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This paper presents a novel approach to detect structural damage based on combining independent

component analysis (ICA) extraction of time domain data and artificial neural networks (ANN). The

advantage of using time history measurements is that the original vibration information is used directly.

However, the volume of data, measurement noise and the lack of reliable feature extraction tools are

the major obstacles. To circumvent them, the independent component analysis technique is applied to

represent the measured data with a linear combination of dominant statistical independent

components and the mixing matrix [A]. Such a representation captures the essential structure of

the measured vibration data. The vibration features represented by the mixing matrix provide the

relationship between the measured vibration response and the independent components and are then

employed to build the simplified neural network model for damage detection. Two examples are

included to demonstrate the effectiveness of the method. First, a truss structure with simulated

displacement data was used, and the results show that healthy and damage states located in the nine

elements may be classified. Second, a bookshelf structure together with measured time history data

from 24 piezoelectric single axis accelerometers was used to demonstrate the approach on a physical

structure. The results show the successful detection of the undamaged and damaged states with very

good accuracy and repeatability.

Keywords structural damage detection � independant component analysis � neural net-

works � vibration � time domain identification

1 Introduction

Structural damage detection based on measured

vibration data is becoming increasingly important

not only for preventing catastrophic failures but

also for uninterrupted operation and prolonged

service life. Detailed surveys of damage detection

methods are given in [1–3]. Generally speaking,

damage detection techniques can be classified

according to the type of measured data on which

they are based. Modal parameters (natural fre-

quencies and mode shapes), provide a substantial

reduction in measured vibration data, and are

often used for damage detection [4–7]. However,

modal parameters are not always easy to interpret

in terms of the mathematical model of a linear

vibrating system and often the lower frequency

modes are insensitive to small levels of local

*Author to whom correspondence should be addressed.

E-mail: c.zang@bristol.ac.uk

Copyright � 2004 Sage Publications,

Vol 3(1): 0069–83

[1475-9217 (200403) 3:1;69–83 10.1177/1475921704041876]

Copyright � 2004 Sage Publications,

Vol 3(1): 0069–83

[1475-9217 (200403) 3:1;69–83 10.1177/1475921704041876]

www.sagepublications.com


damage. Methods based on the measured fre-

quency response functions (FRFs), such as the

FRF curvature method and the FRF quotient

method, are given in [8,9]. Most damage detec-

tion algorithms dealing with FRFs use a valida-

ted FE model as a reference and attempt to find

discrepancies between this reference model and

the FRFs of some damaged specimen [10–12].

But, practical difficulties still remain in obtaining

a reference model for comparison purposes.

Alternatively, methods based on the raw time

signals are given in [13,14]. An obvious advantage

of using raw time domain data is that the original

vibration information is captured without any

signal processing degradation. For instance,

Farrar et al. [15] applied an auto-regressive (AR)

model for measured acceleration–time histories

and selected the coefficients of the AR model as

damage indicators. However, in spite of promis-

ing results, there are some major obstacles that

remain unresolved, such as the difficulties in

dealing with large volumes of data, inherent

measurement noise, and lack of reliable feature

extraction tools.

In recent years, techniques based on multi-

variate statistics and neural networks have been

applied to structural damage detection [1,16].

Sohn et al. [17] introduced a method using the

coupling of principal component analysis (PCA)

with statistical process control in order to enhance

the discrimination between features from the

undamaged and damaged structures. Worden and

Manson [18] implemented visualization and

dimension reduction with PCA for damage detec-

tion. Zang and Imregun [19–21] utilized a PCA

technique to condense the FRF data. The basic

idea is to compute the so-called principal compo-

nents (PC) of a test matrix, the rows of which are

the actual measured FRFs. The PC-compressed

FRFs are represented by their projections onto

the most significant principal components and

have the additional benefit of containing less

measurement noise. Furthermore, Zang and

Imregun used both supervised and unsupervised

artificial neural networks (ANNs) to successfully

detect the damage in the case of two representative

structures: a railway wheel and space antenna.

More recently, Zang et al. [22] used the

independent component analysis (ICA) technique

to extract the dynamic features from measured

vibration time histories. Examples of a four

degree of freedom (DOF) undamped system and a

three DOF system with viscous damping show

that the ‘measured’ time domain data represented

with a linear combination of dominant statistical

independent components and the mixing matrix

[A] capture the essential dynamic characteristics.

The additional benefits are not only the ability to

deal with relatively high measurement noise, but

also the availability of higher-order statistical data

that can be used during the damage detection

process. Back [23] applied ICA to multivariate

financial time series such as a portfolio of stocks

and the results were compared with those

obtained using PCA. The results show that the

overall stock price can be reconstructed surpris-

ingly well by using a small number of ICs, in

contrast to the poor perform of PCA. Biswal and

Ulmer [24] separated multiple signal components

present in functional MRI data sets, and obtained

better results using ICA rather than PCA.

In this paper, independent component analy-

sis is combined with neural networks for struc-

tural damage detection. The extracted dynamic

features from the ICA technique, represented

by the mixing matrix, are employed to build

a simplified artificial neural network. The

methodology is applied to a truss structure

with simulated displacement data and a bookshelf

structure with measured time histories from 24

piezoelectric single axis accelerometers, in order

to assess its feasibility.

2 Methodology

Vibration-based structural damage detection may

be considered as a kind of pattern recognition

paradigm. It consists of data acquisition, signal

processing, feature extraction and data reduction

and detection analysis. Rytter [25] described the

structural damage state by four levels: existence,

location, extent and prediction. The focus of this

paper is to detect the structural damage based

on feature extraction for time histories from

different sensors and a detection technique using

multiple-layer neural networks. Figure 1 shows

the framework of the damage detection process.
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2.1 Data Reduction using the

ICA Technique

In recent years, feature extraction methods such

as blind signal separation (BBS) via independent

component analysis (ICA) has been applied

to speech enhancement, telecommunications and

medical signal processing [26]. ICA techniques

provide statistical signal processing tools for

optimal linear transformations in multivariate

data and these methods are well-suited to feature

extraction, noise reduction, density estimation and

regression [27, 28]. A summary of ICA techniques

for extracting the dynamic features from mea-

sured vibration time histories will be given here

for the sake of completeness [22].

The zero-mean matrix X½ �N�T¼ xikf g ði ¼

1, 2, . . . ,N; k ¼ 1, 2, . . . ,TÞ has N rows of mea-

sured time histories xf gi (where the mean of the

data, �xxi, has been subtracted from each row

individually) from N sensors, each with T time

points. Each observation xi tð Þ can be considered

to be a linear combination of M statistically

independent sources, which are the individual

elements of the vector fSðtÞg ¼ fs1ðtÞ, s2ðtÞ, . . . ,

sM tð ÞgT . The sources si tð Þ are called the indepen-

dent components and have unit variance. The

linear relationship between Xf g and Sf g is,

XðtÞ
� �

N�1
¼ A½ �N�M SðtÞ

� �
M�1

¼
XM
i¼1

aif g siðtÞ ð1Þ

where [A] is an unknown mixing matrix and aif g

is the ith column of matrix [A]. The main issue is

then the estimation of the mixing matrix [A] and

the realization of the source vector fSðtÞg using

only the measured data vector fXðtÞg.

The ICA algorithms normally find the inde-

pendent components of a data set by minimizing

or maximizing some measure of independence.

Cardoso [29] gave a review of the solution to the

ICA problem using various information theoretic

criteria, such as mutual information, negentropy,

maximum entropy and infomax, as well as the

maximum likelihood approach. Here we will use

the fixed-point algorithm [30,31] because of its

suitability for handling raw time-domain data

and good convergence properties. This algorithm

will now be described briefly.

The first step is to pre-whiten the measured

data vector Xf g by a linear transformation, to pro-

duce a vector f ~XXg whose elements are mutually

uncorrelated and all have unit variance. A singu-

lar value decomposition (SVD) of the covariance

matrix ½C� ¼ E½fXðtÞgfXðtÞgT � yields,

C½ � ¼ �½ � �½ � �½ �
T

ð2Þ

where �½ � ¼ diag �1, �2, . . . , �nð Þ is a diagonal

matrix of singular values and �½ � is the associated

singular vector matrix. Then, the vector f ~XXg can

be expressed as,

~XX tð Þ
� �

¼ �½ ��1=2 �½ �T X tð Þ
� �

: ð3Þ

An advantage of using an SVD-based technique

is the possibility of noise reduction by discarding

singular values smaller than a given threshold.

The second step is to employ the fixed-point

algorithm. Define a separating matrix [W ] that

transforms the measured data vector fX tð Þg to

a vector fY tð Þg, such that all elements yi tð Þ are

both mutually uncorrelated and have unit var-

iance. Independent random variables are always

Signal 1

Signal 2

Signal n

… 

Data Reduction
by ICA 

Mixing
matrix
 [A] 

ANN 

… 

Healthy

Damaged 

Figure 1 The damage detection process.
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uncorrelated, and hence ensuring the transformed

variables are uncorrelated reduces the number of

free parameters available and simplifies the

problem [33]. The fixed-point algorithm then

determines [W ] by maximising the absolute value

of the kurtosis of fYðtÞg. The vector fYðtÞg has

the properties required for the independent com-

ponents, and thus,

fŜS tð Þg ¼ Y tð Þ
� �

¼ W½ � ~XX tð Þ
� �

: ð4Þ

From Equation (3), E½f ~XXðtÞgf ~XXðtÞgT � ¼ I , and by

definition we require E½fYðtÞgfYðtÞgT � ¼ I . Hence,

from Equation (4),

½W �½W �
T
¼ I , ð5Þ

and thus [W ] is an orthogonal matrix.

If we consider only one source signal at a time,

the problem of estimating the filter matrix [W ]

can be somewhat simplified. From Equation (4),

ŝsi tÞ ¼ yi tÞ ¼ wig
T ~XX tÞð

�����
ð6Þ

where wif gT denotes the ith row of [W ]. Using

the deflation approach ([32]), [W ] may be esti-

mated on a row-by-row basis, where each inde-

pendent component is estimated separately. To

estimate M independent components, the algo-

rithm must be run M times. To ensure that a

different independent component is estimated

each time, a simple orthogonalising projection

must be used inside the loop. Such a projection is

possible because the rows of the filtering matrix

[W ] are orthonormal to each other, from

Equation (5). Hence the independent components

are estimated by projecting the current solution

vector wif g onto the space orthogonal to the

previously found rows of the filtering matrix [W ].

The kurtosis of the estimated signal yiðtÞ is

defined as

kurt yi tð Þð Þ ¼ E y4i tð Þ
� �

� 3 E y2i tð Þ
� �� �2

ð7Þ

Kurtosis may be viewed as a normalised fourth-

order moment of a signal and has the linearity

properties kurtðx1 þ x2Þ ¼ kurtðx1Þ þ kurtðx2Þ and

kurtð�x1Þ ¼ �4kurtðx1Þ, where � is a scalar.

For a Gaussian distribution the kurtosis is zero,

and thus kurtosis is used as a measure of the

non-Gaussianity of a signal. The key to ICA is

maximising the non-Gaussianity and thus max-

imising the absolute value of kurtosis [33].

From Equations (5)–(7), since the variance of

yiðtÞ is unity,

kurt yi tð Þð Þ ¼ kurt wif gT ~XX tð Þ
� �� �

¼ E wif gT ~XX tð Þ
� �� �4h i

� 3, ð8Þ

and the ith filtering vector wif g may be obtained

by maximising the kurtosis of yi tð Þ using a

gradient descent type algorithm [30,33,34].

Following the estimation of the filtering

matrix [W ] and the vector of independent com-

ponents Sf g, the mixing matrix [A] is obtained

by writing the independent components from

Equations (3) and (4) as,

ŜS tð Þ
n o

¼ Y tð Þ
� �

¼ W½ � ~XX tð Þ
� �

¼½W �½��
�1=2

½��
T X tð Þ
� �

ð9Þ

and thus the mixing matrix, [A], may be esti-

mated, using the orthogonality of [W] and [�], as,

½A� ¼ ½��½��1=2½W �T : ð10Þ

Therefore, using the ICA algorithm, the time

responses from different sensors may be transfor-

med into a linear mixture of higher-order statisti-

cally independent components and the original

time histories from the ith spatial sensor may be

reconstructed as

x̂xi tð Þ ¼
XM
j¼1

aijsj tð Þ þ �xxi;

i ¼ 1, 2, . . . ,N; j ¼ 1, 2, . . . ,Mð Þ ð11Þ

where �xxi denotes the mean response of the ith

sensor. The matrix [A] represents the relationship

between the measured responses (inputs) and the

independent components (outputs). Thus [A] may

be viewed as a transformation matrix between the

time domain data and the characteristic dynamic

features in the data. For very lightly damped,
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undamaged structures this transformation will be

closely related to the most important modes of

a structure, where the relative importance

depends on the frequency range of interest, and

the observability and controllability of the modes.

For damaged structures, the independent com-

ponents will also account for the effect of the

damage on the dynamic response, and are there-

fore sensitive to the presence, location and

severity of damage. Thus the mixing matrix [A]

may be used to build a simplified neural network

model for damage detection.

2.2 Neural Networks for Damage

Detection

Artificial Neural Networks (ANNs) provide

a general, non-linear parameterised mapping

between a set of inputs and a set of outputs. Once

trained on available sample data, they can recog-

nise patterns and hence they are ideally suited

to signature analysis. Although many types of

ANNs are used in practice, the multi-layer

perceptron (MLP), trained using an error back-

propagation (BP) algorithm, will be used here

[35]. The network consists of an input layer,

hidden layers and an output layer, and each layer

is composed of a variable number of nodes. The

mixing matrix from the ICA is used to define the

data for the input nodes, while the output nodes

show the state of the structure. The relationship

between the input and output can be non-linear

or linear, and the network’s characteristics are

determined by the weights assigned to the con-

nections between the nodes in adjacent layers.

Changing these weight will change the input to

output behaviour of the network, and allow the

network to be trained.

An ANN analysis consists of two stages,

namely training and validation. During the train-

ing stage, an input-to-output mapping is deter-

mined iteratively using the available sample

data. The actual output error, propagated from

the current input set, is compared with the target

output and the required compensation is trans-

mitted backwards to adjust the node weights

so that the error can be reduced at the next

iteration. The learning stage is terminated once a

pre-set error threshold is reached and the node

weights are frozen at this point. During the vali-

dation stage, data from specimens with unknown

properties are provided as input and the corre-

sponding output is calculated using the fixed

node weights. This provides a check on how well

the network is able to generalize from the training

data set to other data.

The design of the ANN requires the deter-

mination of the number of nodes in the hidden

layer. The optimum number for a particular appli-

cation may be found by looking at the results

from the validation data set to ensure that the

network generalizes sufficiently. Different num-

bers of hidden nodes may be tried, and the

number is chosen that gives the lowest validation

error. The resulting network is likely to provide

the most robust result when further data is

presented to the network, and provides a trade

off between over fitting the data (too many

hidden nodes) and having insufficient freedom to

fit the data (too few hidden nodes). Experience

has shown that the optimum number of hidden

nodes is approximately half of the sum of the

number of input and output nodes [36], and this

choice has been used in this paper.

The remaining choice is the number of output

nodes. To determine whether a structure is dama-

ged or not requires only one output node, with,

say, 0 for a healthy structure and 1 for a

damaged structure. However, when more choices

or patterns are available, for example to distin-

guish low or high damage levels, experience has

shown that the number of output nodes in neural

network should equal the number of patterns

[37]. For consistency this approach will also be

used for the detection of damage.

3 The Truss Structure

3.1 Preliminaries

The truss structure of Figure 2 was used to

investigate the combined ICA/ANN damage

detection technique. All nine elements had an

elastic modulus of 200GPa and a cross-sectional

area of 2.5� 10�3m2. Damping was neglected.

The horizontal and vertical displacements of

Node 1 and the horizontal displacement of Node

6 were constrained. An impact load of 200N was
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applied at Node 5 and the nine resulting displace-

ment time histories at the nodes were computed.

Displacement data is used in this example, and

acceleration data in the bookshelf example con-

sidered later, to demonstrate the versatility of

the approach in terms of the data requirements.

Of course, in practice, the acceleration response

would be measured.

Damage cases denoted DS1, DS2, . . . , DS9

were then introduced to the truss structure by

reducing the stiffness of the nine axial members

by 50% respectively, thus obtaining 81 time

histories of damaged specimens. Including the

healthy state of the truss, there was a total of

90 time histories. Figure 3 shows a time history

comparison of damaged (dotted line) and healthy

(solid line) specimens at node 5 in the horizontal

direction. To provide a more realistic example,

the 90 time history data sets were contaminated

with 0, 5, 10, 15, 20, 25, and 30% noise at each

time point, with a uniform distribution on the

interval [0,1]. The detection process is robust with

respect to the noise properties, and an example

using Gaussian noise will be demonstrated later.

Thus, 630 noise-corrupted sample data sets were

obtained.

3.2 ICA for Data Reduction

The 630 time histories, 63� 1 corresponding to

the healthy state and 63� 9 corresponding

to the damaged states from DS1 to DS9, were

used to form a 630� 301 matrix, where 301 is the

number of points in each time history. Clearly,

such a large data set cannot be used with ANNs
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Figure 3 Time histories for healthy and damaged truss structure – node 5, horizontal
direction.

Figure 2 Truss structure example for damage detection.
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directly and is the reason for the data reduction

using ICA. During the pre-whitening stage (which

is essentially a principal component analysis) the

first ten dominant principal components contain-

ing 97.84% of the original information were

retained. Then ten independent components and

the corresponding mixing matrix, [A] (630� 10),

were estimated.

3.3 Neural Network for Damage

Detection

Using ICA the original time history specimens

are transformed to a linear combination of the

mixing matrix [A] and the higher order indepen-

dent components. The mixing matrix [A], which

represents the dynamic characteristics of the

structure and the damage, is then used as the

input data to the neural network model for

damage detection. The available 630 specimens

were first divided into a training group of 540

and a validation group of 90. The training group

contained 54 data sets for the healthy state with

up to 30% added noise, and 54 data sets for each

of the nine damage states, again with added

noise. The validation group consisted of 90 speci-

mens containing nine of each state respectively.

The output of the network consisted of two

nodes, representing the healthy and damage

states, as shown in Table 1.

The number of nodes in the hidden layer was

set at five, using the approach discussed earlier.

Thus, a simple three-layer MLP network with ten

input nodes, a five-node hidden layer, and two

output nodes was built for further training and

testing. During training, the learning and momen-

tum rates for network were set at 0.6 and 0.3

respectively in the early stages but fell to 0.01 and

0.001 later (see, for example, [35] for the definition

of learning and momentum rates). The network

converged smoothly to RMS errors of 1.38% for

training and 0.53% for validation in 3000 itera-

tions. This result indicates that the neural network

was stable and well trained. The output from the

network is plotted in Figure 4, where the target

and actual outputs are represented by solid and

dotted lines respectively. All of the actual output

closely matched the target output, although some

small discrepancies are apparent in the healthy

state and damage state 3 during the training. All

specimens are classified correctly.

After the successful training of the network,

a set of 90 data sets corrupted with noise, nine

from each of the healthy and damaged states,

were selected for validation. All of the data in

each set was fed sequentially into the network

and Figure 5 shows the actual output of the

network, compared with the target output. All of

the testing specimens were classified successfully.

The next example considers various damage

levels and uses a different noise model, for the

same truss structure. Damage was introduced

to the truss structure by reducing the stiffness of

the fourth axial member (corresponding to case

DS4) by 10, 20, 30, 50, 70 and 90% respectively.

Nine data sets for each healthy or damaged state

were used. The time history data sets were then

contaminated by Gaussian noise with a standard

deviation in the range 0–30%, in steps of 5%,

to give 441 data sets. As before, the first ten

independent components were estimated, con-

taining 96.56% of the original information and

the corresponding mixing matrix [A] (441� 10)

obtained. The neural network model was built

with a 10-node input layer, one six-node hidden

layer, and a three-node output layer. Table 2

gives the output definition. A stiffness reduction

of less than 50% is defined as light damage,

while a stiffness reduction of 50% or above is

taken to be heavy damage.

The network was trained with 378 specimens

and validated with 63. The network output from

the training phase is shown in Figure 6, where

the target and actual outputs are represented by

a dotted line and asterisks respectively. The

actual output closely matched the target output,

although some small fluctuations are present in

the healthy and light damage states in output

nodes 1 and 2. Figure 7 gives the network output

for the validation phase, compared to the target

Table 1 Output node definition for damage detection of
the truss structure.

State Node 1 Node 2

Healthy (HS) 1 0
Damaged (DS1, DS2, . . . , DS9) 0 1
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Figure 4 Network outputs from the training phase for the truss structure (Target
output: solid line, actual output: dotted line).
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Figure 5 Network outputs from the validation phase for the truss structure (Target:
solid line, actual output: asterisk).
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output, and shows that all of the validation data

sets are classified correctly.

4 The Bookshelf Structure

4.1 Experimental Data

The experimental example is a three-story book-

shelf structure, shown in Figure 8. The testing

was performed at the Los Alamos National

Laboratory and the time histories data are

available from the Los Alamos website [38]. The

structure was constructed from Unistrut columns

and aluminium floor plates with two-bolt connec-

tions to brackets on each Unistrut. Twenty-four

piezoelectric single axis accelerometers, two per

joint, were mounted on aluminium blocks, giving

a total of eight for each plate. A shaker was

attached at corner D using a stinger connected to

a tapped hole at the mid-height of the base plate.

Consider damage introduced at the 1C loca-

tion. Table 3 gives the corresponding damaged

configurations for this location. The measure-

ments from 24 sensors were repeated 10 times for

the undamaged state and five times for each

damaged state. Therefore, a total of 480 data sets

were available.

4.2 Data Reduction and Damage

Detection

The 480 time histories were used to form a

480� 2048 matrix, where 2048 is the number of

points in each measured time history. By discard-

ing the less significant singular values in the step

of data whitening, the first 31 significant indepen-

dent components were selected and the corre-

sponding mixing matrix [A] (31� 480) was

obtained using the fixed-point ICA algorithm. To

estimate the extraction quality, the time histories
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Figure 6 Network output from the training phase for the truss structure (Target output:
dotted line, actual output: asterisk).

Table 2 Output definition for damage assessement of
the truss structure.

State of DS4 Node 1 Node 2 Node 3

Healthy 1 0 0
Light damage (<50%) 0 1 0
Heavy damage (�50%) 0 0 1
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were reconstructed using the 31 independent

components and the corresponding mixing matrix

[A]. The reconstructed signals are compared with

the original time histories, for a limited time

range, in Figures 9–11. As can be seen, excellent

matches between the original and the recon-

structed responses were achieved, and the inde-

pendent components clearly characterise both the
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Figure 7 Network output from the validation phase for the truss structure (Target
output: dotted line, actual output: asterisk).

Figure 8 The three-story bookshelf structure used for damage detection (from [38]).
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dynamics of the healthy structure and the effects

of damage.

A neural network model was built with a

31-node input layer, one 16-node hidden layer,

and a two-node output layer. The output defini-

tion is given in Table 4. The available 480 data

sets were randomly shuffled and divided into

three groups: a training group with 300 data sets,

a network validation group with 60 data sets and

a detection or testing group with 120 data sets.

The use of a validation data set to ensure the

proper generalization of a network has already

been discussed. In this case a third data set, the

detection group, is used to access the overall

performance of the approach. Table 5 gives the

network performance during training, validation

and detection.

The final errors for training and validation

are very close and the detection error is less

than 2.5%. In total, seven of the 480 data sets

failed to be trained or estimated correctly by the

network. The problems with all of the failed data

sets were traced to errors in measured degrees

of freedom. Four data sets corresponded to

measurement point 1 (3BP) in the undamaged

state test (UDS), and two samples to measure-

ment point 24 (1DC) in the damaged states (one

for DS1 and one for DS2). The seventh data
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Figure 9 Original and the reconstructed time histories for sensor 10: undamaged
state for the bookshelf structure.

Table 3 The undamaged and damaged states for the bookshelf structure.

State Definition
Measured

Time Histories
Data
Sets

Undamaged (UDS) The original state of the structure 10 240
Damaged (DS1) Removal of bolts between the

bracket and the plate at the 1C location
5 120

Damaged (DS2) Complete removal of the
bracket at the 1C location

5 120

Zang et al. Structural Damage Detection 79



0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

 1

 0.8

 0.6

 0.4

 0.2

0

0.2

0.4

0.6

0.8

Time (Sec)

Orignal
Reconstructed

A
m

p
lit

u
d

e 
(g

)

Figure 10 Original and the reconstructed time histories for sensor 10: damaged
state (DS1) for the bookshelf structure.
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Figure 11 Original and the reconstructed time histories for sensor 10: damaged
state (DS2) for the bookshelf structure.
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set corresponded to measurement point 23 (1DP)

in the DS1 damaged state, and the problems

may be due to measurement noise, or a lack of

sensitivity of the measured degree of freedom to

the damage.

5 Conclusions

The results demonstrate that data reduction from

time domain data using independent component

analysis, followed by neural networks for damage

detection, provides a suitable methodology for

structural health monitoring. Independent com-

ponent analysis is a powerful tool to decompose

signals into uncorrelated independent compo-

nents. The corresponding mixing matrix encodes

the dynamic characteristics of the structure and

the effect of damage to enable structural damage

detection using a neural network from the mea-

sured time domain data. Such a route has the

advantage of reducing not only the size of the

‘measured’ data set, but also provides robustness

to noise contamination. Furthermore, higher

order statistics are available that may be useful

for damage identification. A major benefit of the

technique is that it requires the vibration response

to be measured but not the excitation force, and

this feature is very useful for on-line industrial

applications. The multi-layer perceptron neural

network, trained using an error back propagation

algorithm is demonstrated to be effective for

damage detection. However, this approach relies

on supervised learning and requires sufficient

data from several different damaged and healthy

states to train the networks. Real data for this

training is likely to be difficult to obtain in

practical applications. Investigations are con-

tinuing into the use of simulated data to train

networks, and the effect of modelling errors on

the detection performance.

The number of independent components

selected reduces the size of the measured data

and filters unwanted measurement noise, but

also determines how much original information is

contained in the reconstructed signals. The use of

too few components will lose some characteristics

of the data that the neural network would

find useful in the detection phase. The use of too

many components requires the neural network to

filter the noise as well as detect the damage.

Work is continuing on the optimization of both

the number of independent components and

the network structure (i.e. the number of input

and hidden nodes) and will be explored in a

forthcoming paper.
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