

Structural characterizations of sound workflow nets

Citation for published version (APA):
Aalst, van der, W. M. P. (1996). Structural characterizations of sound workflow nets. (Computing science
reports; Vol. 9623). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/d7ac08f3-457f-449a-97bb-f6dc54cea668

Eindhoven University of Technology
Department of Mathematics and Computing Science

Structural Characterizations of Sound Workflow Nets

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.c. Backhouse

prof.dr. I.C.M. Baeten

Reports are available at:
http://www.win.tue.nllwinlcs

by

W.M.P. van der Aalst

Computing Science Reports 96123
Eindhoven, December 1996

96123

Structural Characterizations of
Sound Workflow Nets
W.M.P. van der Aalst
Department 0/ Mathematics and Computing Science, Eindhoven University o/Technology,
PO. Box 513, NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 402474295,
e-mail: wsinwa@win.tue.nl

Workflow management systems facilitate the everyday operation of business processes by taking
care of the logistic control of work. In contrast to traditional information systems, they attempt
to support frequent changes of the workflows at hand. Therefore, the need for analysis methods to
verify the correctness of workflows is becoming more prominent. In this paper we present a method
based on Petri nets. This analysis method exploits the structure of the Petri net to find potential
errors in the design of the workflow. Moreover, the analysis method allows for the compositional
verification of workflows.

Keywords: Petri nets; free-choice Petri nets; workflow management systems; analysis of work
flows; business process reengineering; analySiS of Petri nets; compositional analysis.

1 Introduction

Workflow management systems (WFMS) are used for the modeling, analysis, enacttnent,
and coordination of structured business processes by groups of people. Business processes
supported by a WFMS are case-driven, i.e., tasks are executed for specific cases. Ap
proving loans, processing insurance claims, billing, processing tax declarations, handling
traffic violations and mortgaging, are typical case-driven processes which are often sup
ported by a WFMS. These case-driven processes, also called workfiows, are marked by
three dimensions: (I) the process dimension, (2) the resource dimension, and (3) the case
dimension (see Figure I). The process dimension is concerned with the partial ordering
of tasks. The tasks which need to be executed are identified and the routing of cases along
these tasks is determined. Conditional, sequential, parallel and iterative routing are typ
ical structures specified in the process dimension. Tasks are executed by resources. Re
source are human (e.g. employee) and/or non-human (e.g. device, software, hardware).
In the resource dimension these resources are classified by identifying roles (resources
classes based on functional characteristics) and organizational units (groups, teams or de
partments). Both the process dimension and the resource dimension are generic, i.e., they
are not tailored towards a specific case. The third dimension of a workflow is concerned
with individual cases which are executed according to the process definition (first dimen
sion) by the proper resources (second dimension).

Managing workflows is not a new idea. Workflow control techniques have existed for
decades and many management concepts originating from production and logistics are also

I

resources

process

/'~
cases

Figure 1: The three dimensions of workflow.

applicable in a workflow context. However, just recently, commercially available generic
WFMS's have become a reality. Although these systems have been applied successfully,
contemporary WFMS's have at least two important drawbacks. First of all, today's sys
tems do not scale well, have limited fault tolerance and are inflexible in terms of interop
erating with other systems. Secondly, a solid theoretical foundation is missing. Most of
the more than 250 commercially available WFMS's use a vendor-specific ad-hoc modeling
technique to design workflows. In spite ofthe efforts of the Workflow Management Coali
tion ([20]) real standards are missing. The absence of formalized standards hinders the de
velopment of tool-independent analysis techniques. As a result, contemporary WFMS's
do not facilitate advanced analysis methods to determine the correctness of a workflow.

As many researchers have indicated ([9, 14, 21]), Petri nets constitute a good starting point
for a solid theoretical foundation for workflow management. In this paper we focus on the
process dimension. We use Petri nets to specify the partial ordering of tasks. Based on a
Petri-net-based representation of the workflow process, we tackle the problem of verifica
tion. We will provide techniques to verify the so-called soundness property. A workflow
process is sound if, for any case, the process terminates properly, i.e., termination is guar
anteed, there are no dangling references, and deadlock and Iivelock are absent. We will
show that in general this dynamic property can be checked in polynomial time. Moreover,
we identify suspicious constructs which may endanger the correctness of a workflow pro
cess. Finally, we show that the approach presented in this paper allows for the composi
tional verification of workflow processes, i.e., the correctness of a process can be decided
by partitioning it into sound subprocesses.

2

2 Petri nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section. I

Historically speaking, Petri nets originate from the early work of Carl Adam Petri ([17]).
Since then the use and study of Petri nets has increased considerably. For a review of the
history of Petri nets and an extensive bibliography the reader is referred to Murata [15].

The classical Petri net is a directed bipartite graph with two node types called places and
transitions. The nodes are connected via directed arcs. Connections between two nodes
of the same type are not allowed. Places are represented by circles and transitions by rect
angles.

Definition 1 (Petri net) A Petri net is a triple (P, T, F):

P is a finite set oj places,

T is a finite set oj transitions (P n T = 0),

F c::: (P x T) U (T x P) is a set oj arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from p to
t. Place p is called an output place of transition t iff there exists a directed arc from t to p.
We use et to denote the set of input places for a transition t. The notations te, e p and pe

have similar meanings, e.g. pe is the set of transitions sharing p as an input place. Note
that we restrict ourselves to arcs with weight I. In the context of workflow procedures it
makes no sense to have other weights, because places correspond to conditions.

At any time a place contains zero of more tokens, drawn as black dots. The state, often
referred to as marking, is the distribution of tokens over places, i.e., M E P ---+ N. We
will represent a state as follows: Ipi + 2P2 + Ip3 +OP4 is the state with one token in place
PI, two tokens in P2, one token in P3 and no tokens in P4. We can also represent this state
as follows: Pl + 2P2 + P3. To compare states we define a partial ordering. For any two
states MI andM2,MI :S M2 iffforallp E P: MI(p):s M2(p)

The number of tokens may change during the execution of the net. Transitions are the
active components in a Petri net: they change the state of the net according to the following
firing rule:

(l) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

1 Note that states are represented by weighted sums and note the definition of (elementary) (conflict-free)
paths.

3

Given a Petri net (P, T, F) and a state M" we have the following notations:

- M, -'+ Mz: transition t is enabled in state M, and firing t in M, results in state Mz

M, ---;. Mz: there is a transition t such that M, -'+ Mz

- M, ~ Mn: the firing sequence (I = t,tzt3 ... tn_, leads from state M, to state M,,,
, t\ 12 tn-l
I.e., M, ---;. Mz ---;. ... ---;. Mn

A state Mn is called reachable from M, (notation M, ~ Mn) iff there is a firing sequence

h 'I M '2 '"_I M th h fi .
(I = t,tz ... tn-, such t at M, ---;. z ---;. ... ---;. n. Note at t e empty nng sequence
is also allowed, i.e., M, ~ M,.

We use (P N, M) to denote a Petri net P N with an initial state M. A state M' is a reachable
state of (PN, M) iff M ~ M'. Let us define some properties for Petri nets.

Definition 2 (Live) A Petri net (PN, M) is live iff,for every reachable state M' and every
transition t there is a state M" reachable from M' which enables t.

Definition 3 (Bounded, safe) A Petri net (PN, M) is bounded iff, for every reachable state
and every place p the number of tokens in p is bounded. The net is safe ifffor each place
the maximum number of tokens does not exceed 1.

Definition 4 (Well.formed) A Petri net PN is well-formed iff there is a state M such that
(P N, M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict.free) Let PN be a Petri net. A path C from a
node n, to a node nk is a sequence (n" nz, ... ,nk) such that (ni' ni+') E F for I :s i :s
k - l. C is elementary iff, for any two nodes ni and n j on C, i oF j => ni oF n j. C is
conflict-free iff, for any transition n, on C, j oF i-I => n j rt en,.

For convenience, we introduce the alphabet operator 0' on paths. If C = (n" nz, ... ,nk),
then O'(C) = tn"~ nz, ... ,nd.

Definition 6 (Strongly connected) A Petri net is strongly connected iff, for every pair of
nodes (i.e. places and transitions) x and y, there is a path leading from x to y.

3 WF·nets

In Figure 1 we indicated that a workflow has (at least) three dimensions. The process di
mension is the most prominent one, because the core of any workflow system is formed
by the processes it supports. In the process dimension building blocks such as the AND
split, AND-join, OR-split and OR-join are used to model sequential, conditional, parallel
and iterative routing (WFMC [20]). Clearly, a Petri net can be used to specify the routing
of cases. Tasks are modeled by transitions and causal dependencies are modeled by places.

4

In fact, a place corresponds to a condition which can be used as pre- and/or post-conditions
for tasks. An AND-split corresponds to a transition with two or more output places, and
an AND-join corresponds to a transition with two or more input places. OR-splits/OR
joins correspond to places with multiple outgoing/ingoing arcs. Moreover, in [2, 3] it is
shown that the Petri net approach also allows for useful routing constructs absent in many
WFMS's.
A Petri net which models the process dimension of a workflow, is called a WorkFlow net
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single case
in isolation.

Definition 7 (WF-net) A Petri net PN
only if:

(P, T, F) is a WF-net (Workflow net) if and

(0 PN has two "pecial places: i and o. Place i is a source place: .i = 0. Place 0 is
a sink place: o. = 0.

(ii) If we add a transition t* to PN which connects place 0 with i (i.e .• t*
t*. = Ii}), then the resulting Petri net is strongly connected.

(oj and

A WF-net has one input place (i) and one output place (0) because any case handled by the
procedure represented by the WF-net is created if it enters the WFMS and is deleted once
it is completely handled by the WFMS, i.e., the WF-net specifies the life-cycle of a case.
The second requirement in Definition 7 (the Petri net extended with t* should be strongly
connected) states that for each transition t (place p) there should be a path from place i to
o via t (p). This requirement has been added to avoid 'dangling tasks and/or conditions',
i.e., tasks and conditions which do not contribute to the processing of cases.

Figure 2 shows a WF-net which models the processing of complaints. First the complaint
is registered (task register), then in parallel a questionnaire is sent to the complainant (task
send..questionnaire) and the complaint is evaluated (task evaluate). If the complainant re
turns the questionnaire within two weeks, the task process..questionnaire is executed. If
the questionnaire is not returned within two weeks, the result of the questionnaire is dis
carded (task time..out). Based on the result of the evaluation, the complaint is processed or
not. The actual processing of the complaint (task process-complaint) is delayed until con
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The
processing of the complaint is checked via task check.processing. Finally, task archive is
executed. Note that sequential, conditional, parallel and iterative routing are present in this
example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the process dimension.
We abstract from resources, applications and technical platforms. Moreover, we also ab
stract from case variables and triggers. Case variables are used to resolve choices (OR
split), i.e., the choice between processingJequired and no.processing is (partially) based
on case variables set during the execution of task evaluate. The choice between process
ing _OK and processing .NOK is resolved by testing case variables set by check_processing.

5

•

IC3J

J--"~Df---l

register
o

processing_required process_complaint check_processing
processin~OK

c9

Figure 2: A WF-net for the processing of complaints.

In the WF-net we abstract from case variables by introducing non-deterministic choices in
the Petri-net. If we don't abstract from this information, we would have to model the (un
known) behavior of the applications used in each of the tasks and analysis would become
intractable. In Figure 2 we have indicated that time..out and process..questionnaire require
triggers. The clock symbol denotes a time trigger and the envelope symbol denotes an
external trigger. Task timLout requires a time trigger ('two weeks have passed') and pro
cess_questionnaire requires a message trigger ('the questionnaire has been returned'). A
trigger can be seen as an additional condition which needs to be satisfied. In the remainder
of this paper we abstract from these trigger conditions. We assume that the environment
behaves fairly, i.e., the liveness of a transition is not hindered by the continuous absence
of a specific trigger. As a result, every trigger condition will be satisfied eventually (if
needed).

4 Soundness

The two requirements stated in Definition 7 can be verified statically, i.e., they only relate
to the structure of the Petri net. However, there is a third requirement which should be
satisfied:

For any case, the procedure will terminate eventually and the moment the pro
cedure terminates there is a token in place 0 and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi
trary task by following the appropriate route though the WF-net. These two additional
constraints correspond to the so-called soundness property.

6

Definition 8 (Sound) A procedure nwdeled by a WF-net PN = (P, T, F) is sound ifand
only if

(i) For every state M reachable from state i, there exists afiring sequence leading from
state M to state o. Formally:2

'1M (i --*>. M) => (M --*>. 0)

(ii) State 0 is the only state reachable from state i with at least one token in place o.
Formally:

(iii) There are no dead transitions in (PN, i). Formally:

VtET 3M,M' i --*>. M -'+ M'

Note that the soundness property relates to the dynamics of a WF-net. The first require
ment in Definition 8 states that starting from the initial state (state I), it is always possible
to reach the state with one token in place 0 (state 0). If we assume fairness (i.e. a transition
that is enabled infinitely often will fire eventually), then the first requirement implies that
eventually state 0 will be reached. The fairness assumption is reasonable in the context
of workflow management; all choices are made (implicitly en explicitly) by applications,
humans or external actors. Clearly, they should not introduce an infinite loop. The second
requirement states that the moment a token is put in place 0, all the other places should be
empty. Sometimes the term proper termination is used to describe the first two require
ments [12]. The last requirement states that there are no dead transitions (tasks) in the
initial state i.

Q)

c3 processing_NOK

register "

processin~OK

Figure 3: Another WF-net for the processing of complaints.

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If timeJJuLI

2Note that there is an overloading of notation: the symbol i is used to denote both the place i and the stale
with only one token in place i (see Section 2).

7

and processing2 fire or time_out2 and processing~ fire, the WF-net will not terminate
properly because a token gets stuck in c4 or c5. If time.1JuLl and time-out2 fire, then the
task processing .NOK will be executed twice and because of the presence of two tokens in
o the moment of termination is not clear.

5 A necessary and sufficient condition for soundness

Given WF-net PN = (P, T, F), we wantto decide wbether PN is sound. Forthis purpose
we define an extended net PN = (P, T, F). PN is the Petri net that we obtain by adding
an extra transition t* which connects 0 and i. The extended Petri net PN = (P, T, F) is
defined as follows:

P=P

T = T U {t*}

F = F U {(o, t*), (t*, i)}

Figure 4 illustrates the relation between PN and PN.

Figure 4: PN = (P, T U {t*}, F U {(o, t*), (t*, i))).

For an arbitrary WF-net PN and the corresponding extended Petri net PN we will prove
the following result:

PN is sound if and only if(PN, i) is live and bounded.

First, we prove tbe 'if' direction.

Lemma 1 If (PN, i) is live and bounded, then PN is a sound WF-net.

Proof.
(PN, i) is live, i.e., for every reachable state M there is a firing sequence which leads to
a state in which t* is enabled. Since 0 is the input place of t*, we find that for any state
M reachable from state i it is possible to reach a state with at least one token in place 0,

i.e., requirement (i) holds. Consider an arbitrary reachable state M' + 0, i.e., a state with
at least one token in place o. In this state t* is enabled. If t* fires, then the state M' + i is

8

reached. Since (PN, i) is also bounded, M' + i :::: i implies M' + i = i, i.e., M' should
be equal to the empty state. Hence requirement (ii) also holds and proper termination is
guaranteed. Requirement (iii) follows directly from the fact that (PN, i) is live. Hence,
PN is a sound WF-net. 0

To prove the 'only if' direction, we first show that the extended net is bounded.

Lemma 2 If PN is sound, then (PN, i) is bounded.

Proof.
Assume that PN is sound and (PN, i) not bounded. Since PN is not bounded there are
two states M; and Mj such that i ..*0. M;, M; ..*0. M j and M j > M;. (See for example the
proof that the coverability tree is finite in Peterson [l6] (Theorem 4.1).) However, since
P N is sound we know that there is a firing sequence a such that Mi -'+ o. Therefore,
there is a state M such that M j -'+ M and M > o. Hence, it is not possible that PN is
both sound and not bounded. So if PN is sound, then (PN, i) is bounded. _
From the fact that PN is sound and (PN, i) is bounded, we can deduce that (PN, i) is
bounded. If transition t* in P N fires, the net returns to the initial state i. 0

Now we can prove that (PN, i) is live.

Lemma 3 If PN is sound, then (PN, i) is live.

Proof.
Assume PN is sound. By Lemma 2 we know that (PN, i) is bounded. Because PN is
sound we know that state i is a so-called home-marking of P N. So for every state M'
reachable from (PN, i) it is possible to return to state i. In the original net (PN, i), it
is possible to fire an arbitrary transition t (requirement (iii)). This is also the case in the
modified net. Therefore, (PN, i) is live because for every state M' reachable from (PN, i)
it is possible to reach a state which enables an arbitrary transition t. 0

Theorem 1 A WF-net PN is sound ifand only if (PN, i) is live and bounded.

Proof.
It follows directly from Lemma 1, 2 and 3. o

We can use standard Petri-net-based analysis tools to verify that the WF-net shown in Fig
ure 2 is live and bounded. Therefore, the workflow process specified by this WF-net is
guaranteed to behave properly (cf. Definition 8). Theorem 1 is an extension of the results
presented in [1, 19]. In [l] we restrict ourselves to free-choice WF-nets. Independently,
Straub and Hurtado [19] found necessary and sufficient conditions for soundness of COP A
nets. (COPA nets correspond to a subclass offree-choice Petri nets.)

Perhaps surprisingly, the verification of the soundness property boils down to checking
whether the extended Petri net is live and bounded! This means that we can use standard
Petri-net-based analysis tools to decide soundness.

9

6 Structural characterization of soundness

Theorem 1 gives a useful characterization of the quality of a workflow process definition.
However, there are a number of problems:

e For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Pals berg [6].)

e Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

e Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dynamics
of a WF-net while the workflow designer is concerned with the static structure of the WF
net. Therefore, it is interesting to investigate structural characterizations of sound WF
nets. For this purpose we introduce two interesting subclasses of WF-nets: free-choice
WF-nets and well-structured WF-nets.

6.1 Free-choice WF-nets

Most of the WFMS's available at the moment, abstract from states between tasks, i.e.,
states are not represented explicitly. These WFMS's use building blocks such as the AND
split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-split
and the AND-join are used for parallel routing. The OR-split and the OR-join are used
for conditional routing. Because these systems abstract from states, every choice is made
inside an OR-split building block. If we model an OR-split in terms of a Petri net, the
OR-split corresponds to a number of transitions sharing the same set of input places. This
means that for these WFMS's, a workflow procedure corresponds to afree-choice Petri
net.

Definition 9 (Free-choice) A Petri net is a free-choice Petri net iff, for every two transi
tions t1 and t2, et1 n et2 i= 0 implies et1 = et2.

It is easy to see that a process definition composed out of AND-splits, AND-joins, OR
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place (et1 n
e(2 i= 0), then they are part of an OR-split, i.e., a 'free choice' between a number of alter
natives. Therefore, the sets of input places of t1 and t2 should match (et1 = et2). Figure 3
shows a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice; archive
and process-complaint share an input place but the two corresponding input sets differ.

We have evaluated many WFMS's and just one of these systems (COSA [18]) allows for
a construction which is comparable to a non-free choice WF-net. Therefore, it makes sense
to consider free-choice Petri nets. Clearly, parallelism, sequential routing, conditional rout
ing and iteration can be modeled without violating the free-choice property. Another rea
son for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free
choice Petri nets, then the choice between conflicting tasks may be influenced by the order

10

in which the preceding tasks are executed. The routing of a case should be independent of
the order in which tasks are executed. A situation where the free-choice property is vio
lated is often a mixture of parallelism and choice. Figure 5 shows such a situation. Firing
transition tl introduces parallelism. Although there is no real choice between t2 and t5
(t5 is not enabled), the parallel execution of t2 and t3 results in a situation where t5 is not
allowed to occur. However, if the execution of t2 is delayed until t3 has been executed,
then there is a real choice between t2 and t5. In our opinion parallelism itself should be
separated from the choice between two or more alternatives. Therefore, we consider the
non-free-choice construct shown in Figure 5 to be improper. In literature, the term confu
sion is often used to refer to the situation shown in Figure 5.

Figure 5: A non-free-choice WF-net containing a mixture of parallelism and choice.

Free-choice Petri nets have been studied extensively (cf. Best [5], Desel and Esparza [8,
7,10], Hack [13]) because they seem to be a good compromise between expressive power
and analyzability. It is a class of Petri nets for which strong theoretical results and efficient
analysis techniques exist. For example, the well-known Rank Theorem (Desel and Esparza
[8]) allows us to formulate the following corollary.

Corollary 1 The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof.
Let PN be a free-choice WF-net. The extended net PN is also free-choice. Therefore,
the problem of deciding whether (P N, i) is live and bounded can be solved in polynomial
time (Rank Theorem [8]). By Theorem 1, this corresponds to soundness. 0

Corollary I shows that, for free-choice' nets, there are efficient algorithms to decide sound
ness. Moreover, a sound free-choice WF-net is guaranteed to be safe.

Lemma 4 A soundfree-choice WF-net is safe.

Proof.
Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with a transition
connecting a and i. P N is free-choice and well-formed. Hence, P N is covered by state
machines (S-components). Each place is part of such a state-machine component. Clearly,
i and a are nodes of any state-machine component. Hence, for each place p there is a

11

semi-positive invariant with weights 0 or 1 which assigns a positive weight to p, i and o.
Therefore, PN is safe and so is PN. D

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFMS's only allow for free-choice workflows, free-choice WF-nets are
not a completely satisfactory structural characterization of 'good' workflows. On the one
hand, there are non-free-choice WF-nets which correspond to sensible workflows (cf. Fig
ure 2). On the other hand there are sound free-choice WF-nets which make no sense. Nev
ertheless, the free-choice property is a desirable property. If a workflow can be modeled as
a free-choice WF-net, one should do so. A workflow specification based on a free-choice
WF-net can be enacted by most workflow systems. Moreover, a free-choice WF-net al
lows for efficient analysis techniques and is more easy to understand. Non-free-choice
constructs such as the construct shown in Figure 5 are a potential source of anomalous
behavior (e.g. deadlock) which is difficult to trace.

6.2 Well-structured WF-nets

Another approach to obtain a structural characterization of 'good' workflows, is to balance
AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split,
should not be joined by an OR-join. Two alternative flows created via an OR-split, should
not be synchronized by an AND-join. As shown in Figure 6, an AND-split should be com
plemented by an AND-join and an OR-split should be complemented by an OR-join.

-------- --------

0:
AND-'plil ------- AND-join

------- --------

OR-sp/il -------- OR-join

Figure 6: Good and bad constructions.

One of the deficiencies of the WF-net shown in Figure 3 is the fact that the AND-split
register is complemented by the OR-join c3 or the OR-join o. To formalize the concept
illustrated in Figure 6 we give the following definition.

Definition 10 (Well-handled) A Petri net PN is well-handled iff, for any pair of nodes x
and y such that one of the nodes is a place and the other a transition and for any pair of
elementary paths C1 and C2 leadingfromx to y, a(C1) n a(C2) = {x, y} => C1 = C2.

12

Note that the WF-net shown in Figure 3 is not well-handled. A Petri net which is well
handled has a number of nice properties, e.g. strong connectedness and well-formedness
coincide.

Lemma 5 A strongly connected well-handled Petri net is well-formed.

Proof.
Let PN be a strongly connected well-handled Petri net. Clearly, tbere are no circuits that
have PT-handles nor TP-handles ([11]). Therefore, the net is structurally bounded (See
Theorem 3.1 in [11]) and structurally live (See Theorem 3.2 in [11]). Hence, PN is well
formed. D

Clearly, well-handledness is a desirable property for any WF-net P N. Moreover, we also
require the extended PN to be well-handled. We impose on this additional requirement
for the following reason. Suppose we want to use PN as a part of a larger WF-net PN'.
P N' is the original WF-net extended with an 'undo-task'. See Figure 7. Transition undo
corresponds to the undo-task, transitions t 1 and t2 have been added to make PN' a WF-net.
It is undesirable that transition undo violates tbe well-handledness property of the original
net. However, PN' is well-handled iff PN is well-handled. Therefore, we require PN to
be well-handled. We use tbe term well-structured to refer to WF-nets whose extension is
well-handled.

PN':

o

Figure 7: The WF-net PN' is well-handled iff PN is well-handled.

Definition 11 (Well-structured) A WF-net P N is well-structured iff P N is well-handled.

Well-structured WF-nets have a number of desirable properties. Soundness can be verified
in polynomial time and a sound well-structured WF-net is safe. To prove these properties
we use some of the results obtained for elementary extended non-self controlling nets.

Definition 12 (Elementary extended non-self controlling) A Petri net P N is elementary
extended non-self controlling (ENSC) iff, for every pair of transitions tl and t2 such that
.t1 n .t2 1= 0, there does not exist an elementary path C leading from tl to t2 such that
.tl n a(C) = 0.

13

Theorem 2 Let PN be a WF-net. If PN is well-structured, then PN is elementary ex
tended non-self controlling.

Proof.
Assume that P N is not elementary extended non-self controlling. This means that there
is a pair of transitions tl and tk such that etl n etk i= 0 and there exist an elementary path
C = (tl, pz, tz, ... ,Pk. tk) leading from tl to tk and etl n a(C) = 0. Let PI E etl n etk·
CI = (PI, td and C2 = (PI, tlo Pz, t2, ... ,Pko tk) are paths leading from PI to tk' (Note
that Cz is the concatenation of (PI) and C.) Clearly, CI is elementary. We will also show
that Cz is elementary. C is elementary, and PI rf a (C) because PI E etl. Hence, C2 is also
elementary. Since CI and Cz are both elementary paths, CI i= C2 and a(Cd n a (Cz) =
{PI, td, we conclude that PN is not well-handled. 0

c4

c2 c3 o

Figure 8: A well-structured WF-net.

Consider for example the WF-net shown in Figure 8. The WF-net is well-structured and,
therefore, also elementary extended non-self controlling. However, the net is not free
choice. Nevertheless, it is possible to verify soundness for such a WF-net very efficiently.

Corollary 2 The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof.
Let PN be a well-structured WF-net. The extended net PN is elementary extended non
self controlling (Theorem 2) and structurally bounded (see proof of Lemma 5). For bounded
elementary extended non-self controlling nets the problem of deciding whether a given
marking is live, can be solved in polynomial time (See [4]). Therefore, the problem of
deciding whether (PN, i) is live and bounded can be solved in polynomial time. By The
orem I, this corresponds to soundness. 0

14

Lemma 6 A sound well-structured WF-net is safe.

Proof.
Let P N be the net P N extended with a transition connecting 0 and i. P N is extended
non-self controlling. PN is covered by state-machines (S-components), see Corollary 5.3
in [4]. Hence, each place is part of such a state-machine component. Clearly, i and 0 are
nodes of any state-machine component. Hence, for each place p there is a semi-positive
invariant with weights 0 or 1 which assigns a positive weight to p, i and o. Hence, PN is
safe and so is PN. D

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of these
similarities, there are sound well-structured WF-nets which are not free-choice (Figure S)
and there are sound free-choice WF-nets which are not well-structured. In fact, it is pos
sible to have a sound WF-net which is neither free-choice nor well-structured (Figures 2
and 5).
Notwithstanding these observations, the two structural characterizations turn out to be very
useful for the analysis of workflow process definitions. Both well-structuredness and the
free-choice property correspond to desirable properties of a workflow. A WF-net satisfy
ing one of these properties can be analyzed very efficiently. Moreover, most of today's
WFMS's only allow for the enactment of workflows satisfying both properties.

What about the sound WF-nets shown in Figure 2 and Figure 5? The WF-net shown in Fig
ure 5 can be transformed into a free-choice well-structured WF-net by separating choice
and parallelism. The WF-net shown in Figure 2 cannot be transformed into a free-choice
or well-structured WF-net without yielding amuch more complex WF-net. Place c5 acts as
some kind of milestone which is tested by the task process-complaint. Traditional WFMS' s
which do not make the state of the case explicit, will not be able to handle the workflow
specified by Figure 2. Only workflow management systems such as COSA ([IS]) have
the capability to enact such a state-based workflow. Even if one is able to use state-based
workflows allowing for constructs which violate well-structuredness and the free-choice
property, then the structural characterizations are still useful. If a WF-net is not free-choice
or not well-structured, one should locate the source which violates one of these properties
and check whether it is really necessary to use a non-free-choice or a non-well-structured
construct. If the non-free-choice or non-well-structured construct is really necessary, then
the correctness of the construct should be double-checked because it is a potential source
of error.

7 Composition of WF -nets

The WF-nets in this paper are very simple compared to the workflows encountered in prac
tise. For example, in the Dutch Customs Department there are workflows consisting of
more than SO tasks with a very complex interaction structure (cf. [3]). For the designer of
such a workflow the complexity is overwhelming and communication with end-users using
one huge diagram is difficult. In most cases hierarchical (de)composition is used to tackle

15

" ,

PN1

, , , ,

Figure 9: Task refinement: WF-net PN3 is composed out of PN1 and PN2•

this problem. A complex workflow is decomposed into subflows and each of the subflows
is decomposed into smaller subflows until the desired level of detail is reached. Many
WFMS's allow for such a hierarchical decomposition. In addition, this mechanism can
be utilized for the reuse of existing workflows. Consider for example multiple workflows
sharing a generic subflow. Some WFMS-vendors also supply reference models which cor
respond to typical workflow processes in insurance, banking, finance, marketing, purchase,
procurement, logistics and manufacturing.

Reference models, reuse and the structuring of complex workflows require a hierarchy
concept. The most common hierarchy concept supported by many WFMS's is task re
finement, i.e., a task can be refined by a subfiow. This concept is illustrated in Figure 9.
The WF-net P N 1 contains a task t+ which is refined by another WF-net P N 2, i.e., t+ is
no longer a task but a reference to a subflow. A WF-net which represents a subflow should
satisfy the same requirements as an ordinary WF-net (see Definition 7). The semantics
of the hierarchy concept are straightforward; simply replace the refined transition by the
corresponding subnet. Figure 9 shows that the refinement of t+ in P N 1 by P N 2 yields a
WF-net PN3 .

The hierarchy concept can be exploited to establish the correctness of a workflow. Given
a complex hierarchical workflow model, it is possible to verify soundness by analyzing
each of the subflows separately. The following theorem shows that the soundness property
defined in this paper allows for modular analysis.

16

Theorem 3 (Compositionality) Let PN I = (PI, TI, Fd and PN2 = (P2, Tz. F2) be two
WF-nets such that TI n T2 = 0, PI n P2 = {i, o} and t+ E TI. PN3 = (P3, T3, F3)
is the WF-net obtained by replacing transition t+ in PN I by PN 2, i.e., P3 = PI U P2,
T3 = (TI \ (t+}) U T2 and

F3 = {(x, y) E FI I x -1= t+ 1\ y -1= t+} U {(x, y) E F21 {x, y} n Ii, o} = 0} U

{(x, y) E PI X T2 I (x, t+) E FI 1\ (i, y) E F2 } U

{(x, y) E T2 X PI I (t+, y) E FI 1\ (x,o) E F2 }·

For PN I, PN 2 and PN3 the following statements hold:

1. If PN3 is free-choice, then PNl and PN2 are free-choice.

2. If PN3 is well-structured, then PN I and PNz are well-structured.

3. If(PN I, i) is safe and PNI and PN2 are sound, then PN3 is sound.

4. (PN I, i) and (PN2, i) are safe and sound iff(PN3, i) is safe and sound.

5. PN I and PN2 are free-choice and sound iff PN3 isfree-choice and sound.

6. If PN3 is well-structured and sound, then PN I and PN2 are well-structured and
sound.

7. Ifet+ and t+e are both singletons, then PNI and PN 2 are well-structured and sound
iff P N 3 is well-structured and sound.

Proof.

1. The only transitions that may violate thefree-choice property are t+ (PN Il and {t E

T2 I (i, t) E F2 } (PN 2). Transition t+ has the same input set as any ofthe transitions
{t E T2 I (i, t) E F2} in PN 3 if we only consider the places in P3 n Pl. Hence, t+
does not violate the free-choice property in P N I. All transitions t in PN 2 such that
(i, t) E F2 respect the free-choice property; the input places in P3 \ P2 are replaced
by i.

2. PN I (PN 2) is well-handled because any elementary path in PN I (PN 2) corresponds
to a path in PN3.

3. Let (PN I, i) be safe and let PN I and PN2 be sound. We need to prove that (PN3, i)
is live and bounded. The subnet in PN 3 which corresponds to t+ behaves like a
transition which may postpone the production of tokens for t+ e. It is essential that
the input places of t+ in (P N 3, i) are safe. This way it is guaranteed that the states of
the subnet correspond to the states of (PN 2, i). Hence, the transitions in T3 n T2 are
live (t+ is live) and the places in P3 \ Pl are bounded. Since the subnet behaves like
t+, the transitions in T3 n (TI \ (t+}) are live and the places in P3 n Pl are bounded.
Hence, P N 3 is sound.

17

4. Let (PN j , i) and (PN2 , i) be safe and sound. Clearly, PN 3 is sound (see proof of
3.). (PN 3, i) is also safe because every reachable state corresponds to a combina
tion of a safe state of (PN j , i) and a safe state of (PN2, i).
Let (PN 3 , i) be safe and sound. Consider the subnet in PN3 which corresponds to
t+. X is the set of transitions in T3 n T2 consuming from P3 n et+ and Y is the set of
transitions in T3 n T2 producing tokens for P3 n t+ e. If a transition in X fires, then
it should be possible to fire a transition in Y because of the liveness of the original
net. If a transition in Y fires, the subnet should become empty. If the subnet is not
empty after firing a transition in Y, then there are two possibilities: (1) it is possible
to move the subnet to a state such that a transition in Y can fire (without firing tran
sitions in T3 n T j) or (2) it is not possible to move to such a state. In the first case, the
places t+ e in P N 3 are not safe. In the second case, a token is trapped in the subnet
or the subnet is not safe the moment a transition in X fires. (P N 2, i) corresponds to
the subnet bordered by X and Y and is, as we have just shown, sound and safe. Re
mains to prove that (PN j , i) is safe and sound. Since the subnet which corresponds
to t+ behaves like a transition which may postpone the production of tokens, we can
replace the subnet by t+ without changing dynamic properties such as safeness and
soundness.

5. Let PN j and PN2 be free-choice and sound. Since (PN], i) is safe (see Lemma 4),
P N 3 is sound (see proof of 3.). Remains to prove that P N 3 is free-choice. The only
transitions in PN 3 which may violate the free-choice property are the transitions in
T3 n T2 consuming tokens from P3 n et+. Because PN 2 is sound, these transitions
need to have an input set identical to t+ in P N j (if this is not the case at least on of
the transitions is dead). Since PN j is free-choice, PN3 is also free-choice.
Let P N 3 be free-choice and sound. P N j and P N 2 are also free-choice (see proof
of 1.). Since (P N 3, i) is safe (see Lemma 4), P N j and P N 2 are sound (see proof of
4.).

6. Let P N 3 be well-structured and sound. P N j and P N 2 are also well-structured (see
proof of 2.). Since (PN 3 , i) is safe (see Lemma 6), PN j and PN2 are sound (see
proof of 4.).

7. Remains to prove that if PN j and PN 2 are well-structured, then PN 3 is also well
structured. Suppose that PN 3 is not well-structured. There are two disjunct elemen
tary paths leading from x to y in P N 3. Since P N 1 is well-structured, at least one of
these paths is enabled via the refinement of t+. However, because t+ has precisely
one input and one output place and P N 2 is also well-structured, this is not possible.

D

Figure 10 shows a hierarchical WF-net. Both of the subflows (handle_questionnaire and
processing) and the main flow are safe and sound. Therefore, the overall workflow rep
resented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice
property and well-structuredness are also preserved by the hierarchical composition. The
orem 3 is of particular importance for the reuse subflows. For the analysis of a complex

18

,
Q)

,

c3 proCt1o~Lquestionnaire

,

~----'~,-,-JD-.:/".--'--=---"~l
cl handle_questionnaire c5 archive

evaluate c4 no_processing c6
KL---Jf----Q

register
o

processing_required check_processing

--
processinLNOK

Figure 10: A hierarchical WF-net for the processing of complaints.

workflow, every safe and sound subflow can be considered to be a single task. This allows
for an efficient modular analysis of the soundness property. Moreover, the statements em
bedded in Theorem 3 can help a workflow designer to construct correct workflow process
definitions.

8 Conclusion

In this paper we have investigated a basic property that any workflow process definition
should satisfy: the soundness property. For WF-nets this property coincides with liveness
and boundedness. In our quest for a structural characterization of WF-nets satisfying the
soundness property, we have identified two important subclasses: free-choice WF-nets and
well-structured WF-nets. These subclasses have desirable properties and allow for effi
cient analysis methods. Moreover, most WFMS's only support workflows characterized
by these two subclasses. Figure II illustrates the relationships between soundness and the
two subclasses.
If a workflow process is specified by a hierarchical WF-net, then the modular analysis of
the soundness property is often possible. A workflow composed out of correct subflows
can be verified without incorporating the specification of each subflow.

19

free-choice WF-nets well-structured WF-nets

sound WF-nets
WF-nets

Figure 11: The relationships between soundness, well-formedness and the free-choice
property.

The results presented in this paper give workflow designers a handle to construct correct
workflows. Although it is possible to use standard Petri-net-based analysis tools, we are
developing a workflow-analyzer which can be used by people not familiar with Petri-net
theory. This workflow-analyzer will interface with existing workflow products such as
COSA, Protos, Income and StructWare.

Acknowledgements

The author would like to thank Dr. M. Voorhoeve, Ir. T. Basten and Dr.Ir. G.J. Houben for
their valuable suggestions.

References

[1] W.M.P. van der Aalst. A class of Petri net for modeling and analyzing business pro
cesses. Computing Science Reports 95/26, Eindhoven University of Technology,
Eindhoven, 1995.

[2] W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In A. Sheth,
editor, Proceedings of the NFS Workshop on Workflow and Process Automation in
Information Systems, pages 114-118, Athens, Georgia, May 1996.

[3] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based Workflow
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of the
International Working Conference on Information and Process Integration in Enter
prises (IPIC'96), pages 179-201, Camebridge, Massachusetts, Nov 1996.

[4] K. Barkaoui, J.M. Couvreur, and C. Hutheillet. On liveness in Extended Non Self
Controlling Nets. In G. De Michelis and M. Diaz, editors, Application and Theory
of Petri Nets 1995, volume 935 of Lecture Notes in Computer Science, pages 25-44.
Springer-Verlag, Berlin, 1995.

[5] E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central

20

nwdels and their properties, volume 254 of Lecture Notes in Computer Science,
pages 168-206. Springer-Verlag, Berlin, 1987.

[6] A. Cheng, J. Esparza, and J. Pals berg. Complexity results for I-safe nets. In
R.K. Shyamasundar, editor, Foundations of software technology and theoretical com
puter science, volume 761 of Lecture Notes in Computer Science, pages 326-337.
Springer-Verlag, Berlin, 1993.

[7] J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen,
editor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in
Computer Science, pages 134--153. Springer-Verlag, Berlin, 1992.

[8] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1995.

[9] c.A. Ellis and G.J. Nutt. Modelling and Enactment ofWorkfiow Systems. In M. Aj
mone Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lec
ture Notes in Computer Science, pages 1-16. Springer-Verlag, Berlin, 1993.

[10] J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In
J.C.M. Baeten and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of
Lecture Notes in Computer Science, pages 182-198. Springer-Verlag, Berlin, 1990.

[11] J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg, edi
tor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science,
pages 210--242. Springer-Verlag, Berlin, 1990.

[12] K. Gostellow, V Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of
control in Programs Involving Concurrent Processes. ACM Sigplan, 7(11):15-27,
1972.

[13] M.H.T. Hack. Analysis production schemata by Petri nets. Master's thesis, Mas
sachusetts Institute of Technology, Cambridge, Mass., 1972.

[14] G. De Michelis, C. Ellis, and G. Memmi, editors. Proceedings of the second Work
shop on Computer-Supported Cooperative Work, Petri nets and relatedformalisms,
Zaragoza, Spain, June 1994.

[15] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541-580, April 1989.

[16] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Engle
wood Cliffs, 1981.

[17] c.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fiir instrumentelle
Mathematik, Bonn, 1962.

[18] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, 1996.

21

[19] P.A. Straub and C. Hurtado. The Simple Control Property of Business Process Mod
els. InXV International Conference of the Chilean Computer Science Society, 1995.

[20] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-
1011). Technical report, Workflow Management Coalition, Brussels, 1996.

[21] M. Wolf and U. Reimer, editors. Proceedings of the International Conference on
Practical Aspects of Knowledge Management (PAKM'96), Workshop on Adaptive
Workflow, Basel, Switzerland, Oct 1996.

22

Computing Science Reports

In this series appeared:
93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93113

93/14

93/15

93116

93117

93118

93/19

93/20

93121

93/22

93/23

93/24

93/25

93126

93/27

93128

93/29

93/30

R. van GeJdrop

T. Verhoeff

T. Verhoeff

E.H.L. Aarts
I.H.M. Karst
P.I. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

KM. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
1.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
1. HoorDan

D. Alstein
P. van dec Stok

C. Verhoef

G-J. Hauben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van dec Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. NederpeJt

R. Post and P. De Bra

J. Deogun
T. Kloks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming
methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in DEDOS, p.
32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a FormaI Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV; Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness. p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A CompositionaI Proof Theory for Fault Tolerant Real-Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minima] separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p.11.

93/31

93/32

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

94/01

94/02

94/03

94104

94105

94106

94/07

94108

94/09

W. Korver

H. ten Eikelder and
H. van Geldrop

L. Layens and 1. Moonen

1.C.M. Baeten and
1.A. Bergstra

W. Ferrer and
P. Severi

1.C.M. Baeten and
l.A. Bergstra

1. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
DAA. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.PJ. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B.W. Watson

B.W. Watson

E.J. Luit
J.M.M. Martin

T. KIoks
D. Kratsch
1. Spinrad

W. v.d. Aalst
P. De Bra
GJ. Hauben
Y. Kornatzky

R. Gerth

P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosrnalen
H.C.M. de Swart

F. Kamareddine
R.P. NederpeJt

L.B. Hartman
K.M. van Hee

J.C.M. Baeten
I.A. Bergstra

P.Zhou
1. Haoman

T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

K.R. Apt
R. Sol

O.S. van Roosmalen

1.C.M. Baeten
lA. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using directed
commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers, p. 11.

Automatic Verification of Regular Protocols in prr Nets, p. 23.

A taxomomy of finite automata construction algorithms. p. 87.

A taxonomy of finite automata minimization algorithms. p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model. p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion. p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey. p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. KIoks
D. Kratsch
H. MUller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L. Aarts
1.K. Lenstra

94116 R.c. Backhouse
H. Doornbos

94117 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94120 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B,W. Watson

94/22 B.W. Watson

94/23 S. Mauw and M.A. Remers

94124 D. Dams
O. Grumberg
R. Gerth

94/25 T. KIoks

94/26 R.R. HoogelWoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94129 J. Hooman

94/30 J.C.M. Baeten
J.A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 1.J. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. NederpeIt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Yoorhoeve

94/38 A. Bijlsma
C.S. Scholten

94/39 A. Blokhuis
T. KIoks

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching algorithms, p.
46.

Beyond ,O-Reduction in Church's).~, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular Ex
pressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving ':fCTL*, 3CTL* and CTL*, p. 28.

KLrfree and W.-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, pAD.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Ana1yzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

94/40

94/41

94142

94143

94/44

94/45

94/46

94/47

94/48

94/49

94/50

94/51

94/52

94/53

95/01

95/02

95/03

95104

95/05

95/06

95/07

95/08

95/09

95/10

95/11

95/12

D. Aistein

T. Kloks
D. Kratsch

I. Engelfriet
1.1. Vereijken

R.e. Backhouse
M. Bijsterveld

E. Brinksma
R. Gerth
W. Janssen
S. Katz
M. Poel
C. Rump

OJ. Hauben

R. Bloo
F. Kamareddine
R. Nederpelt

R. Bloo
F. Kamareddine
R. Nederpelt

J. Davies
S. Graf
B. Jonsson
a.Lowe
A. PoueH
J. Zwiers

Mathematics of Program
Construction Group

I.C.M. Baeten
I.A. Bergstra

H. Geuvers

T. Kloks
D. Kratsch
H. Muller

W. Penczek
R. Kuiper

R. Gerth
R. Kuiper
D. Peled
W. Penczek

IJ. Lukkien

M. Bezem
R. Bol
J.F. Groote

I.C.M. Baeten
C. Verhoef

J. Hidders

P. Severi

T.W.M. Vossen
M,O.A. Verhoeven
HMM. ten Eikelder
E.HL Aarts

G.A.M. de Bruyn
O.S. van Roosmalen

R. Bloo

J.C.M. Baeten
I.A. Bergstra

R,C. Backhouse
R. Verhoeven
O. Weber

R. SeJjee

S. Mauw and M. Reniers

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A-cube with classes of tenus modulo conversion,
p. 16.

On IT-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonualisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MatWpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement

Semantics of Interworkings Revised, p. 19.

95113 B.W. Watson and G. Zwaan A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

95114 A. Ponse, C. Verhoef, De proceedings: ACP'95, p.
S.F.M. Vlijmen (eds.)

95115 P. Niebert and W. Penczek On the Connection of Partial Order Logics and Partial Order Reduction Methods, p. 12.

95116 D. Dams. O. Grumberg, R. Gerth Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.

95/17

95118

95/19

95nO

95/21

95122

95/23

95/24

95n5

95n6

95127

95/28

95n9

95/30

95/31

95132

95/33

95134

95/35

96/01

96/02

96/03

96/04

96105

96/06

96/07

96/08

96/09

96/10

96111

96112

96/13
96/14

96/15

96116

S. Mauw and E.A. van der Meulen

F. Kamareddine and T. Laan

J.C.M. Baeten and J.A. Bergstra

F. van Raamsdonk and P. Severi

A. van Deursen

B. Arnold, A. v. Deursen. M. Res

W.M.P. van der Aalst

F.P.M. Dignum, W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van der Aalst

P.D.V. van der Stok, J. van der Wal

W. Fokkink, C. Verhoef

H. Jurjus

1. Hidders, C. Hoskens, J. Paredaens

P. Kelb. D. Dams and R. Gerth

WM.P. van der Aalst

J. Engelfriet and 11. Vereijken

J. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van der Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van der Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts. P.M.E. De Bra,
J.T. de Munk

F. Dignum. H. Weigand. E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis
S.H.J. Bos and M.A. Reniers

M.A. Reniers and J.J. Vereijken

P. Hoogendijk and O. de Moor

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Normalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real· Time Database Workshop. p. 106.

A Conservative Look at term Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Formal Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the full Wcalculus using Compositional
Abstractions, p. 17.

Handboek simulatie. p. 51.

Context·Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types. p. 46.

An algebraic semantics for hierarchical PfT Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

Multi·User Publishing in the Web: DreSS. A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SDL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

00D8 Support for WWW Applications: Disclosing the internal structure of
Hyperdocumepts, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tens~ Logics in Modal Pure Type Systems, p. 61
The I 2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete·Time Process Algebra, p. 139.

What is a data type? p. 29.

96117

96/18

96119

96/20

96121

96/22

E. Boiten and P. Hoogendijk

P.D.V. van der Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. NederpeJt

M.e.A. van de Graaf and GJ. Hauben

Nested collections and poiytypism, p. 11.

Real-Time Distributed Concurrency Control Algorithms with mixed time con
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

	1. Introduction
	2. Petri nets
	3. WF-nets
	4. Soundness
	5. A necessary and sufficient condition for soundness
	6. Structural characterization of soundness
	6.1 Free-choice WF-nets
	6.2 Well-structured WF-nets
	7. Composition of WF-nets
	8. Conclusion
	Acknowledgements
	References

