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Abstract: Diabetes affects the developing enamel by altering the mineralization process, which
can have a detrimental effect on oral health. The objectives of this study were to examine the
ultrastructure and composition of surface enamel in primary teeth of diabetic children and its clinical
implications. Hundred extracted primary teeth from diabetic children (Test group: n = 50) and
healthy children (Control group: n = 50), between 6 and 12 years of age, were subjected to scanning
electron microscopy to qualitatively examine the enamel surface. Energy dispersive X-ray (EDX)
analysis was performed to investigate the mass percentage of calcium (Ca) and phosphorous (P) in
the surface enamel. Ultrastructural aberrations of surface enamel were observed in the test group
teeth. Additionally, prism perforations were seen at the junction of rod and inter-rod enamel and the
prisms were loosely packed. An even aprismatic layer of surface enamel was evident in the control
group teeth. There was a statistically significant difference (p < 0.05) of Ca and P mass percentage
between the test and control group teeth. The mean mass percentage rates of Ca and P were 33.75%
and 16.76%, respectively. A poor surface characteristic and elemental composition of the enamel
surface of primary teeth is observed in diabetic children. Therefore, appropriate caries preventive
measures are mandatory to maintain the structural integrity of the tooth in these patients.

Keywords: calcium; phosphorous; diabetes mellitus; dental enamel; type 1; child health; tooth;
deciduous; dental caries susceptibility

1. Introduction

Type 1 Diabetes (T1D) is a common chronic disorder, caused due to the destruction
of insulin-producing pancreatic beta cells. The destruction of beta cells is attributed to
autoimmune-mediated pathology affecting the production of insulin necessary for glucose
metabolism. Juvenile diabetes (JD) is a type of T1D occurring in children before the age of
15 years, which accounts for five to ten percent of all diabetes cases worldwide [1,2]. Studies
have reported moderate to severe consequences of JD in growing children, including those
on skeletal maturation, oral and dental health [3,4]. In the oral cavity, diabetes is found to
alter the flow rate and buffering capacity of saliva, along with an increase in the salivary
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glucose level leading to a higher count of Lactobacillus in the planktonic as well as biofilm
form [5]. The rate at which caries progresses in diabetic patients is shown to be faster
than normal and the defense mechanism of pulp is weaker, culminating in early tooth
destruction [6].

In experimental animals, T1D is known to affect the mineralization process and alter
the morphological features of enamel, thereby increasing its susceptibility to caries [7]. The
detrimental influence of diabetes on amelogenesis leads to deficiencies in the elemental
composition, ultrastructure, morphological and mechanical features of mature enamel [8].
A number of morphological changes have been reported in T1D patients, among them,
tuberculum interlude and tuberculum sextum are the most common [9]. Several studies
utilizing macroscopic and microscopic observations have so far been able to demonstrate
the effects of diabetes on developing dental hard tissues [10–12]. The frequently encoun-
tered enamel defects include modified ultrastructure, whitish fields, degenerative lesions
and hypoplastic enamel [13–15]. Moreover, diabetes-induced disequilibrium between dem-
ineralization and remineralization of enamel in the presence of altered ecology of the oral
cavity results in a significant increase in caries risk [15,16].

Energy Dispersive X-ray (EDX) analysis of enamel of diabetes-induced rats has shown
a reduction in the concentration of calcium (Ca) and phosphorous (P) [7,17]. Low levels
of Ca in presence of hyperglycemia are attributed to a decrease in the ameloblast activity
during amelogenesis [11]. An alternate hypothesis for the compositional and structural
changes in diabetic enamel is due to the disturbance in ion exchange in cellular metabolism
associated with diabetes [18].

The effect of diabetes on enamel ultrastructure, to date, has been tested only on rodents.
None of the previous studies have examined the ultrastructure and composition of enamel
in human primary teeth of diabetic children. Therefore, the objectives of this study were to
analyze the structural properties of surface enamel in primary teeth of diabetic children.
The study also aimed to assess any changes in the elemental composition in the same
teeth. The clinical significance of the ultrastructural and compositional changes and the
preventive measures to reduce caries risk in these patients were also explored.

2. Materials and Methods
2.1. Sample Collection

This prospective study was carried out over a period of 19 months between 2018 and
2020 in the Aseer Dental Center and Pediatric Dental Clinics of King Khalid University
College of Dentistry. Before commencing the study, ethical approval was obtained from
the King Khalid University College of Dentistry Institutional Review Board with approval
letter number SRC/ETH/2016-17/049. Informed consent from the parents was obtained
for each child included in the study.

The study subjects were screened on the basis of the American Academy of Pediatric
Dentistry Caries Risk Assessment Tool to make sure the biological, social, protective and
clinical factors were similar for both the test and control groups [19]. In total, 50 extracted
primary teeth from children diagnosed with diabetes aged 6–12 years were included in
the test group. The extraction protocol of the test group was based on the guidelines for
the management of children and adolescents with diabetes requiring surgery [20]. Since
the study required normal crown anatomy, we excluded carious, restored, structurally
defective teeth, and teeth from children suffering from other systemic diseases.

Simultaneously, 50 primary teeth of healthy children matching the age of the test
group and fulfilling the inclusion criteria were used as the control group. The reason for
tooth extraction in the study samples was either pre-shedding mobility or retaining the
primary tooth.
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2.2. Sample Preparation and SEM–EDX Analysis

After extraction, the teeth were disinfected with formalin, coded, and stored in normal
saline at room temperature during the collection period. Prior to SEM imaging, the teeth
were washed with fresh normal saline solution and pat-dried with sterile cotton gauze.

The crown surface was subjected to SEM analysis using a JEOL JSM-636OLA Analytic
Scanning Electron Microscope (JEOL, Tokyo, Japan) with backscatter electron mode. The
SEM was operated at a voltage between 15 and 25kV. The scanning site was standardized
for all of the teeth samples by focusing on the mid-labial/buccal aspect of the crown. The
enamel was visualized under the microscope, and the images were saved in jpg file format.
Ultrastructural characterization of enamel prisms and crystal deposition pattern of the
enamel surface was determined by detailed visual examination of the images in Windows
Microsoft Office Picture Manager Software (Microsoft Inc., 2016, Redmond, WA, USA).

Following SEM imaging, enamel surface composition analysis was performed in the
same areas of the crown using EDX Spectrometry. The same SEM unit (JEOL JSM-636OLA
Analytic Scanning Electron Microscope) was used to record the mass percentage rates
of Ca and P. The mean mass percentage rates of Ca and P in the test and control groups
were statistically analyzed by independent t-test using STATA Version 9.2. The statistical
significance was set at 5%. The clinical significance of the study findings was interpreted
based on the outcomes of previous reports on altered enamel in primary teeth.

3. Results
3.1. SEM Analysis

Ultrastructural aberrations were observed in the SEM images of the enamel surface
of teeth in the test group. An uneven aprismatic layer (Figure 1A,C) with numerous
perforations and deep craze line-like depressions (Figure 2A–D) along the surface were the
common aberrations observed. The enamel surface in the test group was composed of a
false-type aprismatic enamel. At higher magnification, loosely packed enamel rods with
perforations at the junction of rod and inter-rod enamel were evident (Figure 3). Compared
with the abnormalities observed in the test group teeth, the enamel surface of control group
teeth demonstrated an even aprismatic layer. With higher magnification, normal rod and
inter-rod enamel structures were visible below the aprismatic layer (Figure 1B,D,E).
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Figure 1. (A) SEM image of the labial surface of primary tooth showing irregular enamel in a diabetic
patient; (B) SEM image of the labial surface of primary tooth showing enamel surface with normal
ultrastructure in a healthy child; (C) SEM image of the labial surface of primary tooth showing
aprismatic enamel in a diabetic patient; (D) SEM image of the labial surface of primary tooth showing
enamel surface with a normal aprismatic layer in a healthy child; (E) SEM image of the labial surface
of primary tooth showing enamel surface with a normal rod and inter-rod structure visible beneath
the aprismatic layer in a healthy child.

3.2. EDX Analysis

EDX analysis demonstrated changes in the mass percentage of Ca and P in the test
group compared to the control group. The mass percentage values in both groups followed
a normal distribution; therefore, a parametric independent t-test was applied. There was a
statistically significant difference (p < 0.05) in the mass percentage of Ca and P between
test and control groups (Table 1). A decrease in the mean mass percentage of Ca and P was
observed in the test group when compared with the control group (Figures 4 and 5).
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Table 1. Comparison of mean mass percentage of Ca and P between test and control groups.

Groups n Mean SD SE t-Value p-Value

Ca
Test group 50 33.57 4.56 0.65

−2.4232 0.0172 *
Control group 50 35.84 4.83 0.68

P
Test group 50 16.76 1.55 0.22

−4.4569 0.0001 *
Control group 50 17.94 1.05 0.15

* p < 0.05.
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Figure 2. (A) SEM image of the labial surface of primary tooth showing normal enamel surface with
perforations and craze line-like depressions in a diabetic patient; (B) SEM image of the labial surface
of primary tooth showing enamel surface with perforations in a diabetic patient; (C) SEM image of
the labial surface of primary tooth showing enamel surface with perforations and deep craze line-like
depressions in a diabetic patient; (D) SEM image of the labial surface of primary tooth showing
enamel surface with numerous perforations.
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4. Discussion

In the present study, changes in ultrastructure and composition of enamel were ob-
served using backscattered SEM and EDX spectroscopy. SEM is a powerful magnification
tool with several advantages for analyzing the ultrastructure and elemental composition
of dental hard tissues. It provides quick and detailed morphological and compositional
data with minimal sample preparation. It allows the examination of surface morphology
at the nanometer level leading to high-resolution digital images. The EDX spectroscopy
attachment along with the backscattered SEM serves as a useful combination in examining
elemental composition at the micron level.

The SEM results of this study confirm the presence of ultrastructural changes in the
surface enamel of primary teeth of diabetic children. The most common defect observed
in the test group SEM images were loosely packed prisms on the surface of the enamel.
Enamel is loosely packed primarily due to the lack of enough mineral content and alteration
in the morphology and structural pattern of hydroxyapatite (HAP) crystals. Similar changes
are reported in the experimental research on Wistar rats with artificially induced diabetes,
where the changes in enamel and its mechanical features are comparable [15,17]. Metabolic
disturbances during the pre-natal and post-natal periods are known to leave an impression
on the developing hard tissues of teeth. The neonatal line is a good example of such an effect
on the structure of both enamel and dentin [21]. JD manifests in children approximately
around the same time when amelogenesis of primary teeth (14–18th week of gestation) and
permanent teeth (28–32nd week of gestation) begins [22].

While amelogenesis taking place under the influence of JD is a significant event,
several other factors collectively may lead to defects in the enamel. For example, the lack
of proper proteinases activity can affect amelogenesis and lead to loosely packed prisms
in mature enamel. The development of enamel begins with high protein content and
ends in high mineral content [23], with most of the protein being replaced by minerals
through proteinases activity [24]. The proper establishment of HAP crystals in the rod and
inter-rod enamel is an intricate and complex process dependent on the precise expression
of the relevant proteinases. Brings et al. [25] reported a change in matrix metalloproteinase
(MMPs) in experimental diabetic rats associated with altered collagen metabolism. MMPs
are proteinases, capable of degrading all kinds of extracellular matrix proteins [26]. Matrix
metalloproteinases-20 (MMP-20) are the proteinases expressed during the secretory stage
and early maturation stage of amelogenesis, wherein they cleave the enamel matrix proteins
resulting in a mold which establishes the size and shape of the developing HAP crystal.
Once the HAP crystals grow to their full size and amelogenesis advances to the maturation
stage, another proteinase, kallikrein-related peptidase-4 (KLK4), cleaves the mold allowing
the maturing enamel to interlock and form a highly mineralized interconnected crystal
structure [24]. Perturbations in this genetically programmed sequence of events, caused
by hyperglycemia and oxidative stress, may theoretically result in altered ultrastructure of
mature enamel as seen in SEM images of our test samples.

The other common ultrastructural defect observed in the SEM images of diabetic
primary teeth was an uneven aprismatic layer with surface perforations. The normal
surface of enamel exhibits an even, highly mineralized aprismatic or prismless layer formed
by the shortened ameloblast in the late secretory stage of amelogenesis, as evident from the
control samples. Kodaka et al. [27] categorized aprismatic enamel into false type, moderate
type, essential type, and complex type aprismatic enamel. While all the types, except the
false type, are considered aprismatic enamel, the type observed in the test samples was the
false type. This is so because the surface was either completely devoid of aprismatic enamel
or sparse islands of aprismatic enamel were seen. The numerous surface perforations we
observed in the test group images are likely due to the disturbed ameloblast activity leaving
indentations negative to the shape of the tomes process of the ameloblast cell during a
secretory stage.

In our study, the mass percentage of Ca and P in the test group teeth were significantly
lower than the control group teeth. According to experimental data, the disturbance
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in homeostasis in diabetes causes dyselectrolytemia and transmineralization leading to
changes in the mineral components of bone and teeth [28]. During amelogenesis, this is
manifested as disruption of the transport of ions such as Ca and P between ameloblasts and
its secreted extracellular matrix. Ca and P are the two main inorganic components of HAP
crystals, which together with other similar minerals make up 96% (by weight) of mature
enamel [29]. The EDX findings of our study validate the above concept. Moreover, the
average concentration of Ca and P in the control group teeth is comparable to the findings
of Armstrong W and Brekhus PJ [30].

In short, we report defects in the enamel surface of primary teeth in diabetic children,
akin to the defects reported by several studies on diabetes-induced experimental rats.
Abnormal ameloblast activity appears to be the prime reason for the changes observed
in the enamel surface. The following two hypotheses may be indicative of the changes
brought about by the ameloblasts.

1. The effect of hyperglycemia on the mineralization leads to a low concentration of Ca
and P in the mature enamel. Decreased levels of Ca and P could be a direct reason for
the enamel defects. The work of Atar et al. [31] supports this hypothesis of ours.

2. In addition to the impact on elemental composition, the influence of oxidative stress on
the expression of MMP-20 and KLK4 during the secretory stage can lead to impaired
development of HAP crystals in the rod and inter-rod enamel. The exact effect of
diabetes on MMP-20 and KLK4 is still unreported, however, our assumption in this
regard is based on the literature published by Bartlett JD [24].

Dental Caries is the most significant threat that can be caused due to defects observed
in the surface enamel of diabetic children. Defective surface increases the risk of acid
dissolution of surface enamel, leading to caries. Special caries prevention protocol seems
mandatory to maintain caries-free teeth in the already compromised oral condition of
diabetic children. By special prevention protocol, we mean steps that are specific to high
caries risk children, such as the use of topical remineralizing agents including fluorides,
and active measures by parents and oral health professionals aimed at maintaining the
non-cariogenic oral environment and monitoring possible caries development.

Considering the results of this study alongside the data available regarding the enamel
of T1D teeth we recommend the following measures to reduce the risk of caries in diabetic
children.

• Primary teeth of diabetic children should be screened for macroscopic deficiencies as
soon as they erupt.

• Diabetic children should be considered high caries risk children and they should be
clinically monitored every three months.

• Primary and secondary prevention protocols specific to the teeth of diabetic children
should be developed and implemented to curtail the initiation of dental caries.

• The parents of diabetic children should be made aware of the increased risk of dental
caries and its consequences at an early stage.

• The parents should be educated to ensure these children maintain good oral hygiene
and a healthy non-cariogenic diet.

• Finally, parents should be counseled to help maintain healthy blood glycemic levels to
prevent the undesired oral and systemic consequences of diabetes.

5. Conclusions

Poor ultrastructural surface characteristics of enamel surface are observed in primary
teeth of diabetic children. Abnormal amelogenesis activity in primary teeth of diabetic
children seems to be the cause of these defects in the enamel surface. The defects make the
enamel more prone to acid dissolution, thus increasing caries risk. Therefore, appropriate
caries preventive measures are mandatory to maintain the structural integrity of enamel in
these patients.
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