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Abstract: Transparent conductive oxides (TCO) have been extensively investigated as channel mate-
rials for thin-film transistors (TFTs). In this study, highly transparent and conductive InSnO (ITO)
and ZnO films were deposited, and their material properties were studied in detail. Meanwhile,
we fabricated ZnO/ITO heterojunction TFTs, and explored the effects of channel structures on the
hump characteristics of ZnO/ITO TFTs. We found that Vhump–VON was negatively correlated with
the thickness of the bottom ZnO layer (10, 20, 30, and 40 nm), while it was positively correlated with
the thickness of the top ITO layer (3, 5, 7, and 9 nm), where Vhump is the gate voltage corresponding
to the occurrence of the hump and VON is the turn-on voltage. The results demonstrated that carrier
transport forms dual current paths through both the ZnO and ITO layers, synthetically determining
the hump characteristics of the ZnO/ITO TFTs. Notably, the hump was effectively eliminated by
reducing the ITO thickness to no more than 5 nm. Furthermore, the hump characteristics of the
ZnO/ITO TFTs under positive gate-bias stress (PBS) were examined. This work broadens the prac-
tical application of TCO and provides a promising method for solving the hump phenomenon of
oxide TFTs.

Keywords: transparent conductive oxides; InSnO; ZnO; thin-film transistors; hump phenomenon;
channel structure

1. Introduction

Oxide thin-film transistors (TFTs) are one of the most important applications of trans-
parent conductive oxides (TCO). Recently, TFTs based on TCO have been extensively
investigated for the purpose of achieving transparent and flexible displays [1–4]. Among
the candidates of TCO, InSnO (ITO), and ZnO are considered to be promising channel
materials of TFTs since they combine excellent electrical properties and high transmit-
tance [5,6]. Furthermore, heterojunction TFTs, which have bilayer-structure channel, have
currently drawn considerable attention. Compared with the conventional oxide TFTs with
single-layer channels, the heterojunction TFTs are more flexible in device configuration;
thus, they better balance performance with stability [7–9]. Therefore, it is necessary to
investigate the heterojunction oxide TFTs further.

As a crucial issue to be solved, the hump phenomenon emerging in transfer curves
negatively shifts the turn-on voltage (VON) of the oxide TFTs, which not only adversely
affects pixel brightness but also increases the power consumption of the displays [10]. The
hump phenomenon has been widely examined for the single-channel oxide TFTs [11–14].
Mechanisms including edge effects, charge trapping, multiple current paths, and creation of
donor/acceptor-like defects have been proposed [15–20]. Nevertheless, there are relatively
few studies on the hump phenomena of heterojunction TFTs. Maeng et al. reported
the appearance of humps in heterojunction TFTs as the total channel thickness exceeded
80 nm, and this was explained as being a result of back channel conduction [21]. Zhao
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et al. demonstrated that the humps in heterojunction TFTs are related to channel thickness
and results from large total carrier numbers [22]. Even though these studies involve
the hump phenomenon in heterojunction TFTs, the effects of channel structure on hump
characteristics have not yet been fully studied. Therefore, further investigation is required
to make an in-depth and comprehensive analysis of the influence of channel structure on
hump characteristics.

In this work, we examined ZnO/ITO heterojunction TFTs. A systematic study on the
characteristics of transparent conductive ITO and ZnO films was conducted, including
optical transmittance, carrier concentration, material components, and surface morphology.
Furthermore, we determined the effects of the channel structure on the hump character-
istics of ZnO/ITO TFTs, and explored the hump characteristics under positive gate-bias
stress (PBS).

2. Experimental Methods
2.1. Fabrication of Films and Devices

The ZnO and ITO films were deposited on both amorphous glass substrates and
single-crystal Si substrates, in which ZnO film was deposited by atomic layer deposition
(ALD) at 120 ◦C and ITO film was sputtered at room temperature. Figure 1 illustrates the
device structure of the ZnO/ITO TFTs. A heavy-doped Si wafer was utilized as a substrate
and gate electrode. Firstly, 25-nm HfO2 was sputtered at room temperature, and 15-nm
Al2O3 was deposited by ALD at 100 ◦C. Subsequently, the ZnO/ITO heterojunction channel
was deposited, where the ZnO layer and ITO layer were deposited using the deposition
process mentioned above. Trimethylaluminum (TMA), diethylzinc (DEZ), and deionized
water (H2O) were the precursors for the aluminum, zinc, and oxygen elements, respectively.
Finally, a 100-nm Al film was sputtered as source/drain electrode. Two experimental
groups (A and B) were designed, and corresponding channel structures are also shown
in Figure 1.
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Figure 1. Schematic of the ZnO/ITO TFTs used in this article.

2.2. Characterization of Films and Devices

Before measurement, the films and devices were subjected to post-annealing treatment
at 100 ◦C in vacuum for 1 h. To obtain the transparency and optical band gap of the ZnO
and ITO films, we tested the transmittance (Zolix Omni-λ500, Beijing, China). The carrier
concentration and resistivity were determined by Hall measurement (Ecopia HMS-3000,
Anyang, South Korea). X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra, Manch-
ester, United Kingdom) was performed to analyze the chemical composition and elemental
states. Furthermore, the surface morphology and microstructure were characterized by
atomic force microscope (AFM, Dimension Icon, Bruker, Billerica, MA, USA; Tipsmodel,
Scan ASYST-Air) and transmission electron microscope (TEM, FEI Tecnai F20, Hillsboro,
OR, USA), respectively. Furthermore, all the electrical characteristic curves of the TFTs
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were characterized using a semiconductor device analyzer (Agilent B1500A, Palo Alto, CA,
USA) under dark ambient conditions at room temperature.

3. Results and Discussion
3.1. Material Properties of ZnO and ITO Films

The transmittance spectra of the ZnO and ITO films on glass substrates were charac-
terized, as revealed in Figure 2a. The testing methods were as follows. First, a bare glass
substrate was measured as the reference value (Tr). Then, the ZnO and ITO films on the
glass substrates were measured as the characteristic value (Tc). Finally, we calculated the
transmittance with the characteristic value divided by the reference value (Tr/Tc). Clearly,
both the ZnO and ITO films possessed an average optical transparency of over 90% in the
visible light range. Furthermore, transmittance of the ITO film was higher than that of the
ZnO film. The relationship between the optical energy gap (Eopt) and (αhν)2 of the ZnO
and ITO films is shown in Figure 2b,c, respectively. Here, the Eopt of ZnO and ITO films
were calculated using the following equations:

α =
1
t

ln
1
T

(1)

(αhν)2 = D
(
h − Eopt

)
(2)

where α is the optical absorption coefficient; t is the thickness of the film; T is the average
optical transparency; h is the Planck constant; and D is a constant [23]. It is shown that the
Eopt value of the ZnO and ITO films is 3.31 and 3.09 eV, respectively.
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ZnO and ITO films were deposited on glass substrates.

The carrier concentration and conductivity of the single ITO and ZnO films were
determined by Hall measurement, as shown in Table 1. The results showed that the carrier
concentration and conductivity of the ITO film were three orders of magnitude higher than



Nanomaterials 2022, 12, 1167 4 of 10

those of the ZnO film. Figure 3 shows the XPS O 1 s spectra for the ZnO and ITO films.
Firstly, the binding energy (BE) was calibrated by the standard C 1 s line at 284.80 eV [24].
Based on Gaussian fitting, the O 1 s spectra were divided into three individual peaks
centered at ~530.1 eV (O1 peak), ~531.1 eV (O2 peak), and ~532.1 eV (O3 peak). The O1
peak represents the metal–oxygen lattice whereas the O2 peak represents oxygen vacancy.
The O3 peak, however, is usually related to adsorbed oxygen [25,26]. Here, the area ratios
of oxygen vacancy in the ZnO and ITO films were calculated to be 16.68% and 21.04%,
respectively. Since the oxygen vacancy can serve as a shallow donor, the variation of oxygen
vacancy concentration directly alters the carrier concentration of the film [27]. The intensity
ratio of the O2 peak is consistent with the Hall effect results.

Table 1. Hall-effect results of ZnO and ITO films. ZnO and ITO films were deposited on glass substrates.

Sample Carrier Concentration (cm−3) Conductivity (Ω−1cm−1)

ZnO 1.63 × 1016 1.78 × 10−2

ITO 2.80 × 1019 78.91
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We also examined the surface morphology of the ZnO and ITO films by means of AFM,
as shown in Figure 4. The AFM images were measured in a 5 µm × 5 µm area. The root
mean square (RMS) roughness of the ZnO and ITO films was 0.66 and 0.63 nm, respectively.
A smooth surface is beneficial to reduce the scattering center and optimize the electrical
properties of the oxide TFTs [28].

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

than those of the ZnO film. Figure 3 shows the XPS O 1s spectra for the ZnO and ITO films. 

Firstly, the binding energy (BE) was calibrated by the standard C 1 s line at 284.80 eV [24]. 

Based on Gaussian fitting, the O 1s spectra were divided into three individual peaks cen-

tered at ~530.1 eV (O1 peak), ~531.1 eV (O2 peak), and ~532.1 eV (O3 peak). The O1 peak 

represents the metal–oxygen lattice whereas the O2 peak represents oxygen vacancy. The 

O3 peak, however, is usually related to adsorbed oxygen [25,26]. Here, the area ratios of 

oxygen vacancy in the ZnO and ITO films were calculated to be 16.68% and 21.04%, re-

spectively. Since the oxygen vacancy can serve as a shallow donor, the variation of oxygen 

vacancy concentration directly alters the carrier concentration of the film [27]. The inten-

sity ratio of the O2 peak is consistent with the Hall effect results. 

Table 1. Hall-effect results of ZnO and ITO films. ZnO and ITO films were deposited on glass sub-

strates. 

Sample Carrier Concentration (cm−3) Conductivity (Ω−1cm−1) 

ZnO 1.63 × 1016 1.78 × 10−2 

ITO 2.80 × 1019 78.91 

 

  

Figure 3. XPS spectra of (a) ZnO and (b) ITO films. ZnO and ITO films were deposited on Si sub-

strates. 

We also examined the surface morphology of the ZnO and ITO films by means of 

AFM, as shown in Figure 4. The AFM images were measured in a 5 µm × 5 µm area. The 

root mean square (RMS) roughness of the ZnO and ITO films was 0.66 and 0.63 nm, re-

spectively. A smooth surface is beneficial to reduce the scattering center and optimize the 

electrical properties of the oxide TFTs [28]. 

 

Figure 4. AFM images of (a) ZnO and (b) ITO films. ZnO and ITO films were deposited on Si sub-

strates. 
Figure 4. AFM images of (a) ZnO and (b) ITO films. ZnO and ITO films were deposited on Si substrates.



Nanomaterials 2022, 12, 1167 5 of 10

3.2. Hump Characteristics of ZnO/ITO TFTs

We conducted TEM measurement on the Al2O3/ZnO/ITO film, as shown in Figure 5.
The figure shows that the Al2O3, ZnO, and ITO layers were stacked in order on Si substrate,
and their respective thicknesses were about 15, 25, and 5 nm.
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Figure 5. Cross-sectional TEM image of the Al2O3/ZnO/ITO film. Al2O3/ZnO/ITO film was
deposited on Si substrate.

To investigate the effects of the thickness of the ZnO layer (tZnO) on the hump charac-
teristics, drain current–gate voltage (ID–VG) curves of the group A TFTs were measured,
as shown in Figure 6a–d. For the sake of brevity, Vhump, which is the gate voltage corre-
sponding to occurrence of the hump, was marked by red ellipses. We found that Vhump
negatively shifted from 1.7 to −0.7 V but VON remained nearly constant as tZnO increased
from 10 to 40 nm. The parameters of the group A TFTs are listed in Table 2, including the
field-effect mobility (µFE), Vhump, and VON.
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Table 2. Electrical parameters of ZnO/ITO TFTs, including µFE, Vhump, and VON.

tZnO (nm) µFE (cm2/Vs) Vhump (V) VON (V)

Group A

10 10.71 1.7 −2.9

20 11.28 0 −2.9

30 12.55 −0.1 −2.8

40 12.31 −0.7 −2.8

tITO (nm) µFE (cm2/Vs) Vhump (V) VON (V)

Group B

3 13.06 −0.1 −0.1

5 15.69 −0.3 −0.3

7 18.30 −0.2 −2.3

9 18.64 −0.1 −3.0

To explore the effects of the thickness of the ITO layer (tITO) on the hump characteristics,
the ID–VG curves of the group B TFTs were also measured, as shown in Figure 7a–d. We
can see that VON negatively shifted from −0.1 to −3 V as tITO increased from 3 to 9 nm.
Clearly, TFTs with both 3-nm and 5-nm ITO layers showed no hump, so we defined their
Vhump to be equal to VON values of −0.1 and −0.3 V, respectively. TFTs with 7-nm and
9-nm ITO layers, respectively, were found to have a Vhump of −0.2 V and −0.1 V. The
parameters of the group B TFTs are also listed in Table 2. Based on the above results, it
could be determined that Vhump depended on tZnO, while VON and µFE mainly depended
on tITO.
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The value of Vhump–VON as a function of tZnO and tITO is depicted in Figure 8. We
found that Vhump–VON, which is defined as an important parameter to measure the severity
of hump phenomena, was negatively correlated with tZnO, but was positively correlated
with tITO. Notably, by optimizing tITO ≤ 5 nm, the hump could be eliminated.
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According to previous studies in the literature, the existence of two or more current
paths is one of the important reasons leading to hump formation [12,16,18,21,29]. In this
work, the generation of hump phenomena in ZnO/ITO TFTs should have resulted from the
dual current paths through both the ZnO and ITO layers. Based on the experimental results,
namely that Vhump depended on tZnO and VON depended on tITO, we could determine that
the ITO current path turns on before the ZnO current path, at VGS = VON, while the ZnO
current path turns on at VGS = Vhump.

To provide the underlying mechanism of the hump characteristics of the ZnO/ITO
TFTs, schematic diagrams that describe the current conduction in different channel struc-
tures are depicted, as shown in Figure 9a–d. For experimental group A, as tZnO increased
from 10 to 40 nm, the carrier number in the ZnO layer increased and the Vhump was
negatively shifted; thus, Vhump–VON presented a decreasing trend, and the hump was
weakened. Nevertheless, as the total current was mainly affected by the ITO layer with
high carrier concentration, the total current remained nearly constant and resulted in a
stable µFE. For experimental group B, the current flowing through the ITO layer was
improved as tITO increased, as shown in Figure 9c,d. Thereby, as tITO increased, VON was
negatively shifted, µFE and Vhump–VON presented a positive correlation with tITO, and
the hump was strengthened. Based on these results, it is clear that methods aimed at
reducing the carrier concentration of the top channel layer—For example, adopting suitable
post-processing treatment and optimizing process parameters—can be applied to suppress
hump phenomena, and thus, these methods need further investigation.
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Considering that many reported hump phenomena are induced by PBS, the PBS
dependence of the hump characteristics was also investigated. Figure 10 displays the
effects of PBS on the transfer characteristics of group B TFTs with tITO of 3 and 9 nm, and
the value of Vhump–VON plotted against stress time is shown in Figure 11. With increasing
stress time, no hump was created for TFTs with tITO values of 3 nm, but the hump was
strengthened for TFTs with tITO values of 9 nm. Under PBS, electrons were trapped in Al2O3
dielectric or/and at the Al2O3/ZnO interface, which influenced the shielding gate electric
field [30,31]. When the tITO was 3 nm, VON and Vhump increased simultaneously with the
stress time, so no hump occurred. When the tITO was 9 nm, Vhump increased but VON
remained constant with stress time, and this was a result of the high carrier concentration
of the ITO layer.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 10 
 

 

 

Figure 9. Schematic diagrams of current conduction in channel structures of (a) ZnO/ITO (10 nm/9 

nm), (b) ZnO/ITO (40 nm/9 nm), (c) ZnO (25 nm)/ITO (≤5 nm), and (d) ZnO (25 nm)/ITO (>5 nm). 

Considering that many reported hump phenomena are induced by PBS, the PBS de-

pendence of the hump characteristics was also investigated. Figure 10 displays the effects 

of PBS on the transfer characteristics of group B TFTs with tITO of 3 and 9 nm, and the value 

of Vhump–VON plotted against stress time is shown in Figure 11. With increasing stress time, 

no hump was created for TFTs with tITO values of 3 nm, but the hump was strengthened 

for TFTs with tITO values of 9 nm. Under PBS, electrons were trapped in Al2O3 dielectric 

or/and at the Al2O3/ZnO interface, which influenced the shielding gate electric field 

[30,31]. When the tITO was 3 nm, VON and Vhump increased simultaneously with the stress 

time, so no hump occurred. When the tITO was 9 nm, Vhump increased but VON remained 

constant with stress time, and this was a result of the high carrier concentration of the ITO 

layer. 

  

Figure 10. PBS stability for ZnO/ITO TFTs with tITO values of (a) 3 and (b) 9 nm. The tZnO is 25 nm. 

 

Figure 11. Vhump–VON versus PBS time for ZnO/ITO TFTs with tITO values of 3 and 9 nm. The tZnO 

value is 25 nm. 

  

Figure 10. PBS stability for ZnO/ITO TFTs with tITO values of (a) 3 and (b) 9 nm. The tZnO is 25 nm.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 10 
 

 

 

Figure 9. Schematic diagrams of current conduction in channel structures of (a) ZnO/ITO (10 nm/9 

nm), (b) ZnO/ITO (40 nm/9 nm), (c) ZnO (25 nm)/ITO (≤5 nm), and (d) ZnO (25 nm)/ITO (>5 nm). 

Considering that many reported hump phenomena are induced by PBS, the PBS de-

pendence of the hump characteristics was also investigated. Figure 10 displays the effects 

of PBS on the transfer characteristics of group B TFTs with tITO of 3 and 9 nm, and the value 

of Vhump–VON plotted against stress time is shown in Figure 11. With increasing stress time, 

no hump was created for TFTs with tITO values of 3 nm, but the hump was strengthened 

for TFTs with tITO values of 9 nm. Under PBS, electrons were trapped in Al2O3 dielectric 

or/and at the Al2O3/ZnO interface, which influenced the shielding gate electric field 

[30,31]. When the tITO was 3 nm, VON and Vhump increased simultaneously with the stress 

time, so no hump occurred. When the tITO was 9 nm, Vhump increased but VON remained 

constant with stress time, and this was a result of the high carrier concentration of the ITO 

layer. 

  

Figure 10. PBS stability for ZnO/ITO TFTs with tITO values of (a) 3 and (b) 9 nm. The tZnO is 25 nm. 

 

Figure 11. Vhump–VON versus PBS time for ZnO/ITO TFTs with tITO values of 3 and 9 nm. The tZnO 

value is 25 nm. 

  

Figure 11. Vhump–VON versus PBS time for ZnO/ITO TFTs with tITO values of 3 and 9 nm. The tZnO

value is 25 nm.

4. Conclusions

In conclusion, we first studied the material properties of the transparent conductive
oxides ZnO and ITO. Further, we fabricated ZnO/ITO heterojunction TFTs and researched
the effects of the channel structure on the hump characteristics. Our results showed that
Vhump–VON negatively correlated with tZnO but positively correlated with tITO. In particular,
the hump was eliminated when the tITO did not exceed 5 nm. Based on these results, current
conduction in two channel layers is proposed to explain these hump characteristics. It was
also found that the devices showed more severe humps under PBS for thicker ITO layers.
This study extends the practical application of TCO and is helpful in terms of overcome the
hump phenomenon of the oxide TFTs.
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