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Structural Characterizations of 
Sound Workflow Nets 
W.M.P. van der Aalst 
Department 0/ Mathematics and Computing Science, Eindhoven University o/Technology, 
PO. Box 513, NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 402474295, 
e-mail: wsinwa@win.tue.nl 

Workflow management systems facilitate the everyday operation of business processes by taking 
care of the logistic control of work. In contrast to traditional information systems, they attempt 
to support frequent changes of the workflows at hand. Therefore, the need for analysis methods to 
verify the correctness of workflows is becoming more prominent. In this paper we present a method 
based on Petri nets. This analysis method exploits the structure of the Petri net to find potential 
errors in the design of the workflow. Moreover, the analysis method allows for the compositional 
verification of workflows. 

Keywords: Petri nets; free-choice Petri nets; workflow management systems; analysis of work
flows; business process reengineering; analySiS of Petri nets; compositional analysis. 

1 Introduction 

Workflow management systems (WFMS) are used for the modeling, analysis, enacttnent, 
and coordination of structured business processes by groups of people. Business processes 
supported by a WFMS are case-driven, i.e., tasks are executed for specific cases. Ap
proving loans, processing insurance claims, billing, processing tax declarations, handling 
traffic violations and mortgaging, are typical case-driven processes which are often sup
ported by a WFMS. These case-driven processes, also called workfiows, are marked by 
three dimensions: (I) the process dimension, (2) the resource dimension, and (3) the case 
dimension (see Figure I). The process dimension is concerned with the partial ordering 
of tasks. The tasks which need to be executed are identified and the routing of cases along 
these tasks is determined. Conditional, sequential, parallel and iterative routing are typ
ical structures specified in the process dimension. Tasks are executed by resources. Re
source are human (e.g. employee) and/or non-human (e.g. device, software, hardware). 
In the resource dimension these resources are classified by identifying roles (resources 
classes based on functional characteristics) and organizational units (groups, teams or de
partments). Both the process dimension and the resource dimension are generic, i.e., they 
are not tailored towards a specific case. The third dimension of a workflow is concerned 
with individual cases which are executed according to the process definition (first dimen
sion) by the proper resources (second dimension). 

Managing workflows is not a new idea. Workflow control techniques have existed for 
decades and many management concepts originating from production and logistics are also 
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Figure 1: The three dimensions of workflow. 

applicable in a workflow context. However, just recently, commercially available generic 
WFMS's have become a reality. Although these systems have been applied successfully, 
contemporary WFMS's have at least two important drawbacks. First of all, today's sys
tems do not scale well, have limited fault tolerance and are inflexible in terms of interop
erating with other systems. Secondly, a solid theoretical foundation is missing. Most of 
the more than 250 commercially available WFMS's use a vendor-specific ad-hoc modeling 
technique to design workflows. In spite ofthe efforts of the Workflow Management Coali
tion ([20]) real standards are missing. The absence of formalized standards hinders the de
velopment of tool-independent analysis techniques. As a result, contemporary WFMS's 
do not facilitate advanced analysis methods to determine the correctness of a workflow. 

As many researchers have indicated ([9, 14, 21]), Petri nets constitute a good starting point 
for a solid theoretical foundation for workflow management. In this paper we focus on the 
process dimension. We use Petri nets to specify the partial ordering of tasks. Based on a 
Petri-net-based representation of the workflow process, we tackle the problem of verifica
tion. We will provide techniques to verify the so-called soundness property. A workflow 
process is sound if, for any case, the process terminates properly, i.e., termination is guar
anteed, there are no dangling references, and deadlock and Iivelock are absent. We will 
show that in general this dynamic property can be checked in polynomial time. Moreover, 
we identify suspicious constructs which may endanger the correctness of a workflow pro
cess. Finally, we show that the approach presented in this paper allows for the composi
tional verification of workflow processes, i.e., the correctness of a process can be decided 
by partitioning it into sound subprocesses. 
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2 Petri nets 

This section introduces the basic Petri net terminology and notations. Readers familiar 
with Petri nets can skip this section. I 

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([17]). 
Since then the use and study of Petri nets has increased considerably. For a review of the 
history of Petri nets and an extensive bibliography the reader is referred to Murata [15]. 

The classical Petri net is a directed bipartite graph with two node types called places and 
transitions. The nodes are connected via directed arcs. Connections between two nodes 
of the same type are not allowed. Places are represented by circles and transitions by rect
angles. 

Definition 1 (Petri net) A Petri net is a triple (P, T, F): 

P is a finite set oj places, 

T is a finite set oj transitions (P n T = 0), 

F c::: (P x T) U (T x P) is a set oj arcs (flow relation) 

A place p is called an input place of a transition t iff there exists a directed arc from p to 
t. Place p is called an output place of transition t iff there exists a directed arc from t to p. 
We use et to denote the set of input places for a transition t. The notations te, e p and pe 

have similar meanings, e.g. pe is the set of transitions sharing p as an input place. Note 
that we restrict ourselves to arcs with weight I. In the context of workflow procedures it 
makes no sense to have other weights, because places correspond to conditions. 

At any time a place contains zero of more tokens, drawn as black dots. The state, often 
referred to as marking, is the distribution of tokens over places, i.e., M E P ---+ N. We 
will represent a state as follows: Ipi + 2P2 + Ip3 +OP4 is the state with one token in place 
PI, two tokens in P2, one token in P3 and no tokens in P4. We can also represent this state 
as follows: Pl + 2P2 + P3. To compare states we define a partial ordering. For any two 
states MI andM2,MI :S M2 iffforallp E P: MI(p):s M2(p) 

The number of tokens may change during the execution of the net. Transitions are the 
active components in a Petri net: they change the state of the net according to the following 
firing rule: 

(l) A transition t is said to be enabled iff each input place p of t contains at least one 
token. 

(2) An enabled transition may fire. If transition t fires, then t consumes one token from 
each input place p of t and produces one token for each output place p of t. 

1 Note that states are represented by weighted sums and note the definition of (elementary) (conflict-free) 
paths. 
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Given a Petri net (P, T, F) and a state M" we have the following notations: 

- M, -'+ Mz: transition t is enabled in state M, and firing t in M, results in state Mz 

M, ---;. Mz: there is a transition t such that M, -'+ Mz 

- M, ~ Mn: the firing sequence (I = t,tzt3 ... tn_, leads from state M, to state M,,, 
, t\ 12 tn-l 
I.e., M, ---;. Mz ---;. ... ---;. Mn 

A state Mn is called reachable from M, (notation M, ~ Mn) iff there is a firing sequence 

h 'I M '2 '"_I M th h fi . 
(I = t,tz ... tn-, such t at M, ---;. z ---;. ... ---;. n. Note at t e empty nng sequence 
is also allowed, i.e., M, ~ M,. 

We use (P N, M) to denote a Petri net P N with an initial state M. A state M' is a reachable 
state of (PN, M) iff M ~ M'. Let us define some properties for Petri nets. 

Definition 2 (Live) A Petri net (PN, M) is live iff,for every reachable state M' and every 
transition t there is a state M" reachable from M' which enables t. 

Definition 3 (Bounded, safe) A Petri net (PN, M) is bounded iff, for every reachable state 
and every place p the number of tokens in p is bounded. The net is safe ifffor each place 
the maximum number of tokens does not exceed 1. 

Definition 4 (Well.formed) A Petri net PN is well-formed iff there is a state M such that 
(P N, M) is live and bounded. 

Paths connect nodes by a sequence of arcs. 

Definition 5 (Path, Elementary, Conflict.free) Let PN be a Petri net. A path C from a 
node n, to a node nk is a sequence (n" nz, ... ,nk) such that (ni' ni+') E F for I :s i :s 
k - l. C is elementary iff, for any two nodes ni and n j on C, i oF j => ni oF n j. C is 
conflict-free iff, for any transition n, on C, j oF i-I => n j rt en,. 

For convenience, we introduce the alphabet operator 0' on paths. If C = (n" nz, ... ,nk), 
then O'(C) = tn"~ nz, ... ,nd. 

Definition 6 (Strongly connected) A Petri net is strongly connected iff, for every pair of 
nodes (i.e. places and transitions) x and y, there is a path leading from x to y. 

3 WF·nets 

In Figure 1 we indicated that a workflow has (at least) three dimensions. The process di
mension is the most prominent one, because the core of any workflow system is formed 
by the processes it supports. In the process dimension building blocks such as the AND
split, AND-join, OR-split and OR-join are used to model sequential, conditional, parallel 
and iterative routing (WFMC [20]). Clearly, a Petri net can be used to specify the routing 
of cases. Tasks are modeled by transitions and causal dependencies are modeled by places. 
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In fact, a place corresponds to a condition which can be used as pre- and/or post-conditions 
for tasks. An AND-split corresponds to a transition with two or more output places, and 
an AND-join corresponds to a transition with two or more input places. OR-splits/OR
joins correspond to places with multiple outgoing/ingoing arcs. Moreover, in [2, 3] it is 
shown that the Petri net approach also allows for useful routing constructs absent in many 
WFMS's. 
A Petri net which models the process dimension of a workflow, is called a WorkFlow net 
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single case 
in isolation. 

Definition 7 (WF-net) A Petri net PN 
only if: 

(P, T, F) is a WF-net (Workflow net) if and 

(0 PN has two "pecial places: i and o. Place i is a source place: .i = 0. Place 0 is 
a sink place: o. = 0. 

(ii) If we add a transition t* to PN which connects place 0 with i (i.e .• t* 
t*. = Ii}), then the resulting Petri net is strongly connected. 

(oj and 

A WF-net has one input place (i) and one output place (0) because any case handled by the 
procedure represented by the WF-net is created if it enters the WFMS and is deleted once 
it is completely handled by the WFMS, i.e., the WF-net specifies the life-cycle of a case. 
The second requirement in Definition 7 (the Petri net extended with t* should be strongly 
connected) states that for each transition t (place p) there should be a path from place i to 
o via t (p). This requirement has been added to avoid 'dangling tasks and/or conditions', 
i.e., tasks and conditions which do not contribute to the processing of cases. 

Figure 2 shows a WF-net which models the processing of complaints. First the complaint 
is registered (task register), then in parallel a questionnaire is sent to the complainant (task 
send..questionnaire) and the complaint is evaluated (task evaluate). If the complainant re
turns the questionnaire within two weeks, the task process..questionnaire is executed. If 
the questionnaire is not returned within two weeks, the result of the questionnaire is dis
carded (task time..out). Based on the result of the evaluation, the complaint is processed or 
not. The actual processing of the complaint (task process-complaint) is delayed until con
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The 
processing of the complaint is checked via task check.processing. Finally, task archive is 
executed. Note that sequential, conditional, parallel and iterative routing are present in this 
example. 

The WF-net shown in Figure 2 clearly illustrates that we focus on the process dimension. 
We abstract from resources, applications and technical platforms. Moreover, we also ab
stract from case variables and triggers. Case variables are used to resolve choices (OR
split), i.e., the choice between processingJequired and no.processing is (partially) based 
on case variables set during the execution of task evaluate. The choice between process
ing _OK and processing .NOK is resolved by testing case variables set by check_processing. 
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Figure 2: A WF-net for the processing of complaints. 

In the WF-net we abstract from case variables by introducing non-deterministic choices in 
the Petri-net. If we don't abstract from this information, we would have to model the (un
known) behavior of the applications used in each of the tasks and analysis would become 
intractable. In Figure 2 we have indicated that time..out and process..questionnaire require 
triggers. The clock symbol denotes a time trigger and the envelope symbol denotes an 
external trigger. Task timLout requires a time trigger ('two weeks have passed') and pro
cess_questionnaire requires a message trigger ('the questionnaire has been returned'). A 
trigger can be seen as an additional condition which needs to be satisfied. In the remainder 
of this paper we abstract from these trigger conditions. We assume that the environment 
behaves fairly, i.e., the liveness of a transition is not hindered by the continuous absence 
of a specific trigger. As a result, every trigger condition will be satisfied eventually (if 
needed). 

4 Soundness 

The two requirements stated in Definition 7 can be verified statically, i.e., they only relate 
to the structure of the Petri net. However, there is a third requirement which should be 
satisfied: 

For any case, the procedure will terminate eventually and the moment the pro
cedure terminates there is a token in place 0 and all the other places are empty. 

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi
trary task by following the appropriate route though the WF-net. These two additional 
constraints correspond to the so-called soundness property. 
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Definition 8 (Sound) A procedure nwdeled by a WF-net PN = (P, T, F) is sound ifand 
only if 

(i) For every state M reachable from state i, there exists afiring sequence leading from 
state M to state o. Formally:2 

'1M (i --*>. M) => (M --*>. 0) 

(ii) State 0 is the only state reachable from state i with at least one token in place o. 
Formally: 

(iii) There are no dead transitions in (PN, i). Formally: 

VtET 3M,M' i --*>. M -'+ M' 

Note that the soundness property relates to the dynamics of a WF-net. The first require
ment in Definition 8 states that starting from the initial state (state I), it is always possible 
to reach the state with one token in place 0 (state 0). If we assume fairness (i.e. a transition 
that is enabled infinitely often will fire eventually), then the first requirement implies that 
eventually state 0 will be reached. The fairness assumption is reasonable in the context 
of workflow management; all choices are made (implicitly en explicitly) by applications, 
humans or external actors. Clearly, they should not introduce an infinite loop. The second 
requirement states that the moment a token is put in place 0, all the other places should be 
empty. Sometimes the term proper termination is used to describe the first two require
ments [12]. The last requirement states that there are no dead transitions (tasks) in the 
initial state i. 

Q) 

c3 processing_NOK 

register " 

processin~OK 

Figure 3: Another WF-net for the processing of complaints. 

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If timeJJuLI 

2Note that there is an overloading of notation: the symbol i is used to denote both the place i and the stale 
with only one token in place i (see Section 2). 
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and processing2 fire or time_out2 and processing~ fire, the WF-net will not terminate 
properly because a token gets stuck in c4 or c5. If time.1JuLl and time-out2 fire, then the 
task processing .NOK will be executed twice and because of the presence of two tokens in 
o the moment of termination is not clear. 

5 A necessary and sufficient condition for soundness 

Given WF-net PN = (P, T, F), we wantto decide wbether PN is sound. Forthis purpose 
we define an extended net PN = (P, T, F). PN is the Petri net that we obtain by adding 
an extra transition t* which connects 0 and i. The extended Petri net PN = (P, T, F) is 
defined as follows: 

P=P 

T = T U {t*} 

F = F U {(o, t*), (t*, i)} 

Figure 4 illustrates the relation between PN and PN. 

Figure 4: PN = (P, T U {t*}, F U {(o, t*), (t*, i))). 

For an arbitrary WF-net PN and the corresponding extended Petri net PN we will prove 
the following result: 

PN is sound if and only if(PN, i) is live and bounded. 

First, we prove tbe 'if' direction. 

Lemma 1 If (PN, i) is live and bounded, then PN is a sound WF-net. 

Proof. 
(PN, i) is live, i.e., for every reachable state M there is a firing sequence which leads to 
a state in which t* is enabled. Since 0 is the input place of t*, we find that for any state 
M reachable from state i it is possible to reach a state with at least one token in place 0, 

i.e., requirement (i) holds. Consider an arbitrary reachable state M' + 0, i.e., a state with 
at least one token in place o. In this state t* is enabled. If t* fires, then the state M' + i is 
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reached. Since (PN, i) is also bounded, M' + i :::: i implies M' + i = i, i.e., M' should 
be equal to the empty state. Hence requirement (ii) also holds and proper termination is 
guaranteed. Requirement (iii) follows directly from the fact that (PN, i) is live. Hence, 
PN is a sound WF-net. 0 

To prove the 'only if' direction, we first show that the extended net is bounded. 

Lemma 2 If PN is sound, then (PN, i) is bounded. 

Proof. 
Assume that PN is sound and (PN, i) not bounded. Since PN is not bounded there are 
two states M; and Mj such that i ..*0. M;, M; ..*0. M j and M j > M;. (See for example the 
proof that the coverability tree is finite in Peterson [l6] (Theorem 4.1).) However, since 
P N is sound we know that there is a firing sequence a such that Mi -'+ o. Therefore, 
there is a state M such that M j -'+ M and M > o. Hence, it is not possible that PN is 
both sound and not bounded. So if PN is sound, then (PN, i) is bounded. _ 
From the fact that PN is sound and (PN, i) is bounded, we can deduce that (PN, i) is 
bounded. If transition t* in P N fires, the net returns to the initial state i. 0 

Now we can prove that (PN, i) is live. 

Lemma 3 If PN is sound, then (PN, i) is live. 

Proof. 
Assume PN is sound. By Lemma 2 we know that (PN, i) is bounded. Because PN is 
sound we know that state i is a so-called home-marking of P N. So for every state M' 
reachable from (PN, i) it is possible to return to state i. In the original net (PN, i), it 
is possible to fire an arbitrary transition t (requirement (iii)). This is also the case in the 
modified net. Therefore, (PN, i) is live because for every state M' reachable from (PN, i) 
it is possible to reach a state which enables an arbitrary transition t. 0 

Theorem 1 A WF-net PN is sound ifand only if (PN, i) is live and bounded. 

Proof. 
It follows directly from Lemma 1, 2 and 3. o 

We can use standard Petri-net-based analysis tools to verify that the WF-net shown in Fig
ure 2 is live and bounded. Therefore, the workflow process specified by this WF-net is 
guaranteed to behave properly (cf. Definition 8). Theorem 1 is an extension of the results 
presented in [1, 19]. In [l] we restrict ourselves to free-choice WF-nets. Independently, 
Straub and Hurtado [19] found necessary and sufficient conditions for soundness of COP A 
nets. (COPA nets correspond to a subclass offree-choice Petri nets.) 

Perhaps surprisingly, the verification of the soundness property boils down to checking 
whether the extended Petri net is live and bounded! This means that we can use standard 
Petri-net-based analysis tools to decide soundness. 
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6 Structural characterization of soundness 

Theorem 1 gives a useful characterization of the quality of a workflow process definition. 
However, there are a number of problems: 

e For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng, 
Esparza and Pals berg [6].) 

e Soundness is a minimal requirement. Readability and maintainability issues are not 
addressed by Theorem 1. 

e Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does 
not identify constructs which invalidate the soundness property. 

These problems stem from the fact that the definition of soundness relates to the dynamics 
of a WF-net while the workflow designer is concerned with the static structure of the WF
net. Therefore, it is interesting to investigate structural characterizations of sound WF
nets. For this purpose we introduce two interesting subclasses of WF-nets: free-choice 
WF-nets and well-structured WF-nets. 

6.1 Free-choice WF-nets 

Most of the WFMS's available at the moment, abstract from states between tasks, i.e., 
states are not represented explicitly. These WFMS's use building blocks such as the AND
split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-split 
and the AND-join are used for parallel routing. The OR-split and the OR-join are used 
for conditional routing. Because these systems abstract from states, every choice is made 
inside an OR-split building block. If we model an OR-split in terms of a Petri net, the 
OR-split corresponds to a number of transitions sharing the same set of input places. This 
means that for these WFMS's, a workflow procedure corresponds to afree-choice Petri 
net. 

Definition 9 (Free-choice) A Petri net is a free-choice Petri net iff, for every two transi
tions t1 and t2, et1 n et2 i= 0 implies et1 = et2. 

It is easy to see that a process definition composed out of AND-splits, AND-joins, OR
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place (et1 n 
e(2 i= 0), then they are part of an OR-split, i.e., a 'free choice' between a number of alter
natives. Therefore, the sets of input places of t1 and t2 should match (et1 = et2). Figure 3 
shows a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice; archive 
and process-complaint share an input place but the two corresponding input sets differ. 

We have evaluated many WFMS's and just one of these systems (COSA [18]) allows for 
a construction which is comparable to a non-free choice WF-net. Therefore, it makes sense 
to consider free-choice Petri nets. Clearly, parallelism, sequential routing, conditional rout
ing and iteration can be modeled without violating the free-choice property. Another rea
son for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free
choice Petri nets, then the choice between conflicting tasks may be influenced by the order 
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in which the preceding tasks are executed. The routing of a case should be independent of 
the order in which tasks are executed. A situation where the free-choice property is vio
lated is often a mixture of parallelism and choice. Figure 5 shows such a situation. Firing 
transition tl introduces parallelism. Although there is no real choice between t2 and t5 
(t5 is not enabled), the parallel execution of t2 and t3 results in a situation where t5 is not 
allowed to occur. However, if the execution of t2 is delayed until t3 has been executed, 
then there is a real choice between t2 and t5. In our opinion parallelism itself should be 
separated from the choice between two or more alternatives. Therefore, we consider the 
non-free-choice construct shown in Figure 5 to be improper. In literature, the term confu
sion is often used to refer to the situation shown in Figure 5. 

Figure 5: A non-free-choice WF-net containing a mixture of parallelism and choice. 

Free-choice Petri nets have been studied extensively (cf. Best [5], Desel and Esparza [8, 
7,10], Hack [13]) because they seem to be a good compromise between expressive power 
and analyzability. It is a class of Petri nets for which strong theoretical results and efficient 
analysis techniques exist. For example, the well-known Rank Theorem (Desel and Esparza 
[8]) allows us to formulate the following corollary. 

Corollary 1 The following problem can be solved in polynomial time. 
Given a free-choice WF-net, to decide if it is sound. 

Proof. 
Let PN be a free-choice WF-net. The extended net PN is also free-choice. Therefore, 
the problem of deciding whether (P N, i) is live and bounded can be solved in polynomial 
time (Rank Theorem [8]). By Theorem 1, this corresponds to soundness. 0 

Corollary I shows that, for free-choice' nets, there are efficient algorithms to decide sound
ness. Moreover, a sound free-choice WF-net is guaranteed to be safe. 

Lemma 4 A soundfree-choice WF-net is safe. 

Proof. 
Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with a transition 
connecting a and i. P N is free-choice and well-formed. Hence, P N is covered by state
machines (S-components). Each place is part of such a state-machine component. Clearly, 
i and a are nodes of any state-machine component. Hence, for each place p there is a 
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semi-positive invariant with weights 0 or 1 which assigns a positive weight to p, i and o. 
Therefore, PN is safe and so is PN. D 

Safeness is a desirable property, because it makes no sense to have multiple tokens in a 
place representing a condition. A condition is either true (1 token) or false (no tokens). 

Although most WFMS's only allow for free-choice workflows, free-choice WF-nets are 
not a completely satisfactory structural characterization of 'good' workflows. On the one 
hand, there are non-free-choice WF-nets which correspond to sensible workflows (cf. Fig
ure 2). On the other hand there are sound free-choice WF-nets which make no sense. Nev
ertheless, the free-choice property is a desirable property. If a workflow can be modeled as 
a free-choice WF-net, one should do so. A workflow specification based on a free-choice 
WF-net can be enacted by most workflow systems. Moreover, a free-choice WF-net al
lows for efficient analysis techniques and is more easy to understand. Non-free-choice 
constructs such as the construct shown in Figure 5 are a potential source of anomalous 
behavior (e.g. deadlock) which is difficult to trace. 

6.2 Well-structured WF-nets 

Another approach to obtain a structural characterization of 'good' workflows, is to balance 
AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split, 
should not be joined by an OR-join. Two alternative flows created via an OR-split, should 
not be synchronized by an AND-join. As shown in Figure 6, an AND-split should be com
plemented by an AND-join and an OR-split should be complemented by an OR-join. 

-------- --------

0: 
AND-'plil ------- AND-join 

------- --------

OR-sp/il -------- OR-join 

Figure 6: Good and bad constructions. 

One of the deficiencies of the WF-net shown in Figure 3 is the fact that the AND-split 
register is complemented by the OR-join c3 or the OR-join o. To formalize the concept 
illustrated in Figure 6 we give the following definition. 

Definition 10 (Well-handled) A Petri net PN is well-handled iff, for any pair of nodes x 
and y such that one of the nodes is a place and the other a transition and for any pair of 
elementary paths C1 and C2 leadingfromx to y, a(C1) n a(C2 ) = {x, y} => C1 = C2. 
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Note that the WF-net shown in Figure 3 is not well-handled. A Petri net which is well
handled has a number of nice properties, e.g. strong connectedness and well-formedness 
coincide. 

Lemma 5 A strongly connected well-handled Petri net is well-formed. 

Proof. 
Let PN be a strongly connected well-handled Petri net. Clearly, tbere are no circuits that 
have PT-handles nor TP-handles ([11]). Therefore, the net is structurally bounded (See 
Theorem 3.1 in [11]) and structurally live (See Theorem 3.2 in [11]). Hence, PN is well
formed. D 

Clearly, well-handledness is a desirable property for any WF-net P N. Moreover, we also 
require the extended PN to be well-handled. We impose on this additional requirement 
for the following reason. Suppose we want to use PN as a part of a larger WF-net PN'. 
P N' is the original WF-net extended with an 'undo-task'. See Figure 7. Transition undo 
corresponds to the undo-task, transitions t 1 and t2 have been added to make PN' a WF-net. 
It is undesirable that transition undo violates tbe well-handledness property of the original 
net. However, PN' is well-handled iff PN is well-handled. Therefore, we require PN to 
be well-handled. We use tbe term well-structured to refer to WF-nets whose extension is 
well-handled. 

PN': 

o 

Figure 7: The WF-net PN' is well-handled iff PN is well-handled. 

Definition 11 (Well-structured) A WF-net P N is well-structured iff P N is well-handled. 

Well-structured WF-nets have a number of desirable properties. Soundness can be verified 
in polynomial time and a sound well-structured WF-net is safe. To prove these properties 
we use some of the results obtained for elementary extended non-self controlling nets. 

Definition 12 (Elementary extended non-self controlling) A Petri net P N is elementary 
extended non-self controlling (ENSC) iff, for every pair of transitions tl and t2 such that 
.t1 n .t2 1= 0, there does not exist an elementary path C leading from tl to t2 such that 
.tl n a(C) = 0. 

13 



Theorem 2 Let PN be a WF-net. If PN is well-structured, then PN is elementary ex
tended non-self controlling. 

Proof. 
Assume that P N is not elementary extended non-self controlling. This means that there 
is a pair of transitions tl and tk such that etl n etk i= 0 and there exist an elementary path 
C = (tl, pz, tz, ... ,Pk. tk) leading from tl to tk and etl n a(C) = 0. Let PI E etl n etk· 
CI = (PI, td and C2 = (PI, tlo Pz, t2, ... ,Pko tk) are paths leading from PI to tk' (Note 
that Cz is the concatenation of (PI) and C.) Clearly, CI is elementary. We will also show 
that Cz is elementary. C is elementary, and PI rf a (C) because PI E etl. Hence, C2 is also 
elementary. Since CI and Cz are both elementary paths, CI i= C2 and a(Cd n a (Cz) = 
{PI, td, we conclude that PN is not well-handled. 0 

c4 

c2 c3 o 

Figure 8: A well-structured WF-net. 

Consider for example the WF-net shown in Figure 8. The WF-net is well-structured and, 
therefore, also elementary extended non-self controlling. However, the net is not free
choice. Nevertheless, it is possible to verify soundness for such a WF-net very efficiently. 

Corollary 2 The following problem can be solved in polynomial time. 
Given a well-structured WF-net, to decide if it is sound. 

Proof. 
Let PN be a well-structured WF-net. The extended net PN is elementary extended non
self controlling (Theorem 2) and structurally bounded (see proof of Lemma 5). For bounded 
elementary extended non-self controlling nets the problem of deciding whether a given 
marking is live, can be solved in polynomial time (See [4]). Therefore, the problem of 
deciding whether (PN, i) is live and bounded can be solved in polynomial time. By The
orem I, this corresponds to soundness. 0 
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Lemma 6 A sound well-structured WF-net is safe. 

Proof. 
Let P N be the net P N extended with a transition connecting 0 and i. P N is extended 
non-self controlling. PN is covered by state-machines (S-components), see Corollary 5.3 
in [4]. Hence, each place is part of such a state-machine component. Clearly, i and 0 are 
nodes of any state-machine component. Hence, for each place p there is a semi-positive 
invariant with weights 0 or 1 which assigns a positive weight to p, i and o. Hence, PN is 
safe and so is PN. D 

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases 
soundness can be verified very efficiently and soundness implies safeness. In spite of these 
similarities, there are sound well-structured WF-nets which are not free-choice (Figure S) 
and there are sound free-choice WF-nets which are not well-structured. In fact, it is pos
sible to have a sound WF-net which is neither free-choice nor well-structured (Figures 2 
and 5). 
Notwithstanding these observations, the two structural characterizations turn out to be very 
useful for the analysis of workflow process definitions. Both well-structuredness and the 
free-choice property correspond to desirable properties of a workflow. A WF-net satisfy
ing one of these properties can be analyzed very efficiently. Moreover, most of today's 
WFMS's only allow for the enactment of workflows satisfying both properties. 

What about the sound WF-nets shown in Figure 2 and Figure 5? The WF-net shown in Fig
ure 5 can be transformed into a free-choice well-structured WF-net by separating choice 
and parallelism. The WF-net shown in Figure 2 cannot be transformed into a free-choice 
or well-structured WF-net without yielding amuch more complex WF-net. Place c5 acts as 
some kind of milestone which is tested by the task process-complaint. Traditional WFMS' s 
which do not make the state of the case explicit, will not be able to handle the workflow 
specified by Figure 2. Only workflow management systems such as COSA ([IS]) have 
the capability to enact such a state-based workflow. Even if one is able to use state-based 
workflows allowing for constructs which violate well-structuredness and the free-choice 
property, then the structural characterizations are still useful. If a WF-net is not free-choice 
or not well-structured, one should locate the source which violates one of these properties 
and check whether it is really necessary to use a non-free-choice or a non-well-structured 
construct. If the non-free-choice or non-well-structured construct is really necessary, then 
the correctness of the construct should be double-checked because it is a potential source 
of error. 

7 Composition of WF -nets 

The WF-nets in this paper are very simple compared to the workflows encountered in prac
tise. For example, in the Dutch Customs Department there are workflows consisting of 
more than SO tasks with a very complex interaction structure (cf. [3]). For the designer of 
such a workflow the complexity is overwhelming and communication with end-users using 
one huge diagram is difficult. In most cases hierarchical (de)composition is used to tackle 

15 



" , 

PN1 

, , , , 

Figure 9: Task refinement: WF-net PN3 is composed out of PN1 and PN2• 

this problem. A complex workflow is decomposed into subflows and each of the subflows 
is decomposed into smaller subflows until the desired level of detail is reached. Many 
WFMS's allow for such a hierarchical decomposition. In addition, this mechanism can 
be utilized for the reuse of existing workflows. Consider for example multiple workflows 
sharing a generic subflow. Some WFMS-vendors also supply reference models which cor
respond to typical workflow processes in insurance, banking, finance, marketing, purchase, 
procurement, logistics and manufacturing. 

Reference models, reuse and the structuring of complex workflows require a hierarchy 
concept. The most common hierarchy concept supported by many WFMS's is task re
finement, i.e., a task can be refined by a subfiow. This concept is illustrated in Figure 9. 
The WF-net P N 1 contains a task t+ which is refined by another WF-net P N 2, i.e., t+ is 
no longer a task but a reference to a subflow. A WF-net which represents a subflow should 
satisfy the same requirements as an ordinary WF-net (see Definition 7). The semantics 
of the hierarchy concept are straightforward; simply replace the refined transition by the 
corresponding subnet. Figure 9 shows that the refinement of t+ in P N 1 by P N 2 yields a 
WF-net PN3 . 

The hierarchy concept can be exploited to establish the correctness of a workflow. Given 
a complex hierarchical workflow model, it is possible to verify soundness by analyzing 
each of the subflows separately. The following theorem shows that the soundness property 
defined in this paper allows for modular analysis. 
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Theorem 3 (Compositionality) Let PN I = (PI, TI, Fd and PN2 = (P2, Tz. F2) be two 
WF-nets such that TI n T2 = 0, PI n P2 = {i, o} and t+ E TI. PN3 = (P3, T3, F3) 
is the WF-net obtained by replacing transition t+ in PN I by PN 2, i.e., P3 = PI U P2, 
T3 = (TI \ (t+}) U T2 and 

F3 = {(x, y) E FI I x -1= t+ 1\ y -1= t+} U {(x, y) E F21 {x, y} n Ii, o} = 0} U 

{(x, y) E PI X T2 I (x, t+) E FI 1\ (i, y) E F2 } U 

{(x, y) E T2 X PI I (t+, y) E FI 1\ (x,o) E F2 }· 

For PN I, PN 2 and PN3 the following statements hold: 

1. If PN3 is free-choice, then PNl and PN2 are free-choice. 

2. If PN3 is well-structured, then PN I and PNz are well-structured. 

3. If(PN I, i) is safe and PNI and PN2 are sound, then PN3 is sound. 

4. (PN I, i) and (PN2, i) are safe and sound iff(PN3, i) is safe and sound. 

5. PN I and PN2 are free-choice and sound iff PN3 isfree-choice and sound. 

6. If PN3 is well-structured and sound, then PN I and PN2 are well-structured and 
sound. 

7. Ifet+ and t+e are both singletons, then PNI and PN 2 are well-structured and sound 
iff P N 3 is well-structured and sound. 

Proof. 

1. The only transitions that may violate thefree-choice property are t+ (PN Il and {t E 

T2 I (i, t) E F2 } (PN 2). Transition t+ has the same input set as any ofthe transitions 
{t E T2 I (i, t) E F2} in PN 3 if we only consider the places in P3 n Pl. Hence, t+ 
does not violate the free-choice property in P N I. All transitions t in PN 2 such that 
(i, t) E F2 respect the free-choice property; the input places in P3 \ P2 are replaced 
by i. 

2. PN I (PN 2) is well-handled because any elementary path in PN I (PN 2) corresponds 
to a path in PN3. 

3. Let (PN I, i) be safe and let PN I and PN2 be sound. We need to prove that (PN3, i) 
is live and bounded. The subnet in PN 3 which corresponds to t+ behaves like a 
transition which may postpone the production of tokens for t+ e. It is essential that 
the input places of t+ in (P N 3, i) are safe. This way it is guaranteed that the states of 
the subnet correspond to the states of (PN 2, i). Hence, the transitions in T3 n T2 are 
live (t+ is live) and the places in P3 \ Pl are bounded. Since the subnet behaves like 
t+, the transitions in T3 n (TI \ (t+}) are live and the places in P3 n Pl are bounded. 
Hence, P N 3 is sound. 
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4. Let (PN j , i) and (PN2 , i) be safe and sound. Clearly, PN 3 is sound (see proof of 
3.). (PN 3, i) is also safe because every reachable state corresponds to a combina
tion of a safe state of (PN j , i) and a safe state of (PN2, i). 
Let (PN 3 , i) be safe and sound. Consider the subnet in PN3 which corresponds to 
t+. X is the set of transitions in T3 n T2 consuming from P3 n et+ and Y is the set of 
transitions in T3 n T2 producing tokens for P3 n t+ e. If a transition in X fires, then 
it should be possible to fire a transition in Y because of the liveness of the original 
net. If a transition in Y fires, the subnet should become empty. If the subnet is not 
empty after firing a transition in Y, then there are two possibilities: (1) it is possible 
to move the subnet to a state such that a transition in Y can fire (without firing tran
sitions in T3 n T j ) or (2) it is not possible to move to such a state. In the first case, the 
places t+ e in P N 3 are not safe. In the second case, a token is trapped in the subnet 
or the subnet is not safe the moment a transition in X fires. (P N 2, i) corresponds to 
the subnet bordered by X and Y and is, as we have just shown, sound and safe. Re
mains to prove that (PN j , i) is safe and sound. Since the subnet which corresponds 
to t+ behaves like a transition which may postpone the production of tokens, we can 
replace the subnet by t+ without changing dynamic properties such as safeness and 
soundness. 

5. Let PN j and PN2 be free-choice and sound. Since (PN], i) is safe (see Lemma 4), 
P N 3 is sound (see proof of 3.). Remains to prove that P N 3 is free-choice. The only 
transitions in PN 3 which may violate the free-choice property are the transitions in 
T3 n T2 consuming tokens from P3 n et+. Because PN 2 is sound, these transitions 
need to have an input set identical to t+ in P N j (if this is not the case at least on of 
the transitions is dead). Since PN j is free-choice, PN3 is also free-choice. 
Let P N 3 be free-choice and sound. P N j and P N 2 are also free-choice (see proof 
of 1.). Since (P N 3, i) is safe (see Lemma 4), P N j and P N 2 are sound (see proof of 
4.). 

6. Let P N 3 be well-structured and sound. P N j and P N 2 are also well-structured (see 
proof of 2.). Since (PN 3 , i) is safe (see Lemma 6), PN j and PN2 are sound (see 
proof of 4.). 

7. Remains to prove that if PN j and PN 2 are well-structured, then PN 3 is also well
structured. Suppose that PN 3 is not well-structured. There are two disjunct elemen
tary paths leading from x to y in P N 3. Since P N 1 is well-structured, at least one of 
these paths is enabled via the refinement of t+. However, because t+ has precisely 
one input and one output place and P N 2 is also well-structured, this is not possible. 

D 

Figure 10 shows a hierarchical WF-net. Both of the subflows (handle_questionnaire and 
processing) and the main flow are safe and sound. Therefore, the overall workflow rep
resented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice 
property and well-structuredness are also preserved by the hierarchical composition. The
orem 3 is of particular importance for the reuse subflows. For the analysis of a complex 
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Figure 10: A hierarchical WF-net for the processing of complaints. 

workflow, every safe and sound subflow can be considered to be a single task. This allows 
for an efficient modular analysis of the soundness property. Moreover, the statements em
bedded in Theorem 3 can help a workflow designer to construct correct workflow process 
definitions. 

8 Conclusion 

In this paper we have investigated a basic property that any workflow process definition 
should satisfy: the soundness property. For WF-nets this property coincides with liveness 
and boundedness. In our quest for a structural characterization of WF-nets satisfying the 
soundness property, we have identified two important subclasses: free-choice WF-nets and 
well-structured WF-nets. These subclasses have desirable properties and allow for effi
cient analysis methods. Moreover, most WFMS's only support workflows characterized 
by these two subclasses. Figure II illustrates the relationships between soundness and the 
two subclasses. 
If a workflow process is specified by a hierarchical WF-net, then the modular analysis of 
the soundness property is often possible. A workflow composed out of correct subflows 
can be verified without incorporating the specification of each subflow. 
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free-choice WF-nets well-structured WF-nets 

sound WF-nets 
WF-nets 

Figure 11: The relationships between soundness, well-formedness and the free-choice 
property. 

The results presented in this paper give workflow designers a handle to construct correct 
workflows. Although it is possible to use standard Petri-net-based analysis tools, we are 
developing a workflow-analyzer which can be used by people not familiar with Petri-net 
theory. This workflow-analyzer will interface with existing workflow products such as 
COSA, Protos, Income and StructWare. 
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