estimated Breaks

As seen in the simulations in Sections 4.1 and 4.5, when the

true unknown pieces are indeed AR processes, Auto-PARM can

detect changes in order and in parameters. Consider, for exam-

ple, the process in Section 4.1 where the first piece is an AR

process of order 1 and the second piece is an AR process of

order 2. In this case Auto-PARM detected the change of order

reasonably well (see Table 3). But the second and third pieces of

this process have the same order 2 with different parameter val-

ues. Moreover, the two pieces of the process in Section 4.5 have

also the same order 1. Tables 3 and 13 show that Auto-PARM

(a) (b) (c)

Figure 9. True Time-Varying Log-Spectrum of the Process in (10) (b) and Auto-PARM (a) and Auto-SLEX (c) Log-Spectrum Estimates. (Average

of log-spectrum estimates obtained from 200 realizations.)
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Figure 10. A Realization From the Piecewise Stationary Process

in (11).

does a good job in detecting changes in parameter values. The

parameter estimates of both processes, given in Tables 4 and 8,

show how well Auto-PARM also performs for parameter esti-

mation.

The simulation in Section 4.3 is an example of a process that

is not a piecewise AR process. In this case the first piece is an

ARMA(1,1) process, and the third piece is a MA(1) process.

Auto-PARM approximates both the ARMA and MA pieces

with AR processes perhaps of a large order. The fact that it

did exceptionally well in detecting the breaks of this process

(see Table 9) is not surprising, because for general stationary

process, its spectral density can be well approximated by the

spectrum of an AR process under the assumption of continu-

ity of the spectral density (see, e.g., Brockwell and Davis 1991,

thm. 4.4.3). The Auto-PARM procedure can then be interpreted

as a method for segmenting piecewise stationary processes.

In this example, the breaks that Auto-PARM found are points

where the spectrum has “large” changes.

5. APPLICATIONS

5.1 Seat Belt Legislation

In the hope of reducing the mean number of monthly deaths

and serious injuries, seat-belt legislation was introduced in the

United Kingdom in February 1983. Displayed in Figure 11(a)

is a time series {yt}
120
t=1, beginning in January 1975, showing

the monthly number of deaths and serious injuries. To remove

the seasonal component of {yt}, Brockwell and Davis (2002)

considered the differenced time series xt = yt − yt−12, and an-

alyzed {xt} with a regression model with errors following an

Table 13. Relative Frequencies of the AR Order Selected by

Auto-PARM for the Realizations From the Process (11)

Order 0 1 2 3 ≥4

p1 0 96.5 3.0 .5 0
p2 0 96.0 4.0 0 0

Table 14. Summary of Parameter Estimates of the Realizations of the

Process in (11) Segmented Correctly by Auto-PARM (92.5%) as

Two Pieces, Where Each Piece Is an AR(1) Process

First piece Second piece

Parameter φ1 σ 2 φ1 σ 2

True .75 1.00 −.50 1.00
Mean .66 1.05 −.50 1.00
SE (.11) (.23) (.03) (.04)

NOTE: For each segment, the true parameters, their mean, and standard deviation (in paren-

thesis) are shown.

ARMA model. The Auto-PARM procedure applied to the dif-

ferenced series {xt} segmented the series into three pieces with

breakpoints at τ̂1 = 86 and τ̂2 = 98. The first two pieces are

iid, and the last piece is an AR process of order 1. Figure 11(b)

shows the differenced time series {xt}, along with the estimated

means of each piece. From the Auto-PARM fit, one can con-

clude that there is a structural change in the time series {yt}
after February 1983, which coincides with the time of introduc-

tion of the seat belt legislation.

5.2 Speech Signal

We applied the Auto-PARM procedure to analyze a hu-

man speech signal that is the recording of the word “greasy.”

This signal contains 5,762 observations and is shown in Fig-

ure 12(a). This nonstationary time series was also analyzed

by the Auto-SLEX procedure of Ombao et al. (2001). The

Auto-PARM fit of this speech signal resulted in 15 segments.

The total run time was 18.02 seconds. The time-varying log

spectrum obtained with this fit is shown in Figure 12(b). This

figure shows that the signal is roughly divided into segments

corresponding to “G,” “R,” “EA,” “S,” and “Y.” The informa-

tion conveyed in this figure closely matches that provided by

Ombao et al. (2001). The spectrum from those pieces that cor-

respond to “G” have high power at the lowest frequencies.

The pieces that correspond to “R” show power at frequencies

slightly above that for “G.” The pieces that correspond to “EA”

show the evolution of power from lower to higher frequen-

cies. The pieces that correspond to “S” have high power at

high frequencies. Notice that the Auto-PARM procedure breaks

this speech signal into a smaller number of pieces than the

Auto-SLEX procedure while still capturing the important fea-

tures in the spectrum.

6. MULTIVARIATE TIME SERIES

In this section we demonstrate how Auto-PARM can be ex-

tended to model multivariate time series. In Section 6.1 the

MDL of a piecewise multivariate AR process is obtained, and

in Section 6.2 Auto-PARM is exemplified to a bivariate time

series.

6.1 Minimum Description Length

Let {Yt} be a multivariate time series with r components,

and assume that there are breakpoints τ0 := 1 < τ1 < · · · <

τm < n + 1 for which the jth piece Yt = Xt,j, τj−1 ≤ t < τj,

j = 1,2, . . . ,m + 1, is modeled by a multivariate AR( pj) pro-

cess,

Xt,j = γ j + �j1Xt−1,j + · · · + �j,pj Xt−pj,j + �|
1/2
j Zt,

τj−1 ≤ t < τj, (12)
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(a) (b)

Figure 11. (a) Monthly Deaths and Serious Injuries on U.K. Roads and (b) Transformed Seat Belt Legislation Time Series. The vertical lines are

τ̂1 and τ̂2 . The dotted horizontal line is the estimated mean of the i th segment.

where the noise sequence {Zt} is iid with mean 0 and covariance

matrix I. The (unknown) AR matrix coefficients and covariance

matrices are of dimension r× r. Let M be the class of all piece-

wise multivariate AR models as described above. Let y1, . . . ,yn

be a realization of {Yt}. Parameter estimates in model (12) can

be obtained using Whittle’s algorithm (see Brockwell and Davis

(a)

(b)

Figure 12. Speech Signal (a) and GA Estimate of the Time-Varying Log Spectrum (b).
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1991). From (5), we have

MDL(m, τ1, . . . , τm,p1, . . . ,pm+1)

= log m + (m + 1) log n

+

m+1
∑

j=1

log pj +

m+1
∑

j=1

3r + 2pjr
2 + r2

4
log nj

−

m+1
∑

j=1

log L(�̂j,1, . . . , �̂j,pj , �̂| ),

where L(�̂j,1, . . . , �̂j,pj , �̂| ) is the likelihood of the jth piece

evaluated at the parameter estimates. As in the univariate case,

the best segmentation of the realization y1, . . . ,yn of {Yt} is

defined as the minimizer of MDL(m, τ1, . . . , τm,p1, . . . ,pm+1).

A similar GA can be developed for the practical minimization

of MDL(m, τ1, . . . , τm,p1, . . . ,pm+1).

6.2 Electroencephalogram Analysis

Figure 13 displays two electroencephalograms (EEGs) each

of length n = 32,768 recorded from a female patient who was

diagnosed with left temporal lobe epilepsy. This dataset is cour-

tesy of Dr. Beth Malow (formerly from the Department of Neu-

rology at the University of Michigan). Panel (a) shows the

EEG from the left temporal lobe (T3 channel), and (b) shows

the EEG from the left parietal lobe (P3 channel). Each EEG

was recorded for a total of 5 minutes and 28 seconds, with

a sampling rate of 100 Hz. Of primary interest is the estima-

tion of the power spectra of both EEGs and the coherence be-

tween them. One way to solve this problem is by segmenting

the time series into stationary AR pieces (e.g., Gersch 1970;

Jansen, Hasman, Lenten, and Visser 1979; Ombao et al. 2001;

Melkonian, Blumenthal, and Meares 2003). We applied the

multivariate Auto-PARM procedure to this bivariate time se-

ries, and the breakpoint locations and the AR orders of the re-

sulting fit are given in Table 15. Notice that the multivariate

implementation of Auto-PARM estimated the starting time for

seizure for this epileptic episode at t = 185.8 seconds, which

is in extremely close agreement with the neurologist’s estimate

of 185 seconds. Figure 14 shows the estimated spectrums for

channel T3 (a) and channel P3 (b) based on the Auto-PARM fit

in Table 15. The estimates are close to those obtained by Ombao

et al. (2001), and conclusions similar to theirs can be drawn. For

example, before seizure, power was concentrated at lower fre-

quencies. During seizure, power was spread to all frequencies,

whereas toward the end of seizure, the power concentration was

slowly restored to the lower frequencies.

Figure 15 shows the Auto-PARM estimate of the coherence

between the T3 and P3 time series channels. Again, this esti-

mate is close to the estimate obtained by Ombao et al. (2001).

7. CONCLUSIONS

In this article we have provided a procedure for analyzing

a nonstationary time series by breaking it in pieces that are

modeled as AR processes. The best segmentation is obtained

by minimizing a MDL criterion of the set of possible solutions

via the GA. (Our procedure does not make any restrictive as-

sumptions on this set.) The order of the AR process and the

estimates of the parameters of this process is a byproduct of

(a)

(b)

Figure 13. Bivariate EEGs of Length n = 32,768 at Channels T3 (a) and P3 (b) From a Patient Diagnosed With Left Temporal Lobe Epilepsy.

(Courtesy of Dr. Beth Malow, formerly from the Department of Neurology at the University of Michigan.)
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Table 15. GA Segmentation of the Bivariate Time Series From Figure 13

j
0 1 2 3 4 5 6 7 8 9 10 11

τ̂j 1 185.8 189.6 206.1 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8

p̂j 17 14 5 8 7 3 3 4 10 4 1 1

NOTE: τ̂j is given in seconds.

this procedure. As seen in the simulation experiments, the rate

at which this procedure correctly segments a piecewise station-

ary process is high. In addition, the “quality” of the estimated

time-varying spectrum obtained with the results of our method

is quite good.

APPENDIX: TECHNICAL DETAILS

In this appendix we show the consistency of τ̂j/n, j = 1, . . . ,m,

when m, the number of breaks, is known. Throughout this section we

denote the true value of a parameter with a “0” superscript (except

for σ 2
j ). Preliminary results are given in Propositions A.1–A.3, and

consistency is established in Proposition A.4.

(a)

(b)

Figure 14. Estimate of the Time-Varying Log Spectra of the EEGs

From Figure 13. (a) T3 channel; (b) P3 channel.

Set λ := (λ1, . . . , λm) and p = (p1, . . . ,pm+1). Because m is as-

sumed known for our asymptotic results, equation (5) can be rewritten

in the compact form

2

n
MDL(λ,p)

=
2(m + 1)

n
log(n) +

m+1
∑

j=1

pj + 2

n
log nj +

m+1
∑

j=1

nj

n
log(σ̂ 2

j ) + o(1).

Proposition A.1. Suppose that {Xt} is a stationary ergodic process

with E|Xt| < ∞. Then, with probability 1, the process

Sn(s) =
1

n

[ns]
∑

t=1

Xt

converges to the process sEX1 on the space D[0,1].

Proof. The argument relies on repeated application of the ergodic

theorem. Let Q[0,1] be the set of rational numbers in [0,1]. For

r ∈ Q[0,1],

1

n

[nr]
∑

t=1

Xt → rEX1, a.s. (A.1)

If Br is the set of ω’s for which (A.1) holds, then set

B =
⋂

r∈Q[0,1]

Br,

and note that P(B) = 1. Moreover, for ω ∈ B and any s ∈ [0,1], choose

r1, r2 ∈ Q[0,1], such that r1 ≤ s ≤ r2. Hence

∣

∣

∣

∣

∣

1

n

[ns]
∑

t=1

Xt −
1

n

[nr1]
∑

t=1

Xt

∣

∣

∣

∣

∣

≤
1

n

[nr2]
∑

t=[nr1]

|Xt| → (r2 − r1)E|X1|.

Figure 15. Estimated Coherence Between the EEGs Shown in Fig-

ure 13.
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By making |r2 − r1| arbitrarily small, it follows from the ergodic the-

orem that

1

n

[ns]
∑

t=1

Xt → sEX1.

To establish convergence on D[0,1], it suffices to show that for ω ∈ B,

1

n

[ns]
∑

t=1

Xt → sEX1 uniformly on [0,1].

Given ǫ > 0, choose r1, . . . , rm ∈ Q[0,1] such that 0 = r0 < r1 < · · · <

rm = 1, with ri − ri−1 < ǫ. Then for any s ∈ [0,1], ri−1 < s ≤ ri and

∣

∣

∣

∣

∣

1

n

[ns]
∑

t=1

Xt − sEX1

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

n

[ns]
∑

t=1

Xt −
1

n

[nri−1]
∑

t=1

Xt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

[nri−1]
∑

t=1

Xt − ri−1EX1

∣

∣

∣

∣

∣

+ |ri−1EX1 − sEX1|.

The first term is bounded by

1

n

[nri]
∑

t=[nri−1]

|Xt| → (ri − ri−1)E|X1| < ǫE|X1|.

Choose n so large that this term is less than ǫE|X1| for i = 1, . . . ,m.

It follows that

sup
s

∣

∣

∣

∣

∣

1

n

[ns]
∑

t=1

Xt − sEX1

∣

∣

∣

∣

∣

< ǫE|X1| + ǫ + ǫE|X1|,

for n large.

Proposition A.2. Suppose that {Xt} is the AR( p0) process

Xt = φ0 + φ1Xt−1 + · · · + φt−p0 Xt−p0 + σεt, εt ∼ iid N(0,1).

For r, s ∈ [0,1] (r < s) and p = 0,1, . . . ,P0, let φ̂(r, s,p) be the Y–W

estimate of the AR(p) parameter vector φ(p) based on fitting an

AR(p) to the data X[rn]+1, . . . ,X[sn]. Then, with probability 1,

φ̂(r, s,p) → φ(p) and σ̂ 2(r, s,p) → σ 2(p).

Proof. Because {Xt} is a stationary ergodic process, {|Xt|},

{Xt−iXt−j} and {|Xt−iXt−j|} are stationary ergodic processes. By

Proposition A.1, the partial sum processes for each of these processes

converge to their respective limit a.s. Let B be the probability 1 set

on which these partial sum processes converge. Since φ̂(r, s,p) and

σ̂ 2(r, s,p) are continuous functions of these processes, the result fol-

lows.

Proposition A.3. Let {Yt} be the process defined in (1) with φ0j = 0.

For r, s ∈ [0,1] (r < s) and p = 0,1, . . . ,P0, let φ̂Y (r, s,p) be the Y–W

estimates in fitting an AR(p) model to Y[rn]+1, . . . ,Y[sn]. Then, with

probability 1,

φ̂Y (r, s,p) → φ∗
Y (r, s,p), σ̂ 2

Y (r, s,p) → σ∗2
Y (r, s,p),

where φ∗
Y (r, s,p) and σ∗2

Y (r, s,p) are defined in the proof.

Proof. Let B∗
k

be the probability 1 set on which

1

n

[ns]
∑

t=1

Xt,k,
1

n

[ns]
∑

t=1

|Xt,k|,
1

n

[ns]
∑

t=1

Xt−i,kXt−j,k, and

1

n

[ns]
∑

t=1

|Xt−i,kXt−j,k| i, j = 1, . . . ,P0,

converge, k = 1,2, . . . ,m + 1, and set

B∗ =

m+1
⋂

k=1

B∗
k .

Let r, s ∈ [0,1], r < s. Then r ∈ [λ0
i−1

, λ0
i ) and s ∈ (λ0

i−1+k
, λ0

i+k
],

k ≥ 0. Assuming that the mean of the process {Yt} is 0, we have

γ̂Y (h) :=
1

[sn] − [rn]

[sn]−h
∑

t=[rn]+1

Yt+hYt

=
n

[sn] − [rn]

×

{

1

n

[λ0
i n]−h
∑

t=[rn]+1

Xt+h,iXt,i +
1

n

[λ0
i+1n]−h
∑

t=[λ0
i n]+1

Xt+h,i+1Xt,i+1

+ · · · +
1

n

[sn]−h
∑

t=[λ0
i−1+kn]+1

Xt+h,i+kXt,i+k + o(1)

}

.

Let γi(h) := cov{Xt+h,i,Xt,i}. For ω ∈ B∗, it follows from Proposi-

tion A.2 that

γ̂Y (h) →
λ0

i − r

s − r
γi(h) +

λ0
i+1

− λi

s − r
γi+1(h) + · · ·

+
s − λ0

i−1+k

s − r
γi+k(h),

= aiγi(h) + · · · + ai+kγi+k(h).

Then

φ̂Y (r, s,p) = Ŵ̂
−1
Y (p)γ̂ Y (p) →

(

i+k
∑

j=i

ajŴj(p)

)−1 i+k
∑

j=i

ajγ j(p)

=: φ∗
Y (r, s,p),

where Ŵj(p) = {γj(i1 − i2)}
p
i1,i2=1

and γ j(p) = [γj(1), . . . , γj(p)]T .

This establishes the desired convergence for φ̂Y (r, s,p). Note that if

k = 0, then φ∗
Y (r, s,p) = φi(p). The proof of the convergence for

σ̂ 2
Y (r, s,p) is similar.

Proposition A.4. For the piecewise process in (1), choose ǫ > 0

small such that

ǫ ≪ min
i=1,...,m+1

(λ0
i − λ0

i−1)

and set

Aǫ =
{

λ ∈ [0,1]m,0 = λ0 < λ1 < λ2 < · · · < λm < λm+1 = 1,

λi − λi−1 ≥ ǫ, i = 1,2, . . . ,m + 1
}

,

where m = m0. If

λ̂, p̂ = arg min
λ∈Aǫ

0≤p≤P0

2

n
MDL(λ,p),

then λ̂ → λ0 a.s.

Proof. Let B∗ be the event described in the proof of Proposi-

tion A.4. We show that for each ω ∈ B∗, λ̂ → λ0. For ω ∈ B∗, suppose

that λ̂ 
→ λ0. Because the sequences are bounded, there exists a subse-

quence {n′
k
} such that λ̂ → λ∗ and p̂j → p∗

j on the subsequence. Note

that λ∗ ∈ Aǫ , because λ̂ ∈ Aǫ for all n. It follows that

2

n
MDL(λ̂, p̂) →

m+1
∑

j=1

(λ∗
j − λ∗

j−1) logσ∗2
Y (λ∗

j−1, λ∗
j ,p∗

j ).
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If λ0
i ≤ λ∗

j−1
< λ∗

j ≤ λ0
i+1

, then

σ∗2
Y (λ∗

j−1, λ∗
j ,p∗

j ) = σ 2
i+1(p∗

j ) ≥ σ 2
i+1, (A.2)

with equality if and only if p∗
j ≥ pi+1. If λ0

i−1
≤ λ∗

j−1
< λ0

i < · · · <

λ0
i+k

< λ∗
j ≤ λ0

i+k+1
, then

σ∗2
Y (λ∗

j−1, λ∗
j ,p∗

j )

≥
λ0

i − λ∗
j−1

λ∗
j − λ∗

j−1

σ 2
i +

λ0
i+1

− λ0
i

λ∗
j − λ∗

j−1

σ 2
i+1 + · · · +

λ∗
j − λ0

i+k

λ∗
j − λ∗

j−1

σ 2
i+k+1.

By the concavity of the log function,

(λ∗
j − λ∗

j−1) logσ∗2
Y (λ∗

j−1, λ∗
j ,p∗

j )

≥ (λ∗
j − λ∗

j−1)

[λ0
i − λ∗

j−1

λ∗
j − λ∗

j−1

logσ 2
i +

λ0
i+1

− λ0
i

λ∗
j − λ∗

j−1

logσ 2
i+1

+ · · · +
λ∗

j − λ0
i+k

λ∗
j − λ∗

j−1

logσ 2
i+k+1

]

= (λ0
i − λ∗

j−1) logσ 2
i + (λ0

i+1 − λ0
i ) logσ 2

i+1

+ · · · + (λ∗
j − λ0

i+k) logσ 2
i+k+1.

It follows that

lim
n→∞

2

n
MDL(λ̂, p̂) >

m+1
∑

i=1

(λ0
i − λ0

i−1) logσ 2
i

= lim
n→∞

2

n
MDL(λ0,p0)

≥ lim
n→∞

2

n
MDL(λ̂, p̂), (A.3)

which is a contradiction. Hence λ̂ → λ for all ω ∈ B∗.

Notice that with probability 1, p̂j cannot underestimate p0
j . To see

this, let p∗
j as in the proof of Proposition A.4, if for some j, p∗

j < p0
j ,

then the contradiction in (A.3) is obtained again because of (A.2).

[Received November 2004. Revised June 2005.]
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