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Abstract

Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA
sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While
mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary
interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra
confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC)
for quantifying positional covariation with the Gutell lab’s new RNA Comparative Analysis Database (rCAD). The PEC and MI-
based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in
combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation
methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have
been identified. Analysis presented herein and at the Gutell lab’s Comparative RNA Web (CRW) Site reveal that the majority
of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although
significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals
that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair.
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Introduction

Covariation analysis, one form of comparative analysis,

identifies the positions in the RNA molecule that have similar

patterns of variation, or covariation, for all or a subset of the

sequences within the same RNA family. It was initially utilized to

predict the cloverleaf secondary structure for tRNA [1] which was

subsequently verified with high-resolution crystallography [2,3]. A

few other examples of RNA molecules that were predicted with

comparative analysis and verified with high-resolution crystallog-

raphy are the 5S, 16S, and 23S rRNA [4,5,6], group I introns

[7,8,9], RNase P [10,11,12], tmRNA [13,14], U RNA [15,16],

and SRP RNA [17,18,19]. These examples provide additional

support that comparative analysis can identify the secondary

structure for some RNAs with extremely high accuracy.

While the earliest covariation analysis methods searched for

G:C, A:U, and G:U base pairs that occur within a regular

secondary structure helix [1,20,21,22], newer more mathemati-

cally and computational rigorous methods primarily searched for

columns in an alignment of sequences for similar patterns of

variation, based on their nucleotide frequencies, regardless of the

type of base pair and the location of each putative base pair in

relation to the other base pairs [23,24,25,26]. These latter studies

had a simple and profound result. The vast majority of all base

pair types were canonical - G:C, A:U, and G:U, and these base

pairs were consecutive and antiparallel to form a regular helix.

Thus this structure agnostic method for the identification of

positional covariation had independently identified two of the

most fundamental principles of RNA structure – the two base pair

types initially determined by Chargaff [27,28], and Watson and

Crick [29], and the arrangement of these base pair types into

regular nucleic acid helical structures [29]. However, this search

for positions in an alignment with similar patterns of variation

have also identified numerous non-canonical base pair exchanges

[30,31], pseudo-knots [31,32], base triples [33,34,35], and sets of

positions with a weak network of covariations [26,33]. Thus, while

the vast majority of the nucleotide positions with a very strong

covariation form a canonical base pair within a standard helix, a

small number of significant covariations are not part of a regular

helix and do not exchange solely between canonical base pair

types.

The traditional methods to identify positional covariation

utilize the nucleotide frequencies for each of the base pair types.

While this approach has been very successful, as discussed

earlier, the phylogenetic relationships between the sequences can

enhance the sensitivity for the determination of the number of
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mutual changes that have occurred during the evolution of the

RNA. Our confidence in one of the first putative helices that

forms a pseudo knot was significantly bolstered when we

determined that several of the same base pair types (e.g. A:U,

G:C) had evolved multiple times in the evolution of the 570/866

base pair in 16S rRNA [32], thus increasing the likelihood that

these two positions with similar patterns of variation did not

occur by chance. Accordingly, our analysis of the sequences in

hairpin loops with four nucleotides (commonly called –

tetraloops) revealed hairpin loops in the 16S rRNA that

frequently changed between GNRA, UUCG, and CUUG [36]

during the evolution of the rRNA. Thus the evolutionary history

of the sequences and the positions within the sequences is

another dimension of information that enhances the resolution

and alternative interpretations of the covariation analysis. For

these two studies published in 1986 and 1990, the numbers of

phylogenetic events - coordinated changes during the evolution

of the RNA, were counted from a visual inspection of the data.

However, new computational methods are essential to automat-

ically identify covariations based on phylogenetic relationships.

Several papers have been presented that identify covariations

based on modeling phylogenetic relationships [37,38,39].

The Gutell lab developed a novel and sophisticated multidi-

mensional relational database system for the comparative analysis

of RNA. This system was named rCAD – RNA Comparative

Analysis Database [40]. It integrates and cross-indexes several

dimensions of information for storage, retrieval, and analysis.

While this infrastructure has multiple applications for the analysis

of the structure, function, and evolution of RNA, for the objectives

of this study, we have utilized rCAD to determine the changes at

each position in the RNA molecule during its evolution. This

Phylogenetic Event Counting (PEC) method traversals the

phylogenetic tree hierarchy and measures the significance of

covariations between two positions. A Joint N-Best method and a

Helix-extension procedure are utilized to enhance the identifica-

tion and accuracy of identification of the structural constraints

present in the sequence alignment. A comparison between our

PEC based method and other covariation methods reveals that

while PEC is overall superior in the identification of base pairs, MI

based methods identify unique base pairs, and they jointly identify

many other base pairs. Both types of methods, when applied

simultaneously identifies even more base pairs than either method

by themselves. And last, these covariation methods also identify

other types of constraints in an RNA structure.

Results

1. Conceptual Overview of the Methods Used in Analysis
1.1. The phylogenetic event counting method. The

overall analysis workflow of the Phylogenetic Event Counting

method (PEC) is shown in Figure 1. The four primary forms of

data are: (1) metadata, including functional information about

sequences and structures; (2) sequences and sequence alignment;

(3) higher-order structure and (4) evolutionary/phylogenetic

relationships between the sequences and structures are stored

and analyzed in rCAD (Figure 1A & 1B). For each pair of positions

under consideration, the nucleotides are mapped onto the

phylogenetic tree (Figure 1C). A tree-traversal from leaf nodes to

root counts all positive events (both position change from child

node to its direct parent node) and negative events (only one

position changes) (Figure 1D). The nucleotides of ancestor nodes

are determined by using maximum parsimony strategy. However,

to avoid bias caused by repeat sampling in certain branches, each

type of pair of child nucleotides is counted only once. For example,

ancestor node is {U:A}, child nodes contain U:A which occurs 10

times, A:U which occurs 2 times, A:C which occurs 1 time. The

A:U pair will be counted only once as positive events regardless of

its actual occurrence. Thus we minimize the observed events in

our analysis to assure high confidence. The pseudo code of PEC

algorithm is described in Figure S1. The covariation between two

positions is determined by calculating the Covariation Percentage

of Events (CPE), the ratio of positive events to the total number of

events (positive and negative) (Details in Method section).

1.2. Base pair identification process. The analysis proce-

dure that reveals structural constraints of RNA molecules is

presented in Figure 2. Base pairs with covariations are identified

with a Joint N-Best strategy which measures the significance of

covariation score between the two positions, followed by a helix

extension procedure to further improve the sensitivity (Process

colored blue in Figure 2).

The N-Best strategy was initially used with mutual information

(MIxy) on a set of tRNA sequences [26]. MIxy values increase for

similar extents of covariation as the entropy value decreases (ie.

increases in variation, the MIxy values should be standardized for

the different entropy values). A simple method to approximate this

is to rank the positions with the highest mutual information scores,

or covariation for each individual position. For the majority of

base pairs in the comparative structures for the tRNAs [26], the

positions that form a base pair with the cardinal position number

usually has a MIxy value significantly higher than the MIxy values

for the other ranked positions.

This standardizes the covariation scores by first ranking the

positions with their MIxy values, followed by the calculation of a

ratio value of the second highest covariation score to the highest

score. Our confidence in the prediction of a base pair is

proportional to the difference between the two positions with the

largest values. The likelihood that position X is base paired to

position Y is further enhanced when the position with the highest

score for X is Y, and when the position with the highest score for Y

is X. This Joint N-Best with PEC method (PEC/JN-Best) improves

the sensitivity and accuracy of the base-pair identification (see the

Method section). Pairs of positions satisfying a predefined N-Best

threshold (#0.5) are considered as base pair candidates with

significant covariations.

The amount of covariation is directly proportional to the

amount of variation in a sequence alignment. Figure S2 reveals the

relationship between the overall variation in the bacterial 16S

rRNA alignment and the amount of variation in three categories

in the secondary structure: 1) both positions involved in base pairs,

2) one of the two base paired positions, and 3) the unpaired

positions.

This variation/covariation analysis reveals that more conserved

positions are less likely to be identified as a base pair with

covariation methods than positions that have more variation (ie –

no variation, no covariation). Since our objective is to identify all

of the secondary structure base pairs, the base pair candidates

identified with Joint N-Best strategy are used as the nucleation

pairs in the helix extension process. The helix extension increases

the length of a putative helix with G:C, A:U, and G:U base pairs

that are 1) adjacent and antiparallel with the nucleation pair and 2)

occur in at least 85% of the sequences. A less quantitative version

of this helix extension was first applied in the original Noller-

Woese 16S and 23S rRNA secondary structure models [20,41]. A

helix with the maximal number of G:C, A:U, and G:U base pairs

was formed when at least one base pair had a covariation. As more

16S and 23S rRNA sequences were determined, some of the

extended base pairs from the nucleation base pair were removed

when the two positions did not have similar patterns of variation

Covariation Analysis of Ribosomal RNA
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while the majority of the extended base pairs did have similar

patterns of variation in alignments that contained more sequences

[6,25]. Our confidence in a predicted base pair is directly

proportional to the amount of covariation. Thus, we have less

confidence in those base pairs that have minimal or no

covariation.

The high-resolution crystal structure of the T. thermophilus 30S

ribosomal subunit (PDBID: 1J5E) which contains the 16S rRNA

and E. Coli 50S ribosomal subunit (PDBID: 2AW4)are the

reference structures for this study. All identified covariant pairs are

categorized as either true positives (annotated in the reference

crystal structure) or false positives (not annotated in the reference

crystal structure).

1.3. Neighbor effects identification process. Previous

analysis has revealed that when two positions in a sequence

alignment have very similar patterns of variation, as gauged with a

high covariation score, those positions usually form a base pair in

the RNA higher-order structure. However as the extent of

positional covariation decreases, our observations here and in

our previous analysis [26,33] reveals that some pairs with lower

covariation scores form base pairs, and others do not. While the

full significance of these observations have not been determined,

we have observed that the positions in these clusters of significant

but lower covariation scores are usually very close with one

another in the three-dimensional structure with the traditional,

covariation methods, hereafter named neighbor effects [33,42].

Figure S3 shows that the highest covariation score for the

majority of all positions that are base paired is significantly higher

than the position with the second best score (example of

nucleotides 3 in tRNA are presented in S3a left side, while the

overall picture are shown in S3b). However, the highest

covariation value for some base pairs is lower while the set of

next highest positions are closer to the highest (see Figure S3a right

side and Figure S4).

Figure 1. The highlight and underlying concepts of the PEC based covariation analysis in rCAD. A: data source; B: multi-dimensional
data; C: mapping the substitutions; D: counting the positive and negative events.
doi:10.1371/journal.pone.0039383.g001

Figure 2. The flowchart of analysis in the identification of base-pairs and neighbor effects.
doi:10.1371/journal.pone.0039383.g002
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We identify a set of ‘‘neighbor effects’’ using a standard one-

directional N-best method with some covariation and structural

constraints (Process colored green in Figure 2, details in the

Method section).

2. Application of the Methods on Datasets
2.1. The datasets used and the strategy of reducing the

number of pairwise comparisons. Three data sets are used

in this analysis: a bacterial 16S rRNA sequence alignment

containing 4142 sequences with 3236 Columns (Dataset S1); a

bacteria 5S rRNA alignment containing 2088 sequences with 333

columns (Dataset S2); and a bacteria 23S rRNA alignment

containing 2339 sequences with 7330 columns (Dataset S3). The

sequences in this analysis include organisms from most of the

major branches of the bacterial phylogenetic tree (details in Table

S1).

The significance of this covariation analysis is dependent on the

accuracy of the alignment of sequences. We have utilized

alignments from the Comparative RNA Web (CRW) Site [6].

These alignments are the culmination of more than twenty years

of refinement. Starting with sequences that have sufficient

sequence identity, covariation analysis was used to predict the

early secondary structure models that were subsequently used to

refine the alignment in parallel with the addition of more

sequences. Additional covariation analysis with more sophisticated

algorithms were used to refine the secondary structure in the

regions of the rRNA that are present in all of the sequences,

regions present in just the major phylogenetic domains (ie.

Archaea, Bacteria, and Eucarya), present in sub-branches within

these three domains, etc. This process resulted in secondary

structure models that are very accurate. A total of 97–98% of the

base pairs predicted with comparative analysis are in the high-

resolution crystal structure [43]. This high accuracy substantiates

the accuracy of the sequence alignments and the subsequent

covariation analysis. A more detailed description of the alignment

of RNA sequences have been published [6,25,30].

The Escherichia coli [44] is the typical reference sequence for 5S,

16S, and 23S rRNA comparative structure models. The high-

resolution three-dimensional structure for Thermus thermophiles 30S

ribosomal subunit [5] is utilized in the analysis of the 16S rRNA

while the high-resolution structure for Escherichia coli 50S ribosomal

subunit [45] is used in the analysis of the 5S and 23S rRNA. The

sequences in these crystal structures are used as the reference

sequences. To expedite the phylogenetic event counting method,

only those pairwise positions that have the likelihood of having a

significant covariation were analyzed. The process of selecting

those sets of positions is illustrated for 16S rRNA. This sequence

has 1521 nucleotides, while the alignment contains 3,236 columns.

Every column in the alignment is analyzed with every other

column. Thus the total number of pairwise comparisons is

5,234,230. The time complexity of PEC algorithm on this dataset

scales to O(4.461010). The PEC algorithm requires a significant

amount of time to transverse the entire phylogenetic tree and

count the number of changes during the evolution of the RNA.

Since the positions with similar conservation scores have the

higher probability to have good covariation score (details in Figure

S5), the number of pairwise comparison calculations is reduced

significantly by analyzing only those sets of positions with similar

conservation scores., Therefore a coarse filter is applied to reduce

the number of pairwise comparison to 14,276 ([46], details in

Method section, a complete list in Table S2).

2.2. Performance comparison of different covariation

methods in the identification of base pairs. The perfor-

mance of our PEC method in the identification of real base pairs -

is compared with other published methods using the bacterial 5S,

16S, and 23S rRNA alignment data sets. The percentage of

predicted base pairs that are present in the crystal structures are

measured as a function of rank order using a variety of methods:

PEC, MIxy [24,26], MIp [47], OMES [48], ELSC [49], and

McBASC [50]. In addition to the methods that are used here to

evaluate the performance of our PEC method, we also tried to

evaluate several other programs including PSICov [51], Direct

information (DI) [52], RNAalifold [53], RNAfold [54,55], Pfold

[56,57]and Evofold [58]. However, these programs are either not

suitable for the prediction of higher-order structure of RNA with

covariation analysis or they are unable to operate on the large

alignments used in our study.

The precision of top N ranked prediction plot, utilized in several

similar covariation analysis studies [47,51,59,60] to gauge the

precision of several covariation methods, is shown in Figure 3.

These plots reveal the fraction of pairs with ranked N or higher in

each data set that are the contacting base pairs in the crystal

structures. For the 16S rRNA alignment (Figure 3B), the PEC

method performs better than Mixy and MIp, and significantly

better than ELSC, OMES, and McBASC. For the 5S and 23S

rRNA alignments, PEC and the MIp have higher values that are

similar with one another, while the values for the ELSC, OMES,

and McBASC methods are considerably lower (Figure 3A and

3C). The total event (positive events plus negative events) measures

the total number of changes on a pair of positions throughout their

evolution. Adding the total event threshold (e.g. .=10) reduces

background noise and improves the accuracy of PEC method. As

shown in Figure 3A and 3B, PEC with total events threshold

achieves higher accuracy than PEC without total events threshold.

However, that performance of PEC with or without total events

threshold is exactly the same on the 23S rRNA data set

(Figure 3C). Overall while the PEC method is superior, MIp is

the second best method in identifying base pairs.

2.3. Application of joint N-best. The precision of top N

ranked curve plot in Figure 3 reveals that the PEC, MIp, and

MIxy methods are the top 3 solutions for our data sets. Mutual

information (MIxy) measures the dependence between two

positions in the RNA sequence alignment. It was first introduced

for the identification of base pairs in RNA [24,26]. Lindgreen et al.

evaluated 10 different mutual information based methods for the

identification of covariations in RNA alignments [61]. While they

demonstrated that the standard implementation of MIxy is a good

measure for the prediction of base pairs in the secondary structure,

several variations of the simple implementation improved the

prediction of the base pairs. Additional improvements in the

implementation of Mixy [47] utilized a method (MIp) that

estimates the level of background mutual information for each

pair of positions. After removing the background and introducing

a Z-score (MIp/Z-score), Dunn et al. [47] have determined that

their MIp/Z-score method identified substantially more co-

varying positions than other existing mutual information based

methods.

In our analysis, we use Joint N-best algorithm to determine

the significance of the covariation scores calculated in different

methods (details in Methods section). The Joint N-best

algorithm is used with PEC, MIxy, and MIp methods (PEC/

JN-Best, MIp/JN-Best, MIxy/JN-Best). The recommended

(default) cutoff value of N-best score is 0.5. We also make a

conversion from MIp to Z-score (MIp/Z-score) with the

recommended Z-score cutoff as comparison [47].

The PEC/JN-Best, MIxy/JN-Best and MIp/JN-Best methods

are used on the 5S, 16S and 23S rRNA data sets. For the 16S

rRNA (Figure 4), the PEC/JN-Best method identifies 186 real

Covariation Analysis of Ribosomal RNA
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base-pairs (true positives) with only 8 false positives (95.9%

accuracy), while the MIxy/JN-Best identifies 121 true positives

with 3 false positives (97.6% accuracy). The MIp/Zscore method

identifies 127 true positives however the number of false positives –

27 decreases the accuracy (82.5%). Utilizing the Joint N-Best

method with the MIp (MIp/JN-Best) increases the number of true

positives to 147 and decreases the number of false positives to 6.

This MIp/JN-Best method identifies all but one pair found by

MIxy/JN-Best. Thus, with the default N-best cutoff (0.5), the

PEC/JN-Best method has higher sensitivity and accuracy than

MIxy/JN-Best and MIp/JN-Best in detecting covariant base pairs.

Since MIp/JN-Best method identifies all of the pairs found by

the MIxy/JN-Best method except for the pair 150:159 (Thermus

thermophiles numbering), we combine the non-redundant pairs

identified in both methods. These pairs are referred as identified

by Mutual Information Based Measure with Joint N-Best (MI/JN-

Best).

The real base-pairs (true positives) identified by PEC/JN-Best

and MI/JN-Best methods are plotted onto the 16S rRNA

secondary structure diagram (Figure 5). The distribution of base

pairs only identified by PEC/JN-Best, only by MI/JN-Best, and by

both methods are: 95 (red), 57 (green) and 91 (yellow). The total

number of base pairs identified is 243. The ratio of the number of

base pairs that are uniquely identified with PEC/JN-Best and MI/

JN-Bes is 62.5%.

A general comparison of these methods for 5S, 16S, and 23S

rRNA (Table S3) reveals: 1) while both PEC/JN-Best and MI/

JN-Best identifies base pairs not identified with the other

method, both methods also identified many of the same base

pairs, 2) MIp/JN-Best was superior to the MIp/Z-score for the

Figure 3. The precision of top N ranked prediction plot with different covariation methods in the identification of base pairs using
different data sets. A: 5S rRNA data set; B: 16S rRNA data set; C: 23S rRNA data set.
doi:10.1371/journal.pone.0039383.g003

Figure 4. The number of true positives and false positives identified in different methods.
doi:10.1371/journal.pone.0039383.g004
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16S rRNA with the default settings, and 3) MIp/JN-Best

identifies a larger percentage of the base pairs found with by

MIxy/JN-Best.

2.4. Identification of highly conserved base pair with

helix-extension strategy. The sum of non-redundant predict-

ed base pairs by PEC/JN-Best and MI/JN-Best methods in 5S,

16S, and 23S rRNA datasets are used as nucleation pairs in the

helix-extension procedure. Extended pairs are composed of the

nucleotides that are adjacent and antiparallel to the nucleation

pair. All extended pairs have more than 85% WC/Wobble base-

pair nucleotides in the alignment. Additional base pairs that satisfy

this helix extension threshold continue to be added to this

extending helix until they fail the extending threshold. A complete

list of pairs involved in helix extension is shown in Table S4. For

16S rRNA data set (Figure 6 left), the total number of base pairs

added with the helix extension is 160; 129 of these are present in

the crystal structure, while the 31 false positives primarily occur at

the end of helices. The nucleation and extended pairs are mapped

onto the secondary structure diagram of T. thermophilus 16S rRNA,

as shown in Figure 7. The number of nucleation pairs with PEC/

JN-Best and MI/JN-Best, the extended pairs in the helix

extensions - and the secondary structure diagrams are shown in

Figure 6 (middle and right), and Figure S6 respectively. This result

demonstrates that with a collection of high-quality nucleation

pairs, the helix extension strategy is accurate and sensitive in the

identification of highly conserved base pairs. The successful

application of this Helix-extension method onto the 5S and 23S

rRNA data sets further substantiates this conclusion (A complete

list in Table S4).

2.5. The purity of the secondary and tertiary structure

base pairs in the crystal structure compared with the

conservation scores. Most of the base pairs identified are part

of the secondary structure. Of these, 240 are identified with the

Joint N-best analysis and 127 are found with the helix extension

procedure for the 16S rRNA data set (represented as closed circle

in Figure 7). Only a few tertiary structure base pairs are identified:

3 in Joint N-best and 2 in helix extension procedure (represented

as open circle and get highlighted by arrows in Figure 7).

A quantitative and graphical analysis illustrates the general

observation noted in the previous paragraph – secondary structure

base pairs usually have strong covariation between the two

nucleotides that form that interaction while the majority of the

tertiary structure base pairs have weak or no covariation between

the two nucleotides that form that interaction. The purity score – a

measure of the precision of covariation (details in Method section

and Figure S7), is plotted against the conservation score (or

informational entropy, see Method section) for the two positions

that form a base pair (Figure 8). This analysis was performed for

the 16S rRNA comparative secondary structure and the high

resolution crystal structure for Thermus thermophilus 16S rRNA. For

both of these molecules, two plots were created, the first for the

unaltered purity score and the second for purity scores adjusted for

G:U base pairs (see Methods section; Figure 8). Base pairs in the

bacterial 16S rRNA dataset range from highly conserved to highly

variable in the comparative and crystal structures. The overall

results from these plots are as expected: (1) The majority of the

secondary structure base pairs are at or very close to a purity score

of 1; (2) Many of the base pairs with a lower absolute purity score

increase their GU-plus score to or near 1, indicating that many of

the base pairs associated with these lower purity scores involve a

G:U base pair; (3) The majority of tertiary structure base pairs do

not have the highest purity scores, indicating that many of

positions that form tertiary base pairs have no covariation, or some

covariation with many exceptions, consistent with our previous

observation [43] [http://www.rna.ccbb.utexas.edu/SAE/2A/

xtal_Info/16S/Index].

2.6. The identification of ‘‘neighbor effects’’. As shown

in earlier sections of this manuscript and previous studies [37,38],

phylogenetic event-based covariation methods have the potential

to identify covariations that are not observed with the traditional

methods.

The covariation values for the highest and second highest

positions for the base pairs identified in our PEC/JN-Best method

are significantly different (threshold value of 0.5, see ‘‘The Joint N-

Best strategy’’ in the Methods section). These base pairs are

analogous to the tRNA base pair 3:70 in Figure S3a left side.

However the difference between the highest and the set of next

highest positions in our Bacterial 16S rRNA dataset are smaller for

numerous positions, analogous to Figure S3a right side and Figure

S4. As first defined in [26], positions with these characteristic

covariation values are referred to as neighbor effects, and are

usually physically close to one another. Neighbor effects are

defined herein as those positions with the N-best scores exceeding

a predefined threshold of $0.85 (see Methods section) and are in

close proximity. For this manuscript, the physical distance is

minimal for those positions that are defined to be a neighbor

effect. This criterion is satisfied for those positions with at least 10

phylogenetic events (Figure S8).

With this criteria, 89 neighbor-effect pairs are identified and

plotted onto the secondary structure diagram of T. thermophilus

16S rRNA (Figure 9, a complete list in Table S5). Among the

89 neighbor effect pairs, 15 have hydrogen bonding between

the nucleotides in the 16S T. Thermophilus rRNA crystal

structure (8 secondary base-pairs, 4 tertiary base-pairs and 3

base-triples). These are colored green in Figure 8. The

remaining 74 pairs do not form hydrogen bonds between the

bases. These are colored red. Of the 89 neighbor effects pairs,

only four (686:905, 686:930, 686:1209 and 686:1371, T.

thermophiles numbering) are separated by more than 30 Å. The

average distance between these neighbor effects is 8.8265.91 Å.

Most of these neighbor effects involve nucleotides that are either

consecutive on the sequence, each nucleotide of the pair are on

opposite sides of a helix, adjacent to two nucleotides that form a

base pair, or involve a nucleotide in a loop and a nucleotide in

a helix that is very close to the loop. Our analysis of the 5S and

23S rRNA datasets also revealed neighbor effects using the

same parameter setting (complete list in Table S5).

This observation reveals that nucleotides that do not form a

base pair can influence the evolution of other nucleotides that are

physically close with one another. While the complete structural

and functional significance of these neighbor effects remains to be

determined, several studies have revealed that: 1) nucleotides

associated with base triples and in proximity to these base triples in

and near the D stem in tRNA and group I introns have

moderately high covariation values [26,33] (see Figure S4), 2)

experimental studies of the ribosome reveal that the D stem in

tRNA is dynamic during protein synthesis [62,63].

Figure 5. The base pairs (true positives) identified by PEC/JN-Best and MI/JN-Best are plotted onto the T. thermophiles 16S rRNA
secondary structure diagram. Red: base pairs only identified by PEC/JN-Best; Green: base pairs only identified by MI/JN-Best; Yellow: base pairs
identified by both methods.
doi:10.1371/journal.pone.0039383.g005
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Two other research groups have determined covariations by

modeling phylogenetic relationships in bacterial 16S rRNA

[37,38]. A comparison of our results with their new covariations

revealed that: 1) A few new pairings were identified with both

methods; 2) Some of the nucleotides with a covariation identified

with their methods are separated by a minimal distance (ie.

neighbor effect) while other nucleotides are separated by a much

larger distance in the high-resolution crystal structure. A detailed

assessment of the similarities and differences are presented in

Table S6.

Discussion

Utilizing the Evolution of the RNA Structure to Improve
the Covariation Methods
Our previous work, presented many years ago revealed that

the sensitivity and accuracy of the covariation analysis can be

enhanced with the evolutionary history of the RNA [32]. Our

analysis of tetraloops in 16S rRNA revealed that this hairpin

with four nucleotides that caps a helix can evolve from one

common form of the tetraloop to another many times during

the evolution of the RNA [36]. This temporal dimension of the

RNA structure can distinguish divergent and convergent

evolution of specific regions of the RNA. For these studies,

the number of times these positions changed during their

evolution was determined after the base pairs and tetraloop

were identified. While our preference is to utilize the

evolutionary history of the positions in the RNA to identify

these base pairs and other structural elements, monitoring these

temporal changes is a significant computational challenge.

Two groups have modeled the evolution of each position in

RNA to identify positional covariation with some success

[37,38]. The Gutell lab’s new RNA Comparative Analysis

Database [40,46] cross-indexes data from each of the dimen-

sions onto the other dimensions. This creates the opportunity to

perform several types of novel analysis, including the phyloge-

netic event counting used for the covariation analysis presented

in this manuscript.

Implementing a Phylogenetic Event Counting Method,
and it’s Overall Comparison with Mutual Information
Analysis presented here reveals that overall our Phylogenetic

Event Counting method (PEC) is superior than other methods in

the identification of base pairs (Figure 3).PEC/JN-Best is more

sensitive and accurate than the mutual information based methods

that do not utilize the evolution of the RNA in its calculation (see

Figures 4), though it does not identify all pairs identified by mutual

information based methods (see Figure 5). The modified MIxy

method – MIp, when integrated with the JN-Best method,

improves the initial mutual information method. The ratio of

the number of base pairs that are uniquely identified with PEC/

JN-Best and MI/JN-Bes is 62.5% in the 16S rRNA data set

(Figure 5) and 76.0% for the three rRNAs (Table S3). Thus the

combination of these two covariation methods results in a

significant increase in the number of base pairs found. It also

demonstrates that the Joint N-Best also improves the sensitivity

and accuracy. Of the base pairs identified with covariation

analysis, the vast majority occur in secondary structure helices. A

few of the base pairs identified with covariation analysis are in the

tertiary structure, this includes non-canonical base pairs, psueu-

Figure 6. For each method, the number of true positives and false positives identified in the Joint N-Best calculation (nucleation
pairs), following helix extension procedure (extended pairs), and sum of them are shown as a stacked histogram.
doi:10.1371/journal.pone.0039383.g006
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Figure 7. Base pairs in the Bacterial 16S rRNA structure model that are identified with the helix extension method. Red: true positive
base-pairs identified as the sum of PEC/JN-Best and MIxy/JN-Best methods, which are used as nucleation points in the helix extension Magenta: false

Covariation Analysis of Ribosomal RNA

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39383



doknots, and base pairs that begin to fold the secondary structure

into a three-dimensional structure [30].

Prediction of Base Pairs with Empirical Rules for RNA
Secondary Structure – Helix Extend
An assessment of the conservation diagrams of the three

primary forms of life – Bacteria, Archaea, and Eukaryotes

[http://www.rna.ccbb.utexas.edu/SAE/2B/ConsStruc/]] reveals

a significant amount of sequence conservation within each

major phylogenetic domain. Many positions in the bacterial 5S,

16S and 23S rRNA sequences analyzed in this paper that are

base paired in the comparative structure model have no

variation and no covariation, thus the rationale for the helix

extension method (see Figure 6 and 7, Table S4). However, as

the number of sequences, and the diversity among those

sequences increased, we have determined that nearly every base

pair does have a covariation for datasets that include the

Bacteria, Archaea, Eukaryotic nuclear encoded and the two

Eukaryotic organelles. For the later studies, different sets of

alignments – (1) Bacteria, (2) Archaea, (3) Eukaryotes, (4)

Bacteria, Archaea, Eukaryotic nuclear encoded, (5) nuclear

encoded Bacteria, Archaea, Eukaryotes plus their two organelles

– Mitochondria and Chloroplasts – were analyzed to identify

covariation for nearly every base pair in the 16S and 23S

rRNA structure model [6,43] [http://www.rna.ccbb.utexas.edu/

SAE/2A/nt_Frequency/BP/16S_Model].

positives in the nucleation pairs; Blue: true positive base-pairs identified with the helix-extension method; Yellow: false-positive pairs identified with
the helix-extension method. Secondary base-pairs are represented by closed circles while tertiary base-pairs are represented by open circle and
highlighted with arrows.
doi:10.1371/journal.pone.0039383.g007

Figure 8. The distribution of purity score and average conservation (or informational entropy) for the two nucleotides that form a
base pair in the 16S rRNA comparative structure model (A), secondary structure base pairs in crystal structure (B), and tertiary
interactions in crystal structure (C).
doi:10.1371/journal.pone.0039383.g008
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Figure 9. The secondary structural diagram of T. thermophilus 16S rRNA reveals all identified neighbor effects. Red lines connecting
nucleotides indicate non base-pairing interactions. Green lines represent the base-pairs or base-triples identified as neighbor effects.
doi:10.1371/journal.pone.0039383.g009
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The Purity of the Covariation between the Two Positions
that Form a Base Pair, and the Identification Neighbor
Effects - Weaker Covariations between Positions that do
not form a Base Pair
The purity of these covariations that underlies the prediction of

a base pair range from an absolute 1:1 relationship (ie. only base

pairs with a strict covariation are found at a specific location in the

structure, e.g. 60% G:C and 40% A:U) to base pairs with an

increase in the number and types of exceptions (e.g. 50% G:C,

30% A:U, 10% G:U, 5% A:C, 3% A:A and 2% G:G). While our

confidence in the prediction of a base pair is higher when the

covariation is very pure, the prediction of a base pair becomes

increasingly more difficult as the purity of the covariation

decreases (see Figure 8). While the pairs of positions with the

strongest covariation scores are nearly always base paired in the

RNAs higher-order structure, many base pairs have a lower

covariation score. Some of the pairs of positions with similar

covariation scores do not form a base pair. Instead due to their

close proximity in the high-resolution three-dimensional structure,

they form a neighbor effect [26,33] (see Figure 9 and Table S5).

While a complete understanding of these neighbor effects are not

known, it has been observed that some neighbor effects in tRNA

and group I introns are involved in base triple interactions [26,33]

and could be involved in the fine tuning of tRNA structure in

protein synthesis [62].

The Majority of the Nucleotides that Form Base Pairs in
the Tertiary Structure do not Covary with One Another
The prediction of an RNA structure with comparative

analysis has one primary underlying assumption – the sequences

within the same RNA family will fold into the same general

secondary and three-dimensional structure. However, while base

pairs are predicted when both positions in an alignment have

the same pattern of variation, it was implicitly assumed that the

sets of nucleotides that form each of the base pairs in an RNAs

secondary and tertiary structure will have similar patterns of

variation. Our previous analysis of the high-resolution three-

dimensional structure revealed in detail at the Gutell lab’s

Comparative RNA Web (CRW) Site [http://www.rna.ccbb.

utexas.edu/SAE/2A/nt_Frequency/BP/] and substantiated

more recently [62] that the vast majority of the sets of

nucleotides that form tertiary structure base pairs do not have

similar patterns of variation. Thus while we want to identify all

of the base pairs in an RNAs higher-order structure with

comparative analysis, the current form of covariation analysis

will not identify a high percentage of the tertiary structure base

pairs for several reasons: 1) While the different base pair types

that covary with one another can form similar conformations

when two positions in an alignment have similar patterns of

variation (e.g. G:C ,-. A:U ,-. U:A ,-. C:G; C:C ,-.

U:U; A:G ,-. G:A; etc.), base pair types that do not covary

with one another (e.g. G:A ,-. A:A) can also form a similar

conformation [33,64,65,66]. Usually the conformations of the

base pair types that do not covary with one another are unable

to form within a secondary structure helix due to their non-

helical backbone conformation. In contrast the local structure

flanking most of the tertiary structure base pairs can

accommodate the non-helical backbone conformation associated

with base pair types that do not covary with one another; 2)

Analysis of the high resolution crystal structure of different

tRNAs revealed that similar three-dimensional structures of the

tRNA form with different sets of tertiary structure interactions

[33]. Thus while sets of analogous positions in the RNAs in the

same family usually form base pairs in a secondary structure

helix, sets of analogous positions do not always form a tertiary

structure interaction; 3) Analysis of the high-resolution crystal

structures for the rRNAs during different stages of protein

synthesis reveals that the secondary structure remains the same

to a first approximation. However the ribosome, and for this

discussion, the rRNA, is dynamic. The movement is associated

with changes in the tertiary structure interaction [67].

In conclusion, we have developed a more sophisticated

phylogenetic event counting based method, utilizing the Gutell

lab’s new rCAD system. This method in combination with the

enhanced mutual information and helix extension methods creates

a suite of programs that are superior to existing programs. It has

greater sensitivity and accuracy for the identification of the

maximum number of secondary and other higher-order base pairs,

and the identification of neighbor effects.

Methods

Phylogenetic Events Counting (PEC) Method and rCAD
System
Given a set of sequences that are properly aligned to form a

high quality multiple sequence alignment (MSA) and phylogenetic

relationships between all of the sequences in the MSA, the

phylogenetic event counting (PEC) method gauges the evolution of

RNA to determine two or more positions in a sequence alignment

that have similar patterns of variation. A base pair in the RNAs

secondary structure is usually associated with the two positions

with a strong covariation. The pseudo code of the PEC algorithm

is in Figure S1. The phylogenetic relationships are obtained from

the taxonomy tree at NCBI (ftp://ftp.ncbi.nih.gov/pub/tax-

onomy/).

The nucleotides of each pair of positions are mapped onto the

phylogenetic tree according to the phylogenetic information. A

tree-traversal from leaf nodes to root counts all types of changes

throughout evolution. The NCBI tree is not a binary tree since

each node may have more than two child nodes, therefore a

standard variation of Fitch’s maximum parsimony approach

adapted for non-binary tree is used to determine the nucleotides

of ancestor nodes. The nucleotides of ancestor nodes (equality set)

are determined as the type of pair occurring most frequently in all

sequences within the sub-tree rooted at that node. Each type of

child nucleotide pair, which is different from the equality set, will

be counted as a positive event (both positions changed) or a

negative event (only one position changed) according to the

definition. To avoid bias caused by repeat sampling, each type of

child nucleotide pair will only be counted once regardless of its

number of occurrence. As a consequence, we only consider the

minimum number of variations. The Covariation Percentage of

Events (CPE) is calculated as the sum of positive events divided by

the sum of positive and negative events. High CPE score indicates

strong covariation between the two positions.

The PEC method is implemented on the Gutell lab’s RNA

Comparative Analysis Database (rCAD) system. This system stores

and cross-indexes multiple dimensions of information including

raw RNA sequence, multiple sequence alignment, structure and

phylogenetic information [40,46]. This system supports SQL

statements accessing individual rows, columns and cells in an

alignment as well as RNA structure and taxonomy information. It

provides the basis for novel analysis of the fundamental structural

characterizations of RNA, such as covariation analysis and

structural statistics at the Gutell lab’s Comparative RNA Web

(CRW) Site (http://www.rna.ccbb.utexas.edu/SAE/2D/index.

php).
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Other Covariation Measures
Standard Mutual information (MIxy) is utilized here as a measure

for the coordinated or compensatory mutations between two

positions. It has been used in several previous studies of RNA

[24,26,38,68]. The MIxy between column x and column y in the

alignment is calculated as

MI x, yð Þ~
X

M, N A, C, G, Uf g

Pr Mx, Ny

� �

� ln
Pr Mx, Ny

� �

Pr Mxð Þ � Pr Ny

� � ð1Þ

where Pr(Mx,Ny) is the joint probability function of nucleotide M

and N from column x and y, and Pr(Mx) and Pr(Ny) is the marginal

probability for a nucleotide (M or N) in column x and y.

An advanced mutual information based method (MIp) was

presented by Dunn et al in 2008 [47]. This method estimates the

background for each pair of positions, and uses it to remove the

influence of entropy and phylogeny. The resulting corrected

mutual information (MIp) improves the base-pair identification.

We repeated the MIp calculation process described in their

research.

An independent method OMES measures the difference

between the expected and observed nucleotides frequency for a

pair of columns [48]. It is implemented using the formula:

OMES~
{

Px
i N0{Neð Þ2

Nt

ð2Þ

Where N0 is the observed number of di-nucleotides in a pair of

positions, Ne is the expected number, N is the total number of

possible di-nucleotide pairs, and Nt is the total number of

sequences in the alignment.

The calculation of McBASC [50] and ELSC [49] is

implemented using the code provided by the authors (http://

www.afodor.net/).

The Joint N-Best Strategy
In 1992, a simple ranking of the highest to lowest mutual

information values for tRNA revealed that the top 19 pairings are

base pairs in the tRNA secondary structure [26]. And the 20th

pairing was a tertiary base pair. However many pairings that are

not base paired in the tRNA higher-order structure have higher

mutual information values than several of the base pairs in the

tRNA secondary structure model. It was determined that the

mutual information score has an association with Shannon’s

information entropy [69]; The mutual information between two

positions is the difference between the sum of the entropies of

those two positions minus the joint entropy [http://sciencehouse.

wordpress.com/2009/08/08/information-theory/]. At one ex-

treme, a position that only has one type of nucleotide has the

minimum entropy (i.e. – highly conserved), while positions that are

highly variable (e.g. equal percentages of the four nucleotides) have

the maximum entropy. Thus the mutual information value for two

positions that have identical patterns of variation (i.e. Covariation)

is greater when the entropy value is smaller (ie. greater variation).

Thus a simple, although not the most mathematically eloquent

means to correct for this, is to determine the positions with the

highest mutual information scores, or covariation for each

individual position. This simple method, named N-Best was

utilized in 1992 to enhance the interpretation of base pairs from

the mutual information scores [26].

A variation of N-Best method, Joint N-Best, is used to determine

the pairs of nucleotides with the best covariation scores. For each

pair (X1:Y1), the N-Best score of position X1 is measured as the

ratio of the second highest covariation scores (MIxy, MIp, CPE

etc) divided by the highest covariation score in the series of pairs

(X1:Y1, X1:Y2, ……, X1:Yn ). The N-Best score of position Y1 is

measured in the same manner from the series of pairs (X1:Y1,

X2:Y1, ……, Xn:Y1 ). The pairs with both N-Best scores lower than

the predefined threshold (#0.5) will be considered as candidate

base-pairs having significant covariations.

Helix-extension Strategy
Our ultimate goal is to identify every base pair in the RNAs

higher-order structure with covariation analysis. However, de-

pending on the RNA dataset, some of the nucleotides that form a

base pair might be invariant, or nearly so, and thus they cannot be

identified with covariation analysis. Our helix-extension strategy,

first implemented in 1980 [20] simply increases the length of a

putative helix with G:C, A:U, and G:U base pairs that are 1)

adjacent and antiparallel with base pairs with a significant

covariation (also referred to as a ‘‘nucleation pair’’) and 2) occur

in at least 85% of the sequences.

Calculation of Conservation Score and Purity Score
The conservation score for each column of the sequence

alignment is calculated with a variation of the Shannon equation,

C~
X

Pi � log2 4 � Pið ÞzPD � log2PD ð3Þ

where Pi is the frequency of occurrence of base i at a given column

and PD is the frequency of deletions (gaps) at that column [6].

The purity score measures the extent that each nucleotide – A, U,

C, and G, is only associated with one other nucleotide. For

example, the following sets of paired nucleotides have the highest

purity score –100%: {A:A; G:G; C:C; and U:U}; {A:U; G:C; U:A;

C:G}; {A:U; G:G}; {A:A; G:G}; {A:G; G:A}; {A:C; G:U}. The

set {A:U; G:C; G:U; and C:G} would have a lower purity score

since G is associated with C and U, and the set {A:A, A:G; A:C;

and A:U} would have the lowest purity score since A is associated

with four different nucleotides. The first group of examples with

100% purity has several sets of perfect covariations, the second

lower purity score has a few covariations with one anomaly, while

the last set with the lowest purity score has no covariations. Using

the procedure described in the Figure S7 that defines the list of

base pair types that have a covariation with one another the purity

score is the sum of the ranked percentages of base-pairs that have a

covariation with the other base pairs. An example showing each

step in the calculation of the purity score for two columns in the

sequence alignment is presented in Figure S7. When only the

overall frequencies of the base pairs are considered, a G:U base

pair is not a covariation when the same two positions have a

higher percentage of A:U and G:C base pairs. However, since

G:U base pairs, also called the wobble base pair [70] occur within

a regular helix, a GU-Plus purity score is calculated with a slightly

modified procedure; The base pairs G:U (or U:G) are counted as a

covariation with G:C (or C:G) and A:U (or U:A) for all of the

known base pairs in Figure 8 right side.

Identification of ‘‘Neighbor Effects’’ and Physical Distance
Calculation
The ‘‘neighbor effects’’ are identified with the standard one-

directional N-Best method with some constraints. Our objective

here is to identify pairs that have not already been identified as

a potential base pair, but those pairs that still have a significant

covariation. Those pairing are not necessarily indicative of a
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base pair, instead they comprise a constraint on the evolution of

a set of nucleotides. For a pair (X1, Y1), the N-Best score is

calculated as the ratio of the two highest CPE scores in the

series of pairs (X1:Y1, X1:Y2, ……, X1:Yn ). This analysis is

composed of three steps. The pairs with: 1) N-Best scores

exceeding the predefined threshold (0.85); 2) Covariation score

(CPE) higher than a predefined lowest cutoff (25%); 3) Total

events (positive plus negative) higher than a minimum event

threshold, will be considered as neighbor effects.

When the covariation score (CPE) is low (for example pairs with

CPE ,20%), the background noise could interfere with the signal

severely. To remove this noise, only those pairs with a CPE score

higher than a predefined lowest cutoff value (25%) will be

considered as neighbor effects. The total events threshold is the

minimum number of changes at the pair of positions during the

evolution of the RNA.

For all neighbor effects, the atomic level physical distance

between the atoms are estimated from the three-dimensional high-

resolution crystal structure (16S rRNA:,PDBID 1J5E; 5S and 23S

rRNA: PDBID 2AW4). The physical distance between two

nucleotides is calculated as the Euclidean distance between the

centers of atoms that usually form the hydrogen bonds in two

nucleotides that are base paired (equation 4).

Dist~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xx1{�xx2ð Þ2z �yy1{�yy2ð Þ2z �zz1{�zz2ð Þ2
q

ð4Þ

Dataset and Filtration Process
The Multiple Sequence Alignments (MSA) of bacterial 16S

rRNA (Dataset S1), 5S rRNA (Dataset S2) and 23S rRNA

(Dataset S3) are used in this analysis. Considering a MSA

consisting of m columns and n rows, the total number of pairwise

comparison is N*(N-1)/2 and the time complexity of the PEC

algorithm is in the order of O(m2n).

Positions that have similar conservation values (Shannon’s

information entropy) have the potential to have a higher mutual

information score (Figure S5). Thus, the number of pairwise

comparison calculations can be reduced significantly by analyzing

only those sets of positions with similar conservation values. A

coarse filter based on relative conservation score and the mutual

information measurement is applied to eliminate the comparisons

between two columns in the alignment that will have an

insignificant covariation score, which will significantly reduce the

computational time for this step of the analysis. The PEC analysis

was only performed on those pairwise sets of nucleotides with: 1)

the relative entropy score lower than a predefined threshold (0.2)

and 2) mutual information value between column X and column Y

are among the top 100 of (Column X : any other column) and (any

other column : Column Y) [46]. For 16S rRNA, this coarse filter

helps to reduce the total of approximately 5,234,230 pairwise

comparisons to 14,276 pairings. This smaller number of pairings is

analyzed with the PEC method (A complete list in Table S2). The

same filtration procedure is applied in processing the 5S rRNA

and 23S rRNA data sets.

Among the 608 base pairs (both secondary and tertiary base

pairs) in the T. thermophilus 16S rRNA high resolution crystal

structure, 218 are eliminated in the coarse filter. Almost all of these

eliminated base pairs have weak covariations, while only 1 of them

can be identified with the PEC/JN-Best. Thus the coarse filter

effectively decreases the computational cost by a factor of over 300

with a minor decrease in sensitivity.

Supplemental Material
All supplemental figures and tables are also available online at:

http://www.rna.ccbb.ute-xas.edu/SIM/4A/Phylogenetic_Event_

Counting/.

Supporting Information

Figure S1 Pseudo code of phylogenetic event counting
algorithm.

(EPS)

Figure S2 Variation/covariation analysis of the second-
ary structure of the bacterial 16S rRNA sequence
alignment. Total variation in each pairwise set of sequences (X-

direction) is plotted vs. (1) the amount of variation in that set of

sequences for the two positions that are base paired in the secondary

structure (blue), (2) only one position of the two that are base paired

in the secondary structure (red), and (3) variation in the unpaired

region of the second structure (green) (Y-direction). The slope, Y-

intercept, and R2 co-efficiency values of the linear regression line for

each of the three analyses are at the right side of the line.

(EPS)

Figure S3 Graphical representation of N-Best method.
While the mutual-information (MIxy) covariation method compares

all positions against all other positions, the N-best method ranks

covariation scores for two positions for each individual position. The

position numbers are in the X-axis and the MIxy values are in the

Y-axis. (A) Left: The MIxy scores for position 3 with all 76 positions

in tRNA; Right: The MIxy values for position 13 with all 76

positions are also displayed in the right side with the same manner.

(B) Each nucleotide position in a tRNA is shown in the X-axis while

the MIxy score are displayed in the Y-axis. The vertical bar is the

MIxy value for position Z and each of the individual positions in the

X-axis. When the positions with the best covariation scores for each

position are base paired in the tRNA structure, that vertical bar is

shown in red. The positions with lower MIxy values are shown as

black vertical lines. This diagram illustrates that the majority of all

positions that are base paired has a MIxy value significantly higher

than the MIxy value for all of the other positions.

(EPS)

Figure S4 The secondary (A) and three-dimensional
structure (B) of S. cerevisiae Phe tRNA with neighbor
effect identified in 1992.

(EPS)

Figure S5 The underlying principle of coarse filter that
reduce the number of pairwise comparison. (A) The

conservation scores for all nucleotides that are base paired in the

16S rRNA comparative structure model. Each base pair is

represented with a colored circle, where the color indicates the

purity score (minimal value: 0.472; maximum value: 1). The vast

majority of the dots representing base pairs are close to the diagonal.

(B) The conservation scores for each nucleotide position from 138

to 205 which is under the shadow on the entire Escherichia coli 16S
rRNA secondary structure (right). The red and blue lines indicate

the outer and inner boundaries of the helices respectively while grey

lines connect the positions that form a base pair.

(EPS)

Figure S6 Base pairs in the Bacterial 16S rRNA
structure model that are identified with the helix
extension method using different nucleation pairs. Red:
true positive base-pairs identified in Joint N-Best method, which

are used as nucleation points in the helix extension Magenta: false

positives in the nucleation pairs; Blue: true positive base-pairs

Covariation Analysis of Ribosomal RNA

PLoS ONE | www.plosone.org 15 June 2012 | Volume 7 | Issue 6 | e39383



identified with the helix-extension method; Yellow: false-positive

pairs identified with the helix-extension method. Secondary base-

pairs are represented by closed circles while tertiary base-pairs are

represented by open circle and highlighted with arrows. (A) Using

pairs identified in PEC/JN-Best as the nucleation pairs. (B) Using

pairs identified in MI/JN-Best as the nucleation pairs.

(EPS)

Figure S7 Example of the determination of a purity
score. For a given pair of positions in the alignment, all base-pair

types are ranked by their frequency, from the highest to the lowest

as shown in the middle. Starting from the highest ranked base-pair

type, each base-pair type is processed to determine if both

positions change (ie. covariation). The sum of the percentages of

the base pair types that are a covariation (red circles) are calculated

as the purity score for this set of positions. The base pairing

frequency matrix is rearranged during this process. The most

frequent nucleotides are first placed as the top 39 nucleotide and

leftmost 59 nucleotide. Subsequently the 59 and 39 nucleotides that

form a covariation pair are placed in descending order, resulting in

the placement of the base pairs that covary along a diagonal.

(EPS)

Figure S8 The maximal distance between the positions
defined to be a neighbor effect is determined from a
comparison of the number of phylogenetic events.
Different phylogenetic events and their number of positions with

different physical distances were calculated. Those positions with

at least 10 phylogenetic events contain a large number of positions

that are very close in three-dimensional space and a very small

number of positions with larger physical distances.

(EPS)

Table S1 The phylogenetic distribution and sequence
similarities of the 16S, 5S and 23S rRNA datasets used in
analysis.
(XLS)

Table S2 Detail information about all 14276 pairs of

columns process in Phylogenetic Event Counting analy-

sis on 16S rRNA data set.

(XLS)

Table S3 The unique and common pairs identified by

PEC/JN-Best, MIxy/JN-Best and MIp/JN-Best using the

16S, 5S and 23S rRNA data sets.

(XLS)

Table S4 The complete list of nucleation pairs and

extended pairs involved in the Helix Extension analysis

on the 16S, 5S and 23S rRNA data sets.

(XLS)

Table S5 A complete list of neighbor effects identified

with our analysis.

(XLS)

Table S6 The evaluation of the ‘‘new putative interac-

tions in 16S Rrna’’ discovered by 2 other groups.

(XLS)

Dataset S1 The bacterial 16S rRNA sequence align-

ment.

(FASTA)

Dataset S2 The bacterial 5S rRNA sequence alignment.

(FASTA)

Dataset S3 The bacterial 23S rRNA sequence align-

ment.

(FASTA)
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