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Abstract

Vehicle miles travelled (VMT) is a primary performance indicator for land use and transportation,

bringing with it both positive and negative externalities. This study updates and refines previous
work on VMT in urbanised areas, using recent data, additional metrics and structural equation

modelling (SEM). In a cross-sectional model for 2010, population, income and freeway capacity

are positively related to VMT, while gasoline prices, development density and transit service levels
are negatively related. Findings of the cross-sectional model are generally confirmed in a more

tightly controlled longitudinal study of changes in VMT between 2000 and 2010, the first model

of its kind. The cross-sectional and longitudinal models together, plus the transportation litera-
ture generally, give us a basis for generalising across studies to arrive at elasticity values of VMT

with respect to different urban variables.
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Introduction

The new federal surface transportation act,

Moving Ahead for Progress in the 21st

Century (MAP-21), passed by Congress and

signed into law by the President in July 2012

advances several goals, including improving

traffic safety, reducing traffic congestion,

and ‘minimizing transportation-related fuel

consumption and air pollution’ (Section

1201:134, p. 278). All of the above depend

on vehicle miles travelled or VMT (Ewing

and Dumbaugh, 2009; Ewing et al., 2002,

2008).

Growth of VMT brings both positive and

negative externalities. On the positive side, it

suggests economic growth and personal

mobility. On the negative side, it is a contri-

butor to traffic congestion, vehicle crashes,

greenhouse gas emissions and other negative

externalities of automobile use. VMT is

undeniably a key indicator of transportation

system performance.

This study updates and refines previous

work, using recent data, additional metrics

and structural equation modelling to explain

VMT levels of urbanised areas and to test

the effects of various policy and planning

levers. The study concludes with best-

estimate elasticities of VMT per capita with

respect to these variables.

Literature review

This literature review covers four related

topics, all affecting VMT. VMT is related to

land use, highway capacity, the real price of

fuel and transit access. These relations provide

all the independent variables needed to explain

VMT levels in different urbanised areas.

The literature on the first three topics is

so extensive we will limit this review to meta-

analyses. Unlike traditional research meth-

ods, meta-analyses use summary statistics

from individual primary studies as the data

points in a new analysis.

Built environment and VMT

In travel research, urban development pat-

terns have come to be characterised by ‘D’

variables. The original ‘three Ds’, coined by

Cervero and Kockelman (1997), are density,

diversity and design. The Ds have multiplied

since Cervero and Kockelman’s original

paper, with the addition of destination acces-

sibility and distance to transit (Ewing and

Cervero, 2001, 2010; Liu and Shen, 2011;

Nasri and Zhang, 2012; Salon et al., 2012;

Tracy et al., 2011). While not part of the

environment, demographics are another D

in travel studies, controlled as confounding

influences.

Leck (2006) identified 40 published stud-

ies of the built environment and travel, and

selected 17 that met minimum methodologi-

cal and statistical criteria. While Leck’s

meta-analysis stopped short of estimating

average effect sizes, it did evaluate the statis-

tical significance of relationships between

the built environment and travel, finding

residential density, employment density and

land use mix to be inversely related to VMT

at the p\ 0.001 significance level.

Ewing and Cervero (2010) uncovered

more than 200 studies of the built environ-

ment and travel. Of these, 60 studies

yielded usable outcome measures from

which to compute weighted average elasti-

cities in a meta-analysis. An elasticity is a

measure of effect size equal to the percent-

age change in an outcome variable (such as

VMT) with respect to a 1% increase in an

explanatory variable (such as density). The

D variable that is most strongly associated

with VMT is destination accessibility. In

fact, the 20.19 VMT elasticity is nearly as

large as the elasticities of the first three D

variables – density, diversity and design –

combined.

Next-most strongly associated with VMT

are design metrics expressed in terms of

intersection density or street connectivity.

The elasticities of these two street network
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variables are identical, both 20.12. Both

short blocks and frequent intersections

shorten travel distances, apparently to about

the same extent. Surprisingly, population

density was found to be weakly associated

with travel behaviour once these other vari-

ables are controlled. In an effort to explain

the much higher elasticities reported in the

literature, the paper notes: ‘The relatively

weak relationships between density and

travel likely indicate that density is an inter-

mediate variable that is often expressed by

the other Ds (i.e., dense settings commonly

have mixed uses, short blocks, and central

locations, all of which shorten trips and

encourage walking)’ (Ewing and Cervero,

2010: 12).

Highway capacity and VMT

There are many scholarly studies of the

VMT inducing effects of highway expansion

(the ‘build it and they will come’ idea). We

are aware of only one meta-analysis of this

literature. Based on his review, Cervero

(2002) concludes that ‘. the preponderance

of research suggests that induced-demand

effects are significant, with an appreciable

share of added capacity being absorbed by

increases in traffic, with a few notable

exceptions’.

In the short-run a variety of sources

contribute to increased traffic without any

highway-induced development. These include

changes in route, mode, time of travel and

destination. In addition, there is the possibil-

ity of new trips that would not have occurred

without the new infrastructure capacity. In

the long run, increases in highway capacity

may improve accessibility to developable

lands and lower travel times to the point

where residences and businesses are drawn to

locate near the expanded highway capacity

(Ewing, 2008). Cervero (2002) computes a

long-run elasticity of VMT with respect to

highway capacity of between 0.63 and 0.73.

Fuel prices and VMT

The meta-analytical literature on VMT

growth with respect to the real price of fuel

is sparse. The primary work in the area is

Graham and Glaister’s (2004) review of

more than 50 studies measuring the fuel

price elasticities for car trips and car kilo-

metres within European Union countries.

Looking at both short-term (less than 1 year)

and long-term effects, the researchers found

that the unweighted mean short-run elastici-

ties for trips and kilometres across the stud-

ies were roughly equivalent at 20.16. Over

time, however, the two measures diverged,

with trips decreasing only slightly to 20.19,

but kilometres dipping substantially to

20.31. A parallel study by Goodwin et al.

(2004) summarising 69 studies from Europe

and North America came to similar conclu-

sions, with a mean short-term vehicle-km

elasticity of 20.1 and a long-term elasticity

of20.29.

Meta studies of gasoline demand versus

price are more numerous, and given that

gasoline demand is a rough proxy for VMT,

particularly in the short-run, this literature

sheds light on the fuel price–VMT relation-

ship. One meta-analytic study derived a

long-run mean price elasticity of gasoline

demand of 20.53 (Brons et al., 2006).

Another meta-analysis of gasoline price elas-

ticities based on hundreds of studies across

the globe found a mean short-run elasticity

of 20.23 and a mean long-run elasticity of

20.58 (Espey, 1998). This study concludes

with this relevant thought: ‘The finding of

different elasticity estimates using data prior

to 1974 and data after 1974 suggests the

need for updated studies and for care to be

taken in extrapolating into the future using

elasticity estimates from the 1970s or even

the 1980s’.

In an oft-cited recent study, which over-

comes some of the methodological limita-

tions of earlier studies, Small and Van

Dender (2007) observed a low (under 20.10)
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short-run price elasticity of gasoline demand.

But importantly, they found gasoline’s long-

run price elasticity to be much higher,

approximately 20.43. Also, they found that

the elasticity of VMT with respect to fuel

cost per mile (controlling for increased vehi-

cle fuel efficiency) was roughly half the price

elasticity of gasoline demand. This indicates

that personal travel is so highly valued that

people will buy more fuel-efficient vehicles

rather than reduce their VMT when gasoline

prices rise.

Transit service and VMT

Historically, research examining the role of

public transit in reducing VMT and green-

house gas (GHG) emissions has focused

directly on mode shifts from driving to tran-

sit occurring as a result of transit invest-

ments. Such research typically shows only

modest reductions in vehicle travel.

However, a growing body of research sug-

gests that cities with comprehensive transit

facilities achieve more efficient use of their

transportation systems that is not fully cap-

tured by mode shifts from driving to transit.

This concept, commonly referred to as tran-

sit leverage or the land use multiplier effect,

states that one mile travelled on transit cor-

responds with a disproportionately higher

reduction in automobile travel. The multi-

plier is typically expressed as VMT reduced

per passenger-mile of transit or as a multi-

plier of the mode shift effects of transit.

In other words, the influences of transit –

including more compact and mixed land

uses in station areas, a higher propensity by

users to chain trips, reduced traffic conges-

tion and a significantly higher rate of

related non-motorised travel (walk and

bike trips) – converge to reduce automobile

travel and GHG emissions to a greater

degree than simply the distance travelled

via transit. Even those who live near transit

but do not utilise it may drive less owing

to the compact, mixed-use neighbourhoods

and opportunities to walk and bike fos-

tered by transit.

The mechanism by which transit leverages

larger reductions in VMT is straightforward.

Transit creates opportunities for transit-

oriented development (TOD), ‘compact,

mixed-use development near transit facilities

with high-quality walking environments’

(Cervero et al., 2004: 11), which by definition

combines all of the D variables. Being com-

pact, mixed-use and walkable, such develop-

ments not only encourage transit use, but

encourage walking, bicycling, short automo-

bile trips and multi-purpose trip chaining

(Ewing and Cervero, 2010).

However, researchers have yet to reach a

consensus on the magnitude of the land use

multiplier effect. Studies, which draw on

data from different cities and use different

methods, have produced estimates for the

land use multiplier ranging from 1.29 to 9

(APTA, 2009; Lem et al., 2013). Estimates of

the land use multiplier can even vary widely

within a given study. This wide range of

study results raises questions about the valid-

ity and reliability of the numbers.

Parallel analyses

The book Growing Cooler (Ewing et al.,

2008) asked and attempted to answer the

question: how does compact development

affect VMT and associated greenhouse gas

emissions that contribute to global warming?

Using structural equation modelling and

both cross-sectional and longitudinal data

for 84 large US urbanised areas, Chapter 8

estimated elasticities of VMT with respect to

population, real per capita income, popula-

tion density, highway lane miles, transit rev-

enue miles, transit passenger miles and the

real price of fuel (see Table 1). Table 1 sug-

gests, for example, that a 1% increase in

highway lane miles will bring about a 0.55%

increase in VMT.
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More recently, Cervero and Murakami

(2010) similarly used structural equation

modelling, plus cross-sectional data from

370 US urbanised areas, to estimate elastici-

ties of VMT per capita with respect to

household income, population density, road

density, rail density and other land use vari-

ables related to density and accessibility.

Their results are presented in Table 2. They

are generally consistent with the results of

Ewing et al. (2008), though the elasticity of

roadway density is smaller and the elasticity

of population density is larger.

Update and refinement

This study updates the analyses of Ewing et

al. (2008) and Cervero and Murakami

(2010). Relationships are estimated through

2010, whereas the earlier analyses ran only

through 2005 and 2003, respectively. Our

initial sample includes all urbanised areas in

the USA. Some were lost to the sample for

lack of complete data sets, for lack to transit

service or for lack of freeway capacity. The

final sample of 315 urbanised areas repre-

sents 82% of the nation’s urban population

and 65% of the nation’s total population.

This analysis refines earlier analyses in

two respects. First, it distinguishes between

freeways and other main highways and

streets on the assumption that the two types

of roadway capacity may have different

effects on VMT. Whereas freeway capacity

may increase VMT by inducing traffic and

sprawl, arterial and collector mileage may

have less induced effect and may allow more

direct routing of traffic in a more complete

grid. It also distinguishes between heavy-rail

and light-rail mileage, which could have dif-

ferent effects on the built environment and

VMT. Also, the new analysis replaces a single

transit service measure, transit revenue miles

per capita, with two measures, one represent-

ing service coverage and the other service fre-

quency. Service coverage is roughly measured

in terms of route miles of service divided by

urbanised area in square miles. Average ser-

vice frequency is roughly measured in terms

of revenue miles of service divided by route

miles of service. These are distinct service

dimensions, essentially uncorrelated.

Table 1. Elasticities of VMTwith respect to urban variables (Ewing et al., 2008).

Cross-sectional analysis Longitudinal analysis Best estimate

Population 0.97 0.874 0.95
Real per capita income 0.531 0.538 0.54
Population density 20.213 20.152 20.30
Highway lane miles 0.463 0.684 0.55
Transit revenue miles 20.075 20.023 20.06
Transit passenger miles 20.068 20.03 20.06
Heavy-rail miles 20.013 20.021 20.01
Light-rail miles 20.003 20.002 NA
Real fuel price NA 20.171 20.17

Table 2. Elasticities of VMT per capita with

respect to urban variables (Cervero and Murakami,

2010).

Estimate

Household income 0.21
Population density 20.38
Roadway density 0.42
Rail density 20.003
Urbanised area 0.02
% Commuting by auto 0.60
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Methodology

Research design

In this study, a cross-sectional model is esti-

mated to capture the long-run relationships

between transportation and land use at a

point in time, 2010. Each urbanised area has

had decades to arrive at quasi-equilibrium

among land use patterns, road capacity,

transit capacity and VMT. This quasi-

equilibrium is captured via structural equa-

tion modelling (SEM).

A longitudinal (time step) model is also

estimated. This is done as a check on our

cross-sectional model, and also to capture

the short-term effects of changes in land use,

highway, transit and fuel price variables on

VMT. The vast majority of studies of travel

and the built environment are cross-sectional

in nature. The Transportation Research

Board report, Does the Built Environment

Influence Physical Activity? Examining the

Evidence (TRB, 2009), calls for longitudinal

studies that use data for the same places

over time to predict behaviour. These are

rare because longitudinal data are rare. ‘.

[M]ost of the studies conducted to date have

been cross-sectional. Longitudinal study

designs using time-series data are also

needed to investigate causal relationships

between the built environment and physical

activity.’ The same need exists in studies of

VMT.

Method of analysis

SEM is a statistical technique for evaluating

complex hypotheses involving multiple,

interacting variables (Grace, 2006). The esti-

mation of SEM models involves solving a set

of equations. There is an equation for each

‘response’ or ‘endogenous’ variable in the sys-

tem. They are affected by other variables, and

may also affect other variables. Variables that

are solely predictors of other variables are

termed ‘influences’ or ‘exogenous’ variables.

They may be correlated with one another but

are determined outside the system.

Typically, solution procedures for SEM

models focus on observed versus model-

implied correlations in the data. The unstan-

dardised correlations or co-variances are the

raw material for the analyses. Models are

automatically compared to a ‘saturated’

model (one that allows all variables to inter-

correlate), and this comparison allows the

analysis to discover missing pathways and,

thereby, reject inconsistent models.

Data

Growing Cooler used data from the TTI

Urban Mobility data base to estimate VMT

models. For this study, data were instead

gathered from several different primary

sources. This is due to three critical short-

comings of the current TTI data base, which

contains 2010 data and was released in

2011:

� Small sample size: The 2010 TTI data

base contains data for 101 large urba-

nised areas. This relatively small sample

limits the statistical power of the analysis

and the ability to discern significant rela-

tionships. It also makes it difficult to

generalise results to smaller urbanised

areas.
� No land use variables: Previous versions

of the TTI data base contained one land

use variable, the gross density of each

urbanised area, but this measure has

been dropped from more recent versions.

The lack of land use variables makes it

impossible to use the current TTI data

alone to examine the indirect effects of

transit on VMT.
� Discrepancies with official data bases:

The current TTI data base contains esti-

mates of transit passenger miles that dif-

fer from the official figures in the

National Transit Database. The reason

3084 Urban Studies 51(14)
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is unclear, but these discrepancies lead

us to question whether the TTI data

base is appropriate for use in this study.

We gathered data from several primary

sources for our cross-sectional and longitu-

dinal analyses. For the sake of consistency,

the boundaries used to compute explanatory

variables had to be the same as the bound-

aries used to estimate our dependent vari-

able, VMT per capita from FHWA Highway

Statistics.

The Highway Statistics definition of urba-

nised area is different than the census defini-

tion. According to FHWA, ‘the boundaries

of the area shall encompass the entire urba-

nised area as designated by the U.S. Bureau

of the Census plus that adjacent geographi-

cal area as agreed upon by local officials in

cooperation with the State’. Cervero and

Murakami (2010) used the census bound-

aries for their analysis and deleted urbanised

areas from the sample if the census and

FHWA boundaries were hugely different.

We chose not to make such approximations

or lose many cases, and therefore set out to

find FHWA-adjusted boundaries for urba-

nised areas in a geospatial shapefile format,

which we could then use to conduct spatial

analyses in GIS (see Figure 1).

FHWA advised us to contact individual

state DOT offices for their shapefiles, which

we did. This sometimes required several calls

to find the right office. In this way, we were

able to obtain shapefiles for all 50 states and

443 urbanised areas. We then combined the

individual state files into one national shape-

file by using the ‘merge’ function in GIS.

Many of the urbanised areas cross state

boundaries and in this case we had more

than one polygon for each urbanised area.

So, we used the ‘dissolve’ function in GIS to

integrate those polygons into one for each

urbanised area.

After cleaning the data, we did several

spatial joins in GIS to capture data from

other sources. For example, we used the

‘centroid’ function to join 2010 census

tracts to FHWA-adjusted urbanised areas.

We then aggregated values of per capita

income for census tracts to obtain urba-

nised area weighted averages (weighted by

population).

Variables

The variables in our models are defined in

Tables 3 and 4. The variables fall into three

general classes:

� Our outcome variables, VMT per capita

in 2010 in the cross-sectional analysis,

percentage change in VMT between

2000 and 2010 in the longitudinal model.
� Exogenous explanatory variables. The

exogenous variables, population and per

capita income, are determined by

regional competitiveness. The real fuel

price is determined by federal and state

tax policies and regional location relative

to ports of entry and refining capacity.

Variables representing highway capacity

and rail system capacity were also

treated as exogenous, as they are the

result of long-lived policy decisions to

invest in highways or transit. Analogous

changes in these variables are used in the

longitudinal analysis.
� Endogenous explanatory variables. The

endogenous variables are a function of

exogenous variables and are, in addition,

related to one another. They depend on

real estate market forces and regional

and policy decisions: whether to increase

transit revenue service, whether to zone

for higher densities. Analogous changes

in these variables are used in the longitu-

dinal analysis.

In the cross-sectional analysis, all vari-

ables were transformed by taking natural

logarithms. The use of logarithms has two

Ewing et al. 3085

 

http://usj.sagepub.com/


advantages. First, it makes relationships

among our variables more nearly linear and

reduces the influence of outliers (such as

New York and Los Angeles). Second, it

allows us to interpret parameter estimates as

elasticities, which summarise relationships in

an understandable and transferable form.

In the longitudinal analysis, all variables

are represented by percentage changes over

the decade of 2000 to 2010. These variables

allow us to directly estimate elasticities,

as elasticities are percentage changes in

dependent variables with respect to percen-

tages changes in independent variables.

Models

Our SEM models were estimated with the

software package Amos (version 7.0, SPSS

2007) and maximum likelihood procedures.

The path diagrams in Figures 2 and 3 are

copied directly from Amos. Causal pathways

are represented by uni-directional straight

arrows. Correlations are represented by

Figure 1. 2000 Census and FHWA-adjusted urbanised areas boundaries for Atlanta.
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curved bi-directional arrows (to simplify the

already complex causal diagrams, some cor-

relations are omitted). By convention, circles

represent error terms in the model, of which

there is one for each endogenous (response)

variable.

Most of the causal paths shown in the

path diagrams are statistically significant

(have non-zero values). The exceptions are a

few paths that are theoretically significant,

though not statistically significant.

The main goodness-of-fit measure used to

choose among models was the chi-square

statistic. Probability statements about an

SEM model are reversed from those associ-

ated with null hypotheses. Probability values

(p-values) used in statistics are measures of

the degree to which the data are unexpected,

given the hypothesis being tested. In null

hypothesis testing, a finding of a p-value

\0.05 indicates that we can reject the null

hypothesis because the data are very unlikely

to come from a random process. In SEM,

we seek a model with a small chi-square and

large p-value (.0.05) because that indicates

that the data are not unlikely given that

model (that is, the data are consistent with

the model).

Cross-sectional results

The VMT model in Figure 2 has a chi-square

of 26.5 with 22 model degrees of freedom

and a p-value of 0.23. The low chi-square

relative to model degrees of freedom and a

high (.0.05) p-value are indicators of good

model fit.

The regression coefficients in Table 5 give

the predicted effects of individual variables,

all other things equal. These are the direct

effects of one variable on another. They do

not account for the indirect effects through

other endogenous variables. Also of interest

are the total effects of different variables on

VMT per capita, accounting for both direct

and indirect pathways (see Table 6).T
a
b
le

4
.
V
ar
ia
b
le
s
in
cl
u
d
e
d
in
th
e
lo
n
gi
tu
d
in
al
m
o
d
el
(2
0
0
0
to

2
0
1
0
).

V
ar
ia
b
le

D
e
fin
it
io
n

So
u
rc
e

M
ea
n

St
an
d
ar
d
d
ev
ia
ti
o
n

D
ep
en
d
en
t
va
ri
a
b
le

ch
gv
m
t

P
e
rc
en
ta
ge

ch
an
ge

in
d
ai
ly
V
M
T
b
et
w
ee
n
2
0
0
0
an
d
2
0
1
0

FH
W
A
H
ig
h
w
ay

St
at
is
ti
cs

2
7
.0

2
4
.1

E
xo
ge
n
ou
s
va
ri
a
b
le
s

ch
gp
o
p

P
e
rc
en
ta
ge

ch
an
ge

in
p
o
p
u
la
ti
o
n

U
S
C
en
su
s

2
3
.9

2
2
.2

ch
gi
n
c

P
e
rc
en
ta
ge

ch
an
ge

in
in
co
m
e
p
er

ca
p
it
a

U
S
C
en
su
s,
A
m
er
ic
an

C
o
m
m
u
n
it
y
Su
rv
ey

2
1
.6

5
.9

ch
gf
u
el

P
e
rc
e
n
ta
ge

ch
an
ge

in
m
et
ro
p
o
lit
an

av
er
ag
e
fu
el
p
ri
ce

O
il
P
ri
ce

In
fo
rm

at
io
n
Se
rv
ic
e

4
6
.1

4
.6

ch
gf
lm

P
e
rc
e
n
ta
ge

ch
an
ge

in
fr
ee
w
ay

la
n
e
m
ile
s

FH
W
A
H
ig
h
w
ay

St
at
is
ti
cs

5
1
.5

1
1
6
.4

ch
go
cm

P
e
rc
e
n
ta
ge

ch
an
ge

in
o
th
er

ce
n
tr
el
in
e
m
ile
s

FH
W
A
H
ig
h
w
ay

St
at
is
ti
cs

3
0
.6

2
9
.2

E
n
d
og
en
ou
s
va
ri
a
b
le
s

ch
gd
e
n

P
e
rc
e
n
ta
ge

ch
an
ge

in
gr
o
ss

p
o
p
u
la
ti
o
n
d
en
si
ty

U
S
C
en
su
s

2
6
.7

2
6
.8

ch
gt
rm

P
e
rc
e
n
ta
ge

ch
an
ge

in
an
n
u
al
tr
an
si
t
re
ve
n
u
e
m
ile
s

N
at
io
n
al
Tr
an
si
t
D
at
ab
as
e

3
7
.2

6
7
.2

3088 Urban Studies 51(14)

 

http://usj.sagepub.com/


Population growth is a driver of VMT

growth. As urbanised areas grow, destina-

tions tend to become farther apart (for

example, the suburbs are farther from the

CBD). Therefore, the direct effect of popula-

tion size on VMT per capita is positive and

significant because of the simple fact of their

size. At the same time, as urbanised areas

grow, they become denser and shift away

from a singular focus on road capacity to

meet travel demands toward a balance of

roads and transit. Therefore, the indirect

effect of population on VMT per capita is

negative.

Another exogenous driver of VMT

growth is income. As per capita income

rises, people travel more by private vehicle,

reflecting the general wealth of the commu-

nity. The direct effect of per capita income

on VMT per capita is positive and highly

significant. Income has an indirect effect as

well, through transit passenger miles per

capita. Surprisingly, the effect of income on

transit use is positive, hence the indirect

Figure 2. Causal path diagram explaining VMT per capita for urbanised areas.
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effect on VMT is negative. Wealthier com-

munities may provide more transit service,

and higher income residents in large regions

such as New York may use transit to com-

mute in from the suburbs.

Controlling for other influences, areas

with more freeway capacity are significantly

less dense and have significantly higher

VMT per capita. Areas with more highway

capacity in arterials, collectors and local

streets are also significantly less dense (which

affects VMT per capita indirectly) but the

direct effect of other highway capacity on

VMT per capita is not significant. From the

standpoint of induced traffic, other road-

ways are more benign than freeways.

Transit has an effect opposite to that of

highways. Areas with more service coverage

and more service frequency have higher

development densities, which leads to lower

VMT per capita. They also have more tran-

sit passenger miles per capita, which leads to

lower VMT per capita. The causal path

through transit passenger miles constitutes

the direct effect of transit on VMT. The cau-

sal path through development density con-

stitutes the indirect or land use effect of

transit on VMT.

The two rail variables, HRT and LRT

directional route miles per capita, are posi-

tively associated with route coverage, and

through that variable, increase transit pas-

senger miles per capita and reduce VMT per

capita. Surprisingly, neither HRT route mile-

age nor LRT route mileage has a direct effect

on the development density of urbanised

areas. One possible explanation for the fail-

ure of rail to raise densities is the oft-cited

potential of rail extensions into the suburbs

to cause sprawl, as long-distance commuters

park and then ride into the city.

The real fuel price is negatively associated

with VMT per capita, both directly and

indirectly through an effect on development

Figure 3. Causal path diagram explaining change in VMT for urbanised areas.
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densities. The direct price elasticity, around

20.45, is what one would expect from the

literature (the long-run elasticity being much

greater than the short-run elasticity). There

are persistent regional variations in real fuel

prices and these appear to affect both urban

form and VMT per capita.

Urbanised area density is negatively

related to VMT per capita. The elasticity,

20.24, suggests that every 1% rise in density

is associated with a 0.24% decline in VMT

per capita. With density serving as a proxy

for all the D variables (density, diversity,

design and destination accessibility), the

elasticity looks reasonable.

Longitudinal results

The VMT model in Figure 3 has a chi-square

of 6.5 with 11 model degrees of freedom and

a p-value of 0.84. The low chi-square relative

to model degrees of freedom and a high

(.0.05) p-value are indicators of excellent

model fit.

The regression coefficients in Table 7 give

the predicted effects of individual variables,

Table 5. Path coefficient estimates (regression coefficients) and associated statistics for direct effects in

the 2010 cross-sectional model (see Figure 2).

coeff S.E. C.R. P

tfreq  pop 0.235 0.025 9.234 \0.001
rtden  lrt 0.495 0.131 3.787 \0.001
rtden  hrt 0.355 0.187 1.900 0.057
rtden  pop 20.103 0.042 22.463 0.014
popden  olm 20.552 0.047 211.748 \0.001
popden  rtden 0.197 0.017 11.528 \0.001
tpm  pop 0.141 0.041 3.440 \0.001
tpm  tfreq 0.796 0.077 10.406 \0.001
popden  tfreq 0.187 0.023 8.035 \0.001
tpm  rtden 0.839 0.049 17.124 \0.001
popden  flm 20.108 0.020 25.383 \0.001
tpm  inc 0.902 0.208 4.345 \0.001
popden  pop 0.066 0.011 5.849 \0.001
popden  fuel 0.733 0.236 3.111 0.002
vmt  fuel 20.448 0.238 21.883 0.060
vmt  den 20.238 0.043 25.577 \0.001
vmt  olm 0.040 0.051 0.784 0.433
vmt  flm 0.133 0.021 6.412 \0.001
vmt  inc 0.304 0.062 4.889 \0.001
vmt  tpm 20.016 0.011 21.427 0.154
vmt  pop 0.078 0.012 6.635 \0.001

Table 6. Direct, indirect, and total effects of

variables on VMT per capita in the 2010 cross-

sectional model (see Figure 2).

direct indirect total

pop 0.078 20.025 0.052
inc 0.304 20.015 0.289
fuel 20.448 20.175 20.623
hrt 0 20.021 20.021
lrt 0 20.03 20.03
flm 0.133 0.026 0.159
olm 0.04 0.131 0.172
den 20.238 0 20.238
rtden 0 20.06 20.06
tfreq 0 20.057 20.057
tpm 20.016 0 20.016
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all other things equal. These are the direct

effects of one variable on another. They do

not account for the indirect effects through

other endogenous variables. Also of interest

are the total effects of different variables on

the percentage change in VMT, accounting

for both direct and indirect pathways (see

Table 8).

Consistent with the cross-sectional model,

population and income growth are exogen-

ous drivers of VMT growth. Controlling for

these influences, areas with more freeway

expansion become less dense and have more

VMT growth. Even more so, areas experien-

cing expansion of arterials, collectors and

local streets become less dense and have

more VMT growth. The larger effect of

lower-order roads relative to freeways is an

unexpected finding, and contrasts with our

cross-sectional results.

The transit variable, percentage change in

transit revenue miles, is not significant in the

longitudinal model. Apparently transit

effects take longer to manifest themselves

than the 10-year time step of our longitudi-

nal study. Percentage changes in real gaso-

line prices are also not significant. There was

a very significant rise in gasoline prices over

the decade, but not much variation in the

rise from place to place. Variation from

place to place is required for statistically sig-

nificance effects.

Finally, changes in density are significantly

related to changes in VMT, with the expected

negative sign. The elasticity of VMT growth

with respect of density growth, 20.085, is

smaller than the elasticity of VMT per capita

with respect of density, 20.238. There may

be a lag in the effect of density on VMT.

Best-estimate elasticity values

The cross-sectional and longitudinal models

together, plus the earlier results of Ewing

Table 7. Path coefficient estimates (regression coefficients) and associated statistics for direct effects in

the 2000–2010 longitudinal model (see Figure 3).

coeff. S.E. C.R. P

chgtrm  chgpop 0.303 0.206 1.475 0.14
chgden  chginc 20.53 0.256 22.069 0.039
chgden  chgocm 20.685 0.081 28.435 \0.001
chgden  chgflm 20.022 0.013 21.698 0.089
chgden  chgpop 0.454 0.105 4.334 \0.001
chgden  chgtrm 0.013 0.024 0.535 0.593
chgvmt  chgfuel 20.078 0.22 20.355 0.723
chgvmt  chgden 20.085 0.045 21.896 0.058
chgvmt  chgpop 0.555 0.071 7.848 \0.001
chgvmt  chgocm 0.19 0.061 3.129 0.002
chgvmt  chgflm 0.018 0.009 2.111 0.035
chgvmt  chginc 0.118 0.173 0.683 0.495
chgvmt  chgtrm 20.01 0.015 20.681 0.496

Table 8. Direct, indirect, and total effects of

variables on percentage change in VMT in the 2000–

2010 longitudinal model (see Figure 2).

Direct
effect

Indirect
effect

Total
effect

chgpop 0.555 20.042 0.513
chgtrm 20.01 20.001 20.011
chgflm 0.018 0.002 0.02
chgocm 0.19 0.058 0.249
chginc 0.118 0.045 0.163
chgfuel 20.078 0 20.078
chgden 20.085 0 20.085
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et al. (2008) and Cervero and Murakami

(2010), plus the transportation literature gen-

erally, give us a basis for generalising across

studies to arrive at elasticity values of VMT

with respect to different urban variables (see

Table 9). The research designs, variable defi-

nitions and sample sizes are so different that

a formal meta-analysis seems inappropriate.

Instead, we have simply reached an intuitive

compromise near the average values.

Discussion and conclusion

As debates about air quality, energy and cli-

mate policy have heated up, increased atten-

tion has been paid to the roles of urban

form and transit infrastructure in addressing

these policy challenges. The vigour that has

accompanied research in the area, however,

has sometimes given rise to warnings against

overexuberance. While acknowledging that

land development patterns likely have an

influence on travel, a special Transportation

Research Board panel recently signaled that

it did not have as much ‘verifiable scientific

evidence’ as it would have liked to support

its conclusions (TRB, 2009: 131), conclu-

sions that have been criticised by some as

unnecessarily conservative (Ewing et al.,

2011).

From both cross-sectional and longitudi-

nal models, this study shows that population

and income are primary, exogenous drivers

of VMT. Development density is a primary,

endogenous driver. Urbanised areas with

more freeway capacity are significantly less

dense and have significantly higher VMT

per capita. In the cross-sectional analysis for

2010, areas with more transit service cover-

age and service frequency have higher devel-

opment densities and per capita transit use,

which leads to lower VMT per capita.

Surprisingly, route miles of heavy rail and

light rail are not significant drivers of den-

sity and VMT, after controlling for transit

service coverage and service frequency. The

implication is that the specific transit tech-

nology employed is less important than the

level of service.

Findings of the cross-sectional model are

generally confirmed in a more tightly con-

trolled longitudinal study of changes in

VMT between 2000 and 2010 versus changes

in explanatory variables. However, the effect

of transit service ceases to be statistically sig-

nificant when other variables are controlled

in the longitudinal study.

The analyses presented in this paper

advance the state of research in some signifi-

cant ways. By using data from 315 different

urbanised areas, the analysis provides a

nationally comprehensive assessment, cover-

ing two-thirds of the US population. The

use of structural equation modelling (SEM)

facilitates observation of multiple interac-

tions among ‘independent’ variables, provid-

ing a way of capturing many synergistic

effects that are occurring on the ground.

Table 9. Best-estimate elasticity values.

Ewing
et al. (2008)

Cervero and
Murakami (2010)

Cross-sectional Longitudinal Best-estimate

pop 0.95 – – 0.55 0.75
inc 0.54 0.21 0.29 0.12 0.30
flm – – 0.13 0.18 0.15
olm 0.55 0.42 0.04 0.19 0.20
trm 20.06 – 20.016 20.01 20.03
fuel 20.17 – 20.45 20.08 20.20
den 20.30 20.38 20.24 20.08 20.25
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Moreover, rather than focusing on just one

factor that affects travel demand, the analy-

sis provides a holistic approach that inte-

grates all of the major groups of influences:

demographics, development patterns, system

capacities and transportation costs (see

Bartholomew, 2009).

Naturally, the analyses have their limita-

tions. They do not account for residential

self-selection, that is, the tendency of people

to locate in places that support their travel

preferences. Residential self-selection has

generally been found to attenuate the effects

of the built environment on travel (Cao

et al., 2009). Still, self-selection effects appear

smaller than built environmental effects, and

may even enhance built environmental

effects in certain cases (Chatman, 2009;

Ewing and Cervero, 2010; Lund et al., 2006).

Moreover, such effects seem much more

likely to affect the choice of neighbourhood

within an urbanised area than the choice of

urbanised area, the geographic scale of this

study. Regional factors such as job availabil-

ity and climate seem likely to dominate the

choice of urbanised area.

Another limitation of this study is the

absence of congestion measures in our mod-

els, congestion being a factor that could sup-

press automobile travel and VMT. The main

reason for excluding congestion measures is

lack of available data. Congestion data are

proprietary. INRIX, the supplier of conges-

tion data to the Texas Transportation

Institute (TTI) for its Annual Mobility

Report, only supplies data for 101 of the 315

urbanised areas in our sample. We did, how-

ever, test the theory that congestion sup-

presses VMT for the 101 urbanised areas.

The variable was not significant, and entered

with the reverse sign to that suggested by

theory.

Limitations notwithstanding, the inte-

grated approach used here has led to several

important findings: freeway expansions seem

to have stronger induced-demand effects

than arterial expansions; increases in devel-

opment densities and fuel costs are, in fact,

associated with reduced driving, and in some

cases the association is stronger than previ-

ously measured. Transit service coverage

and service frequency have direct and indi-

rect effects on VMT, the latter much larger

in magnitude than the former. These obser-

vations provide a platform for understand-

ing of how different policy options might

work on the ground.

In considering our results, we recognise

that our implementation of structural equa-

tion modelling makes a number of assump-

tions (Kline, 2012), the most important

being model adequacy. Included in the

assumptions of any SE model are logical

causal assumptions that must be defended

based on scientific knowledge or reasoning,

as well as testable implications evaluated

using statistical criteria. Linear relations

(between logged variables) were assumed in

our application. Testable implications

depend on model–data consistency, which

the results indicate was achieved in this

study. While model adequacy ensures

unbiased path coefficients, standard errors

and probability statements also depend on

normal independent errors. Diagnostics sug-

gest no major problems with error assump-

tions. Finally, our ability to generalise

outside the sample depends on additional

assumptions about extrapolability.
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