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Abstract

In the behavioral sciences, response variables are often noncontinuous, common types be-

ing dichotomous, ordinal or nominal variables, counts and durations. Conventional structural

equation models (SEMs) have thus been generalized to accommodate different kinds of re-

sponses.
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Introduction

Structural equation models (SEMs) comprise two components, a measurement model and a

structural model. The measurement model relates observed responses or ‘indicators’ to latent

variables and sometimes to observed covariates. The structural model then specifies relations

among latent variables and regressions of latent variables on observed variables. When the in-

dicators are categorical, we need to modify the conventional measurement model for continuous

indicators. However, the structural model can remain essentially the same as in the continuous

case.

We first describe a class of structural equation models also accommodating dichotomous and

ordinal responses [5]. Here, a conventional measurement model is specified for multivariate normal

‘latent responses’ or ‘underlying variables’. The latent responses are then linked to observed

categorical responses via threshold models yielding probit measurement models.

We then extend the model to generalized latent variable models (e.g. Bartholomew and Knott [1];

Skrondal and Rabe-Hesketh [13]) where, conditional on the latent variables, the measurement mod-

els are generalized linear models which can be used to model a much wider range of response

types.

Next, we briefly discuss different approaches to estimation of the models since estimation is

considerably more complex for these models than for conventional structural equation models.

Finally, we illustrate the application of structural equation models for categorical data in a simple

example.
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SEMs for latent respones

Structural model

The structural model can take the same form regardless of response type. Letting j index units or

subjects, Muthén [5] specifies the structural model for latent variables ηj as

ηj = α + Bηj + Γx1j + ζj . (1)

Here, α is an intercept vector, B a matrix of structural parameters governing the relations among

the latent variables, Γ a regression parameter matrix for regressions of latent variables on observed

explanatory variables x1j and ζj a vector of disturbances (typically multivariate normal with zero

mean). Note that this model is defined conditional on the observed explanatory variables x1j .

Unlike conventional SEMs where all observed variables are treated as responses, we need not make

any distributional assumptions regarding x1j .

In the example considered later, there is a single latent variable ηj representing mathematical

reasoning or ‘ability’. This latent variable is regressed on observed covariates (gender, race and

their interaction),

ηj = α + γx1j + ζj , ζj ∼ N(0, ψ), (2)

where γ is a row-vector of regression parameters.

Measurement model

The distinguishing feature of the measurement model is that it is specified for latent continuous

responses y∗

j in contrast to observed continuous responses yj as in conventional SEMs,

y∗

j = ν + Ληj + Kx2j + ǫj . (3)

Here ν is a vector of intercepts, Λ a factor loading matrix and ǫj a vector of unique factors or

‘measurement errors’. Muthén and Muthén [7] extend the measurement model in Muthén [5] by

including the term Kx2j where K is a regression parameter matrix for the regression of y∗

j on

observed explanatory variables x2j . As in the structural model, we condition on x2j .

When ǫj is assumed to be multivariate normal, this model, combined with the threshold model

described below, is a probit model (see Probits). The variances of the latent responses are not

separately identified and some constraints are therefore imposed. Muthén sets the total variance

of the latent responses (given the covariates) to 1.

Threshold model

Each observed categorical response yij is related to a latent continuous response y∗

ij via a threshold

model.

For ordinal observed responses it is assumed that

yij =























0 if −∞ <y∗

ij ≤ κ1i

1 if κ1i <y∗

ij ≤ κ2i

...
...

...

S if κSi <y∗

ij ≤ ∞.

(4)

This is illustrated for three categories (S = 2) in Figure 1 for normally distributed ǫi, where the

areas under the curve are the probabilities of the observed responses.

Either the constants ν or the thresholds κ1i are typically set to 0 for identification. Dichotomous

observed responses simply arise as the special case where S =1.
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Figure 1: Threshold model for ordinal responses with three categories (from [13])

Generalized latent variable models

In generalized latent variable models, the measurement model is a generalized linear model of the

form

g(µj) = ν + Ληj + Kx2j , (5)

where g(·) is a vector of link functions which may be of different kinds handling mixed response

types (for instance both continuous and dichotomous observed responses or ‘indicators’). µj is a

vector of conditional means of the responses given ηj and x2j and the other quantities are defined as

in (3). The conditional models for the observed responses given µj are then distributions from the

exponential family (see Generalized Linear Models (GLM)). Note that there are no explicit

unique factors in the model because the variability of the responses for given values of ηj and

x2j is accommodated by the conditional response distributions. Also note that the responses are

implicitly specified as conditionally independent given the latent variables ηj (see Conditional

Independence).

In the example, we will consider a single latent variable measured by four dichotomous indicators

or ‘items’ yij , i=1, . . . , 4, and use models of the form

logit(µij) ≡ ln

(

Pr(µij)

1 − Pr(µij)

)

= νi + λiηj , ν1 =0, λ1 =1. (6)

These models are known as two-parameter logistic item response models because two parameters

(νi and λi) are used for each item i and the logit link is used (see Item Response Theory

Models for Dichotomous Responses). Conditional on the latent variable, the responses are

Bernouilli distributed (see Catalogue of Probability Density Functions) with expectations

µij = Pr(yij = 1|ηj). Note that we have set ν1 = 0 and λ1 = 1 for identification because the mean

and variance of ηj are free parameters in (2). Using a probit link in the above model instead

of the more commonly used logit would yield a model accommodated by the Muthén framework

discussed in the previous section.

Models for counts can be specified using a log link and Poisson distribution (see Catalogue

of Probability Density Functions). Importantly, many other response types can be handled

including ordered and unordered categorical responses, rankings, durations, and mixed responses;
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see e.g., [1], [2], [4], [9], [11], [12] and [13] for theory and applications. A recent book on generalized

latent variable modeling [13] extends the models described here to ‘generalized linear latent and

mixed models’ (GLLAMMs) [9] which can handle multilevel settings and discrete latent variables.

Estimation and Software

In contrast to the case of multinormally distributed continuous responses, maximum likelihood

estimation cannot be based on sufficient statistics such as the empirical covariance matrix (and

possibly mean vector) of the observed responses. Instead, the likelihood must be obtained by some-

how ‘integrating out’ the latent variables ηj . Approaches which work well but are computationally

demanding include adaptive Gaussian quadrature [10] implemented in gllamm [8] and Markov

Chain Monte Carlo methods (typically with noninformative priors) implemented in BUGS [14]

(see Markov Chain Monte Carlo and Bayesian Statistics).

For the special case of models with multinormal latent responses (principally probit mod-

els), Muthén suggested a computationally efficient limited information estimation approach [6]

implemented in Mplus [7]. For instance, consider a structural equation model with dichotomous

responses and no observed explanatory variables. Estimation then proceeds by first estimating

‘tetrachoric correlations’ (pairwise correlations between the latent responses). Secondly, the asymp-

totic covariance matrix of the tetrachoric correlations is estimated. Finally, the parameters of the

SEM are estimated using weighted least squares (see Least Squares Estimation), fitting model-

implied to estimated tetrachoric correlations. Here, the inverse of the asymptotic covariance

matrix of the tetrachoric correlations serves as weight matrix.

Skrondal and Rabe-Hesketh [13] provide an extensive overview of estimation methods for SEMs

with noncontinuous responses and related models.

Example

Data

We will analyze data from the Profile of American Youth (U.S. Department of Defense [15]), a

survey of the aptitudes of a national probability sample of Americans aged 16 through 23. The

responses (1: correct, 0: incorrect) for four items of the arithmetic reasoning test of the Armed

Services Vocational Aptitude Battery (Form 8A) are shown in Table 1 for samples of white males

and females and black males and females. These data were previously analyzed by Mislevy [3].

Model specification

The most commonly used measurement model for ability is the the two-parameter logistic model

in (6) and (2) without covariates.

Item characteristic curves, plots of the probability of a correct response as a function of ability,

are given by

Pr(yij = 1|ηj) =
exp(νi + λiηj)

1 + exp(νi + λiηj)
.

and shown for this model (using estimates under M1 in Table 2) in Figure 2.

We then specify a structural model for ability ηj . Considering the covariates

• [Female] Fj , a dummy variable for subject j being female

• [Black] Bj , a dummy variable for subject j being black
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Table 1: Arithmetic reasoning data

Item
Response White White Black Black

1 2 3 4 Males Females Males Females

0 0 0 0 23 20 27 29
0 0 0 1 5 8 5 8
0 0 1 0 12 14 15 7
0 0 1 1 2 2 3 3
0 1 0 0 16 20 16 14
0 1 0 1 3 5 5 5
0 1 1 0 6 11 4 6
0 1 1 1 1 7 3 0
1 0 0 0 22 23 15 14
1 0 0 1 6 8 10 10
1 0 1 0 7 9 8 11
1 0 1 1 19 6 1 2
1 1 0 0 21 18 7 19
1 1 0 1 11 15 9 5
1 1 1 0 23 20 10 8
1 1 1 1 86 42 2 4

Total: 263 228 140 145

Source: Mislevy [3]

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Two-parameter item response model

1
2
3
4

Standardized ability ηj ψ̂−1/2

P
r(

y
ij

=
1|

η
j
)

Figure 2: Item characteristic curves for items 1 to 4 (from [13])
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we allow the mean abilities to differ between the four groups,

ηj = α + γ1Fj + γ2Bj + γ3FjBj + ζj .

This is a MIMIC model where the covariates affect the response via a latent variable only.

A path diagram of the structural equation model is shown in Figure 3. Here, observed variables

are represented by rectangles whereas the latent variable is represented by a circle. Arrows represent

regressions (not necessary linear) and short arrows residual variability (not necessarily an additive

error term). All variables vary between subjects j and therefore the j subscripts are not shown.
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Figure 3: Path diagram of MIMIC model

We can also investigate if there are direct effects of the covariates on the responses, in addition

to the indirect effects via the latent variable. This could be interpreted as ‘item bias’ or ‘differential

item functioning’ (DIF), i.e., where the probability of responding correctly to an item differs for

instance between black women and others with the same ability (see Differential Item Func-

tioning). Such item bias would be a problem since it suggests that candidates cannot be fairly

assessed by the test. For instance, if black women perform worse on the first item (i=1) we can

specify the following model for this item:

logit[Pr(y1j = 1|ηj)] = β1 + β5FjBj + λ1ηj .

Results

Table 2 gives maximum likelihood estimates based on 20-point adaptive quadrature estimated

using gllamm [8]. (Note that the specified models are not accommodated in the Muthén framework

because we are using a logit link.) Estimates for the two-parameter logistic IRT model (without

covariates) are given under M1, for the MIMIC model under M2 and for the MIMIC model with

item bias for black women on the first item under M3. Deviance and Pearson X2 statistics are

also reported in the table, from which we see that M2 fits better than M1. The variance estimate

of the disturbance decreases from 2.47 for M1 to 1.88 for M2 because some of the variability in

ability is ‘explained’ by the covariates. There is some evidence for a [Female] by [Black] interaction.

While being female is associated with lower ability among white people, this is not the case among
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Table 2: Estimates for ability models

M1 M2 M3

Parameter Est (SE) Est (SE) Est (SE)

Intercepts
ν1 [Item1] 0 – 0 – 0 –
ν2 [Item2] −0.21 (0.12) −0.22 (0.12) −0.13 (0.13)
ν3 [Item3] −0.68 (0.14) −0.73 (0.14) −0.57 (0.15)
ν4 [Item4] −1.22 (0.19) −1.16 (0.16) −1.10 (0.18)
ν5 [Item1]×
[Black]×[Female] 0 – 0 – −1.07 (0.69)

Factor loadings
λ1 [Item1] 1 – 1 – 1 –
λ2 [Item2] 0.67 (0.16) 0.69 (0.15) 0.64 (0.17)
λ3 [Item3] 0.73 (0.18) 0.80 (0.18) 0.65 (0.14)
λ4 [Item4] 0.93 (0.23) 0.88 (0.18) 0.81 (0.17)

Structural model
α [Cons] 0.64 (0.12) 1.41 (0.21) 1.46 (0.23)
γ1 [Female] 0 – −0.61 (0.20) −0.67 (0.22)
γ2 [Black] 0 – −1.65 (0.31) −1.80 (0.34)
γ3 [Black]×[Female] 0 – 0.66 (0.32) 2.09 (0.86)
ψ 2.47 (0.84) 1.88 (0.59) 2.27 (0.74)

Log-likelihood −2002.76 −1956.25 −1954.89
Deviance 204.69 111.68 108.96
Pearson X2 190.15 102.69 100.00

Source: Skrondal and Rabe-Hesketh [13]

black people where males and females have similar abilities. Black people have lower mean abilities

than both white men and white women. There is little evidence suggesting that item 1 functions

differently for black females.

Note that none of the models appear to fit well according to absolute fit criteria (see Model

Fit: Assessment of). For example, for M2, the deviance is 111.68 with 53 degrees of freedom,

although the Table 1 is perhaps too sparse to rely on the χ2 distribution.

Conclusion

We have discussed generalized structural equation models for noncontinuous responses. Muthén

suggested models for continuous, dichotomous, ordinal and censored (tobit) responses based on

multivariate normal latent responses and introduced a limited information estimation approach for

his model class.

Recently, considerably more general models have been introduced. These models handle (pos-

sibly mixes of) responses such as continuous, dichotomous, ordinal, counts, unordered categorical

(polytomous), and rankings. The models can be estimated using maximum likelihood or Bayesian

analysis.
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