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Structural equation modeling is a well-known technique for studying relationships among
multivariate data.  In practice, high dimensional nonnormal data with small to medium sample
sizes are very common, and large sample theory, on which almost all modeling statistics are
based, cannot be invoked for model evaluation with test statistics.  The most natural method
for nonnormal data, the asymptotically distribution free procedure, is not defined when the
sample size is less than the number of nonduplicated elements in the sample covariance.  Since
normal theory maximum likelihood estimation remains defined for intermediate to small sample
size, it may be invoked but with the probable consequence of distorted performance in model
evaluation.  This article studies the small sample behavior of several test statistics that are
based on maximum likelihood estimator, but are designed to perform better with nonnormal
data.  We aim to identify statistics that work reasonably well for a range of small sample sizes
and distribution conditions.  Monte Carlo results indicate that Yuan and Bentler’s recently
proposed F-statistic performs satisfactorily.

Introduction

Structural equation modeling, especially its special case of covariance
structure analysis, has been used extensively in the psychological, social, and
behavioral sciences.  Although there are many aspects to modeling, such as
parameter estimation, model testing, and evaluating the size and significance of
specific parameters, typically model evaluation by a goodness of fit test statistic
represents the most critical step in modeling.  After all, there is not much point
to worrying about specific parameters in the context of a model that is not
consistent with the data.  This article addresses the problem of model
evaluation when sample size is small and data may be nonnormal. See for
example, Browne and Arminger (1995) for a review of the statistical theory,
Bentler and Dudgeon (1996) for a discussion of consequences of violation of
assumptions, and Austin and Calderón (1996) for a guide to the literature.

Since Jöreskog’s (1969) emphasis, the most widely utilized test statistic
in this field is the classical likelihood ratio statistic based on normal theory

This research was supported in part by the National Institute on Drug Abuse, grants
DA01070 and DA00017.

Copyright © 2000 All Rights Reserved



P. Bentler and K. Yuan

182 MULTIVARIATE BEHAVIORAL RESEARCH

maximum likelihood (ML) estimation.  An advantage of ML is that it can be
applied even when sample size is quite small, perhaps only slightly larger than
the number of variables in the analysis, but an important disadvantage is that
it can yield quite distorted conclusions about model adequacy under violation
of the requisite assumption of multivariate normality.  In fact, psychological
data often are nonnormal.  For example, Micceri (1989, p. 156) reported that
“An investigation of the distributional characteristics of 440 large-sample
achievement and psychometric measures found all to be significantly
nonnormal at the alpha .01 significance level.  Several classes of
contamination were found...the underlying tenets of normality-assuming
statistics appear fallacious for these commonly used types of data.”  This
means that an alternative method that does not invoke the normality
assumption would be ideal.  The most elegant such method is the
asymptotically distribution free (ADF) method and its associated test statistic
(Browne, 1984).  Unfortunately, this classic method needs medium to large
sample sizes to get stable estimators, and unreasonably large sample sizes to
make the ADF test statistic behave as a nominal chi-square variate.  See Hu,
Bentler, and Kano (1992), Muthén and Kaplan (1992), and Curran, West,
and Finch (1996) for details.  Although Yuan and Bentler (1997a) developed
a finite sample correction to the ADF statistic that permits ADF testing in
intermediate sample sizes, it too is limited by a fundamental lower-bound
sample size required by this test.  When sample size is less than the number
of nonduplicated elements in the sample covariance matrix, both Browne’s
ADF procedure and the Yuan-Bentler modification cannot be performed at all
since a critical weight matrix that must be inverted necessarily is singular.
This means that an appropriate procedure for sample sizes smaller than this
critical value will require the use of other methods.

The potentially most promising procedure for this situation is a relatively
unknown residual-based test procedure developed by Browne (1984).  It can
be applied to any consistent estimators including the ML estimator, even
when data are not normally distributed.  Under its theoretical conditions, it
remains asymptotically chi-square distributed.  However, Yuan and Bentler
(1998) showed that the residual-based ADF statistic, like the classical ADF
statistic, requires a very large sample size to give reliable inference.  An
alternative methodology is the rescaled statistic of Satorra and Bentler (SB,
1988, 1994), which multiplies the ML test statistic by a correction factor that
depends on the data and the model.  Although this method has been shown to
work very well in practice (see e.g., Hu et al., 1992; Curran et al., 1996), an
unsatisfactory aspect of the SB rescaled statistic is that its theoretical null
distribution is generally unknown for a nonnormal data set.  To obtain a wider
variety of methods, Yuan and Bentler (1998) proposed several new statistics
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with known asymptotic distributions.  Empirical studies also have indicated
that some of these new statistics also behave well for medium sized samples.
However, the behavior of these new statistics has not been studied for small
sample sizes. In fact, there is no literature addressing the behavior of these
various test statistics in samples that are smaller than the number of
nonduplicated elements of the covariance matrix, which is typical in many
applications.  Clearly this situation violates the assumption of asymptotic
sample sizes that arises with all extant test statistics because of the
nonlinearity of typical covariance structures.

When theoretical analysis does not yield a clear choice among methods,
empirical Monte Carlo study is needed to describe the behavior of the method.
Here we are interested in the small sample behavior of various test statistics
under conditions of nonnormality, because such conditions are especially
relevant to practical data sets. With the aim for finding reliable statistics for this
situation, we will study the following statistics: The normal theory based
likelihood ratio statistic T

ML
, the Satorra-Bentler rescaled statistic T

SB
, the Yuan

and Bentler version of residual based ADF statistic T
YB

, and an F-statistic
derived from the residual-based ADF statistic.  For comparison purposes, we
also report the performance of the residual-based ADF statistic T

B
.  We will

study these statistics for both normal and nonnormal data.  These statistics and
the designed conditions will be introduced in the following section. Results of
our simulation study will be presented in the section following that.
Conclusions and remarks will be given at the end of this article.

Statistics and Designed Conditions

Let X x x i N ni i ip= ′ = = +1 1 1, , , , ,K Kd i  be a sample from X x xp= ′
1, ,Kd i ,

with sample mean X  and sample covariance S.  For a covariance structure S = S(u
0
),

the estimate $θ  of the unknown parameter u
0
 can be obtained by minimizing

(1) F tr S S pML θ θ θa f a f a f= − −− −Σ Σ1 1log| | .

Under the assumption of multivariate normality and the null hypothesis,

T nFML ML= $θe j  is asymptotically distributed as χ p q* −
2

, where

p p p* /= +1 2a f  and q is the number of unknown parameters in u
0
.  When the

normality assumption does not hold, we can still estimate the unknown

parameter u
0
 by minimizing the function FML(θ) , but TML  will generally not

Copyright © 2000 All Rights Reserved



P. Bentler and K. Yuan

184 MULTIVARIATE BEHAVIORAL RESEARCH

approach χ p q* −
2

 anymore.  Realizing that real data sets in practice seldom

follow normal distributions, Browne (1984) proposed a test statistic which
does not require any specific distribution assumptions.  Let vech(·) be an
operator which transforms a symmetric matrix into a vector by stacking the
nonduplicated elements of the matrix, s = vech(S), s(u) = vech[S(u)], and
denote the p*  × q Jacobian matrix corresponding to s(u) as &σ θa f .  Then there

exists a full column rank p*  × (p*  – q) matrix &σ θca f  whose columns are

orthogonal to those of &σ θa f .  Let Y
i
 = vech[(X

i
 - X·)(X

i
 - X·)9], and S

Y
 be the

corresponding sample covariance matrix of Y
i
.  Then S

Y
 is a consistent

estimate of G = cov{vech[(X - m)(X - m)9]}, where m =E(X).  For the estimate
$θ , the residual-based test statistic given by Browne (1984) is

(2) T ne S eB c c Y c c
$ $ & $ & $ & $ & $ $,q s q s q s q s qe j e j e j e j e j= ′ ′ ′

−1

where $ $e s= − σ θe j  is the discrepancy between the data and the model
estimated by any consistent estimator.  We use the ML estimator for T

B
.

Let W = 2-1 D9
p
 (S-1^ S-1)D

p
, where D

p
 is the p2 × p* duplication matrix as

defined in Magnus and Neudecker (1988, p. 49), & &σ σ θ= 0b g , and

(3) U W W W W= − ′ ′−& & & & .σ σ σ σa f 1

Then

TML j j

j

p q
L →

=

−

∑t x 1
2

1

*

, ,

where t
j
 are the nonzero eigenvalues of UG and χ j1

2  are independent chi-
square distributions with degree of freedom 1.  So, for a general nonnormal
distribution, even the mean of the asymptotic distribution of T

ML
 does not

match that of the nominal χ
p q* −
2

.  Since

(4) E j j
j

p q

j
j

p q

τ χ τ1
2

1 1=

−

=

−
∑







= ∑
* *

and tr USY
$e j  is a consistent estimate of the right hand side of Equation 4,

Satorra and Bentler (1988, 1994) proposed a statistic
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(5) T
p q

tr US
TSB

Y
ML= −*

( ˆ )
,

where $U  is a consistent estimate of U.  Even though the asymptotic
distribution of T

SB
 is still not χ p q*−

2
, it at least matches the first moment of the

nominal chi-square distribution.  Existing empirical studies support this
statistic under variety of conditions.

Since the statistic T
B
 requires extremely large sample size to be reliable,

and the asymptotic distribution of T
SB

 is generally unknown, Yuan and
Bentler (1998) proposed several new statistics.  In the regression literature,
cross-products of model residuals are regularly used for estimating
asymptotic covariances and standard errors.  For a consistent $θ , we can
estimate G by

ˆ ˆ ˆ ˆ ˆ .Γ = − ( )[ ]∑ − ( )[ ]′ = + − ( )[ ] − ( )[ ]′
=

1

1n
Y Y S

N

n
Y Yi

i

N

i Yσ θ σ θ σ θ σ θ

Replacing S
Y
 in Equation 2 by this estimate, Yuan and Bentler obtained the

following statistic

(6) T T NT nYB B B
ˆ ˆ / ˆ / .θ θ θ( ) = ( ) + ( )[ ]1 2

Since T
YB

 < T
B
, the problem of over rejection with T

B
 can be possibly resolved

by T
YB

.  Equation 6 also implies that T
B
 and T

YB
 are asymptotically equivalent,

so both T
B
 and T

YB
 asymptotically follow χ p q* −

2
.

For testing the hypothesis Am = b, the well-known Hotelling’s T2 statistic is

(7) T N AX b ASA AX b2 1= − ′ ′ −−c h a f c h.

Rewriting Equation 2 as

(8) T n e S eB c c Y c c
ˆ ˙ ˆ ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˆ ,θ σ θ σ θ σ θ σ θ( ) = ′ ( )[ ]′ ′ ( ) ( ){ } ′ ( )[ ]−1

and comparing Equation 8 with Equation 7, we will find that Equation 8

corresponds to testing the null hypothesis & ′ − =σ θ σ θ σc 0 0 0b g b g .  Based on
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such an observation, Yuan and Bentler (1998, in press) proposed to use a
Hotelling’s T2 distribution to approximate that of T

B
 instead of a chi-square,

leading to an F-statistic which is given by

(9) T N p q T N p qF B= − −( )[ ] −( ) −( )[ ]* */ ,1

and is referred to an F-distribution with degrees of freedom p* - q and N - (p* - q).
Note that the statistics T

YB
 and T

F
 are asymptotically equivalent with T

B
.

However, as we shall see, it is quite likely that their performances will differ
when applied to finite samples.

It is obvious that the p*- q square matrix & $ & $′σ θ σ θc Y cSe j e j  has to be invertable

in order for T
B
, and consequently for T

YB
 and T

F
, to be defined.  Since the rank

of S
Y
 is the minimum of  p* and N - 1, this means that the sample size has to be

at least N $ p*- q + 1.  This requirement can be better understood through
Hotelling’s T 2 distribution.  When using the T 2 for testing a population mean
with dimension r = p*  - q, the statistic F N r T r N= −( ) −( )[ ]2 1/  is compared to
an F-distribution with degrees of freedom r and N - r.  So p*- q + 1 is the smallest
possible sample size that yields a positive degree of freedom N - r .  Also, it
seems that the statistic T

SB
 can still be computed for any small sample size,

even one smaller than p*- q + 1.  However, the matrix ÛSY  needs to have a rank
p*- q in order for the rescaling factor tr US p qY

$ / *e j c h−  to make sense; this is
because the scaling factor represents the average nonzero eigenvalue of the
given matrix product.  Although it can be shown with Equation 3 that rank

$ *US p qYe j = −  is equivalent to the requirement that & $ & $′σ θ σ θc Y cSe j e j  be full

rank, it nonetheless is possible to use T
SB

 even when rank $USYe j  is less than
p*  - q.  However, the effect of such a practice is not known. We will investigate
this empirically.

A final consideration is whether any of the statistics we study can be
expected to be robust to violation of its conditions.  Even though the
asymptotic distributions of T

ML
 and T

SB
 are generally unknown for nonnormal

data, conditions exist for them to asymptotically follow χ
p q* −
2

 (e.g., Amemiya
& Anderson, 1990; Browne & Shapiro, 1988; Satorra & Bentler, 1990).
These conditions involve independencies among latent generating variates as
sample size increases arbitrarily, and, unfortunately, there is no effective way
of verifying these conditions in practice.  Further, since our interest is in the
small sample behavior of the statistics, asymptotic robustness theory may not
really be relevant here.  Nonetheless, it is still of interest to know if there are
any differences in performance of the statistics under a variety of conditions.
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We will use the following confirmatory factor model

(10) X f e cov X= + = ′ +L LFL C  with b g ,

and

(11) Λ =


λ

λ
λ




, Φ =


 . . .
. . .
. . . 




,
0 0

0 0
0 0

1 0 30 40
30 1 0 50
40 50 1 0

where ′ =λ . , . , . , . , .70 70 75 80 80a f and 0 is a vector of five zeros.  The C is a
diagonal matrix which makes S a correlation matrix.  In order for this model

Table 1
Designed Conditionsa

I X = Lf + e, f ~ N(0,F), e ~ N(0,C)

II X = (Lf + e)/r, f ~ N(0,F), e ~ N(0,C), r ∼ χ /5
2 3

III X = (Lf + e)/r, f ~ N(0,F), e ~ Lognormal(0,C), r ∼ χ /5
2 3

IV X = (Lf + e)/r, f ~ Lognormal(0,F), e ~ Lognormal(0,C), r ∼ χ /5
2 3

ae, f and r are independent. T
ML

 is asymptotically valid only in condition I, all the other statistic
are asymptotically valid for all the conditions.

Table 2
Marginal Skewness and Kurtosis

Variables

(1 6 11) (2 7 12) (3 8 13) (4 9 14) (5 10 15)

II b
1

0 0 0 0 0
b

2
6 6 6 6 6

III b
1

3.11 3.11 2.47 1.85 1.85
b

2
90.22 90.22 67.98 47.97 47.97

IV b
1

5.84 5.84 5.83 5.92 5.92
b

2
159.98 159.98 159.91 166.97 166.97
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to be identifiable, we restrict the last factor loading corresponding to each
factor at its true value; this fixes the scale of the factors.  All the other nonzero
parameters are set as unknown free parameters. So q = 33 for this model, and
p*  - q = 87.

The four distribution conditions as given in Table 1 were used in our
study. Since E(1/χ 

5 
2) = 3, the population covariances in conditions (I) to (IV)

have the same covariance structure as given in Equation 7.  So condition (I)
generates data with a multivariate normal distribution, condition (II)
generates data which is elliptically symmetric, condition (III) generates data
which is asymmetrically distributed, but the common factor still follows a
multivariate normal distribution before rescaling by χ /5

2 3  ; in condition
(IV), both the common factors and unique factors are asymmetric in
distribution.  Table 2 gives the corresponding marginal skewnesses and
kurtoses for the populations in conditions (II), (III) and (IV), based on

β =
( − µ )

[ ( − µ ) ]
β =

( − µ )

[ ( − µ ) ]
.

/1

3

2 3 2 2

4

2 2
andj

j j

j j

j

j j

j j

E x

E x

E x

E x

Because of the symmetric nature of the design, the skewnesses and kurtoses of
indicator variables for each factor are the same, and several variables have
similar marginal parameters.  For example, variables 1, 6, and 11 have the same
skew and kurtosis, as do variables 2, 7, and 12.  The distributional nature of the
conditions is also reflected by these skewness and kurtoses, with condition II
having no skew and moderate kurtosis, condition III having moderate skew and
substantial kurtosis, and condition IV having more than moderate skew and
extremely heavy kurtosis.  Thus a wide range of skew and, especially, kurtosis
is covered by the design.  The empirical skew and kurtosis in the samples was
consistent with the theoretical values of Table 2.  The scaling factor χ /5

2 3  in
conditions (II) to (IV) is to invalidate the asymptotic robustness condition of the
normal theory method, so the statistic T

ML
 is only appropriate in condition (I).

It is known that T
SB

 asymptotically follows a chi-square distribution with
elliptical data in (II).  Recent results by Yuan and Bentler (1997b) indicate that
T

SB
  still asymptotically follows the nominal chi-square variate with nonnormal

data as in (III) and (IV) even though these data are from distributions with
heterogeneous marginal skewnesses and kurtoses.  So statistics T

SB
, T

B
, T

YB
  and

T
F
 are asymptotically valid for all the conditions.  However, since our sample

sizes are not large enough, these statistics can be expected to perform quite
differently from each other.  Hopefully, a single generally best-performing
method will be found.
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Based on degrees of freedom of p*  - q = 87 and the sample size
requirement discussed earlier, we chose the following sample sizes for our
study: N = 90, 100, 110, and 120 for T

B
, T

YB
  and T

F
.  In order to see the

performance of T
SB

 with rank $USYe j  less than p*  - q, we also studied N  = 60,

70, and 80.  All of these sample sizes are below the minimum required for the
ADF weight matrix S

Y
 to be positive definite, so we are investigating

conditions when the classical ADF method cannot even be computed.
Performance of these statistics for sample sizes above 150 can be found in
Yuan and Bentler (1998).

For the performance of normal theory based inferences with normal and
nonnormal data, T

ML
  was computed for all the sample sizes 60 to 120.  With

500 replications, not all the 500 samples could reach a converged solution

with the criterion u u
i i+ −− ≤1 510b g ( )  after 30 iterations.  Our experience is

that a converged solution would still not be reached even if we doubled the
number of iterations.  The results in Tables 3 to 6 (following pages) are based
on the converged solutions, whose number N

c
 is given at the end of each table.

We omit N
c
 if it equals 500.  Specifically, we computed the rejection rate (R)

based on 5% critical value from the corresponding nominal distribution of
each statistic, and the sample means (M) and standard deviations (SD) of
these statistics.  It is known that for the nominal χ87

2 , E(χ ) =87
2 87  and

std 13 1987
2(χ ) = . .  For the F-distribution, we also listed the population mean

and standard deviation (in parenthesis) in Table 3 for easy reference.  Note
that for an F-distribution with 87 and 3 degrees of freedom, its population
variance does not exist. So the sample standard deviation of the F-test
corresponding to N = 90 may not be so informative.

Results

Results for the multivariate normal data are given in Table 3. Even though
T

ML
  can still be obtained for all the sample sizes studied, it clearly does not

behave like a nominal χ87
2

 variate, especially for the smaller sample sizes.
The statistic T

SB
  behaves even worse.  For sample sizes between 60 and 80,

we know that the matrix T
SB

  has rank less than p*  - q.  As noted above, in such
a case, the rescaling factor in T

SB
  is not strictly legitimate and we would not

expect it to behave as a χ87
2  variate.  However, it even behaves badly with

sample sizes between 90 and 120 where in principle it could perform all right.
It is already known that the statistic T

B
 behaves badly with small sample sizes,

and these results verify this expectation. In fact, here performance is quite
appalling at all the sample sizes.  The statistic T

YB
  has a zero rejection rate for
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all the sample sizes studied here.  This once again verifies that T
YB

overcorrects the behavior of T
B
 for very small sample sizes.  The statistic T

F

performs best among all the statistics considered here, though it also has
overrejections for sample sizes 100 to 120.  Comparing the rejection rates
with the sample mean and sample standard deviations of the corresponding
statistics, we see that they are closely related.  That is, a high rejection rate
goes with either a large sample mean or a large sample standard deviation.
For example, even though T

YB
 has a good approximation to the population

mean, because its small sample standard deviation is way too low, its
rejection rate also is too low.

Table 4 contains results for the elliptical data.  The statistic T
ML

 rejects the
true model almost all the time.  It is not robust to elliptical data.  This implies
that invalidation of asymptotic robustness conditions also is relevant to small

Table 3
Performance of Five Statistics in Condition I Based on 500 Replications

Sample Size

60 70 80 90 100 110 120
R 114 101 79 72 71 67 59

T
ML

M 99.49 97.19 95.87 94.35 93.85 93.25 92.63
SD 15.19 15.42 14.71 14.13 14.41 14.31 14.33

R 145 134 100 87 80 80 63
T

SB
M 102.77 99.93 98.23 96.33 95.70 94.95 94.16

SD 15.57 15.97 15.09 14.35 14.60 14.58 14.53

R 500 500 500 500
T

B
M 10134.39 939.98 542.83 379.60

SD 64313.50 454.89 200.59 119.89

R 0 0 0 0
T

YB
M 87.42 88.90 89.90 89.66

SD 1.95 4.04 5.54 6.63

R 18 50 63 56
T

F
M 3.93 (3.00) 1.42 (1.18) 1.32 (1.10) 1.21 (1.06)

SD 24.92 (*) .687 (.591) .487 (.400) .382 (.326)
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samples.  The statistic T
SB

 still overrejects samples, even though it works
much better than T

ML
.  Statistics T

B
 and T

YB
 work similarly as they do with

normal data.  And finally, the statistic T
F
 still performs best among the

alternative methods with elliptical data.  In fact, it has a more accurate
rejection rate here than it does in the case of multivariate normal data.

Tables 5 and 6 contain results for asymmetric data. Relatively speaking,
these largely mirror results obtained under the elliptical condition.  Of course
there are specific differences. As compared with elliptical data, T

ML
 performs

a little better here, but it still highly overrejects the true model, while T
SB

performs somewhat worse in overrejections.  The statistics T
B
 and T

YB

perform similarly as compared to the elliptical data case.   In contrast, the

Table 4
Performance of Five Statistics in Condition II Based on N

c
 Converged

Replications

Sample Size

60a 70b 80c 90d 100e 110f 120g

R 483 486 478 487 487 485 486
T

ML
M 159.46 160.79 162.02 163.70 164.62 165.76 168.15

SD 34.62 37.91 37.05 40.43 40.23 42.26 42.05

R 148 118 85 66 60 58 46
T

SB
M 103.66 100.76 98.24 96.52 95.76 94.57 93.80

SD 14.17 14.20 13.36 12.57 12.34 12.55 12.42

R 499 499 499 499
T

B
M 7592.76 901.94 505.27 361.30

SD 17230.92 421.10 170.42 102.29

R 0 0 0 0
T

YB
M 87.50 88.55 88.97 88.83

SD 1.91 4.07 5.28 6.14

R 27 43 42 35
T

F
M 2.94 1.36 1.23 1.15

SD 6.68 .636 .413 .326

aN
c
 = 493, bN

c 
= 499, cN

c
 = 490, dN

c
 = 499, eN

c
 = 499, fN

c 
= 499, gN

c
 = 499
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statistic T
F
 works best for asymmetric data.  In these tables, its rejection rate

can be seen to be very close to the target rate of 5%.

Conclusion and Recommendation

It is well known that T
ML

 is regularly used for model evaluation, especially
when a data set is approximately normally distributed.  This is an appropriate
practice except under two conditions as studied here, namely, with
nonnormal data and even with normal data when sample size is small.  The
statistic T

SB
, which has been considered to work quite reliably under a wide

Table 5
Performance of Five Statistics in Condition III Based on N

c
 Converged

Replications

Sample Size

60a 70b 80c 90d 100e 110f 120
R 387 405 400 400 411 410 414

T
ML

M 142.53 144.06 141.54 146.08 145.88 145.35 147.30
SD 38.89 41.26 40.51 45.55 42.13 42.83 43.64

R 179 135 108 80 88 66 67
T

SB
M 105.63 102.54 99.64 98.80 98.30 96.66 95.75

SD 13.62 13.37 12.92 12.77 12.39 12.25 12.56

R 496 499 499 500
T

B
M 6624.79 848.31 491.65 361.45

SD 10468.16 362.62 149.03 91.02

R 0 0 0 0
T

YB
M 87.39 88.21 88.76 89.07

SD 1.84 3.71 4.80 5.56

R 23 28 30 30
T

F
M 2.57 1.28 1.19 1.15

SD 4.06 .547 .361 .290

aN
c
 = 490, bN

c
 = 496, cN

c 
= 491, dN

c 
= 496, eN

c
 = 499, fN

c
 = 499
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variety of conditions (e.g., Hu et al., 1992; Curran et al., 1996), was found in
this study to break down with smallest sample sizes under all conditions.  At
the larger of the small sample sizes, this statistic certainly did outperform T

ML
,

but it still rejected 2-4 times as many true models as it should have to yield
nominal performance.  For quite different reasons, statistics T

B
 and T

YB
 should

not be used when sample size is smaller than the number of nonduplicated
elements of the sample covariance.  Browne’s statistic essentially always
rejects the true model.  In contrast, Yuan and Bentler’s statistic essentially
always accepts the true model, when it should be at least occasionally
rejecting this model by chance.  In between these extremes, the new T

F

Table 6
Performance of Five Statistics in Condition IV Based on N

c
 Converged

Replications

Sample Size

60a 70b 80c 90d 100e 110f 120g

R 377 360 376 398 379 384 396
T

ML
M 141.49 138.71 141.27 143.64 140.55 142.68 144.93

SD 38.45 38.40 40.29 41.99 39.72 42.13 43.18

R 179 123 97 103 78 69 62
T

SB
M 105.77 101.86 100.14 99.68 97.36 96.34 95.40

SD 13.20 13.48 12.46 13.11 12.90 12.19 12.26

R 495 481 497 493
T

B
M 7460.63 862.16 495.31 366.19

SD 17466.47 403.28 155.82 89.95

R 0 0 0 0
T

YB
M 87.45 88.44 88.85 89.43

SD 1.81 3.47 4.82 5.32

R 24 21 32 29
T

F
M 2.89 1.30 1.20 1.17

SD 6.77 .609 .378 .287

aN
c
 = 482, bN

c
 = 476, cN

c
 = 483, dN

c
 = 495, eN

c
 = 481, fN

c
 = 497, gN

c
 = 493

Copyright © 2000 All Rights Reserved



P. Bentler and K. Yuan

194 MULTIVARIATE BEHAVIORAL RESEARCH

statistic performed remarkably well at all small sample sizes.  Although it had
some overrejection under conditions of normality, it still outperformed T

ML
 in

this situation.  Under conditions of nonnormality, it always yielded the best
performance, especially with asymmetric data where it yielded remarkably
close to nominal performance, even with the extremely nonnormal data of
condition IV.  Yuan and Bentler (in press) propose that the good performance
of their F-test of model fit is most likely due to the general robustness
properties of Hotelling’s T 2 statistic, upon which it is based, to distributional
violation.

In this article, we studied the various statistics with small sample sizes.
Yuan and Bentler (1998) studied these statistics with medium to large sample
sizes.  Their key findings can be summarized as follows.  They found that the
statistic T

B
 gives reliable inference for the 15 variables factor model when

sample size is above 5000, but it always overrejects the correct model for
smaller sample sizes.  On the other hand, T

YB
 overaccepts correct models for

smaller sample sizes.  For sample sizes of 200 and above, T
YB

 gives reliable
inferences, and its performance is very stable under a variety of conditions.
When sample sizes are greater than 200, the statistic T

SB
 gives very good

performance if all the t
j
 in Equation 4 are equal or nearly equal.  When the t

j

are very different, the performance of T
SB

 tends to be worse as sample sizes
get larger.  Unfortunately, there is no practical procedure for checking the
equality of the t

j
, though the coefficient of variation of the sample estimates

t̂
j
 provides a plausible index.  Finally, the statistic T

F
 behaves well for the 15

variables factor model, however, it tends to overreject correct models too

Table 7
Summary and Recommendation

Sample Size Type of Data Recommended Statistics
Small sample sizes

N < (p*- q) Normal or nonnormal Further study needed

p*- q < N   p* Normal or nonnormal T
F

Medium to large sample sizes
N > p*

Normal T
ML

Nonnormal T
YB

 or T
F
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often in a 15 variable intra-class model.  Considering the results in Tables 3-
6 and those of Yuan and Bentler (1998), our overall recommendations for
practice are given in Table 7.

It must be recognized that our recommendations are based on limited
experience with these various test statistics.  The simulation work obviously
covers only a specialized model under a very narrow range of conditions.
Nonetheless, there is remarkable similarity in performance of the several test
statistics across the various conditions.  In fact, the results for normal data,
shown in Table 3, already anticipate the main trends for various degrees of
nonnormality up to the extreme kurtosis condition in Table 6.  Whether or not
the recommendations we give in Table 7 hold up under a greater variety of
conditions such as variations in the number of variables, the type of model,
and even violations of continuity, remains to be determined, but certainly no
comfort should be taken in the poor performance of the oldest statistics T

ML

and T
B
.  Although T

B
 has hardly ever been applied in practice, and while very

little has been published about its performance, its almost universal rejection
of the true model in this study is certainly cause for concern.  This poor
performance is even more extreme than the degraded performance of the
standard ADF test with large models and intermediate sample sizes (e.g., Hu
et al. 1992).  Since the ADF test breaks down equally with continuous and
categorical data (Muthén & Kaplan, 1992), we would expect T

B
 also to break

down with typical Likert data.  At the other end of the spectrum of use, it has
been known for some time that the most widely used statistic T

ML
 also can

perform very badly when data is not normally distributed (Hu et al., 1992;
Curran et al., 1996), but this knowledge has not affected practice very much
(Bentler & Dudgeon, 1996).  The results in Table 3 indicate that this statistic
misbehaves even with normal data when sample size is small, while Tables 4-
6 show again that T

ML
 can be extremely misleading under nonnormality.  Of

course, we purposefully avoided asymptotic robustness conditions which
conceivably might help T

ML
 perform better in the analysis of real data.  But so

far as we know, there is no evidence one way or the other on the relevance
of asymptotic robustness theory to empirical multivariate data.

In this article, we studied the rejection rates of several test statistics.
Another important aspect of performance is power, but the power of these
statistics has not been addressed here and certainly requires study.  Since
theoretical results in this field have been asymptotic, the null and nonnull
distributions of each statistic studied here can only be approximated in
practice, and the accuracy of the approximation no doubt will depend on the
type of data and sample size besides the correctness of the model.  However,
it is not difficult to predict that the statistic T

B
 will have a very high power to

reject false models since its rejection rate is already 100% for correct models.
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In contrast, the statistic T
YB

 most likely will have an attenuated power for
smaller sample sizes.  It is important to note that it is not difficult to invent a
statistic that has a power of 1.0 by letting it reject any model (correct or
wrong) or to invent a statistic that has zero type I error by letting it accept any
model.  A good statistic should possess the property of a controllable type I
error while achieving a maximum power.  Unfortunately, it is not as easy to
control type I error and power in structural equation modeling as it is with
simpler statistics such as the basic z-statistic.

Preliminary indications are that the two statistics recommended here for
general purpose use, T

YB
 and T

F
, as well as the more widely known T

SB
, have

good power for intermediate sample sizes.  The power of the statistic T
SB

 was
studied in Curran et al. (1996), with favorable though guarded results.  The
power of the other statistics based on an ADF estimator was studied in Yuan
and Bentler (1997a, in press).  If fitting the 3-factor model by a 2-factor
model, the power of T

F
 and T

YB
 have average power of .847 and .559 at

sample size 150, and.982 and.932 at sample size 200.  So inference based on
T

F
 and T

YB
 seems to be reliable with regard to power when sample sizes are

above 200.
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