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One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli

can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal mag-

netic particle distribution on this effect has been outlined and analyzed theoretically. In most cases,

however, affine sample deformations are studied and often regular particle arrangements are consid-

ered. Here we challenge these two major simplifications by a systematic approach using a minimal

dipole-spring model. Starting from different regular lattices, we take into account increasingly ran-

domized structures, until we finally investigate an irregular texture taken from a real experimental

sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural

properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption

of affine deformations leads to increasingly erroneous results the more realistic the particle distri-

bution becomes. Understanding the consequences of the assumptions made in the modeling process

is important on our way to support an improved design of these fascinating materials. © 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4896147]

I. INTRODUCTION

In the search of new materials of outstanding novel

properties, one route is to combine the features of differ-

ent compounds into one composite substance.1–5 Ferrogels

and magnetic elastomers provide an excellent example for

this approach. They consist of superparamagnetic or ferro-

magnetic particles of nano- or micrometer size embedded

in a crosslinked polymer matrix.6 In this way, they combine

the properties of ferrofluids and magnetorheological fluids7–16

with those of conventional polymers and rubbers:17 we obtain

elastic solids, the shape and mechanical properties of which

can be changed reversibly from outside by applying external

magnetic fields.6, 18–25

This magneto-mechanical coupling opens the door to a

multitude of applications. Deformations induced by exter-

nal magnetic fields suggest a use of the materials as soft

actuators26 or as sensors to detect magnetic fields and field

gradients.27, 28 The non-invasive tunability of the mechanical

properties by external magnetic fields makes them candidates

for the development of novel damping devices29 and vibration

absorbers19 that adjust to changed environmental conditions.

Finally, local heating due to hysteretic remagnetization losses

in an alternating external magnetic field can be achieved. This

effect can be exploited in hyperthermal cancer treatment.30, 31

In recent years, several theoretical studies were per-

formed to elucidate the role of the spatial magnetic particle

distribution on these phenomena.23, 32–42 It turns out that the

particle arrangement has an even qualitative impact on the

effect that external magnetic fields have on ferrogels. That

a)Electronic mail: menzel@thphy.uni-duesseldorf.de

is, the particle distribution within the samples determines

whether the systems elongate or shrink along an external mag-

netic field, or whether an elastic modulus increases or de-

creases when a magnetic field is applied. As a first step, many

of the theoretical investigations focused on regular lattice

structures of the magnetic particle arrangement.32, 36, 42 Mean-

while, it has been pointed out that a touching or clustering

of the magnetic particles and spatial inhomogeneities in the

particle distributions can have a major influence.23, 35, 39–41, 43

More randomized or “frozen-in” gas-like distributions were

investigated.23, 33–35, 38, 40 Yet, typically in these studies an

affine deformation of the whole sample is assumed, i.e., the

overall macroscopic deformation of the sample is mapped

uniformly to all distances in the system. An exception is given

by microscopic37 and finite-element studies,23, 35, 41 but the

possible implication of the assumption of an affine deforma-

tion for non-aggregated particles remains unclear from these

investigations.

Here, we systematically challenge these issues using the

example of the compressive elastic modulus under varying

external magnetic fields. We start from regular lattice struc-

tures that are more and more randomized. In each case, the

results for affine and non-affine deformations are compared.

Finally, we consider a particle distribution that has been ex-

tracted from the investigation of a real experimental sample.

It turns out that the assumption of affine deformations grow-

ingly leads to erroneous results with increasingly randomized

particle arrangements and is highly problematic for realistic

particle distributions.

In the following, we first introduce our minimal dipole-

spring model used for our investigations. We then consider

0021-9606/2014/141(12)/124904/10/$30.00 © 2014 AIP Publishing LLC141, 124904-1
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different lattice structures: rectangular, hexagonal, and honey-

comb, all of them with increasing randomization. Different

directions of magnetization are taken into account. Finally,

an irregular particle distribution extracted from a real ex-

perimental sample is considered, before we summarize our

conclusions.

II. DIPOLE-SPRING MINIMAL MODEL

For reasons of illustration and computational economics,

we will work with point-like particles confined in a two-

dimensional plane with open boundary conditions. On the one

hand, we will study regular lattices, for which simple analyti-

cal arguments can be given to predict whether the elastic mod-

ulus will increase or decrease with increasing magnetic inter-

action. These lattices will also be investigated after randomly

introducing positional irregularities. Such structures could re-

flect the properties of more realistic systems, for example,

those of thin regularly patterned magnetic block-copolymer

films.44, 45

On the other hand, irregular particle distributions in a

plane to some extent reflect the situation in three dimensional

anisotropic magnetic gels and elastomers.47–52 In fact, our ex-

ample of irregular particle distribution is extracted from a real

anisotropic experimental sample. These anisotropic materi-

als are manufactured under the presence of a strong homo-

geneous external magnetic field. It can lead to the formation

of chain-like particle aggregates that are then “locked-in” dur-

ing the final crosslinking procedure. These chains lie parallel

to each other along the field direction and can span the whole

sample.50 To some extent, the properties in the plane perpen-

dicular to the anisotropy direction may be represented by con-

sidering the two-dimensional cross-sectional layers on which,

in this work, we will focus our attention.

Our system is made of N = Nx × Ny point-like parti-

cles with positions Ri , i = 1. . . N, each carrying an identical

magnetic moment m. That is, we consider an equal magnetic

moment induced for instance by an external magnetic field in

the case of paramagnetic particles, or an equal magnetic mo-

ment of ferromagnetic particles aligned along one common

direction. We assume materials in which the magnetic parti-

cles are confined in pockets of the polymer mesh. They cannot

be displaced with respect to the enclosing polymer matrix,

i.e., out of their pocket locations. Neighboring particles are

coupled by springs of different unstrained length l0
ij accord-

ing to the selected initial particle distribution. All springs have

the same elastic constant k. The polymer matrix, represented

by the springs, is assumed to have a vanishing magnetic sus-

ceptibility. Therefore, it does not directly interact with mag-

netic fields. (The reaction of composite bilayered elastomers

of non-vanishing magnetic susceptibility to external magnetic

fields was investigated recently in a different study46).

The total energy U of the system is the sum of elastic and

magnetic energies43, 53, 54 Uel and Um defined by

Uel =
k

2

∑

〈ij〉

(
rij − l0

ij

)2
, (1)

where 〈ij〉 means sum over all the couples connected by

springs, r ij = Rj − Ri , rij = |r ij | and

Um =
µ0m

2

4π

∑

i<j

r2
ij − 3(m̂ · r ij )2

r5
ij

, (2)

where i < j means sum over all different couples of parti-

cles, and m̂ = m/m is the unit vector along the direction of

m. In our reduced units, we measure lengths in multiples of l0
and energies in multiples of kl0

2; here we define l0 = 1/
√

ρ,

where ρ is the particle area density. To allow a comparison

between the different lattices we choose the initial density al-

ways the same in each case. Furthermore, our magnetic mo-

ment is measured in multiples of m0 =
√

4πk2l0
5/µ0.

Estimative calculations show that the magnetic moments

obtainable in real systems are 4−5 orders of magnitude

smaller than our reduced unit for the magnetic moment,

so only the behavior for the rescaled |m|/m0 = m/m0 ≪ 1

would need to be considered. Here, we run our calculations

for m as big as possible, until the magnetic forces become

so strong as to cause the lattice to collapse, which typically

occurs beyond realistic values of m. After rescaling, the mag-

netic moment m is the only remaining parameter in our equa-

tions which can be used to tune the system for a given particle

distribution.

III. ELASTIC MODULUS FROM AFFINE
AND NON-AFFINE TRANSFORMATIONS

We are interested in the elastic modulus E for dilative

and compressive deformations of the system, as a function

of varying magnetic moment and lattices of different orien-

tations and particle arrangements. For a fixed geometry and

magnetic moment m, once we have found the equilibrium

state of minimum energy of the system, we calculate E as

the second derivative of total energy with respect to a small

expansion/shrinking of the system, here in x-direction:

E =
d2U

dδx
2

≃
U (−δx) + U (δx) − 2U (0)

δx
2

. (3)

δx is a small imposed variation of the sample length along

x̂. In order to remain in the linear elasticity regime, δx

must imply an elongation of every single spring by a quan-

tity small compared to its unstrained length. In our calcu-

lations, we chose a total length change of the sample of

δx = Lx/100
√

N ≃ l0/100 throughout, where Lx is the equi-

librium length of the sample along x̂. Thus, on average, each

spring is strained along x̂ by less than 1%. To indicate the

direction of the induced strain, we use the letter ε in the fig-

ures below. The magnitude of the strain follows as |ε| = δx/Lx

≃ 10−4−10−3. Strains of such magnitude were for example

applied experimentally using a piezo-rheometer.47 A natural

unit to measure the elastic modulus E in Eq. (3) is given by

the elastic spring constant k.

There are different ways of deforming the lattices in or-

der to find the equilibrium configuration of the system and

calculate the elastic modulus. We will demonstrate that con-

sidering non-affine instead of affine transformations can lead
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to serious differences in the results, especially for randomized

and realistic particle distributions.

An affine transformation (AT) conserves parallelism be-

tween lines and in each direction modifies all distances by a

certain ratio. In our case of a given strain in x-direction, in

AT we obtain the equilibrium state by minimizing the energy

over the ratio of compression/expansion in y-direction.

In a non-affine transformation (NAT), instead, most of

the particles are free to adjust their positions independently

of each other in 2D. Only the particles on the two opposing

edges of the sample are “clamped” and forced to move in a

prescribed way along x-direction, but they are free to adjust

in y-direction. All clamped particles in the NAT are forced

to be expanded in the x-direction in the same way as in the

corresponding AT to allow better comparison (see Fig. 1 for

an illustration of the two kinds of deformation). To perform

NAT minimization, we have implemented the conjugated gra-

dients algorithm55, 56 using analytical expressions of the gra-

dient and Hessian of the total energy. Numerical thresholds

were set such that the resulting error bars in the figures below

are significantly smaller than the symbol size.

FIG. 1. An initial square lattice undergoing the same total amount of hori-

zontal strain at vanishing magnetic moment and relaxed through NAT (top)

and AT (bottom). Clamped particles are colored in black in the NAT case. The

depicted deformations are much larger than the ones used in the following to

determine the elastic moduli (here the sample was expanded in x-direction by

a factor of 2.5).

As a consequence, NAT minimizes energy over ≃ 2N

degrees of freedom. Since the NAT has many more degrees

of freedom for the minimization than AT, we expect the for-

mer to always find a lower energetic minimum compared

to the latter. Thus, for the elastic modulus, we obtain EAT

≥ ENAT. Figure 1 shows how NAT and AT minimizations yield

different ground states for the same total amount of strain

along x̂.

To compute the elastic modulus, we first find the equilib-

rium state through NAT for prescribed m. Next, using AT, we

impose a small shrinking/expansion and after the described

AT minimization obtain EAT via Eq. (3). Then, starting from

the NAT ground state again, we perform the same procedure

using the NAT minimization and thus determine ENAT.

IV. RESULTS

In the following, we will briefly discuss the behavior of

the elastic modulus in the limit of large systems. Then, on

the one hand, we will demonstrate that introducing a random-

ization in the lattices dramatically affects the performance of

affine calculations. On the other hand, we will investigate how

in each case structure and relative orientation of the nearest

neighbors determine the trend of E(m).

A. Elastic modulus for large systems

We run our simulations for lattices of Nx = Ny. It is

known that the total elastic modulus of two identical springs

in series halves, whereas, if they are in parallel doubles, com-

pared to the elastic modulus of a single spring. In our case of

determining the elastic modulus in x-direction, the total elas-

tic modulus E will be proportional to Ny/Nx. Thus, with our

choice of Nx = Ny, it should not depend on N. We will in-

vestigate the exemplary case of a rectangular or square lattice

for m = 0 to estimate the impact of finite size effects on our

results, since a simple analytical model can be used to predict

the value of E.

Our rectangular lattice is made of vertical and horizontal

springs coupling nearest neighbors and diagonal springs con-

necting next-nearest neighbors. The diagonal springs are nec-

essary to avoid an unphysical soft-mode shear instability of

the bulk rectangular crystal. In the large-N limit, there are on

average one horizontal, one vertical, and two diagonal springs

per particle. The deformation of a corresponding “unit spring

cell” is depicted in Fig. 2. b0 and h0 are, respectively, the

length of the horizontal and vertical spring of the unit cell

in the undeformed state, whereas b and h are the respective

FIG. 2. Minimal rectangular model consisting of one x-oriented, one y-

oriented, and two diagonal springs. b0 and h0 are the base and height of the

rectangular cell in the unstrained state. Under strain, b0 → b and the height

is free to adjust in order to minimize the elastic energy, h0 → h.
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FIG. 3. ENAT(m = 0)/k for different rectangular lattices increasing the number of particles N. Fits with a power law of the form E
N

/k = E∞ + αNβ show a

convergence towards the finite values indicated in the figure, while the values predicted by Eq. (4) are, (bottom to top curve) 1.154, 1.500, and 2.351. The values

of β resulting from the fit are (bottom to top curve) −0.56, −0.55, and −0.54. ENAT(m 
= 0)/k show the same convergence behavior for any m.

quantities in the deformed state. b is fixed by the imposed

strain, whereas h adjusts to minimize the energy, ∂U/∂h = 0.

This model describes, basically, the deformation of a cell in

the bulk within an AT framework.

If magnetic effects are neglected, we find that the linear

elastic modulus of such a system is

E(m = 0) ≃
d2Uel

db2

∣∣∣∣
b=b

0

= k

(
1 +

2r2
0

3 + r2
0

)
. (4)

Here r0 = b0/h0 is the base-height ratio of the unstrained lat-

tice. Furthermore, we have linearized the h(b) deformation

around b = b0.

In the limit of large N, the elastic modulus determined by

NAT should be dominated by bulk behavior. For regular rect-

angular lattices stretched along the outer edges of the lattice

cell, the deformation in the bulk becomes indistinguishable

from an affine deformation. We therefore can use our analyti-

cal calculation to test whether our systems are large enough to

correctly reproduce the elastic modulus of the bulk. For this

regular lattice structure, it should correspond to the modulus

following from Eq. (4). We calculated numerically ENAT(m

= 0) for different rectangular lattices as a function of N and

plot the results in Fig. 3. Indeed, for large N, we find the con-

vergence as expected.

From Fig. 3, we observe that the modulus has mostly con-

verged to its large-N limit at N = 400, therefore most of our

calculations are performed for N = 400 particles. We have

checked numerically that a similar convergence holds for any

investigated choice of m and lattice structure. For any m 
= 0

that we checked, we found a similar convergence behavior as

the one depicted for m = 0 in Fig. 3.

B. Impact of lattice randomization on AT calculations

We have seen how, in the large-N limit, AT analytical

models and NAT numerical calculations converge to the same

result in the case of regular rectangular lattices. In fact, we

expect AT to be a reasonable approximation in this regular

lattice case, since it conserves the initial shape of the lattice.

For symmetry reasons, this behavior may be expected also for

NAT at small degrees of deformation. But how does AT per-

form in more realistic and disordered cases where the initial

particle distribution can be irregular? To answer this question

we will consider the difference EAT − ENAT, the elastic mod-

ulus numerically calculated with AT and NAT, at m = 0, for

different and increasingly randomized lattices.

We have considered a rectangular lattice with diagonal

springs, a hexagonal lattice with horizontal rows of nearest

neighbor springs, one with vertical rows, and a honeycomb

lattice with springs beyond nearest neighbors (as depicted in

Fig. 4).

To obtain the randomized lattices, we start from their reg-

ular counterparts and randomly move each particle within a

square box of edge length η and centered in the regular lattice

site. We call η the randomization parameter used to quantify

the degree of randomization. In our numerical calculations,

we increased η up to η = 0.375l0. This is an appreciable de-

gree of randomization considering that at η = l0 two nearest

neighbors in a square lattice may end up at the same location.

To average over different realizations of the randomized lat-

tices, we have performed 100 numerical runs for every initial

regular lattice and every chosen value of η. In Fig. 4, we plot

the relative difference between EAT and ENAT.

Already for the regular lattices of vanishing randomiza-

tion η = 0, we find a relative deviation of EAT from ENAT in
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FIG. 4. Different lattices for m = 0 with the initial unstrained state randomized by displacing each particle by (η1, η2), where η1, η2 are stochastic variables

uniformly distributed in [−η/2, η/2]. Each point in this figure is obtained averaging over 100 different realizations of random distributions generated from the

same starting regular lattice. Error bars were obtained from the resulting standard deviation. We indicate the direction of the applied strain by the double arrow

marked by ε. The difference in E(m = 0) calculated on the one hand by AT and on the other hand by NAT is plotted in % of ENAT(m = 0) as a function of an

increasing randomization parameter η.

the one-digit per-cent regime. This deviation is smallest for

the regular rectangular lattice, where the principal stretching

directions are parallel to the nearest-neighbor bond vectors.

The deviation for η = 0 increases when we consider instead

the hexagonal and honeycomb lattices. Obviously, and this

is our main point here, the relative difference between EAT

and ENAT increases for each lattice that we investigated with

the degree of randomization η. Therefore NAT finds much

lower equilibrium states with increasing randomization, and

AT leads to erroneous results. So far, however, we could not

yet establish a simple rigid criterion that would quantitatively

predict the observed differences between AT and NAT.

C. The case m // x̂

We will now consider a non-vanishing magnetic moment

m // x̂. This is parallel to the direction in which we apply the

strain in order to measure the elastic modulus. As we will see

below, the behavior of the elastic modulus as a function of the

magnetic moment E(m) strongly depends on the orientation of

m and on the lattice structure. The kind of magnetic interac-

tion between nearest neighbors is fundamental for its impact

on the elastic modulus. On the one hand, when the magnetic

coupling between two particles in Um [see Eq. (2)] is solely

repulsive, i.e., m ⊥ r ij , its second derivative is positive and

therefore gives a positive contribution to the elastic modulus.

On the other hand, when m // r ij the interaction is attractive

and the second derivative of Um gives a negative contribution

to the elastic modulus.

When m is parallel to the strain direction x̂, the mag-

netic interaction along x̂ is attractive and, for m large enough,

will cause the lattice to shrink and the elastic modulus to

decrease. For some cases, though, E(m) shows an initial in-

creasing trend. This happens when in the unstrained lattice the

particles are much closer in ŷ than in x̂. Then, for small de-

formations, magnetic repulsion is prevalent and the magnetic

contribution to E is positive, as can be seen for the rectangular

case from Fig. 5.

The total energy of the system is the sum of elastic

and magnetic energies. Since the derivative is a linear op-

erator, the elastic modulus can be decomposed in elastic

and magnetic components: E = Eel + Em. The analytical

calculation for the minimal rectangular system described in

Subsection IV A applied to this configuration and consider-

ing magnetic interaction up to nearest neighbors only predicts

that

Em ≃
d2Um

db2

∣∣∣∣
b=b

0

=
12m2

b5
0

(
−2 +

4r7
0

(3 + r2
0 )

2

)
(5)

in the rectangular case.

From Eq. (5), we expect a magnetic contribution to the

total elastic modulus increasing with m for r0 ≥ 1.175 and de-

creasing with m for r0 ≤ 1.175. Qualitatively we observe this

trend for m/m0 ≪ 1 in Fig. 5. However, it seems that the ini-

tial trend for E(m), i.e., close to the unstrained state, switches

from increasing to decreasing around r0 ≃ 1.60, higher than

we expected. Although the minimal analytical model can pre-

dict the existence of a threshold value for r0 it would need

the magnetic contribution of more than only nearest neighbor

particles to be more accurate, since the magnetic interaction

is long ranged (whereas the elastic interaction acts only on

nearest neighbors).
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FIG. 5. Rectangular lattice with m // x̂. Different trends of ENAT(m/m0) are shown for different unstrained lattice shapes using the undeformed base-height

ratio r0 as shape parameter. We indicate the direction of the applied strain by ε. To compare and enhance the different trends, ENAT(m/m0) is rescaled by

ENAT(m = 0).

D. The case m // ŷ

In this orientation of the magnetic moment, the hexago-

nal lattice case is exemplary, because it shows very well the

orientational structural dependence of E(m).

On the one hand, for the hexagonal lattice “horizontally”

oriented (see the bottom inset in Fig. 6) there are no nearest

neighbors in the attractive direction ŷ; there are instead two

along x̂ whose interaction is purely repulsive, therefore the

second derivative of their interaction Um is positive. On the

other hand, for the same lattice rotated by π /2 (see the top

inset in Fig. 6) there are two nearest neighbors in the direction

of m and their interaction is strongly attractive; therefore, the

second derivative of their interaction Um is negative.

The result, as can be seen in Fig. 6, is that in the for-

mer case the elastic modulus is increasing and in the latter is

decreasing.
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FIG. 6. Hexagonal lattice with m // ŷ for a hexagonal lattice with horizontal rows (bottom inset, where two nearest neighbors are oriented along x̂) and for one

with vertical rows (top inset, where two nearest neighbors are oriented along ŷ). We indicate the direction of the applied strain by ε. It is remarkable how the

magnetic interaction between nearest neighbors and the ENAT(m) behavior change when the lattice is rotated by π /2.
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FIG. 7. Elastic modulus E(m/m0)/k calculated with NAT for m // ẑ for the different lattices shown. We indicate the direction of the applied strain by ε. The

magnetic interaction is purely repulsive and strengthens the elastic modulus in this configuration.

E. The case m // ẑ

In this configuration, the magnetic interactions between

our particles are all repulsive and have the form m2/rij
3. The

second derivative of the magnetic interparticle energy is al-

ways positive along the direction connecting the particles.

Therefore, we expect the elastic modulus to be enhanced with

increasing m, and E(m) to be a monotonically increasing func-

tion. As can be seen from Fig. 7, this is true for all the different

lattices we have considered.

We have already seen in Fig. 4 how the randomization

of the lattice seriously affects the difference between AT and

NAT. For the m // ẑ case, we have also considered a real par-

ticle distribution taken from an experimental sample.50 The

real sample was of cylindrical shape with a diameter of about

3 cm. It had the magnetic particles arranged in chain-like ag-

gregates parallel to the cylinder axis and spanning the whole

sample. The positions of the particles were obtained through

X-ray micro-tomography and subsequent image analysis. We

extracted the data from a circular cross-section taken approx-

imately at half height of the cylinder and shown in Fig 8. In

this way we consider by our model the physics of one cross-

sectional plane of the cylindrical sample.

The extracted lattice was used as an input for our dipole-

spring model. We placed a magnetic particle at the center

of each identified spot in the tomographic image, see Fig 8.

Guided by the situation in the real sample, the magnetic mo-

ments of the particles are chosen perpendicular to the plane

(i.e., “along the cylinder axis”). The springs in the resulting

lattice are set using Delaunay triangulation51, 57, 58 with the

particles at the vertices of the triangles and the springs placed

at their edges. Then, we cut a square block from the center

of the sample containing the desired number of particles. The

clamped particles are chosen in such a way that they cover

about 10% of the total area (see left inset in Fig. 9).

FIG. 8. Realistic lattice used to determine the elastic modulus as a function

of the magnetic interactions in the case m // ẑ. The lattice was determined

from an X-ray micro-tomographic image of a real experimental sample50 in

the following way. The sample was of cylindrical shape with a diameter of

approximately 3 cm. We show a cross-sectional cut through the sample at

intermediate height. Inside the sample, the magnetic particles formed chains

parallel to the cylinder axis, i.e., perpendicular to the depicted plane. The

average size of the particles was around 35 µm. Gray areas correspond to

the tomographic spots generated by the magnetic particles in the sample and

were identified by image analysis. In our model, we then used the centers of

these spots, marked by the black boxes, as lattice sites. One magnetic parti-

cle was placed on each lattice site. Then the whole plane was tessellated by

Delaunay triangulation with the particle positions at the vertices of the result-

ing triangles. Elastic springs were set along the edges of the triangles. The

micro-tomography data (see Fig. 5 (H=3 mm) in Ref. 50) are reproduced

with permission from Gunther et al., Smart Mater. Struct. 21, 015005 (2012).

Copyright 2012 by IOP Publishing.
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FIG. 9. Elastic modulus E(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent

clamped particles. Besides considerably overestimating the elastic modulus, EAT(m/m0)/k shows a flat/decreasing behavior, whereas ENAT(m/m0)/k is correctly

increasing. In the right inset, we rescaled E(m/m0) by E(m = 0) to better show the two different trends. The numerical error bars are much smaller than the

symbol size.

Again we numerically investigate two-dimensional de-

formations within the resulting two-dimensional layer. If, in

the future, this is to be compared to the case of a real sample,

the deformations of this sample in the third direction, i.e., the

anisotropy direction, have to be suppressed. For instance, the

sample could be confined at the base and cover surfaces and

compressed along one of the sides. Then it can only extend

along the other side. Thus, within each cross-sectional plane,

an overall two-dimensional deformation occurs, with macro-

scopic deformations suppressed in the anisotropy direction.

As we can see from Fig. 9, in our numerical calculations

for this case, AT leads to a serious overestimation of the elas-

tic modulus compared to the one obtained for NAT. More-

over, as can be seen in the right inset of Fig. 9, the former
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FIG. 10. Zero-field elastic modulus ENAT(m = 0) calculated with NAT for the experimental lattice drawn in the inset picture varying the rotation angle θ . To

illustrate the effective isotropy we plot the elastic modulus rescaled by the average of ENAT(m = 0) over θ . The black square in the inset contains the block of

particles extracted from the experimental data after the rotation and used in our calculation.
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FIG. 11. Shear modulus G(m/m0)/k calculated for m // ẑ with NAT and AT techniques for the experimental lattice drawn in the left inset. Black dots represent

clamped particles. Here again, besides considerably overestimating the elastic modulus, GAT(m/m0)/k shows a flat/decreasing behavior, whereas GNAT(m/m0)/k

is correctly increasing. In the right inset, we rescaled G(m/m0) by G(m = 0) to better show the two different trends. The numerical error bars are much smaller

than the symbol size.

predicts an erroneous flat/decreasing trend for E(m), whereas

the latter shows instead a correct increasing behavior. This re-

sult can be interpreted considering that in AT all the particles

must move in a prescribed way along each direction. When

the particle arrangement is irregular, some couples are very

close and some are very distant. The erroneous trend in AT

is mainly attributed to the very close particle pairs. AT can

force them to still move closer together despite the magnetic

repulsion, whereas NAT allows them to avoid such unphysical

approaches. Therefore, in order to properly minimize the en-

ergy, each particle must be free to adjust position individually

with respect to its local environment. As a consequence, for

such realistic lattices AT provide erroneous results both quan-

titatively and qualitatively, making NAT mandatory in most

practical cases.

Since within the analyzed two-dimensional cross-

sectional layer the particle distribution appears to be rather

isotropic, we expect the elastic modulus to be approximately

the same in any direction in the plane. To demonstrate this

fact, we rotate the configuration in the plane with respect to

the stretching direction by different angles θ between 0 and

π /2. As we can see from Fig. 10, the zero-field elastic mod-

ulus E(m = 0) shows only small deviations for the different

orientations. The origin of such deviations is ascribed to the

square-cutting procedure which, after a rotation by an angle θ ,

produces samples containing different sets of particles, each

with different local inhomogeneities in particle distribution

and spring orientation. For samples large enough to signifi-

cantly average over all these different local inhomogeneities,

the angular dependence of E(m = 0) should further decrease.

We found that for any rotation angle θ , the behavior of E(m) is

similar to the one in Fig. 9 corresponding to θ = 0, supporting

our statement about the erroneous AT result.

F. Shear modulus

For the set-up described in Subsection IV E (see the left

inset of Fig. 9 with m // ẑ), we have also calculated the shear

modulus G(m) as a function of the magnetic moment, for both

AT and NAT. The shear modulus is defined as the second

derivative of the total energy U with respect to a small dis-

placement δy of the clamps in y-direction:

G =
d2U

dδy
2

≃
U (−δy) + U (δy) − 2U (0)

δy
2

. (6)

In this calculation, to allow for the comparison between the

results from AT and NAT, all particles within the clamped re-

gions are forced to move in a prescribed (affine) way.

It turns out that the behavior of the shear modulus is qual-

itatively the same as for the compressive and dilative elastic

modulus (see Fig. 11). Again, an incorrect decreasing behav-

ior for the AT calculation is obtained. In numbers, the relative

difference between the AT and NAT results is larger than for

the compressive and dilative elastic modulus. Here we set δy

as one percent of the dimension of the sample. In Fig. 11, this

choice produces numerical error bars much smaller than the

symbol size.

V. CONCLUSIONS

We have shown how the induction of aligned magnetic

moments can weaken or strengthen the elastic modulus of a

ferrogel or magnetic elastomer according to lattice structure

and nearest-neighbor orientations. The orientation of near-

est neighbors plays a central role. If the vector connecting

two nearest neighbors lies parallel to the magnetic moment,

they attract each other, the second derivative of their magnetic

interaction is negative, and the corresponding contribution to
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the total elastic modulus is negative, too. If, instead, the near-

est neighbors lie on a direction perpendicular to the magnetic

moment, the second derivative of their magnetic interaction

is positive and it tends to increase the total elastic modulus.

This effect can be seen modifying the nearest-neighbor struc-

ture, for instance tuning the shape of a rectangular lattice or

rotating a hexagonal lattice. We have also seen how the perfor-

mance of affine transformations worsens for randomized and

more realistic particle distributions, making non-affine trans-

formation calculations mandatory when working with data

extracted from experiments.

In the present case, we scaled out the typical particle sep-

aration and the elastic constant from the equations to keep the

description general. Both quantities are available when real

samples are considered. The mean particle distance follows

from the average density, while the elastic constant could be

connected to the elastic modulus of the polymer matrix.

The dipole-spring system we have considered is a mini-

mal model. We look forward to improving it in different di-

rections. First, we would like to go beyond linear elastic in-

teractions using nonlinear springs, perhaps deriving a realistic

interaction potential from experiments or more microscopic

simulations. Second, the use of periodic boundary conditions

may improve the efficiency of our calculations and give us

new insight into the system behavior (although we demon-

strated by our study of asymptotic behavior that border ef-

fects are negligible in the present set-up). Furthermore, we

may include a constant volume constraint, since volume con-

servation is not rigidly enforced in the present model. To iso-

late the effects of different lattice structures and the assump-

tion of affine deformations, we here assumed that all magnetic

moments are rigidly anchored along one given direction. In a

subsequent step, this constraint could be weakened by explic-

itly implementing the interaction with an external magnetic

field or an orientational memory. Finally, to build the bridge

to real system modeling, an extension of our calculations to

three dimensions is mandatory in most practical cases.
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