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Abstract : The detection of (structural) breaks or the so called change point problem has
drawn increasing attention from the theoretical, applied economic and financial fields.
Much of the existing research concentrates on the detection of change points and asymp-
totic properties of their estimators in panels when N , the number of panels, as well as
T , the number of observations in each panel are large. In this paper we pursue a differ-
ent approach, i.e., we consider the asymptotic properties when N → ∞ while keeping
T fixed. This situation is typically related to large (firm-level) data containing finan-
cial information about an immense number of firms/stocks across a limited number of
years/quarters/months. We propose a general approach for testing for break(s) in this
setup. In particular, we obtain the asymptotic behavior of test statistics. We also pro-
pose a wild bootstrap procedure that could be used to generate the critical values of the
test statistics. The theoretical approach is supplemented by numerous simulations and
by an empirical illustration. We demonstrate that the testing procedure works well in
the framework of the four factors CAPM model. In particular, we estimate the breaks
in the monthly returns of US mutual funds during the period January 2006 to February
2010 which covers the subprime crises.
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1. Introduction

Structural changes and model stability in panel data are of general concern in empirical
economics and finance research. Model parameters are assumed to be stable over time
if there is no reason to believe otherwise. It is well-known that various economic and
political events can cause structural breaks in financial data. Such events include, for
example, the change of parameters associated with the introduction of a single currency
in Europe, price liberalization in emerging markets, and world integration of equity mar-
kets. Further examples and discussions can be found in Hansen (2001), Andreou and
Ghysels (2009) among others. The exact time of change is usually unknown and there-
fore the construction of tests for stability is a challenging question. Andrews (1993) (cf.
corridendum Andrews, 2003) provides the first econometric insights into break detec-
tion. Brodsky and Darkhovskii (2000) and Csörgő and Horváth (1997) cover the early
development from statistical point of view.

In both the statistics and econometrics literature we can find very many of papers
related to the detection of changes and structural breaks. Recent developments in the
field consider a general class of time series processes and panel data models with errors
that can exhibit temporal dependence, heteroskedasticity, trending variables, possible
unit roots, cointegration and long memory processes. For a literature survey we refer the
reader to Arellano (2004), Perron (2006) and Aue and Horváth (2012).

A model for panel data with possible breaks in the mean was introduced by Joseph and
Wolfson (1992, 1993). Bai (2010) significantly generalized the earlier results, still assum-
ing that the panels are independent of each other, thanks to allowing serial correlation
within each panel. This approach was extended by Horváth and Hušková (2012), who
discussed dependence between the panels via common factors. Results on breaks in the
means and/or in the variances have been extended to various forms of linear regression
by Kim (2011), Baltagi et al. (2016) and Kao et al. (2012, 2014), among others.

Existing research mostly concentrates on testing for structural breaks in the panel data
when T , the number of observations in each panel, goes to infinity and N , the number of
panels/firms/assets/individuals, also goes to infinity, but slower than N (Bai, 2010, Bai
and Carrion-i-Silvestre, 2009, Kim, 2011, Baltagi at al., 2016).

In this paper we study a different asymptotic case when T is finite and N goes to
infinity. This situation is typically related to large firm-level data panels containing
financial information about a very substantial number of firms/stocks across a limited
number of years/quarters. The issue of model stability in such a setup applies to broadly
defined research in empirical asset pricing as well as in corporate finance. For example,
asset pricing models hinge heavily on the stability of factor parameters to explain stock
returns, while the financial industry eyes the generation of alpha returns (Fama and
French, 1993 and 2014, Ghysels, 1998, Guercio and Reuter, 2014).

Similarly, in corporate finance the leverage literature relies on several parameters to
estimate target leverage ratios, and on the stability of fixed effects to show persistence
in capital structure choices (DeAngelo and Roll, 2015, Lemmon at al., 2008). Pešta and
Peštová (2015) use this setup for an application to insurance mathematics, while Torgov-
itski (2015) focuses on multiple changes in spatial functional data. Cho and Fryzlewicz
(2015) and Jirák (2015) study estimates and tests for multiple change points in high
dimensional data.

There is evidence of structural breaks in the financial market that affect financial
indicators, including returns and volatility, changes in exchange rate regimes, asset allo-
cations, equity premium, value at risk (VaR), expected shortfall (ES), credit risk models,
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etc. Recently, researchers have started to analyze structural breaks in the panel data
setup, which reveal an increasing variety of potential applications with a strong impact
in financial economics (cf., for example Antoch and Jarušková, 2017, DeAngelo and Roll,
2015, Graham et al, 2015, Whited and Wu, 2006). Hence the stability of parameter
estimates in panel data, and the estimation of the time of change where T is fixed and
N goes to infinity have interesting applications.

In this paper we consider the model

(1.1) yi,t = x⊤
i,t(βi + δiI{t ≥ t0}) + ei,t, 1 ≤ i ≤ N and 1 ≤ t ≤ T,

where xi,t =
(
xi,t(1), . . . , xi,t(d)

)⊤
are vectors of explanatory variables (design points that

can be random or non-random), βi ∈ Rd are unknown regression (vector) parameters in
the ith panel and ⊤ denotes the transpose of vectors and matrices. Finally, we assume
that ei,t are errors that can be cross-sectionally correlated. As previously mentioned, we
consider the detection of the unknown time of change. The regression parameters in the
ith panel change from βi to βi + δi at unknown time t0, usually called either a change
point or a break point.

The paper is structured as follows. Section 2 introduces our notation, settings and lists
the main assumptions. Section 3 contains the main results (detailed proofs are provided
in the technical appendix). Section 4 describes the (wild) bootstrap procedure for one
of the proposed test statistics. We use Monte Carlo simulations to illustrate the finite
sample properties of the test. Section 5 contains an application to real data. Finally,
Section 6 concludes the paper. Proofs are presented in Section 7.

2. Notation, settings and general assumptions

First we introduce some notation that will be used through the paper. Since we are
dealing with detection and estimation of an unknown change point, we will analyze various
estimators, matrices, and parameters before and after a certain time t, 1 ≤ t ≤ T .

In particular, β̂i,t and β̃i,t denote the OLS estimators computed from the first t and

the last T − t observations of the ith panel, respectively. Hence,

β̂i,t =
(
X⊤

i,tXi,t

)−1
X⊤

i,tYi,t, t1 ≤ t ≤ T,(2.1)

β̃i,t =
(
X̃⊤

i,tX̃i,t

)−1

X̃⊤
i,tỸi,t, 1 ≤ t ≤ T − t2,(2.2)

where Yi,t = (yi,1, yi,2, . . . , yi,t)
⊤, Ỹi,t = (yi,t+1, yi,t+2, . . . , yi,T )

⊤,

Xi,t =




xi,1(1), xi,1(2), . . . , xi,1(d)

xi,2(1), xi,2(2), . . . , xi,2(d)
...
xi,t(1), xi,t(2), . . . , xi,t(d)




=




x⊤
i,1

x⊤
i,2

...
x⊤
i,t




and

X̃i,t =




xi,t+1(1), xi,t+1(2), . . . , xi,t+1(d)

xi,t+2(1), xi,t+2(2), . . . , xi,t+2(d)
...
xi,T (1), xi,T (2), . . . , xi,T (d)




=




x⊤
i,t+1

x⊤
i,t+2

...
x⊤
i,T




.
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We also denote by “tr” the trace of a matrix and put

Zi,t = X⊤
i,tXi,t, Z̃i,t = X̃⊤

i,tX̃i,t, t = 1, . . . , T.

2.1. Test statistics. We propose several test statistics for the change point problem in
the panel data when T is fixed and N → ∞. We are interested in testing if there is a
change in the regression parameters. We introduce two processes and their functionals
can be used as test statistics.

Under the null hypothesis there is no change in the coefficients, i.e., the null hypothesis
is stated as

(2.3) H0 :
N∑

i=1

‖δi‖ = 0,

where ‖ · ‖ denotes the Euclidean norm vectors and matrices.
We consider two types of test procedures; the first is based on quadratic forms of least

squares estimators and the second employs sums of squares of residuals. First, let us
consider

(2.4) UN (t) =

N∑

i=1

(β̂i,t − β̂i,T )
⊤Ci,t(β̂i,t − β̂i,T ), max{d, t1} ≤ t ≤ min{T − d, T − t2}.

UN(t) is a Wald-type test statistic (with weighting matrices Ci,t’s) for each t to compare
the least squares estimators computed from the first t observations with the estimator
from the full sample. To keep the detection procedure broad we do not restrict Ci,t to a
particular form. Instead we list a set of assumptions that Ci,t should satisfy and we will
discuss pros and cons of particular choices of Ci,t later.

The second test procedure is based on the process

(2.5) VN(t) =

N∑

i=1

t∑

s=1

ê2i,s, êi,s = yi,s − x⊤
i,sβ̂i,T , 1 ≤ i ≤ N, 1 ≤ t ≤ T,

representing CUSUM-type statistics based on partial sums of the squares of the residuals.
In general, large values of UN (t) and/or VN(t) for at least some t indicate that the null

hypothesis is violated. Required critical values can be obtained either asymptotically or
through a proper version of the bootstrap.

2.2. Assumptions. This subsection contains a set of assumptions needed to prove the
main theorems describing asymptotic properties of the suggested test statistics. We start
with assumptions about the error terms and assume that they can be decomposed as

(2.6) ei,t = γ⊤
i Λt + εi,t,

where Λt ∈ Rq, 1 ≤ t ≤ T is the common factor, εi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T are the
innovations and γi ∈ Rq, 1 ≤ i ≤ N , is loading in the ith panel satisfying:

Assumption 2.1. EΛt = 0 and E ‖Λt‖2 < ∞, 1 ≤ t ≤ T .

Assumption 2.2. (i) The innovations εi = (εi,1, εi,2, . . . , εi,T )
⊤, i = 1, . . . , N are

independent;
(ii) E εi,t = 0, E εi,tεi,s = 0 and c3 ≤ σ2

i = E ε2i,t ≤ c4 for all 1 ≤ i ≤ N, 1 ≤ t 6= s ≤ T
with some constants 0 < c3 ≤ c4 < ∞;
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(iii) there is κ > 4 such that lim supN→∞
1
N

∑N
i=1E |εi,t|κ < ∞, 1 ≤ t ≤ T.

Note that Assumption 2.2 (ii) is usually satisfied in financial applications, since ARCH,
GARCH and similar volatility models assume uncorrelated innovations

(
cf. Francq and

Zakoian (2010)
)
.

Assumption 2.3. {Λt, 1 ≤ t ≤ T} and {εi, 1 ≤ i ≤ N} are independent.

Let us note that serial correlation of the error disturbances in the original model (1.1)
can be obtained via common factors defined in error term decomposition (2.6). The serial
correlation observed in ei,t can then be viewed as impure correlation caused by omitting
common factors in the main regression model (1.1).

Assumption 2.4.

lim
N→∞

1

N1/2

N∑

i=1

‖γi‖2 = 0.

As usual we assume that the common factors are negligible. Inference with non-
negligible common factors in change-point detection has been mentioned by several au-
thors in different setups when both N and T go to infinity but N is much smaller than
T (cf. Horváth and Hušková, 2012 and Baltagi et al., 2016). We discuss the behavior of
UN(t) and VN(t) when Assumption 2.4 fails in Section 3.4.

Now we continue with assumptions on the design matrix.

Assumption 2.5. There is c0 such that ‖xi,t‖ ≤ c0 for all 1 ≤ i ≤ N, 1 ≤ t ≤ T .

Assumption 2.6. (i) There are positive constants t1 and c1 such that(∑t1
j=1 xi,jx

⊤
i,j

)−1
exists and ‖

(∑t1
j=1 xi,jx

⊤
i,j

)−1‖ ≤ c1 for all i, 1 ≤ i ≤ N ;

(ii) there are positive constants t2 and c2 such that
(∑T

j=T−t2
xi,jx

⊤
i,j

)−1
exists and

‖
(∑T

j=T−t2
xi,jx

⊤
i,j

)−1‖ ≤ c2 for all i, 1 ≤ i ≤ N .

Notice that Assumption 2.6 (i) implies ‖
(∑t

j=1 xi,jx
⊤
i,j

)−1‖ ≤ c1 for all t ≥ t1 and that

similarly to Assumption 2.6 (ii) we find that ‖
(∑T

j=t+1 xi,jx
⊤
i,j

)−1‖ ≤ c2 for all t ≤ T − t2.

Assumption 2.6 (i) guaranties that the OLS estimators in (2.1) and (2.2) are uniquely
defined.

For the sake of simplicity we assume that the xi,t’s are non-random. We briefly discuss
modifications of Assumptions 2.5 and 2.6 to allow random design vectors in Section 3.5.

Finally, we present our assumptions on weighting matrices.

Assumption 2.7. Ci,t = C⊤
i,t, it is non–negative definite for all 1 ≤ i ≤ N, d ≤ t ≤ T−d,

and there exist constants c5 and t3, t4 such that ‖Ci,t‖ ≤ c5 for all 1 ≤ i ≤ N, t3 ≤ t ≤
T − t4.

Instead of a particular choice of weighting matrixes, we consider a general condition
which would guarantee the validity of theorems and testing procedures specified later.
Nevertheless, by a specific choice of Ci,t we can obtain variants/generalizations of stan-
dard tests. In particular, by choosing

(2.7) Ci,t = Z−1
i,T Z̃i,tDi,tZ̃i,tZ

−1
i,T ,
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where Di,t are positive semidefinite matrices and β̂i,t and β̃i,t are defined by (2.1) and
(2.2), we have that

U1,N(t) ≡ U1,N(t;Di,t) = UN (t;Z
−1
i,T Z̃i,tDi,tZ̃i,tZ

−1
i,T )(2.8)

=

N∑

i=1

(β̂i,t − β̃i,t)
⊤Di,t(β̂i,t − β̃i,t).

Another useful choice of the weighting matrices C i,t is Ci,t = Zi,tGi,tZi,t gives

U2,N(t) = UN(t;Zi,tGi,tZi,t)(2.9)

=

N∑

i=1

(
t∑

v=1

xi,v(yi,v − x⊤
i,vβ̂i,T )

)⊤

Gi,t

(
t∑

v=1

xi,v(yi,v − x⊤
i,vβ̂i,T )

)
,

where Gi,t is a positive semidefinite weighting matrix.
We note that U2,N(t) requires only the existence of Z

−1
i,T . Also, U2,N(t) can be interpreted

as a weighted version of VN(t).

3. Main results

3.1. Results under H0. First we present the main results on the limit behavior of UN (t)
and VN(t) under the null hypothesis.

Define

a2i,t,1 = σ2
i

(
t∑

s=1

x⊤
i,s

(
Z−1

i,t − Z−1
i,T

)
Ci,t

(
Z−1

i,t − Z−1
i,T

)
xi,s +

T∑

s=t+1

x⊤
i,sZ

−1
i,TCi,tZ

−1
i,Txi,s

)
(3.1)

= σ2
i

{
tr
(
(Z−1

i,t − Z−1
i,T )Ci,t(Z

−1
i,t − Z−1

i,T )Zi,t

)
+ tr

(
Z−1

i,TCi,tZ
−1
i,T Z̃i,T−t

)}

= σ2
i tr
(
Ci,t(Z

−1
i,t − Z−1

i,T

)
),

A
(1)
N (t) =

∑

1≤i≤N

a2i,t,1,(3.2)

a2i,t,2 = σ2
i

t∑

s=1

(
1− x⊤

i,sZ
−1
i,Txi,s

)
= σ2

i

(
t− tr

(
Zi,tZ

−1
i,T

))
,(3.3)

A
(2)
N (t) =

N∑

i=1

a2i,t,2,(3.4)

Si,t =
t∑

s=1

xi,sεi,s.(3.5)

To state the asymptotic distributions of UN(t) and VN(t) we need the existence of their
asymptotic covariance functions. This is specified in Assumptions 3.1 and 3.2.

Assumption 3.1. The function

Γ(1)(t, t′) = lim
N→∞

1

N

N∑

i=1

[
E
{(

Z−1
i,t Si,t − Z−1

i,TSi,T

)⊤
Ci,t

(
Z−1

i,t Si,t − Z−1
i,TSi,T

)

×(Z−1
i,t′Si,t′ − Z−1

i,TSi,T )
⊤Ci,t′(Z

−1
i,t′Si,t′ − Z−1

i,TSi,T )
}
− a2i,t,1a

2
i,t′,1

]
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exists for all t0 ≤ t, t′ ≤ T − t̄0, where t0 = max(d, t1, t3) and t̄0 = max(d, t2, t4).

Assumption 3.2. The function

Γ(2)(t, t′) = lim
N→∞

1

N

N∑

i=1

[
t∑

s=1

t′∑

s′=1

E
{
(εi,s − x⊤

i,sZ
−1
i,TSi,T )(εi,s′ − x⊤

i,s′Z
−1
i,TSi,T )

}2 − a2i,t,2a
2
i,t′,2

]

exists for all 1 ≤ t, t′ ≤ T .

Using these assumptions, we can state two theorems on asymptotic distribution of the
test statistics UN (t) and VN(t) under the null hypothesis.

Theorem 3.1. If H0, Assumptions 2.1–2.7 and 3.1 hold, then we have that, as N → ∞,

(3.6)
{
N−1/2

(
UN(t)−A

(1)
N (t)

)
, t0 ≤ t ≤ T − t̄0

}
D→
{
ξ
(1)
t , t0 ≤ t ≤ T − t̄0

}
,

where ξ
(1)
t , t0 ≤ t ≤ T − t̄0, is jointly normal with zero mean, covariance Γ(1)(t, t′) and

t0, t̄0 are defined in Assumption 3.1.

Theorem 3.2. If H0, Assumptions 2.1 – 2.6 and 3.2 hold, then we have that, as N → ∞,

(3.7)
{
N−1/2

(
VN(t)− A

(2)
N (t)

)
, 1 ≤ t ≤ T

}
D→
{
ξ
(2)
t , 1 ≤ t ≤ T

}
,

where ξ
(2)
t , 1 ≤ t ≤ T, is jointly normal with zero mean and covariance Γ(2)(t, t′) defined

in Assumption 3.2.

Proofs of both theorems are given in Section 7.

Theorem 3.1 and Theorem 3.2 can be used to find the asymptotic distributions of the
test statistics based on UN (t) and VN(t) when H0 holds.

3.2. Results under alternatives. We briefly discuss the behavior of the proposed test
statistics when a change occurs. We focus on the statistics based on UN (t), t0 ≤ t ≤ t0,
since the behavior of tests based on VN(t), 1 ≤ t ≤ T , is similar.

We obtain asymptotically consistent tests of rejecting H0 for large values of

N−1/2 maxt |UN(t) − A
(1)
N (t)|, if some of the changes δi’s, the sizes of the changes, are

sufficiently large. Particularly, if Assumptions 2.1 – 2.7 are satisfied and for some t0 ≤
t, t1 ≤ T − t0

(3.8)
1√
N

N∑

i=1

δ⊤
i

(
Zit1(Z

−1
i,max(t1,t)

−Z−1
iT )Cit(Zi,max(t1,t) −Z−1

iT )Zit1

)
δi → ∞

then we have that

(3.9) N−1/2 max
t

|UN(t)− A
(1)
N (t)| →P ∞,

which together with Theorem 3.1 ensures asymptotic consistency of the test. One can
show that (3.9) holds under other type of alternatives including multiple changes, gradual
changes, or when larger changes occur only in a fraction of panels.

To find an estimator for t0 we choose C i,t such that for all t and i

Z−1
i,t C i,tZ

−1
i,t = GT
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with some positive definite matrix GT . Then under the alternative hypothesis the be-

havior of |UN(t)−A
(1)
N (t)| is asymptotically equivalent with

1√
N

N∑

i=1

δ⊤
i

(
Zi,t0Z

−1
i,T Z̃i,tGT Z̃i,tZ

−1
i,TZi,t0

)
δi, t ≥ t0,

1√
N

N∑

i=1

δ⊤
i

(
Z̃i,t0Z

−1
i,TZi,tGTZi,tZ

−1
i,T Z̃i,t0

)
δi, t ≤ t0.

Note that the elements of the sums defined above are non-decreasing for t ≤ t0, while
they are non-increasing for t ≥ t0. Then the condition for the asymptotic consistency
(3.8) can be replaced by

1√
N

N∑

i=1

δ⊤
i

(
Zit0Z

−1
i,T Z̃it0GT Z̃i,t0Z

−1
i,TZit0

)
δi → ∞,

and an estimator t̂N of t0 can be defined as

t̂N = argmax
t=d,...,T−d

∣∣UN (t)−A
(1)
N (t)

∣∣.

The asymptotic properties of t̂N , as N → ∞, are the subject of future research.

3.3. Remarks. The test procedures studied in the previous section depend on some
unknown quantities. We briefly discuss their possible estimators.

The normalizing sequences A
(1)
N (t) and A

(2)
N (t) in Theorem 3.1 and 3.2 depend on the

unknown variances σ2
i , i = 1, . . . , N. To estimate them we can employ the following

options:

(1) σ2
i is estimated by the sample variance of the ith panel

(3.10) σ̂2
i =

1

T − d

T∑

t=1

(
yi,t − x⊤

i,tβ̂i,T

)2
;

(2) σ2
i is estimated by

(3.11) ̂̂σ
2

i = min
d<v<T−d

1

T − 2d

{ v∑

t=1

(
yi,t − x⊤

i,tβ̂i,v

)2
+

T∑

t=v+1

(
yi,t − x⊤

i,tβ̃i,v

)2}
.

The estimator ̂̂σ
2

i is asymptotically consistent under the one change point alternative.

However, it is not stable since it includes β̂i,v and β̃i,v when they are computed from a
few observations. Hence in the simulations and the data example we use σ̂2

i .
The covariances Γ(1) and Γ(2) in Assumptions 3.1 and 3.2 are complicated functions of

the observations. Nevertheless, they can be simplified for certain choices of the weighting
matrices Ci,t and moderate values of T . It follows from Assumptions 2.2 and 2.5 that

(3.12)
1

N

N∑

i=1

E

∥∥∥∥∥

t∑

v=s

xi,vεi,v

∥∥∥∥∥

4

≤ c2,1(t− s+ 1)2
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and ∥∥∥∥∥

t∑

v=s

xi,vx
⊤
i,v

∥∥∥∥∥ ≤ c2,2(t− s+ 1)

where c2,1 and c2,2 are some positive numbers. We note that if the xi,t’s realizations of
stationary, ergodic sequences with finite mean, then

1

T
Zi,T ≈ Zi,

assuming that Zi is nonsingular, we arrive at the natural conclusion that

(3.13) ‖Z−1
i,T‖ ≤ c2,3/T.

Let us assume that Ci,t = Z2
i,t in the definition of UN (t). In this case

Γ(1)(t, t′) = lim
N→∞

1

N

N∑

i=1

E

{
(Si,t − Zi,tZ

−1
i,TSi,T )

⊤(Si,t − Zi,tZ
−1
i,TSi,T )

× (Si,t′ − Zi,t′Z
−1
i,TSi,T )

⊤(Si,t′ − Zi,t′Z
−1
i,TSi,T )− a2i,t,1a

2
i,t′,1

}
,

and therefore by (3.12) and (3.13) we have for moderate and large T ’s that

Γ(1)(t, t′) ≈ lim
N→∞

1

N

N∑

i=1

E

{(
Si,t −

t

T
Si,T

)⊤(
Si,t −

t

T
Si,T

)

×
(
Si,t′ −

t

T
Si,T

)⊤(
Si,t′ −

t′

T
Si,T

)
− a2i,t,1a

2
i,t′,1

}
.

The approximation for Γ(1)(t, t′) also shows that UN(t) is related to CUSUM processes
used extensively in change point analysis.

Under Assumption 2.4 (negligible influence of common factors) the residual êi,t =

yi,t − xi,tβ̂i,T is a good approximation for the innovation εi,t. Hence, under H0, we could
use

Γ̂
(1)
N (t, t′) =

1

N

N∑

i=1

{
Ŝ⊤
i,tŜi,tŜ

⊤
i,t′Ŝi,t′ − â2i,t,1â

2
i,t′,1

}
,

where

Ŝi,t =

t∑

v=1

xi,vêi,v, â2i,t,1 = σ̂2
i,T tr

(
Zi,tZ

−1
i,T Z̃i,t

)
and σ̂2

i,T =
1

T

T∑

v=1

ê2i,v,

to approximate the covariance matrix Γ(1)(t, t′), since Ŝi,T = 0.

In some models commonly used in econometric finance, e.g., CAPM type models, xi,t’s
do not depend on i. The model and also the test statistics become much simpler, because
the indices i in xit’s and Zit’s can be omitted and our weighting matrix also becomes
independent on i, i.e., C it = Ct, i = 1, . . . , N . Hence we have

A
(1)
N (t) = tr(Ct(Z

−1
t −Z−1

T ))

N∑

i=1

σ2
i and A

(2)
N (t) = (t− tr(ZtZ

−1
T ))

N∑

i=1

σ2
i .
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Then it suffices to estimate
∑N

i=1 σ
2
i instead of a set of single σ2

i ’s, i = 1, . . . , N .

3.4. Non-negligible common factors. In this section we show that if Assumption 2.4

(negligible common factors) fails, then N−1/2|UN(t) − A
(1)
N (t)| → ∞ and N−1/2|VN(t) −

A
(2)
N (t)| → ∞ in probability for some t. These are immediate consequences of Theorem 3.3

and 3.4 stated below.

Assumption 3.3.

1

rN

N∑

i=1

‖γi‖2 = O(1) with some numerical sequence satisfying rN/N
1/2 → ∞.

Assumption 3.4. The limit

Q(s, v, z) = lim
N→∞

1

rN

N∑

i=1

γix
⊤
i,s

(
Z−1

i,z − Z−1
i,T

)
Ci,z

(
Z−1

i,z − Z−1
i,T

)
xi,vγ

⊤
i , 1 ≤ s, v ≤ z ≤ T,

exists and there are s0, v0 and z0 such that 1 ≤ s0, v0 ≤ z0 ≤ T , and at least one element
of Q(s0, v0, z0) is different from 0.

Assumption 3.5. The limit

Q(s, v, z) = lim
N→∞

1

rN

N∑

i=1

(
1

T
γi − γix

⊤
i,sZ

−1
i,Txi,z

)(
1

T
γi − γix

⊤
i,vZ

−1
i,Txi,z

)⊤

, 1 ≤ s, v ≤ z ≤ T,

exists, and there are s0, v0 and z0 such that 1 ≤ s0, v0 ≤ z0 ≤ T , and at least one element
of Q(s0, v0, z0) is different from 0.

It follows from Assumption 3.3 that ‖Q(s, v, z)‖ < ∞. Similarly, Assumption 3.5
implies that ‖Q(s, v, z)‖ < ∞. The rate rN is the exact rate in Assumptions 3.3 and 3.4,
i.e. the matrix Q is different from the zero matrix. The term describing the dependence
between the panels dominates the limit since rN/N

1/2 → ∞.

Theorem 3.3. If H0 and Assumptions 2.1–2.3, 2.5 – 2.7, 3.1 and 3.4 hold, then we have
(3.14){

1

rN

(
UN (t)− A

(1)
N (t)

)
, t0 ≤ t ≤ T − t̄0

}
D→
{
ξ
(3)
t , t0 ≤ t ≤ T − t̄0

}
, N → ∞,

where

ξ
(3)
t =

t∑

s,v=1

Λ⊤
s Q(s, v, t)Λv, t0 ≤ t ≤ T − t̄0,

non-zero matrix Q is defined in Assumption (3.4) and t0, t̄0 are defined in Assumption 3.1
and rN in Assumption (3.3).

Now we formulate the analogue of Theorem 3.3 for VN(t).

Theorem 3.4. If H0 and Assumptions 2.1–2.3, 2.5 – 2.6 and 3.5 hold, then we have

(3.15)

{
1

rN

(
VN(t)− A

(2)
N (t)

)
, 1 ≤ t ≤ T

}
D→
{
ξ
(4)
t , 1 ≤ t ≤ T

}
, N → ∞,

where

ξ
(4)
t =

t∑

s,v=1

Λ⊤
s Q(s, v, t)Λv, 1 ≤ t ≤ T,
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and the non-zero matrix Q is defined in Assumption 3.5.

Proofs of both theorems are given in Section 7.

Under the Assumptions of Theorems 3.3 and 3.4 the limit distributions are fully de-
termined by the common factor Λs, s ∈ T, and are not normally distributed.

3.5. Random design vectors. For the sake of simplicity, Theorem 3.1 and 3.2 with
their proofs are provided for non-random xi,t’s. However, the results can be extended to
random design points. We assume:

Assumption 3.6. {εi,t,Λt, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and {xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}
are independent.

Assumptions 2.5 and 2.6 are modified so the uniform boundness is replaced with the
uniform boundness of moments:

Assumption 3.7. There is c0 such that E||xi,t||8 ≤ c0 for all 1 ≤ i ≤ N, 1 ≤ t ≤ T

and

Assumption 3.8. (i) There are positive constants c1 and t1 such that E||(
∑t1

t=1 xi,tx
T
i,t)

−1||8 ≤
c1 for all 1 ≤ i ≤ N .

(ii) There are positive constants c2 and t2 such that E||(∑T
t=T−t2

xi,tx
T
i,t)

−1||8 ≤ c2 for
all 1 ≤ i ≤ N .

It follows from Assumption 3.8 that

P

(( t∑

t=1

xi,tx
T
i,t

)−1

exists for all t1 ≤ t ≤ T

)
= 1

and

P

(( T∑

t=T−t

xi,tx
T
i,t

)−1

exists for all t2 ≥ t

)
= 1.

We also need to replace a2i,t,1 and a2i,t,2, 1 ≤ i ≤ N, to ≤ t ≤ T − t0 with their expected
values.

4. Bootstrap tests and simulations

4.1. Bootstrap tests. In this subsection we describe the settings of the wild bootstrap
procedure that could be used to test for the change point.

Due to Assumption 2.4 (negligible common factors) we could also apply the bootstrap
to get approximations to the distribution functions of UN(t) and VN(t). We demonstrate
the application of the wild bootstrap for UN (t), and VN(t) can be resampled in a similar
way.

For t0 ≤ t ≤ T − t̄0 and 1 ≤ i ≤ N let

φi,t = (β̂i,t − β̂i,T )
⊤Ci,t(β̂i,t − β̂i,T )−

1

N

N∑

j=1

(β̂j,t − β̂j,T )
⊤Cj,t(β̂j,t − β̂j,T ).

Assumption 4.1. ζ1, . . . , ζN are independent standard normal variables, independent of
{εi,t,Λt, 1 ≤ i ≤ N, 1 ≤ t ≤ T}
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The bootstrapped observations are defined by

(4.1) φ∗
i,t = ζi φi,t, t0 ≤ t ≤ T − t̄0, 1 ≤ i ≤ N.

and the respective bootstrapped process by

(4.2) U∗
N (t) = N−1/2

N∑

i=1

φ∗
i,t, t0 ≤ t ≤ T − t̄0.

Theorem 4.1. We assume that Assumptions 2.6 – 3.1 and 4.1 hold.
(i) If H0 holds, then

{U∗
N(t), t0 ≤ t ≤ T − t0} D→ {ξ(1)t , t0 ≤ t ≤ T − t0}

where ξ
(1)
t , t0, t0 are defined in Theorem 3.1.

(ii) If HA holds, then
sup

t
0
≤t≤T−t0

|U∗
N(t)| = OP (1).

Proof: See Section 7.

4.2. Test procedure and algorithm. Based on the results in the previous sections we
describe here the test procedures for testing H0 specified in (2.3) of our model (1.1). Our
test procedures are based on the maximum functionals of

(4.3) UN(t) = N−1/2(UN(t)− A
(1)
N (t))

where UN(t) and A
(1)
N (t) is defined in (2.4) and (3.2), respectively, and

(4.4) ÛN (t) = N−1/2(UN(t)− Â
(1)
N (t))

with

Â
(1)
N (t) =

N∑

i=1

â2i,t,1, â2i,t,1 = σ̂2
i tr
(
C i,t(Z

−1
i,t −Z−1

i,T )
)

and for σ̂2
i we recommend the estimator defined in (3.10). In our study we use the test

statistics
uN = max

t
|UN(t)|, and ûN = max

t
|ÛN (t)|.

Large values of either test statistics indicate that the null hypothesis is violated. The
respective critical values are constructed via wild bootstrap. Notice that uN depends on
σ2
i ’s when these are replaced by their estimators σ̂2

i ’s. Since σ2
i ’s are usually unknown

the test statistic ûN is more practical. In application we use ûN , but in the simulations
we also present selected results for uN in order to see influence of unknown σ2

i ’s.
Bellow we provide the algorithm for the test based on ûN and level α

Algorithm

(1) Compute Â
(1)
N (t), ÛN (t) and ûN as described above and σ̂2

i using formula (3.10).
(2) Generate bootstrap version u⋆

N :
(a) Calculate φi,t using

φi,t = (β̂i,t − β̂i,T )
⊤Ci,t(β̂i,t − β̂i,T )−

1

N

N∑

j=1

(β̂j,t − β̂j,T )
⊤Cj,t(β̂j,t − β̂j,T ).
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(b) Generate ζi from standard normal distribution N(0, 1).
(c) Generate bootstrap observations φ∗

i,t using relation

φ∗
i,t = ζi φi,t, t0 ≤ t ≤ T − t̄0, 1 ≤ i ≤ N.

(d) Obtain bootstrap process

U∗
N (t) =

1√
N

N∑

i=1

φ∗
i,t.

(e) Get the bootstrap version u⋆
N by taking maximum values of U∗

N(t), i.e.

u⋆
N = max

d<t<T−d

∣∣U∗
N(t)

∣∣.

(3) Find critical values from bootstrap.
• Repeat step (2) B = 1000 times, obtain (1 − α)100% quantile value of u⋆

N

and denote it u⋆
N,α.

• Reject H0 if ûN > u⋆
N,α.

4.3. Simulations. For our simulations we used the model

yi,t = x⊤
i,t

(
βi + δiI{t ≥ t0}

)
+ ei,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T.

with x⊤
i,t =

(
1, xi,t(2), . . . , xi,t(d)

)⊤
, d = 2 and 5. The xi,t(j)’s, j = 2, . . . , d, has normal

distribution N(1, 1), and are independent of ei,t, 1 ≤ t ≤ T, 1 ≤ i ≤ N .
The errors ei,t, t = 1, . . . , T, are independent sequences. We consider three cases:

• The “iid case”: ei,t, i = 1, . . . , N, t = 1, . . . , T, are independent and identically
distributed and follow standard normal distribution.

• The “unequal variances”: ei,t, i = 1, . . . , N, t = 1, . . . , T, are independent and
normally distributed with zero mean and variance σ2

i , that are generated from
uniform distribution U(0.5, 1.5).

• The “GARCH(1,1) process”: ei,t = νi,tεi,t, where ν
2
i,t = 0.25+0.25e2i,t−1+0.5ν2

i,t−1

and εi,t are independent and follow the standard normal distribution N(0, 1).

In the sequel we report on two model specifications:

S1: Linear model with d = 2, β = (1, 2)⊤ and Ci,t = ZitZit.
S2: Linear model with d = 5, β = (1, 1, 2, 3, 4)⊤ and Ci,t = Zi,tZ

−1
i,TZi,t.

We use extensive simulations to explore finite sample properties of the underlying test
procedure. In particular, we analyze the significance level and the empirical power of the
test for different pairs of (N, T ), different assumptions on t0 (the change point) and various
assumptions on the errors terms. Overall, we keep the number of simulations equal to
1 000 and the number of bootstrap steps also equals 1 000. In our simulation setup we
also include cases when both N and T are small, to explore small sample properties of
the test statistics uN and ûN and the behavior of the proposed wild bootstrap procedure.
In simulations we first consider the case when non zero changes occur in all panels at the
same time t0. Later we analyze the sensitivity of the detection of change in the case when
only a fraction of panels (ϑ = 0.25) experience change. Selected results are presented
bellow.

A. Empirical versus theoretical significance level

Our results show that, even for rather small N and T the nominal rejection rate was close
to the corresponding significance level of the tests. Table 4.1 demonstrates how well the
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nominal rejection of the null hypothesis (no change) in the case of model S2 corresponds to
the chosen significance level, with four independent explanatory variables and intercept.
A similar result is reported in Table 4.2 for model S1 for small N and T . Other model
assumptions (different number of regressors, different data generating process, different
distributions) lead to similar results; additional results are available upon request.

σ2
i known (ūN) σ2

i estimated by σ̂2
i (ûN)

T \ N 100 200 500 1000 100 200 500 1000
50 0.047 0.049 0.049 0.048 0.052 0.048 0.051 0.047
100 0.054 0.052 0.051 0.052 0.056 0.053 0.052 0.053
200 0.053 0.051 0.049 0.051 0.053 0.054 0.048 0.051

Table 4.1. Nominal rejection of the H0; test based on ūN (left part of the
table) and on ûN (right part of the table) at significance level 5%; model S2
(four regressors and intercept).

σ2
i known (ūN) σ2

i estimated (ûN)

number of panels number of panels
100 200 500 1000 100 200 500 1000

iid case
T = 50 0.045 0.049 0.051 0.055 0.037 0.040 0.052 0.048
T = 100 0.049 0.044 0.044 0.051 0.044 0.045 0.041 0.033
T = 200 0.056 0.045 0.047 0.043 0.039 0.049 0.049 0.043

unequal variances
T = 50 0.042 0.041 0.039 0.047 0.032 0.036 0.032 0.043
T = 100 0.039 0.028 0.046 0.045 0.039 0.041 0.03 0.040
T = 200 0.040 0.041 0.039 0.033 0.037 0.035 0.051 0.039

GARCH(1,1)
T = 50 0.045 0.037 0.056 0.048 0.020 0.036 0.027 0.029
T = 100 0.038 0.048 0.051 0.042 0.031 0.025 0.037 0.045
T = 200 0.040 0.044 0.040 0.037 0.054 0.047 0.049 0.040

Table 4.2. Nominal rejection of the H0; test based on ūN (left part of the table) and
on ûN (right part of the table) at significance level 5%; model S1 (one regressor and
intercept).

B. Empirical power of the test statistic ûN

In our simulation setup we set the time of change t0 equal to T/2 and T/4 under HA.
Table 4.3 shows the empirical power of the tests based on uN and ûN at a 5% significance
level in case of model S2, for several combinations of N and T . The empirical power is
an increasing function of N and T . It is high even for small and moderate N and T ,
which can be explained by changes in all panels at the same time. We note that the
estimation of the σ2

i ’s reduces power but very mildly. By increasing N for each T we see
the increasing empirical power of the test. Similar results of the simpler model S1 with
different data generating processes are depicted in Table 4.4
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N = 100 N = 200 N = 500 N = 1000

t0 =
T
2

t0 =
T
4

t0 =
T
2

t0 =
T
4

t0 =
T
2

t0 =
T
4

t0 =
T
2

t0 =
T
4

T = 50 0.699 0.678 0.876 0.855 0.941 0.929 0.971 0.932
T = 100 0.847 0.832 0.929 0.917 0.956 0.941 0.992 0.983
T = 200 0.908 0.889 0.947 0.925 0.965 0.957 0.995 0.989

Table 4.3. Power of the test based on ûN when the change occurs at t0 = T/2
or T/4 in all regressors of model S2 (δ = (0, 1, 0.3, 0.2, 0.1)⊤); the significance
level 5%.

change in intercept change in slope

number of panels number of panels
100 200 500 1000 100 200 500 1000

iid case
T = 50 0.042 0.071 0.172 0.350 0.139 0.350 0.765 0.981
T = 100 0.113 0.264 0.625 0.904 0.569 0.914 0.999 1
T = 200 0.408 0.791 0.998 1 0.986 1 1 1

unequal variances
T = 50 0.036 0.046 0.149 0.284 0.130 0.307 0.765 0.976
T = 100 0.088 0.210 0.576 0.888 0.522 0.885 0.999 1
T = 200 0.376 0.754 0.997 1 0.987 1 1 1

GARCH(1,1)
T = 50 0.027 0.043 0.124 0.269 0.104 0.277 0.666 0.960
T = 100 0.085 0.190 0.541 0.892 0.504 0.878 1 1
T = 200 0.380 0.785 0.990 1 0.988 1 1 1

Table 4.4. Power of the test based on ûN when the change occurs at t0 = T/2
in either intercept or slope of model S1 (δ = 0.1); the significance level 5%.

C. Sensitivity analysis to fraction of panels experiencing a change

We also investigate a situation when only a fraction of the panels experience a change.
The fraction of the panels with change is denoted by ϑ. Given the space limitations we
present this sensitivity analysis only for the model S1 and for the case of ûN

(
σ2
i estimated

by σ̂2
i

)
. The other setups lead to similar results. Bellow we present the results for model

S1 when all changes occurred at time t0 = T/2. We applied ûN to detect instability at a
5% significance level and the size of changes was δ = (0.25, 0) (change in intercept) and
δ = (0, 0.25) (change in the slope). The results are presented in Table 4.5 when ϑ = 0.25.
For other ϑ and δ not presented here we observed the following pattern. The power of the
test decreases with ϑ (fraction of panels with changes) and increases with δ (size of the
change). The level of detection is very good, even if only a quarter of the panels contains
changes in the regression parameters; one can see that the power of the test increases
with T and with N . Additional results are available upon request.
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change in intercept change in slope

number of panels number of panels
100 200 500 1000 100 200 500 1000

iid case
T = 50 0.061 0.117 0.390 0.726 0.302 0.699 0.987 1
T = 100 0.229 0.544 0.940 0.999 0.858 0.994 1 1
T = 200 0.734 0.986 1 1 1 1 1 1

unequal variances
T = 50 0.042 0.103 0.331 0.683 0.269 0.653 0.987 1
T = 100 0.187 0.489 0.911 0.999 0.839 0.998 1 1
T = 200 0.703 0.976 1 1 0.999 1 1 1

GARCH(1,1)
T = 50 0.040 0.094 0.273 0.601 0.249 0.578 0.972 1
T = 100 0.169 0.461 0.902 0.997 0.838 0.995 1 1
T = 200 0.707 0.973 1 1 1 1 1 1

Table 4.5. Power of the test based on ûN when the change occurs at t0 = T/2
in either intercept or slope of model S1 (δ = 0.25); fraction of panels with
change ϑ = 0.25; the significance level 5%.

5. Empirical Illustration

In this section we present an application of our theoretical results to the capital asset
pricing model (CAPM). We apply our approach to the CAPM, using the conventional
factor model, which includes the Fama-French three-factor model augmented with the
Carhart (1997) momentum factor.

Specifically, we test for breaks in coefficients for the US mutual fund return data around
the sub-prime crisis. Our time span covers the period from January 2006 to February
2010, which is consistent with other sub-prime crisis studies (e.g. Dick-Nielsen et al.,
2012). The sub-prime crisis is generally defined as the period between the fourth quarter
of 2007 and the end of 2008 (Santos, 2011).

The Fama-French (1993) three factor model augmented with the Carhart (1997) mo-
mentum factor is defined as

Ri,t − Rf
t = αi,t +

(
RM

t −Rf
t

)
βM
i,t +RHML

t βHML
i,t +RSMB

t βSMB
i,t +RMOM

t βMOM
i,t + ei,t,

1 ≤ t ≤ T, 1 ≤ i ≤ N , where Ri,t − Rf
t denotes the excess return on the mutual fund;

RM
t −Rf

t is the market risk premium; RHML
t is the value factor, calculated as the return

difference between portfolios with the highest decile of stocks and the lowest decile of
stocks in terms of the ratio of book equity-to-market equity (HML); RSMB

t is the value
factor, calculated as the return difference between portfolios with the smallest decile of
stocks and the largest decile of stocks in terms of size (SMB); RMOM

t is the momentum
factor calculated as the return difference between portfolios with the highest decile of
stocks and lowest decile of stocks in terms of recent return (i.e., momentum, or MOM );
and ei,t the random errors.

In our investigation we use ûN as our test statistics and we display the graphs of

|ÛN(t)|. The unknown σ2
i is estimated by σ̂2

i of (3.10). The critical values were obtained
by the wild bootstrap of Section 4.1.
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5.1. Data Information. The four factors can be downloaded from Ken French’s data
library1. The raw dataset on mutual funds contains monthly return data of 6 190 US
mutual funds from January 1984 to November 20142. However, there are many missing
values in the mutual fund dataset because different mutual funds have different start dates
and some of them have already been terminated. For the purpose of our illustration we
select the mutual funds that have no missing returns for the period of the subprime crisis
(January 2006 to February 2010).

Using the Yahoo finance classification, we consider nine categories of the US mutual
funds. These are Large Blend, Large Growth, Large Value, Middle Blend, Middle Growth,
Middle Value, Small Blend, Small Growth and Small Value. These categories are combi-
nations of the mutual fund size and their investment strategies as illustrated in Table 5.1.

Large
Medium
Small

Blend Growth Value

Table 5.1. Categories of mutual funds.

5.2. Results for the sub-prime crisis. Table 5.2 shows the test results for the sub-
prime crisis. It covers the period from January 2006 to February 2010, which is equal to
50 periods. ûN is the test statistic, CV stands for critical values which are reported for
10%, 5% , and 1% significance levels obtained by the wild bootstrap. The break point
column shows the month (time period) in which a break point was detected and N shows
the number of observations per fund category. Between the brackets in the breakpoint
column the estimated time of the change is reported.

For all but one fund categories the test statistic ûN is above the 5% critical values
during the sub-prime crisis period (middle of 2008 to early 2009). Interestingly, the test
cannot detect change for the category of Small Value mutual funds at the 5% significance
level. However the Small Value mutual fund category is significant at the 10% significance
level.

The coefficients for the four factors changed first for the Large Blend mutual fund
category with estimated break point in August 2008, and the Small Growth mutual
fund category has estimated change point just a month later in September 2008. The
coefficients for Large Growth, Middle Blend, Middle Growth, and Small Blend changed
last, in March 2009.

It is interesting to note that only the Large Blend indicated a change in the environment
out of all large-type mutual funds. Recall that the Large Blend is defined as a balanced
mix of growth and value stocks. We hypothesize that the Large Blend more closely
resembles the market and that is why it indicated a shift in the underlying structure.

1The factors data is available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

2The monthly return history of US mutual funds is available for the period January 1984 to November
2014 at the web site http://finance.yahoo.com
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Category ûN 10% CV 5% CV 1% CV break point t̂0 N

Large Blend 47 125 18 361 21 964 28 961 Aug 2008 (32) 659

Large Growth 149 624 36 993 43 449 56 892 Mar 2009 (39) 748

Large Value 48 210 9 138 10 576 13 239 Feb 2009 (38) 528

Middle Blend 81 238 38 007 44 299 56 424 Mar 2009 (39) 145

Middle Growth 151 827 23 034 26 999 34 196 Mar 2009 (39) 329

Middle Value 36 235 14 910 17 269 21 878 Oct 2008 (34) 173

Small Blend 37 067 14 893 17 364 22 394 Mar 2009 (39) 279

Small Growth 67 004 14 742 16 944 21 575 Sep 2008 (33) 313

Small Value 40 583 35 504 41 433 52 510 - 135

Table 5.2. Detection of the break point during the sub-prime crisis

Figure 5.1 plots the estimated break points for the coefficients for the Mutual Fund
categories with the levels of the S&P 500. The model employed is the Fama and French
three factor model (1993) augmented with the Carhart (1997) momentum factor.
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Figure 5.1. Estimated break points of the mutual fund returns and the level of the
S&P 500.

The Large Blend category indicated a structural change when the S&P 500 was well
above the 1200 value. This could have been used as a potential trading signal. The lowest
point of the S&P 500 was February 2009, below the 800 mark. Here the change point was
detected for the Large Growth, Middle Blend, Middle Growth, and Small Blend. Again,
as for the earlier estimated break point for Large Blend, this time could also be used as
a trading signal, obviously indicating an upturn of the market.

Figures 5.2 – 5.10 graphically depict the processes
∣∣ ÛN(t)

∣∣, estimated break point t̂N ,
and the estimated simulated critical values at the 10%, 5% , and 1% significance levels
for all categories of mutual funds.
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Figure 5.2. Graphs of
∣∣ ÛN (t)

∣∣ and simulated critical values for Large Blend mutual
funds.

Figure 5.2 shows
∣∣ ÛN(t)

∣∣ and simulated critical values for the category of Large Blend

mutual funds.
∣∣ ÛN (t)

∣∣ stays below the critical level up until late 2007 and then in 2008 it

starts slowly breaking off. The estimated break point
(
corresponding to the highest value

of
∣∣ ÛN (t)

∣∣) is in August of 2008, but it is clear that in the preceding months an increase

is visible. After the break in the coefficients,
∣∣ ÛN (t)

∣∣ slowly decreased to regular levels
in late 2009 and early 2010. Another peak in the first quarter of 2009, could suggest an
influence of the European sovereign debt crisis, i.e., potentially two break points.
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Figure 5.3. Graphs of
∣∣ ÛN (t)

∣∣ and simulated critical values for Large Growth mutual
funds.

Figure 5.3 shows
∣∣ ÛN(t)

∣∣ and simulated critical values for the category of Large Growth
mutual funds. The estimated break point is in March of 2009, which is at the deepest

point of the sub-prime crisis. However, the graph tells a slightly different story.
∣∣ ÛN (t)

∣∣
is at zero in 2006 and 2007, and slowly increases in 2008. The process

∣∣ ÛN (t)
∣∣ is well

above the simulated critical values in late 2008 and all 2009, but the estimator of the
time of a change is quite late due the magnitude of the March 2009 value. Immediately
after the detection,

∣∣ ÛN(t)
∣∣ quickly decreases below critical levels.
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Figure 5.4. Graphs of
∣∣ ÛN(t)

∣∣ and simulated critical values for Large Value mutual
funds.

Figure 5.4 shows
∣∣ ÛN (t)

∣∣ and simulated critical values for the category of Large Value
mutual funds. The estimated break point is in February 2009. Obviously large mutual
funds could be strongly influenced by the European sovereign debt crisis that started
in early 2009. Again, a similar story emerges to the Large Value mutual fund. Values

of
∣∣ ÛN (t)

∣∣ are around zero and well below the simulated critical values in 2006, 2007,

and early 2008. For most of 2008 the process
∣∣ ÛN(t)

∣∣ is above the simulated critical
values but the break point is again indicated late. After the estimated break in February∣∣ ÛN(t)

∣∣ drops below critical value levels.
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Figure 5.5. Graphs of
∣∣ ÛN(t)

∣∣ and simulated critical values for Middle Blend mutual
funds.
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Figure 5.6. Graphs of
∣∣ ÛN(t)

∣∣ and simulated critical values for Middle Growth
mutual funds.



20

2006 2007 2008 2009 2010
0

1

2

3

4
104

1% CV
5% CV
10% CV

Figure 5.7. Graphs of
∣∣ ÛN(t)

∣∣ and simulated critical values for Middle Value mutual
funds.

Figures 5.5 – 5.7 show
∣∣ ÛN(t)

∣∣ and simulated critical values for the category of Middle
Blend, Middle Growth, and Middle Value mutual funds. The Middle Blend and Middle
Growth mutual fund categories have an estimated break point in March 2009. For both

mutual fund categories,
∣∣ ÛN (t)

∣∣ remains fairly low up until early 2008. Even though the
test statistic was above the simulated critical values in late 2008 and early 2009 the break

point is indicated fairly late, in March 2009 for both funds.
∣∣ ÛN (t)

∣∣ decreases to below
simulated critical values shortly after the break detection. Middle Blend and Middle
Growth mutual funds show a very similar pattern, suggesting two breakpoints. The first
relates to to the US crisis and the second to the European sovereign debt crisis. The
European crisis is detected as the main break point for Middle Blend and Middle Growth

mutual funds. Similar characteristics of
∣∣ ÛN (t)

∣∣ are observed. The values remain very
low and well below the simulated critical values up until late 2008. After the estimated

break the values of
∣∣ ÛN(t)

∣∣ remain quite high for a few months before dropping in late
2009.
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Figure 5.8. Graphs of
∣∣ ÛN (t)

∣∣ and simulated critical values for Small Blend mutual
funds.
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Figure 5.9. Graphs of
∣∣ ÛN (t)

∣∣ and simulated critical values for Small Growth mutual
funds.

Figures 5.8 – 5.10 show
∣∣ ÛN (t)

∣∣ and simulated critical values for the category of Small
Blend, Small Growth, and Small Value mutual funds. The estimated break points for the
Small Blend and Small Growth mutual funds are detected in March 2009 and September
2008, respectively. As is clearly visible, both graphs suggest possibility of two break
points, as before. One is linked to the US mortgage crisis and the other to the European
sovereign debt crisis. The test statistics for the maximum at these peaks are very similar.
The simulated critical values were low until late 2008 and well below the significance
levels.
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Figure 5.10. Graphs of
∣∣ ÛN(t)

∣∣ and simulated critical values for Small Value mutual
funds.

The Small Value mutual fund category does not indicate a change point because the
test statistic never exceeded the 5% critical value. However, a change is detected at the
10% level.

Overall, the result shows the sensitivity of large and medium mutual funds to the 2008
economic crisis, as well as the subsequent European sovereign debt crisis. For a detailed
financial analysis of the associated change point it would be useful to classify the mutual
funds according to their international portfolio holdings. The portfolio structure and its
diversification could likely be attributed to a possible change. We leave these points for
further research.

6. Conclusion and suggestions for further research

The detection of (structural) breaks has been at the center of both theoretical and
applied economic and financial research for many years. Part of the existing research
concentrates on the detection of breaks in panels when both N , the number of panels
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and T , the time dimension are large. In contrast, in this paper we concentrate on a qual-
itatively different situation. We elaborate a general approach for testing for the break(s)
when N is large and T is fixed and rather small. This situation is typically related
to large (firm-level) data containing financial information about an immense number of
firms/stocks across a limited period of time. More precisely, we study the asymptotic
properties of suggested test procedures when N → ∞ while keeping T fixed. Our ap-
proach also allows the estimation of the time of the change(s).

The goal of this paper is to present a background for constructing a set of quite general
test statistics which are suitable in the given context, and to prove theorems about their
asymptotic behavior. We also aim to show that several special choices of the weighting
matrices used in our test statistics resulted in a generalization of some well-known test
statistics.

In the rich simulation section we study the finite sample properties of two processes.
The maximum norm of these processes can be used as test statistics and critical values
obtained by a wild bootstrap. We present a selected set of tables to document the
accuracy of the significance levels and the power of the test under several simulation
schemes and alternatives, including cases when only a fraction of the panels experienced
a break.

For a practical application we apply the testing procedure in the framework of the four
factors CAPM model. In particular, we estimate breaks in monthly returns of US mutual
funds during the period January 2006 to February 2010 which covers the subprime crises.

The theoretical considerations concerning multiple breaks are beyond the scope of this
paper and we plan to address them in future research.
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[27] Horváth, L., and Rice, G. Extensions of some classical methods in change point analysis (with

discussions). Test 23, 219–290, 2014.
[28] Hsiao, C. Analysis of Panel Data, 2nd ed. Cambridge University Press, Cambridge, 2003.
[29] Hsiao, C. Panel data analysis – advantages and challenges. Test 16, 1–22, 2007.
[30] Jirák, M. Uniform change point tests in high dimension. Annals of Statistics 43, 2451–2483, 2015.
[31] Joseph, L., and Wolfson, D.B. Estimation in multi–path change–point problems. Communications

in Statistics – Theory and Methods 21, 897–913, 1992.
[32] Joseph, L., and Wolfson, D.B. Maximum likelihood estimation in the multi-path changepoint prob-

lem. Annals of the Institute of Statistical Mathematics 45, 511–530, 1993.
[33] Kao, C., Trapani, L., and Urga, G. Asymptotics for panel models with common shocks. Econometric

Reviews 31, 390–439, 2012.
[34] Kao, C., Trapani, L., and Urga, G. Testing for breaks in cointegrated panels. Econometric Reviews

2014 (to appear).
[35] Kim, D. Estimating a common deterministic time trend break in large panels with cross sectional

dependence. Journal of Econometrics 164, 310–330, 2011.
[36] Lemmon, M.L., Roberts, M.R., and Zender, J.F. Back to the beginning: Persistence and the cross-

section of corporate capital structure. Journal of Finance 63, 1575–1608, 2008.
[37] Perron, P. Dealing with structural breaks. In: Palgrave Handbook of Econometrics, Vol. 1: Econo-

metric Theory, Patterson, K. and Mills, T.C. (eds.), Palgrave Macmillan, 278-352, 2006.
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7. Proofs

We assume that H0 holds. Using (1.1) we get

β̂i,t = βi + Z−1
i,t

(
Si,t +Ri,t

)
,
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where Si,t,Ri,t ∈ Rd, Si,t is defined in (3.5) and Ri,t =
∑t

s=1 xi,sγ
⊤
i Λs, 1 ≤ i ≤ N, 1 ≤

t ≤ T. It also holds that

(β̂i,t−β̂i,T )
⊤Ci,t(β̂i,t − β̂i,T )(7.1)

= S⊤
i,tCi,t,1Si,t + S⊤

i,TCi,t,2Si,T − 2S⊤
i,tCi,t,3Si,T + 2S⊤

i,tCi,t,1Ri,t

+ 2S⊤
i,TCi,t,2Ri,T − 2S⊤

i,tCi,t,3Ri,T − 2R⊤
i,tCi,t,3Si,T +R⊤

i,tCi,t,1Ri,t

+R⊤
i,TCi,t,2Ri,T − 2R⊤

i,tCi,t,3Ri,T ,

where

Ci,t,1 = Z−1
i,t Ci,tZ

−1
i,t , Ci,t,2 = Z−1

i,TCi,tZ
−1
i,T and Ci,t,3 = Z−1

i,t Ci,tZ
−1
i,T .

Lemma 7.1. If H0 and Assumptions 2.1 – 2.3 and 2.5 – 2.7 hold, then we have that

E S⊤
i,tCi,t,1Si,t = σ2

i

t∑

s=1

x⊤
i,sCi,t,1xi,s = σ2

i tr
(
Ci,t,1Zi,t

)
,

E S⊤
i,TCi,t,2Si,T = σ2

i

T∑

s=1

x⊤
i,sCi,t,2xi,s = σ2

i tr
(
Ci,t,2Zi,T

)

and

E S⊤
i,tCi,t,3Si,T = σ2

i

t∑

s=1

x⊤
i,sCi,t,3xi,s = σ2

i tr
(
Ci,t,3Zi,t

)
.

Proof. With the notation Ci,t,1 = {ci,t,1(ℓ, ℓ′), 1 ≤ ℓ, ℓ′ ≤ d} and Si,t = (Si,t(1), . . . , S
d
i,t)

⊤

we have

S⊤
i,tCi,t,1Si,t =

t∑

s=1

x⊤
i,s εi,sZ

−1
i,t CitZ

−1
i,t

t∑

v=1

xi,vεi,v(7.2)

=

d∑

ℓ=1

d∑

ℓ′=1

Si,t(ℓ)ci,t,1(ℓ, ℓ
′)Si,t(ℓ

′)

=

d∑

ℓ=1

d∑

ℓ′=1

t∑

s=1

t∑

s′=1

xi,s(ℓ)xi,s′(ℓ
′)εi,sεi,s′ci,t,1(ℓ, ℓ

′),

which implies the first statement of the lemma since E εi,sεi,s′ = σ2
i if s = s′, and zero

otherwise. The same argument can be used to prove the rest of Lemma 7.1.
�

Let
Hi,t = S⊤

i,tCi,t,1Si,t + S⊤
i,TCi,t,2Si,T − 2S⊤

i,tCi,t,3Si,T .

Lemma 7.2. If H0 and Assumptions 2.1 – 2.7 and 3.1 hold, then we have

{
N−1/2

N∑

i=1

(Hi,t − a2i,t,1), d ≤ t ≤ T
}

D→
{
ξ
(1)
t , t0 ≤ t ≤ T − t̄0

}
,(7.3)

where ξ
(1)
t , t0 ≤ t ≤ T − t̄0, is jointly normal with zero mean and covariance Γ(1)(t, t′)

and t0, t̄0 are defined in Assumption 3.1.
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Proof. It follows from Assumptions 2.2, 2.6 and 2.7 that the random vectors Hi,t, t0 ≤ t ≤
T − t̄0 are independent and by Lemma 7.1 EHi,t = a2i,t,1. Also, that E |Hi,t − a2i,t,1|κ/2 ≤
cE |εi,0|κ and therefore we have

(7.4)

N∑

i=1

E |Hi,t − a2i,t,1|κ/2 = O(N).

It is easy to see that

cov
(
Hi,t, Hi,t′

)
= E

[(
Z−1

i,t Si,t − Z−1
i,TSi,T

)⊤
Ci,t

(
Z−1

i,t Si,t − Z−1
i,TSi,T

)

×
(
Z−1

i,t′Si,t′ − Z−1
i,TSi,T

)⊤
Ci,t′(Z

−1
i,t′Si,t′ − Z−1

i,TSi,T )
]
−a2i,t,1a

2
i,t′,1.

We can assume that {Γ(1)(t, t′), t0 ≤ t, t′ ≤ T − t̄0} is a non–singular matrix. If
Γ(1)(t, t′) is singular, one needs to prove the central limit theorem for a subvector of(
Hi,t

0
, . . . , Hi,T−t̄0

)⊤
such that the related submatrix of Γ(1)(t, t′) is regular and has the

same rank as Γ(1)(t, t′). Hence for any constants
(
ct

0
, ct

0
+1, . . . , cT−t̄0

)
6= 0 we have

lim
N→∞

1

N

N∑

i=1

var




T−t̄0∑

v=t
0

cvHi,v


 > 0.

Equation (7.4) implies that

N∑

i=1

E

∣∣∣∣∣∣

T−t̄0∑

v=t
0

cv(Hi,v − a2i,v,1)

∣∣∣∣∣∣

κ/2

= O(N).

Hence Lemma 7.2 follows from Lyapunov’s theorem
(
cf. Petrov (1995, p. 122)

)
.

�

Lemma 7.3. If H0 and Assumptions 2.1–2.7 hold, then we have for all t0 ≤ t ≤ T − t̄0
that

N∑

i=1

S⊤
i,tCi,t,1Ri,t = oP (N

1/2),
N∑

i=1

S⊤
i,tCi,t,3Ri,T = oP (N

1/2)

and
N∑

i=1

S⊤
i,TCi,t,2Ri,T = oP (N

1/2),

N∑

i=1

R⊤
i,tCi,t,3Si,T = oP (N

1/2),

where t0 and t̄0 are defined in Assumption 3.1.

Proof. Using Assumptions 2.1 – 2.3 we conclude that E S⊤
i,tCi,t,1Ri,t = 0 and

(7.5) var

(
N∑

i=1

S⊤
i,tCi,t,1Ri,t

)
=

N∑

i=1

E (S⊤
i,tCi,t,1Ri,t)

2.

Next we note that (S⊤
i,tCi,t,1Ri,t)

2 ≤ ‖Si,t‖2‖Ci,t,1‖2‖Ri,t‖2 ≤ c‖Si,t‖2‖Ri,t‖2 with some
constant on account of Assumption 2.6 – 2.7. Using again Assumption 2.6 we get that
E ‖Si,t‖2 ≤ cσ2

i and E ‖Ri,t‖2 ≤ c‖γi‖2 with some constant c. On account of Assump-
tion 2.2(ii) we conclude
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var

(
N∑

i=1

S⊤
i,tCi,t,1Ri,t

)
= O(1)

N∑

i=1

σ2
i ‖γi‖2 = O(1)

N∑

i=1

‖γi‖2,

and therefore Chebyshev’s inequality and Assumption 2.4 imply the first statement in
Lemma 7.3. The same argument can be used to prove the other upper bounds.

�

Lemma 7.4. If H0 and Assumptions 2.1 and 2.3 – 2.7 hold, then we have for all t0 ≤
t ≤ T − t̄0 that

N∑

i=1

R⊤
i,tCi,t,1Ri,t = oP (N

1/2),
N∑

i=1

R⊤
i,TCi,t,2Ri,T = oP (N

1/2)

and
N∑

i=1

R⊤
i,tCi,t,3Ri,T = oP (N

1/2),

where t0 and t̄0 are defined in Assumption 3.1.

Proof. Using Assumptions 2.6 and 2.7 we get that
∣∣∣∣∣

N∑

i=1

R⊤
i,tCi,t,ℓRi,t

∣∣∣∣∣ ≤
N∑

i=1

t∑

s=1

t∑

s′=1

∣∣∣∣x
⊤
i,sCi,t,1xi,s′γ

⊤
i Λsγ

⊤
i Λs′

∣∣∣∣

= OP (1)

N∑

i=1

‖γi‖2,

and therefore the first part follows from Assumption 2.4. The remaining three cases can
be proven in a similar way and therefore the details are omitted.

�

Proof of Theorem 3.1. The result follows immediately from Lemmas 7.1–7.4. �

To prove Theorem 3.2 we note that

êi,t = wi,t + ri,t, where wi,t = εi,t − x⊤
i,tZ

−1
i,TSi,T and ri,t = γ⊤

i Λt − x⊤
i,tZ

−1
i,TJi,T

with

Ji,t =

t∑

v=1

xi,vγ
⊤
i Λv.

Hence

ê2i,t = w2
i,t + 2wi,tri,t + r2i,t.

Lemma 7.5. If H0 and Assumptions 2.1 – 2.6 and 3.2 hold, then we have

{
N−1/2

N∑

i=1

(
t∑

s=1

w2
i,s − a2i,t,2

)
, 1 ≤ t ≤ T

}
D→
{
ξ
(2)
t , 1 ≤ t ≤ T

}
,

where ξ
(2)
t , 1 ≤ t ≤ T is jointly normal with zero mean and covariance Γ(2)(t, t′).
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Proof. It is easy to see that E wi,s = σ2
i (1−x⊤

i,sZ
−1
i,Txi,s). It follows from Assumptions 2.2,

2.5 and 2.6 that E |w2
i,s − E w2

i,s|κ/2 ≤ cE εκi,s with some c and therefore

(7.6)

N∑

i=1

E

∣∣∣∣∣

t∑

s=1

w2
i,s − a2i,t,2

∣∣∣∣∣

κ/2

= O(N).

As in the proof of Lemma 7.2, we can assume without loss of generality that Γ(2)(t, r′) is
non–singular. Hence for all (c1, c2, . . . , cT )

⊤ 6= 0 we have that

lim
N→∞

1

N

N∑

i=1

var

(
T∑

t=1

ct

(
t∑

s=1

w2
i,s − a2i,t,2

))
> 0.

We get from (7.6) that

N∑

i=1

E

∣∣∣∣∣

T∑

t=1

ct

(
t∑

s=1

w2
i,s − a2i,t,2

)∣∣∣∣∣

κ/2

= O(N).

Now the lemma follows from Lyapunov’s theorem (cf. Petrov (1995, p. 122)) and the
Cramér–Wold lemma (cf. Billingsley (1968)). �

Lemma 7.6. If H0 and Assumptions 2.1–2.6 and 3.2 hold, then we have for all 1 ≤ t ≤ T
that

N∑

i=1

r2i,t = oP (N
1/2)

and
N∑

i=1

ri,twi,t = oP (N
1/2).

Proof. We note that

r2i,t ≤ 2‖γi‖2‖Λt‖2 + 2
(
x⊤
i,tZ

−1
i,TJi,T

)2

and by Assumption 2.4
N∑

i=1

‖γi‖2‖Λt‖2 = oP (N
1/2).

Also, by Assumptions 2.5 and 2.6 we have
(
x⊤
i,tZ

−1
i,TJi,T

)2 ≤ c‖Ji,T‖2 ≤ c

and therefore
N∑

i=1

(
x⊤
i,tZ

−1
i,TJi,T

)2
= O(1) max

1≤s≤T
‖Λs‖2

N∑

i=1

‖γi‖2 = oP (N
1/2),

completing the proof of the first part of Lemma 7.6.
We write that

wi,tri,t = εi,tγ
⊤
i Λt − εi,tx

⊤
i,t Z

−1
i,TJi,T − x⊤

i,tZ
−1
i,TSi,Tγ

⊤
i Λt + x⊤

i,tZ
−1
i,TSi,Tx

⊤
i,tZ

−1
i,TJi,T .

Using Assumptions 2.1–2.3 we get that E εi,tγ
⊤
i,tΛt = 0 and

var

(
N∑

i=1

εi,tγ
⊤
i Λt

)
= O(1)

N∑

i=1

‖γi‖2 = O(N1/2)
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on account of Assumption 2.4. Similarly, E εi,tx
⊤
i,tZ

−1
i,TJi,T = 0 and

var

(
N∑

i=1

εi,tx
⊤
i,tZ

−1
i,TJi,T

)
= O(N1/2).

Repeating the arguments above, one can verify that
∣∣∣∣∣

N∑

i=1

xi,tZ
−1
i,TSi,Tγ

⊤
i Λt

∣∣∣∣∣ = OP (N
1/4)

and ∣∣∣∣∣

N∑

i=1

xi,tZ
−1
i,TSi,Txi,tZ

−1
i,TJi,T

∣∣∣∣∣ = OP (N
1/4),

completing the proof of the second part of Lemma 7.6.
�

Proof of Theorem 3.2. It is an immediate consequence of Lemmas 7.5 and 7.6. �

Proof of Theorem 3.3. It follows from the proof of Lemma 7.2 that

N∑

i=1

Hi,t −A
(1)
N (t) = OP (N

1/2),

without assuming the existence of the limit in Assumption 3.1, since under the conditions
of Theorem 3.3

lim sup
N→∞

1

N

∣∣∣∣∣

N∑

i=1

[
E
{
(Z−1

i,t Si,t − Z−1
i,TSi,T )

⊤ bCi,t(Z
−1
i,t Si,t − Z−1

i,TSi,T )

×(Z−1
i,t′Si,t′ − Z−1

i,TSi,T )
⊤Ci,t′(Z

−1
i,t′Si,t′ − Z−1

i,TSi,T )
}
− a2i,t,1a

2
i,t′,1

]
∣∣∣∣∣< ∞.

Elementary arguments give

H i,t =
t∑

s,v=1

Λ⊤
s γix

⊤
i,s(Z

−1
i,t − Z−1

i,T )Ci,t(Z
−1
i,t − Z−1

i,T )γ
⊤
i Λv,

where

H i,t = R⊤
i,tCi,t,1Ri,t +R⊤

i,TCi,t,2Ri,T − 2R⊤
i,tCi,t,3Ri,T

= γT
i

( t∑

j=1

Λjx
T
i,jZ

−1
i,t −

T∑

j=1

Λjx
T
i,jZ

−1
i,T

)
Ci,t

(
Z−1

i,t

t∑

v=1

xivΛ
T
v −Z−1

i,T

T∑

v=1

xivΛ
T
v

)
γi

=

t∑

j=1

t∑

v=1

ΛT
j γ ix

T
i,j

(
Z−1

i,t I{1 ≤ j ≤ t} −Z−1
i,T

)
C i,t

(
Z−1

i,t I{1 ≤ v ≤ t} −Z−1
i,T

)
xivγ

T
i Λv

Hence the definition of the function Q yields

1

rN

N∑

i=1

H i,t →
t∑

s,v=1

Λ⊤
s Q(s, v, t)Λv a.s..
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We showed in the proof of Lemma 7.3 that
∣∣∣∣∣

N∑

i=1

S⊤
i,tCi,t,1Ri,t

∣∣∣∣∣ = OP (1)

N∑

i=1

‖γi‖2,
∣∣∣∣∣

N∑

i=1

S⊤
i,TCi,t,2Ri,T

∣∣∣∣∣ = OP (1)

N∑

i=1

‖γi‖2

and ∣∣∣∣∣

N∑

i=1

S⊤
i,tCi,t,3Ri,T

∣∣∣∣∣ = OP (1)
N∑

i=1

‖γi‖2,
∣∣∣∣∣

N∑

i=1

R⊤
i,tCi,t,3Si,T

∣∣∣∣∣ = OP (1)
N∑

i=1

‖γi‖2.

The proof of Theorem 3.3 is now complete. �

Proof of Theorem 3.4. Elementary arguments give

r2i,t = Λ⊤
t γiγ

⊤
i Λt − 2

T∑

v=1

Λ⊤
v γix

⊤
i,vZ

−1
i,Txi,tγ

⊤
i Λt +

T∑

s,v=1

Λ⊤
s γix

⊤
i,sZ

−1
i,t xi,tx

⊤
i,tZ

−1
i,t xi,vγ

⊤
i Λv.

Using Assumption 3.5 we obtain that
{

1

rN

N∑

i=1

r2i,t, 1 ≤ t ≤ T

}
→
{
ξ
(4)
t , 1 ≤ t ≤ T

}
a.s..

It follows from the proof of Theorem 3.2 that

N∑

i=1

w2
i,t − A

(2)
N (t) = OP (N

1/2).

Minor modification of the proof of Theorem 3.3 gives

N∑

i=1

wi,tri,t = oP (rN),

and therefore (3.15) is proven. �

Proof of Theorem 4.1 Let βi,t and βi,T denote the OLS estimators when γi = 0, 1 ≤
i ≤ N and define

Φi,t = (βi,t − βi,T )
⊤Cit(βi,t − βi,T )−

1

N

N∑

j=1

(βj,t − βj,T )
⊤Cjt(βj,t − βj,T ).

Using Assumption 2.4 one can show that

(7.7)
∣∣∣U∗

N(t)−N−1/2
N∑

i=1

ζiΦi,t

∣∣∣ = oP (1), t0 ≤ t ≤ t0.

Note that {ζiΦi,t, t0 ≤ t ≤ t0} are independent vectors with zero mean. Let λt
0
, . . . , λT−t0

be arbitrary constant and define linear combinations

zi = ζi

T−t0∑

t=t
0

λtΦi,t.

It follows from Assumption 3.1 along the lines of the proof of Theorem 3.1 that

E
( 1√

N

N∑

i=1

zi

)2
→

T−t0∑

t=t
0

T−t0∑

s=t
0

λtΓ
(1)(t, s)λs
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Also, on account of Assumption 2.2 we have that E|zi|1+κ/2 is uniformly bounded.
Hence by the Cramér-Wold device (cf. Billingsley, 1968)

{
N−1/2

N∑

i=1

ζiΦi,t, t0 ≤ t ≤ t0

}
D→
{
ξ
(1)
t , t0 ≤ t ≤ t0

}
.

To prove the second part of the theorem we note that (7.7) holds under alternatives.
It is easy to see that

E
(
N−1/2

N∑

i=1

ζiΦi,t

)2
= O(1).

The proof is complete. �
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