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Preface

Among the various ingredients of structural dynamics, damping is one of the least
understood topics. The main reason is that unlike the stiffness and inertia forces,
damping forces cannot always be obtained from “first principles”. The past two
decades have seen significant developments in the modeling and analysis of damping
in the context of engineering dynamic systems. Developments in composite materials
including nanocomposites and their applications in advanced structures, such as new
generation of aircrafts and large wind turbines, have led to the need for understanding
damping in a better manner. Additionally, the rise of vibration energy harvesting
technology using piezoelectric and electromagnetic principles further enhanced the
importance of looking at damping more rigorously. The aim of this book is to
systematically present the latest developments in the modeling and analysis of
damping in the context of general linear dynamic systems with multiple
degrees-of-freedom. The focus has been on the mathematical and computational
aspects. This book will be relevant to aerospace, mechanical and civil engineering
disciplines and various sub-disciplines within them. The intended readers of this
book include senior undergraduate students and graduate students doing projects or
doctoral research in the field of damped vibration. Researchers, professors and
practicing engineers working in the field of advanced vibration will find this book
useful. This book will also be useful for researchers working in the fields of
aeroelasticity and hydroelasticity, where complex eigenvalue problems routinely
arise due to fluid–structure interactions.

There are some excellent books which already exist in the field of damped
vibration. The book by Nashif et al. [NAS 85] covers various material damping
models and their applications in the design and analysis of dynamic systems. A
valuable reference on dynamic analysis of damped structures is [SUN 95]. The book
by Beards [BEA 96] takes a pedagogical approach toward structural vibration of
damped systems. The handbook by Jones [JON 01] focuses on viscoelastic damping
and analysis of structures with such damping models. These books represented the
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state of the art at the time of their publications. Since these publications, significant
research works have gone into the dynamics of damped systems. The aim of this
book is to cover some of these latest developments. The attention is mainly limited to
theoretical and computational aspects, although some references to experimental
works are given.

One of the key features of this book is the consideration of general non-viscous
damping and how such general models can be seamlessly integrated into the
framework of conventional structural dynamic analysis. New results are illustrated by
numerical examples and, wherever possible, connections are made to well-known
concepts of viscously damped systems. A related title, Structural Dynamic Analysis
with Generalized Damping Models: Analysis [ADH 14], is complementary to this
book, and, indeed, they could have been presented together. However, for practical
reasons, it has proved more convenient to present the material separately.

The related book, Structural Dynamic Analysis with Generalized Damping
Models: Analysis [ADH 14] focuses on the analysis of linear systems with general
damping models. This book, Structural Dynamic Analysis with Generalized
Damping Models: Identification, deals with the identification and quantification of
damping. There are ten chapters and one appendix in the two volumes combined ?
covering analysis and identification of dynamic systems with viscous and
non-viscous damping.

In [ADH 14] Chapter 1 gives an introduction to the various damping models.
Dynamics of viscously damped systems are discussed in Chapter 2. Chapter 3
considers dynamics of non-viscously damped single-degree-of-freedom systems in
detail. Chapter 4 discusses non-viscously damped multiple degree-of-freedom
systems. Linear systems with general non-viscous damping are studied in Chapter 5.
Chapter 6 proposes reduced computational methods for damped systems. A method
to deal with general asymmetric systems is described in the appendix.

In this book, Structural Dynamic Analysis with Generalized Damping Models:
Identification, Chapter 1 describes parametric sensitivity of damped systems.
Chapter 2 describes the problem of identification of viscous damping. The
identification of non-viscous damping is detailed in Chapter 3. Chapter 4 gives some
tools for the quantification of damping.

This book is the result of the last 15 years of research and teaching in the area of
damped vibration problems. Initial chapters started taking shape when I offered a
course on advanced vibration at the University of Bristol. The later chapters
originated from the research work with numerous colleagues, students, collaborators
and mentors. I am deeply indebted to all of them for numerous stimulating scientific
discussions, exchanges of ideas and, on many occasions, direct contributions toward
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the intellectual content of the book. I am grateful to my teachers Professor C. S.
Manohar (Indian Institute of Science, Bangalore), Professor R. S. Langley
(University of Cambridge) and, in particular, Professor J. Woodhouse (University of
Cambridge), who was heavily involved with the works reported in Chapters 2–4 of
this book. I am very thankful to my colleague Professor M. I. Friswell with whom I
have a long-standing collaboration. Some joint works are directly related to the
content of this book (Chapter 1 of this book in particular). I would also like to thank
Professor D. J. Inman (University of Michigan) for various scientific discussions
during his visits to Swansea. I am thankful to Professor A. Sarkar (Carleton
University) and his doctoral student M. Khalil for joint research works. I am deeply
grateful to Dr A. S. Phani (University of British Columbia) for various discussions
related to damping identification and contributions toward Chapters 2 and 5 of
[ADH 14] and Chapter 2 of this book. Particular thanks go to Dr N. Wagner (Intes
GmbH, Stuttgart) for joint works on non-viscously damped systems and
contributions in Chapter 4 of [ADH 14]. I am also grateful to Professor F. Papai for
involving me in research works on damping identification. My former PhD students
B. Pascual (contributed in Chapter 6 of [ADH 14]), J. L. du Bois and F. A. Diaz De la
O deserve particular thanks for various contributions throughout their time with me
and putting up with my busy schedules. I am grateful to Dr Y. Lei (University of
Defense Technology, Changsha) for carrying out joint research with me on
non-viscously damped continuous systems. I am grateful to Professor A. W. Lees
(Swansea University), Professor N. Lieven, Professor F. Scarpa (University of
Bristol), Professor D. J. Wagg (University of Sheffield), Professor S. Narayanan
(Indian Institute of Technology (IIT) Madras), Professor G. Litak (Lublin
University), E. Jacquelin (Université Lyon), Dr A. Palmeri (Loughborough
University), Professor S. Bhattacharya (University of Surrey), Dr S. F. Ali (IIT
Madras), Dr R. Chowdhury (IIT Roorkee), Dr P. Duffour (University College
London), and Dr P. Higino, Dr G. Caprio and Dr A. Prado (Embraer Aircraft) for
their intellectual contributions and discussions at different times. Besides the names
mentioned here, I am also thankful to many colleagues, fellow researchers and
students working in this field of research around the world, whose names cannot be
listed here due to page limitations. The lack of explicit mentions by no means implies
that their contributions are any lesser. The opinions presented in the book are entirely
mine, and none of my colleagues, students, collaborators and mentors have any
responsibility for any shortcomings.

I have been fortunate to receive grants from various companies, charities and
government organizations including an Advanced Research Fellowship from UK
Engineering and Physical Sciences Research Council (EPSRC), the Wolfson
Research Merit Award from the Royal Society and the Philip Leverhulme Prize from
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the Leverhulme Trust. Without these findings, it would have been impossible to have
conducted the works leading to this book. Finally, I want to thank my colleagues at
the College of Engineering at Swansea University. Their support proved to be a key
factor in materializing the idea of writing this book.

Last, but by no means least, I wish to thank my wife Sonia and my parents for their
constant support, encouragement and putting up with my ever-increasing long periods
of “non-engagement” with them.

Sondipon ADHIKARI
October 2013



Nomenclature

Cjj diagonal element of the modal damping matrix

α
(j)
k terms in the expansion of approximate complex modes

α1, α2 proportional damping constants
αj coefficients in Caughey series, j = 0, 1, 2, · · ·
0j a vector of j zeros
A state-space system matrix
aj a coefficient vector for the expansion of jth complex mode
α a vector containing the constants in Caughey series
h̄(iω) frequency response function of an SDOF system
B state-space system matrix
bj a vector for the expansion of jth complex mode
f̄(s) forcing vector in the Laplace domain

f̄ (s) modal forcing function in the Laplace domain
p̄(s) effective forcing vector in the Laplace domain
q̄(s) response vector in the Laplace domain
ū(s) Laplace transform of the state-vector of the first-order system
ȳ(s) modal coordinates in the Laplace domain
ȳk Laplace transform of the internal variable yk(t)

R+ positive real line
C viscous damping matrix
C modal damping matrix
C0 viscous damping matrix (with a non-viscous model)
Ck coefficient matrices in the exponential model for k = 0, ..., n, where n

is the number of kernels
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G(t) non-viscous damping function matrix in the time domain
ΔK error in the stiffness matrix
ΔM error in the mass matrix
β non-viscous damping factor
βc critical value of β for oscillatory motion, βc =

1
3
√
3

βi(•) proportional damping functions (of a matrix)
βk(s) coefficients in the state-space modal expansion
βmU the value of β above which the frequency response function always has

a maximum
F linear matrix pencil with time step in state-space, F = B − h

2 A
F1,F2 linear matrix pencils with time step in the configuration space
Fj regular linear matrix pencil for the jth mode
f (t) forcing function in the modal coordinates
f(t) forcing function
G(s) non-viscous damping function matrix in the Laplace domain
G0 the matrix G(s) at s → 0

G∞ the matrix G(s) at s → ∞
H(s) frequency response function matrix
ûj real part of ẑj
v̂j imaginary part of ẑj
ẑj jth measured complex mode
I identity matrix
K stiffness matrix
M mass matrix
Oij a null matrix of dimension i× j

Ω diagonal matrix containing the natural frequencies
p parameter vector (in Chapter 1 )
Pj a diagonal matrix for the expansion of jth complex mode
φj eigenvectors in the state-space
ψj left eigenvectors in the state-space
q(t) displacement response in the time domain
q0 vector of initial displacements
Qj an off-diagonal matrix for the expansion of jth complex mode
r(t) forcing function in the state-space
Rk rectangular transformation matrices (in Chapter 4, [ADH 14] )



Nomenclature xv

Rk residue matrix associated with pole sk

S a diagonal matrix containing eigenvalues sj

T a temporary matrix, T =
√

M−1K (Chapter 2)
Tk Moore-Penrose generalized inverse of Rk

Tk a transformation matrix for the optimal normalization of the kth
complex mode

Θ normalization matrix
u(t) the state-vector of the first-order system
u0 vector of initial conditions in the state-space
uj displacement at the time step j

v(t) velocity vector v(t) = q̇(t)
vj a vector of the j-modal derivative in Nelson’s methods (in Chapter 1)
vj velocity at the time step j

εj error vector associated with jth complex mode
ϕk(s) eigenvectors of the dynamic stiffness matrix
W coefficient matrix associated with the constants in Caughey series
X matrix containing the undamped normal modes xj

xj undamped eigenvectors, j = 1, 2, · · ·, N
y(t) modal coordinate vector (in Chapter 2, [ADH 14])
yk(t) vector of internal variables, k = 1, 2, · · ·, n
yk,j internal variable yk at the time step j

Z matrix containing the complex eigenvectors zj
zj complex eigenvectors in the configuration space
ζ diagonal matrix containing the modal damping factors
ζv a vector containing the modal damping factors
χ merit function of a complex mode for optimal normalization
χR, χI merit functions for real and imaginary parts of a complex mode
Δ perturbation in the real eigenvalues
δ perturbation in complex conjugate eigenvalues
q̇0 initial velocity (SDOF systems)

small error
η ratio between the real and imaginary parts of a complex mode
F dissipation function
γ non-dimensional characteristic time constant
γj complex mode normalization constant
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γR, γI weights for the normalization of the real and imaginary parts of a
complex mode

θ̂(ω) frequency-dependent estimated characteristic time constant

θ̂j estimated characteristic time constant for jth mode
t̂ an arbitrary independent time variable
κj real part of the complex optimal normalization constant for the jth

mode
λ complex eigenvalue corresponding to the oscillating mode (in Chapter

3, [ADH 14])
λj complex frequencies MDOF systems
Mr moment of the damping function
D dissipation energy
G(t) non-viscous damping kernel function in an SDOF system
T kinetic energy
U potential energy
μ relaxation parameter
μk relaxation parameters associated with coefficient matrix Ck in the

exponential non-viscous damping model
ν real eigenvalue corresponding to the overdamped mode
νk(s) eigenvalues of the dynamic stiffness matrix
ω driving frequency
ωd damped natural frequency of SDOF systems
ωj undamped natural frequencies of MDOF systems, j = 1, 2, · · ·, N
ωn undamped natural frequency of SDOF systems
ωmax frequency corresponding to the maximum amplitude of the response

function
ωdj damped natural frequency of MDOF systems
ρ mass density
i unit imaginary number, i =

√−1

τ dummy time variable
θj characteristic time constant for jth non-viscous model

f̃(t) forcing function in the modal domain
ω̃ normalized frequency ω/ωn

ςj imaginary part of the complex optimal normalization constant for the
jth mode

ϑ phase angle of the response of SDOF systems
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ϑj phase angle of the modal response
ψ a trail complex eigenvector (in Chapter 2, [ADH 14])
A asymmetric state-space system matrix
C fitted damping matrix

f(ωj) fitted generalized proportional damping function (in Chapter 2)

A state-space system matrix for rank-deficient systems
B state-space system matrix for rank-deficient systems
ir integration of the forcing function in the state-space for rank-deficient

systems
ir integration of the forcing function in the state-space
Φ matrix containing the state-space eigenvectors for rank-deficient

systems

φj eigenvectors in the state-space for rank-deficient systems
r(t) forcing function in the state-space for rank-deficient systems
u(t) the state vector for rank-deficient systems
yk(t) vector of internal variables for rank-deficient systems, k = 1, 2, · · ·, n
yk,j internal variable yk at the time step j for rank-deficient systems
yyykj

jth eigenvector corresponding to the kth the internal variable for rank-
deficient systems

ξ a function of ζ defined in equation [3.132] (Chapter 3, [ADH 14])
ζ viscous damping factor
ζc critical value of ζ for oscillatory motion, ζc = 4

3
√
3

ζj modal damping factors
ζL lower critical damping factor
ζn equivalent viscous damping factor
ζU upper critical damping factor
ζmL the value of ζ below which the frequency response function always has

a maximum
ak, bk non-viscous damping parameters in the exponential model
B response amplitude of SDOF systems
Bj modal response amplitude
c viscous damping constant of an SDOF system
ck coefficients of exponential damping in an SDOF system
ccr critical damping factor
dj a constant of the j-modal derivative in Nelson’s methods
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E Young’s modulus
f(t) forcing function (SDOF systems)
fd(t) non-viscous damping force
G(iω) non-dimensional frequency response function
G(s) non-viscous damping kernel function in the Laplace domain (SDOF

systems)
g(i) scalar damping functions, i = 1, 2, · · ·
h constant time step
h(t) impulse response function of SDOF systems
h(t) impulse response function
Ik non-proportionally indices, k1 = 1, 2, 3, 4

k spring stiffness of an SDOF system
L length of the rod
le length of an element
m dimension of the state-space for non-viscously damped MDOF systems
m mass of an SDOF system
N number of degrees of freedom
n number of exponential kernels
nd number of divisions in the time axis
p any element in the parameter vector p (in Chapter 1)
q(t) displacement in the time domain
q0 initial displacement (SDOF systems)
Qnck non-conservative forces
R(x) Rayleigh quotient for a trail vector x
R1, R2, R3 three new Rayleigh quotients
rj normalized eigenvalues of non-viscously damped SDOF systems (in

Chapter 3, [ADH 14])
rk rank of Ck matrices
s Laplace domain parameter
sj eigenvalues of dynamic systems
t time
Tn natural time period of an undamped SDOF system
Tmin minimum time period for the system
varrhoj complex optimal normalization constant for the jth mode
x normalized frequency-squared, x = ω2/ω2

n (in Chapter 3, [ADH 14])
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yj modal coordinates (in Chapter 3, [ADH 14])
f̄(s) forcing function in the Laplace domain
q̄(s) displacement in the Laplace domain
Û matrix containing ûj

V̂ matrix containing v̂j

Φ matrix containing the eigenvectors φj

q̇0 vector of initial velocities
Fi(•, •) non-viscous proportional damping functions (of a matrix)
YYY k a matrix of internal eigenvectors
yyykj jth eigenvector corresponding to the kth the internal variable
PSD power spectral density
0 a vector of zeros
L Lagrangian (in Chapter 3, [ADH 14])
δ(t) Dirac-delta function
δjk Kroneker-delta function
Γ(•) gamma function
γ Lagrange multiplier (in Chapter 3, [ADH 14])
(•)∗ complex conjugate of (•)
(•)T matrix transpose
(•)−1 matrix inverse
(•)−T matrix inverse transpose
(•)H Hermitian transpose of (•)
(•)e elastic modes
(•)nv non-viscous modes
(•̇) derivative with respect to time
C space of complex numbers
R space of real numbers
⊥ orthogonal to
L(•) Laplace transform operator
L−1(•) inverse Laplace transform operator
det(•) determinant of (•)
diag [•] a diagonal matrix
∀ for all
(•) imaginary part of (•)

∈ belongs to
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/∈ does not belong to
⊗ Kronecker product
(•) Laplace transform of (•)
(•) real part of (•)

vec vector operation of a matrix
O(•) in the order of
ADF anelastic displacement field model
adj(•) adjoint matrix of (•)
GHM Golla, Hughes and McTavish model
MDOF multiple-degree-of-freedom
SDOF single-degree-of-freedom



Chapter 1

Parametric Sensitivity of Damped Systems

Changes of the eigenvalues and eigenvectors of a linear vibrating system due to
changes in system parameters are of wide practical interest. Motivation for this kind
of study arises, on the one hand, from the need to come up with effective structural
designs without performing repeated dynamic analysis, and, on the other hand, from
the desire to visualize the changes in the dynamic response with respect to system
parameters. Furthermore, this kind of sensitivity analysis of eigenvalues and
eigenvectors has an important role to play in the area of fault detection of structures
and modal updating methods. Sensitivity of eigenvalues and eigenvectors is useful in
the study of bladed disks of turbomachinery where blade masses and stiffness are
nearly the same, or deliberately somewhat altered (mistuned), and one investigates
the modal sensitivities due to this slight alteration. Eigensolution derivatives also
constitute a central role in the analysis of stochastically perturbed dynamical
systems. Possibly, the earliest work on the sensitivity of the eigenvalues was carried
out by Rayleigh [RAY 77]. In his classic monograph, he derived the changes in
natural frequencies due to small changes in system parameters. Fox and Kapoor
[FOX 68] have given exact expressions for the sensitivity of eigenvalues and
eigenvectors with respect to any design variables. Their results were obtained in
terms of changes in the system property matrices and the eigensolutions of the
structure in its current state, and have been used extensively in a wide range of
application areas of structural dynamics. Nelson [NEL 76] proposed an efficient
method to calculate an eigenvector derivative, which requires only the eigenvalue and
eigenvector under consideration. A comprehensive review of research on this kind of
sensitivity analysis can be obtained in Adelman and Haftka [ADE 86]. A brief review
of some of the existing methods for calculating sensitivity of the eigenvalues and
eigenvectors is given in section 1.6 (Chapter 1, [ADH 14]).
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The aim of this chapter is to consider parametric sensitivity of the eigensolutions
of damped systems. We first start with undamped systems in section 1.1. Parametric
sensitivity of viscously damped systems is discussed in section 1.2. In section 1.3, we
discuss the sensitivity of eigensolutions of general non-viscously damped systems. In
section 1.4, a summary of the techniques introduced in this chapter is provided.

1.1. Parametric sensitivity of undamped systems

The eigenvalue problem of undamped or proportionally damped systems can be
expressed by

K(p)xj = λjM(p)xj [1.1]

where λj and xj are the eigenvalues and the eigenvectors of the dynamic system.
M(p) : Rm → RN×N and K(p) : Rm → RN×N , the mass and stiffness matrices,
are assumed to be smooth, continuous and differentiable functions of a parameter
vector p ∈ Rm. Note that λj = ω2

j where ωj is the jth undamped natural frequency.
The vector p may consist of material properties, e.g. mass density, Poisson’s ratio
and Young’s modulus; or geometric properties, e.g. length, thickness and boundary
conditions. The eigenvalues and eigenvectors are smooth differentiable functions of
the parameter vector p.

1.1.1. Sensitivity of the eigenvalues

We rewrite the eigenvalue equation as

[K − λjM] xj = 0 [1.2]

or xTj [K − λjM] . [1.3]

The functional dependence of p is removed for notational convenience.
Differentiating the eigenvalue equation [1.2] with respect to the element p of the
parameter vector we have

∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

xj + [K − λjM]
∂xj

∂p
= 0. [1.4]

Premultiplying by xTj , we have

xTj
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

xj + xTj [K − λjM]
∂xj
∂p

= 0. [1.5]
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Using the identity in [1.3], we have

xTj
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

xj = 0 [1.6]

or
∂λj

∂p
=

xT
j

∂K
∂p

− λj
∂M
∂p

xj

xTj Mxj
. [1.7]

Note that when the modes are mass normalized, xT
j Mxj = 1. Equation [1.7] shows

that the derivative of a given eigenvalue depends only on eigensolutions corresponding
to that particular eigenvalue. Next, we show that this fact is not true when we consider
the derivative of the eigenvectors.

1.1.2. Sensitivity of the eigenvectors

Different methods have been developed to calculate the derivatives of the
eigenvectors. One way to express the derivative of an eigenvector is by a linear
combination of all the eigenvectors

∂xj
∂p

=

N

r=1

αjrxr. [1.8]

This can always be done as xr, r = 1, 2, · · · , N forms a complete basis. It is
necessary to find expressions for the constant αjr for all r = 1, 2, · · ·N . Substituting
this in equation [1.4], we have

∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

xj +
N

r=1

[K − λjM]αjrxr = 0. [1.9]

Premultiplying by xTk , we have

xTk
∂K
∂p

− ∂λj

∂p
M − λj

∂M
∂p

xj +
N

r=1

xTk [K − λjM]αjrxr = 0 [1.10]

We consider r = k and the orthogonality of the eigenvectors

xTk Kxr = λkδkr and xTk Mxr = δkr. [1.11]
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Using these, we have

xTk
∂K
∂p

− λj
∂M
∂p

xj + (λk − λj)αjik = 0. [1.12]

From this, we obtain

αjik = −
xT
k

∂K
∂p

− λj
∂M
∂p

xj

λk − λj
, ∀ k = j. [1.13]

To obtain the jth term αjj , we differentiate the mass orthogonality relationship in
[1.11] as

∂(xT
j Mxj)

∂p
= 0 or

∂xTj
∂p

Mxj + xTj
∂M
∂p

xj + xT
j M

∂xj
∂p

= 0. [1.14]

Considering the symmetry of the mass matrix and using the expansion of the
eigenvector derivative, we have

xTj
∂M
∂p

xj + 2xTj M
∂xj
∂p

= 0 or
N

r=1

2xTj Mαjrxr = −xTj
∂M
∂p

xj . [1.15]

Utilizing the othonormality of the mode shapes, we have

αjj = −1

2
xT
j

∂M
∂p

xj . [1.16]

The complete eigenvector derivative is therefore given by

∂xj

∂p
= −1

2
xTj

∂M
∂p

xj xj +
N

k=1=j

xTk
∂K
∂p

− λj
∂M
∂p

xj

λj − λk
xk. [1.17]

From equation [1.17], it can be observed that when two eigenvalues are close,
the modal sensitivity will be higher as the denominator of the right-hand term will
be very small. Unlike the derivative of the eigenvalues given in [1.7], the derivative
of an eigenvector requires all the other eigensolutions. This can be computationally
demanding for large systems. The method proposed by Nelson [NEL 76] can address
this problem. We will discuss Nelson’s method in the context of damped systems in
the following sections.
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1.2. Parametric sensitivity of viscously damped systems

The analytical method in the preceding section is for undamped systems. For
damped systems, unless the system is proportionally damped (see section 2.4,
Chapter 2 of [ADH 14]), the mode shapes of the system will not coincide with the
undamped mode shapes. In the presence of general non-proportional viscous
damping, the equation of motion in the modal coordinates will be coupled through
the off-diagonal terms of the modal damping matrix, and the mode shapes and
natural frequencies of the structure will, in general, be complex. The solution
procedures for such non-proportionally damped systems follow mainly two routes:
the state-space method and approximate methods in the configuration space, as
discussed in Chapters 2 and 3 [ADH 14]. The state-space method (see
[NEW 89, GÉR 97], for example) although exact in nature, requires significant
numerical effort for obtaining the eigensolutions as the size of the problem doubles.
Moreover, this method also lacks some of the intuitive simplicity of traditional modal
analysis. For these reasons, there has been considerable research effort in analyzing
non-proportionally damped structures in the configuration space. Most of these
methods either seek an optimal decoupling of the equation of motion or simply
neglect the off-diagonal terms of the modal damping matrix. It may be noted that
following such methodologies, the mode shapes of the structure will still be real. The
accuracy of these methods, other than the light damping assumption, depends upon
various factors, for example frequency separation between the modes and driving
frequency (see [PAR 92a, GAW 97] and the references therein for discussions on
these topics). A convenient way to avoid the problems that arise due to the use of real
normal modes is to incorporate complex modes in the analysis. Apart from the
mathematical consistency, by conducting experimental modal analysis, we also often
identify complex modes: as Sestieri and Ibrahim [SES 94] have put it “... it is ironic
that the real modes are in fact not real at all, in that in practice they do not exist,
while complex modes are those practically identifiable from experimental tests. This
implies that real modes are pure abstraction, in contrast with complex modes that are,
therefore, the only reality!” But surprisingly, most of the current application areas of
structural dynamics, which utilize the eigensolution derivatives, e.g. modal updating,
damage detection, design optimization and stochastic finite element methods, do not
use complex modes in the analysis but rely on the real undamped modes only. This is
partly because of the problem of considering an appropriate damping model in the
structure and partly because of the unavailability of complex eigensolution
sensitivities. Although, there have been considerable research efforts toward damping
models, sensitivity of complex eigenvalues and eigenvectors with respect to system
parameters appears to have received less attention.

In this section, we determine the sensitivity of complex natural frequencies and
mode shapes with respect to some set of design variables in non-proportionally
damped discrete linear systems. It is assumed that the system does not possess
repeated eigenvalues. In section 2.5 (Chapter 2, [ADH 14]), the mathematical


