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Structural Equations and Path Analysis for 

Discrete Data' 

Christopher Winship 
Northwestern University and National Opinion Research Center 

Robert D. Mare 

University of Wisconsin-Madison 

This article proposes a solution to the long-standing methodological problem 

of incorporating discrete variables into causal models of social phenomena. 

Only a subset of the variety of ways in which discrete data arise in empirical 

social research can be satisfactorily modeled by conventional log-linear or 

logit approaches. Drawing on the insights of several literatures, this article 

exposits a general approach to causal models in which some or all variables 

are discretely measured and shows that path analytic methods are available 

which permit quantification of causal relationships among variables with 
the same flexibility and power of interpretation as is feasible in models that 
include only continuous variables. It presents methods of identifying and 
estimating these models and shows how the direct and indirect effects of 

independent variables can be calculated by extensions of usual path analysis 

methods for continuous variables. An important distinction developed here 

is that discrete variables can play two roles: (1) as measures of inherently 

discrete phenomena and (2) as indicators of underlying continuous variables. 

The value of this distinction is shown in two empirical examples examined 

previously by other authors. In examining the effects of social background 

and parental encouragement on college plans of high school seniors, the 

article shows that modeling a discrete measure of encouragement as an 

indicator of a latent continuous variable rather than as an inherently discrete 

variable (as has been done in previous analyses) provides a clearer inter- 

pretation and a superior fit to the data. In examining the effects of state 

Fair-Employment-Practices Legislation on black-white wage differentials, 
this study shows that two distinct effects on the relative wage can be 

detected: the direct ameliorative effect of the law itself and the effect of the 

popular progressive sentiment for racial equality of which the law is an 

indicator. The methods and models presented here are not only natural 

generalizations of structural equation and path analysis methods for con- 

tinuous variables to include discrete variables but also provide a means of 

investigating a richer variety of substantive hypotheses than is feasible with 

methods for discrete data commonly used in the sociological literature to 

date. 

I An earlier version of this paper, entitled "Structural Equation Models for Discrete Data," 

was presented at the meetings of the American Sociological Association at Toronto, Canada, 

August 25, 1981. This research was supported by National Science Foundation grant 

(C 1983 by The University of Chicago All rights reserved 

0002-9602/84/8901-0002$01 .50 
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One of the most important methodological developments in the social 
sciences in recent decades has been the use of structural equation models 
to specify and interpret causal relationships among variables (Goldberger 
and Duncan 1973; Duncan 1975; Bielby and Hauser 1977). Following 

upon related developments in other disciplines (Goldberger 1971), struc- 
tural equation models in sociology have been applied primarily to pro- 
cesses in which the dependent variables are continuously scaled. Thus 
these models have been amenable to empirical analyses that use the gen- 
eral linear model and its extensions. More recently, causal analysis has 
been applied to discrete response variables (Goodman 1972, 1973a, 1973b, 
1979; Fienberg 1980). Goodman and others have shown how to specify 

causal relationships among discrete variables and quantify the relation- 
ships by application of log-linear or logit models. These methods permit 

analysts to impose causal interpretations on multivariate systems of dis- 

crete variables; illuminating applications now appear in the literature 

(e.g., Gortmaker 1979). 
At the same time, however, commentators have pointed out that causal 

models constructed from log-linear and logit models have limitations and 

that these models are not directly analogous to causal models with con- 
tinuous variables (Fienberg 1975, 1980; Rosenthal 1980). Although there 

has been considerable interest in developing both a path analysis for 

discrete variables and one based on log-linear and logit models (e.g., Leik 
[1975], and the series of articles in Sociological Methodology 1976 on this 

subject [Heise 1975]), no one has yet presented a satisfactory solution to 
this problem.2 Indeed, several commentators have suggested that such a 
path analysis cannot be developed (Davis and Schooler 1974; Davis 1975; 
Fienberg 1980). 

The limitations of the log-linear and logit models derive in part from 
the nonlinear functional forms of relationships among discrete variables 
that are implicit in systems of logit equations. In these models, discrete 
endogenous variables are not subject to consistent treatment. In partic- 

SOC7912648 ("Social and Demographic Sources of Change in the Youth Labor Force"). 

Computations were performed on the VAX 11/780 at the University of Wisconsin Center 

for Demography and Ecology, supported by grant HD05876-1 1 from the National Institute 

of Child Health and Human Development. We are grateful to Ann Kremers and Warren 

Kubitschek for research assistance, to William Bielby for helpful comments on an earlier 

draft of this paper, to William Landes for providing us his data on state characteristics, 

and to David Wise for giving us his program for bivariate probit analysis. Requests for 

reprints should be sent to Christopher Winship, Department of Sociology, Northwestern 

University, Evanston, Illinois 60201. 

2 Davis (1975) proposes a path analysis for discrete data based on the linear probability 

model. Unlike logit models and the other approaches discussed here, however, this approach 

assumes that the effects of independent variables are constant over the entire (0,1) range 

of the dependent variable The shortcomings of this model are well-known (Hanushek and 

Jackson 1977, pp. 183-86). 
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ular, when a discrete intervening variable is the dependent variable, it 
appears as the logit of a probability; when it is an independent variable, 
it appears as a dummy variable. For example, consider a simple model 
in which social background factors affect whether or not an individual 
has a college degree, and background and degree status affect whether 

or not the individual experiences unemployment. As a dependent variable, 
degree status is measured as the logit transformed probability of having 

a degree; as an independent variable, it is a simple dummy variable. 
Although suitable in many applications, this treatment of discrete vari- 
ables may not be suitable in others. In some applications it is, at best, 
an arbitrary formulation dictated by the use of log-linear models and not 
by its reasonableness in substantive applications. 

Discrete variables arise in a variety of contexts. Some measure inher- 

ently discrete characteristics, for example, sex or race. Some arise out of 
imperfections in measurement instruments. For example, family income, 
a continuous variable, may be measured in survey data as the discrete 
variable, "less than or greater than $20,000 per year." Some measure 
inherently discrete observations that are of interest less in their own right 
than as indicators of latent continua. For example, whether or not a white 
respondent would be willing to live in a predominantly black neighbor- 
hood is a binary response that derives its substantive interest from its 

indication of underlying racial tolerance. Finally, some discrete variables 

may play dual roles; that is, they can act both as direct measurements of 

discrete phenomena and as indicators of unmeasured phenomena that are 

best conceived of as continuous. For example, whether or not a state or 

nation has a particular type of law is clearly discrete, but this fact may 
index the accumulated sentiments of populations or of decision-making 
bodies. In some analyses both the law itself and the sentiments it reflects 
may be of interest. 

These alternative contexts in which discrete variables arise require 

analysts to select statistical models that are in accord with the kinds of 

effects implied by substantive reasoning. In many contexts, recently de- 

veloped methods for the causal analysis of discrete data embody the 

substantive ideas of interest satisfactorily. In others, however, alternative 

models may be more appropriate. 
An issue related to the proper formulation of causal models for discrete 

data is the capacity of such models to allow the application of path analysis 
procedures to discrete data. Structural equation models for continuous 
data allow the analyst to quantify the direct and indirect effects of pre- 
determined variables on endogenous variables. In discrete systems, ana- 

lyzed by existing methods, however, the inconsistent treatment of 

intervening variables implies that the usual "theorem of path analysis" 
(Duncan 1966) cannot be applied directly. This has led some commen- 
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tators to conclude that "there is no calculus of paths" for these models 
(Fienberg 1980, p. 120). 

This article presents several alternative approaches to the formulation 
of structural equation models for discrete data that take into account the 
variety of roles played by discrete variables in quantitative analysis. It 
shows that the current approach to causal analysis of discrete data is one 
of several that may be applied, depending on the underlying causal process 
that the analyst hypothesizes. In addition, the article shows that the 
difficulties encountered in applying path analytic principles have attrac- 
tive solutions regardless of which approach to the analysis of discrete 

systems is adopted. It also shows that structural equation models for 

discrete data, though sometimes computationally complex, are every bit 

as flexible analytically as corresponding models for continuous variables. 
Indeed, with little difficulty, discrete and continuous response variables 
can be analyzed together in the models discussed here. 

The insights from several literatures are synthesized in this study. There 
is an examination of alternative formulations of discrete variables when 

they are dependent variables; that is, either as the outcomes of inherently 
discrete stochastic processes (Yule 1900) or as realizations of latent con- 

tinuous variables (Pearson 1900).3 There is also consideration, based mostly 
on recent work by Heckman (1978), of the alternative formulations of 
the role of discrete variables when they are independent variables; that 
is, either as observed dummy variables or as indicators of unobserved 

continuous variables. In incorporating these alternative conceptions into 
structural equation models, the article applies the recent literature on 
simultaneous probit models (Zellner and Lee 1965; Ashford and Sowden 
1970; Heckman 1978; Amemiya 1974, 1976, 1978; Muth6n 1979) and on 
discrete choice (Hausman and Wise 1978; Manski 1981; McFadden 1976, 
1980). Finally, it is shown that the problem of calculating direct and 
indirect effects in structural equation models can be solved by straight- 
forward application of methods proposed by Stolzenberg (1979) for the 
analysis of nonlinear models. The contribution of this article, therefore, 
is to apply the contributions of diverse literatures to a central method- 
ological problem in sociology. 

This study is limited in two respects. First, only recursive structural 
equation models are considered. The ideas presented here can be extended 
to systems embodying simultaneity, but the latter are beyond the scope 
of this article. Discussions of nonrecursive systems are available elsewhere 
(Heckman 1976, 1978; Brier 1978; Zellner and Lee 1965). In any case, it 
is from recursive models that structural equation models have thus far 
borne their greatest fruit in sociology (e.g., Duncan, Featherman, and 

I The possibility that discrete variables are indicators of latent categorical variables ("latent 
classes") is not considered here (Lazarsfeld and Henry 1968; Goodman 1974, Clogg 1980). 

57 



American Journal of Sociology 

Duncan 1972; Sewell and Hauser 1975). Second, the treatment of discrete 
variables presented here is limited to variables with only two categories. 
Models with ordered response variables can, however, be developed from 
the ideas for dichotomous responses presented here (e.g., Amemiya 1981; 
McKelvey and Zavoina 1975). 

The balance of the article is divided into four major sections. Section 
I discusses the problem of conceptualizing discrete variables when they 
are embedded in structural equation models. First it discusses discrete 
variables both as dependent variables and as independent variables, then 
it presents four alternative recursive models that embody distinct rela- 
tionships between a discrete variable and other variables in the model. 
Section II discusses the identification of recursive models with discrete 
data. Section III shows how the methods of path analysis can be adapted 
to models with discrete variables. Section IV presents two numerical 
examples that illustrate the methods exposited in Sections I, II, and III. 
Methods of estimating the models discussed in the article are discussed 
in the Appendix. 

I. THE CONCEPTUALIZATION OF DISCRETE VARIABLES 

This section presents alternative formulations for discrete variables, first 
as dependent variables and then as independent variables. Then it applies 
these formulations to four simple recursive models containing discrete 
variables. 

1. Discrete Variables as Dependent Variables 

Historically, there have been two approaches to modeling discrete de- 

pendent variables: they have been modeled as observed indicators of 

unobserved continuous variables and as inherently discrete outcomes of 
binomial trials. 

Discrete variables as realizations of underlying continuous variables: 
threshold model.-Discrete variables may be thought of as indicators of 
continuous variables that are either difficult or impossible to measure 

directly. Let d, be a dichotomous variable with the value 1 or 0 and let 
Y* be an unobserved continuous variable. Here and throughout the ar- 

ticle, unobserved variables such as Y* will be assumed to have means of 
zero and unit variance. Alternative scaling assumptions do not materially 
affect the models and methods presented. Under this model, Y* and dy 
are related as follows: 

dy = lif Y* L,1 

dy= Oif Y* <L; 
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where L is a parameter denoting the "threshold" across which dy changes 
from 0 to 1. Thus Y* and dy are related by a nonlinear transformation: 
all values of Y* above or equal to L have been transformed to 1; all values 
below L have been transformed to 0. There are numerous instances where 
this formulation is applicable. An attitude item on whether or not the 
respondent is willing to live in a predominantly black neighborhood is a 
binary outcome that may index whether the respondent is above or below 
a threshold on an unmeasurable continuum of racial tolerance/prejudice. 
Data obtained on whether or not an individual has attended college may 
index the approximately continuous variable, length of time in school, 
which was not obtained in a survey or published tabulation. If Y* is 
affected by an independent variable, say X, then a model may be written 
as 

Y* = Po0 + 131x + Ey y (2) 

where Po and 3, are parameters to be estimated, Ey is a stochastic dis- 
turbance assumed to be uncorrelated with X, and Y* is related to the 
observed binary variable as in (1) above.4 The disturbance Ey is assumed 
to follow a probability distribution that remains to be specified. If Ey has 
a normal distribution, (1) and (2) define a probit model (Hanushek and 
Jackson 1977, pp. 204-5). If Ey has an extreme value distribution (Johnson 
and Kotz 1970, pp. 272-89), (1) and (2) define a logit model (McFadden 
1974). The logit and probit models are discussed in more detail in the 
Appendix. 

Figures 1A and B show graphically the essential features of this model 
for discrete response variables.Figure 1A shows that the dichotomous 
variable is an exact step function of Y*. Figure 1B provides a path diagram 
of the model. The wavy line connecting Y* and dy denotes that the 
relationship is nonlinear and deterministic; the solid line connecting X 
and Y* denotes a linear, stochastic relationship. 

Discrete variables as outcomes of binomial trials.-A second model for 
binary data is that observed dichotomous variables arise from binomial 
trials; that is, that the phenomena of interest are inherently discrete and 
observed binary outcomes are stochastic in nature. This can be written 

4Here and elsewhere models are presented with a single independent variable X. Adding 
additional independent variables to the models raises no new issues beyond those discussed 
for single independent variables. An alternative equivalent specification of the threshold 
model is to regard the threshold L as random, rather than fixed, and the latent continuous 
variable Y* as a deterministic rather than stochastic function of X. That is, L = L + EL, 

and Y* 3= 0, + ,31X; where L is now a random threshold, L is the mean of L, and EL is-a 
stochastic disturbance. If EL = y, this model is equivalent to the one discussed above. 
Although the model presented here postulates a stochastic relationship between dy and Y*, 
it differs from the stochastic model presented below in which Y* is not only stochastically 
related to dy but also a function of X and a stochastic disturbance (see n. 7 below). To 

simplify the exposition, the random threshold formulation is not adopted in the text. 
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dy= 1 with probability p, 

dy= 0 with probability 1 -p; 

where p is the unobserved probability which governs the distribution of 
O's and l's according to some mechanism (e.g., the flip of a coin). This 

formulation underlies most of the models in discrete data analysis as 
applied to binary dependent variables (Cox 1970; Fienberg 1980) and is 

suited to such examples as whether an individual is employed, whether 
he or she dies, or whether he or she was a robbery victim. In these 
examples, the event-unemployment, death, or robbery-is defined rel- 
ative to a fixed period, for example, a year. If an independent variable 

A 

d 
y 

y* 

L 

B d 
y 

y 

FIG. 1.-Threshold model. A, Relationship between observed dy and unobserved Y*. B, 

Path diagram. 
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X affects the binary outcome, a model can be specified to allow X to 
affect the probability that the outcome is a 1 (or a 0). That is, 

p = F(Po + 131X), (4) 

where F is the cumulative density (distribution) function for some sym- 
metric probability distribution that must be specified and Po and 1, are 
parameters.5 If F is the logistic function, (4) is a logit model.6 If F is the 
cumulative normal density function, (4) is a probit model. An alternative, 
but equivalent, way of expressing the effect of X on the discrete outcome 
is to define an unobserved variable Y* which is a transformation of the 
unobserved probability p such that it is a linear function of X and an 
error term EY That is, 

Y* = 30 + [31X + Ey (5) 

with 

dy =1 with probability G(Y*), 
(6) 

dy =0 with probability 1 - G(Y*), 

where G is the cumulative density function of a distribution that remains 
to be specified. Then the standard binomial trials model is obtained by 
assuming that Ey is zero for all observations, that is, that all observations 
with the same X have equivalent probabilities that dy 1 (Amemiya and 
Nold 1975; Hanushek and Jackson 1977, pp. 99-200, 203). As is dem- 
onstrated below, without this assumption the model is not identified. 

Figures 2A and B represent the essential features of the binomial trials 
model as formulated by equations (5) and (6). Figure 2A shows the re- 
lationship between the transformation of the unobserved probability and 
the observed dummy variable. In contrast to the threshold model where 
the continuous and discrete variables are related by a nonlinear but de- 
terministic function, in the binomial trials model, Y* and dy are nonlin- 
early and stochastically related. Figure 2B presents a path diagram of 
the effect of X on dy. The dotted line denotes the nonlinear stochastic 
relationship plotted in figure 2A. 

Relationship between the two models.-The binomial trials and thresh- 

For probability distributions of general shape, 

p = 
j f(u)du = 1 - F[-(1(o + 1X)], 

where f is a probability density function and F is its corresponding distribution function. 
For symmetric F, this expression simplifies to (4). 

6 The logistic function is the cumulative density function of the extreme value distribution 
(Johnson and Kotz 1970, pp. 272-89). 
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old models are related as follows. Let Y' be a continuous unobserved 
variable with mean 0 and variance 1 such that 

dy = 1 if Y'_ M, (7) 

dy = O if Y' <M. 

Then the binomial trials model may be written 

Y* =P0 + 1X + Ey, (8) 

Y- = Y* + Ey, (9) 

where A is the zero-order coefficient for the regression of Y' on Y* and 

Ey, is a stochastic disturbance. In this formulation, there is a variable Y' 

which has a threshold M dividing observations with dy 1 from those 

A 

d 
y 

y 

B d 

* 
x 

FIG. 2.-Binomial trials model. A, Relationship between dy and Y*. B, Path diagram. 
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with dy = 0. The variable Y', however, is not itself a direct linear function 
of the independent variable X but instead is affected linearly by Y* which, 
as before, is a transformation of the unobserved p(dy = 1) and is a 
stochastic linear function of X. Equations (8) and (9) are a structural 
equation and a measurement equation, respectively. Thus dy can be in- 
terpreted as a discrete variable with measurement error, which imper- 
fectly classifies observations into whether Y* is less or greater than M. 
The threshold model is a special case of equations (7), (8), and (9) where 
X = 1 and Ey = 0. Thus the threshold model is a restricted case of the 
binomial trials model that assumes no measurement error in dy. In prac- 
tice, it may make no difference whether or not X can be separated from 
the structural relationship between X and Y*. 7 

In the past, the relative merits of the threshold and binomial models 
of discrete variables have occasioned considerable debate, notably be- 
tween Yule, who advocated the binomial trials approach, and Pearson, 
who advocated the threshold approach (Fienberg 1980). In recent dec- 
ades, this debate has translated into the parallel lines of intellectual de- 
velopment of log-linear models for discrete data, a method which has 
assumed a binomial trials model, and biometric and econometric ap- 
proaches (Ashford and Sowden 1970; Zellner and Lee 1965) which have 
assumed a threshold model. As will be shown below, each approach has 
considerable applicability to the analysis of discrete data in the social 
sciences depending on the substantive context and the purposes of the 

analyst (Goodman 1981). 

2. Discrete Variables as Independent Variables 

The preceding discussion showed that discrete variables may arise either 
as indicators of unobserved continuous variables that may be of greater 
substantive interest or as results of unobserved (continuous) probabilities 
(or their transformations) that lack substantive content. In both instances, 
however, they arise as continuous variables that are linearly related to 
independent variables. In contrast, when discrete variables are treated 
as independent variables, they may occupy two distinct roles. That is, 
they may measure discrete phenomena of direct substantive interest or 
they may be indicators of unobserved continuous variables.8 

I An alternative way to relate these two models is to assume that, in the threshold model, 
the thresholds are random, rather than fixed; i.e., L = L + EL (see n. 4 above). This model 
can be shown to be equivalent to the binomial trials model as follows: substitute (9) into 
(7) to obtain dy = 1 if Y* : (M - Ey)IX, dy = 0 if Y* < (M - Ey)/I. Then the two models 
are equivalent if L = M/X and EL = Ey/X. Note that this model generalizes the random 
threshold model discussed in n. 4 above by relaxing the assumption made in the latter 
model that Y* is an exact linear function of X. 

8 This discussion draws much from Heckman (1978). 
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Discrete variables as indicators of discrete phenomena. A discrete 

variable may have a direct effect on a dependent variable. In this case 
it enters a linear equation as a dummy variable denoting that the group 
or characteristic of interest has a different intercept from other obser- 
vations in the analysis, that is, there is a "structural shift" associated with 
the group or characteristic (Heckman 1976, 1978). If Z is an endogenous 

variable (which may be either an observed continuous variable or an 

unobserved continuous variable with discrete indicators), this type of 
effect of a discrete variable is denoted by Co, in the equation Z = ot( + 

olX + ?o2dy + E, where co, cx, and a., are parameters, X is an independent 
variable, E. is a stochastic disturbance, and, as before, dy is a dummy 
variable taking the value 1 or 0. 

Discrete variables as indicators of unobserved continuous variables.- 

Alternatively, an observed discrete variable itself may exert no effect on 
a dependent variable but instead may be an indicator of an unobserved 
continuous variable that affects the dependent variable. Such a model 
can be written Z = co + cxX + UX3Y* + E., where dy = 1 with probability 
F(Y*), dy = 0 with probability 1 -F(Y*), and all notation is as defined 
above. 

These two models reflect distinct conceptions of how a discrete variable 
exerts its effect. In the first case, the effect of the discrete variable is 

direct; in the second, the observed variable is merely an indicator for the 

continuous variable of interest. Consider several examples of this dis- 

tinction. 
1. Political party membership, indicated by a discrete variable (Re- 

publican versus Democrat), may affect an individual's attitude toward 
proposed legislation. If the legislation is proposed by an individual's own 

party and party leadership is followed, the discrete variable has a direct 

positive effect on the individual's attitude. Alternatively, an individual 
may be a party member but support legislation because of her or his 

ideological beliefs. In this case, there is no structural relationship between 

membership and attitude toward legislation. However, a continuous, 
unobserved variable, ideology, of which party membership may be an 

indicator, might in itself affect attitude toward legislation. 
2. Marital disruption may affect the chances that the children of sep- 

arated spouses will drop out of high school. Whether or not parents have 

separated (a discrete variable) may affect dropout chances. Alternatively, 
the separation of parents may index family conflict or disharmony (an 
unobserved variable), which may exert more of an effect on the probability 
of dropping out. These alternative conceptions imply distinct models for 
the discrete variable, marital disruption. Indeed, they harbor distinct 
implications for the desirability of parents in conflict-ridden marriages 

staying together until their children have completed school. 
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3. Whether or not an infant has a low birth weight has a pronounced 
effect on its chances of survival (Gortmaker 1979). Measuring "low birth 
weight" as a dichotomy, low weight or not low weight, implies that there 
is a critical weight below which an infant's chances of death increase 
astronomically. It may, however, be more reasonable to assume that the 
relationship between birth weight and mortality is continuous (albeit non- 
linear) and that the dichotomous measure should be regarded as an in- 

dicator of a continuous measure of weight. 
These examples illustrate that the way in which discrete variables 

should be treated as independent variables in structural equation models 
is closely linked to substantive arguments about the way their effects are 
hypothesized to occur. 

3. Some Recursive Models 

The foregoing ideas can be combined to yield recursive models which 
reflect alternative assumptions about the role of discrete variables. Four 
models are considered here. In each a single, predetermined variable X, 
which may be either discrete or continuous, affects an intervening variable 

Y, which is observed as a discrete binary variable d, and both X and Y 

affect a third variable Z, which may be discrete or continuous. These 
models can be extended to include additional predetermined and inter- 

vening variables. The models are presented here and their identifiability 
is discussed in the next section. 

Model I: intervening variable as unobserved continuous variable de- 
terministically related to observed discrete variable. Consider first the 
model represented by the path diagram in figure 3. The model may be 
written 

Z = oxo + oxX ?+ ot2Y* + E2 

Y* = 
Po + r1X + Ey; 

where 

cov (E.,EY) 
= 0 

dy= 1 if Y* - L , 

dy Oif Y* < L, 

and all notation is as defined above. In this model the observed discrete 
variable dy does not enter the two structural equations of the model. 
Instead it is an indicator of an unobserved variable Y*, to which it is 
deterministically related as in figure 1A. As will be shown below, it is 
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possible to identify and estimate the structural parameters ao, cal CX2, OI 

and I31. 
Model II: intervening variable as unobserved continuous variable sto- 

chastically related to observed discrete variable. Figure 4A represents 

model II in which the discrete variable dy is an indicator for an unobserved 

continuous variable as in model I. Here, however, dy is the outcome of 
binomial trials, and thus Y* and dy are related stochastically as in figure 

2A. The model may be written 

Z = (to + olX + ? 2 Y* + E, 

Y* = 130 + 131X + Ey; 

where 

cov (E_,Ey) = 0, 

p(dy = 1) = F(Y*), 

p(dy = 0) = 1 - F(Y*) 

and, as above, F is a cumulative probability function such as the logistic 

or cumulative normal. 

An equivalent, alternative formulation of model II can be obtained by 

defining a continuous unobserved variable Y' which is linearly (though 

not exactly) related to Y* and is nonlinearly but deterministically related 

y 

/~~~~~ d 

y 

z 

FIG. 3.-Path diagram of model I 
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to dy. Thus, as in the preceding section, Y' is a variable which is classified 
perfectly by dy, just as Y* is classified perfectly by dy in model I. Model 
II may then be represented as in figure 4B, which shows that Y* and Y' 
are related by the measurement equation Y' = XY* + Ey, where dy - 

1 if Y' , M, dy = 0 if Y' < M. This formulation shows that model II 
contains one more parameter (X) than model I, indicating that the rela- 
tionship between the unobserved continuous variable and its discrete 
indicator dy is not exact and needs to be estimated from the data. As will 
be shown below, the parameters of model II are not identifiable, in gen- 

A I 

* 
Y - - - - - - - d 

y 

2 

o21 

z 

B 

/ 

> 
Y dy 

x 

o2 

z 

FIG. 4.-Model II. A, Path diagram of model II. B, Path diagram of model II: threshold 
representation. 
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eral, without additional information. This information, however, is often 
available, and simple modifications of model II are identifiable. 

Model III: intervening variable as observed discrete variable deter- 
ministically related to unobserved continuous variable. In contrast to 

the two models discussed above, in the third and fourth models the 

observed discrete intervening variable dy affects Z directly. In model III, 

dy and an unobserved continuous variable Y*, which is a linear function 
of X, are related deterministically; thus this model parallels model I. 

Model III is diagramed in figure 5. The model is 

Z = ?o + c.X? + cv3dy + E_, 

Y* = 
Po + r1X + E; 

where 

cov (E,,Ey) = 0, 

dy =1 if Y* - L, 

dy =Oif Y*< L . 

Figure 5 indicates that model III differs from typical three-variable re- 
cursive models because it contains an unobserved variable Y* which is 

related nonlinearly to an observed variable dy but (in contrast to models 
I and II) both variables enter the structural equations. The structural 

y d 
~~~~~~Y 

X Z~~~~~~~~~~~~~~~~t 

11 

z 

FIG. 5.-Path diagram of model III 
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parameters axl, all X3, O and P1 are nonetheless identifiable, as will be 

shown in the next section. 
Model IV: intervening variable as observed discrete variable stochas- 

tically related to unobserved continuous variable.-In model IV, dy and 

an unobserved continuous variable Y*, which is a linear function of X, 

are related stochastically. Thus this model parallels model II. That is, dy 
is the outcome of binomial trials. Model IV is diagramed in figure 6A 

A 

W * 
y - - - - - - - - ->d 

B 

1 X 

Y 
y 

x , 

z 

FIG. 6.-Model IV. A, Path diagram of model IV. B, Path diagram of model IV: threshold 

representation. 
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and may be written 

Z = co + a 1X + a,3dy + E?, 

Y* = Po + r1X + E; 

where 
cov (E_,EY) = 0 

p(dy = 1) = F(Y*) 

p(dy = 0) = 1 -F(Y*) 

Like model II, model IV can be reformulated to show explicitly the 

stochastic relationship between Y* and dy by introducing the continuous 
unobserved variable Y', which is related deterministically to dy. Figure 
6B shows this alternative formulation, and the equations of the model 
can be augmented to include the measurement equation Y' = XY* + 

Ey, whered = 1 if Y' 
, M, dy = 0 if Y' < M. Model IV contains one 

more parameter (A) than model III, reflecting the stochastic relationship 

between Y* and dy. As will be shown in the next section, model IV is 

not in general identifiable without additional information, although it can 
be identified in a wide range of circumstances. 

The formal properties of models I-IV discussed thus far are summarized 
in the first two columns of table 1. Substantive differences among the 

models can be appreciated from two examples. 

Consider a simple recursive model in which an individual's parents' 
socioeconomic status influences his grades of formal schooling achieved 

and both socioeconomic status and schooling affect earnings. Suppose, 
however, that the analyst does not measure schooling as a continuous 

variable but measures only whether or not individuals graduated from 

high school. This binary measure of schooling may capture the variation 
in schooling that affects earnings. Either the credential of a high school 

degree or the human capital derived from completion of all high school 
requirements may be the primary determinant of earnings (e. g., Jencks 

et al. 1979). Alternatively, however, the effect of grades of schooling 
achieved may be linear, with no bonus derived from high school com- 

pletion. Given the data, these alternative hypotheses could be formulated 

using models I and III above. In figure 3, let Z be earnings, X be socio- 

economic status, Y* be an unmeasured variable interpreted as a contin- 

uous measure of schooling, and dy be the observed dichotomy, graduate 
versus nongraduate. Under model I, schooling affects earnings as an 

unobserved continuous variable. Under the alternative hypothesis (model 
III, fig. 5), the variables denote the same concepts, but schooling affects 

earnings as an observed discrete variable. 
A second example is the task of determining whether or not prior 

robbery victimization affects the likelihood of gun ownership when other 
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factors correlated with victimization, such as the crime rate in an indi- 

vidual's neighborhood, may also be important causes. If whether or not 
an individual owns a gun, whether or not he has recently been a victim, 

and other personal background factors are known, but neighborhood 
factors are unmeasured, then model II can be used to represent the al- 

ternative mechanisms through which victimization might affect owner- 

ship; to wit, either directly or as an indicator of the neighborhood climate 

that the individual experiences. In figure 4A and B, let X denote measured 
personal background, Z denote gun ownership, Y* denote the neighbor- 
hood climate experienced by the individual, and dy denote whether or 
not the individual has recently been a robbery victim. Under this model, 

gun ownership is affected by a latent continuous variable that is indicated 
by an observed discrete variable. In contrast, model IV (fig. 6A and B) 
represents a direct effect of observed victimization on ownership. In this 

example, gun ownership is a discrete variable. Strictly speaking, figures 
4 and 6 should be modified to indicate that Z is an unobserved continuous 

variable related linearly to the predetermined variables and related non- 

linearly to a discrete variable, say dz. This modification, however, would 
leave unchanged the logical issues involved in considering the effects of 
Y* and dy. Models I and III might also be used to explore these arguments. 
Insofar as models II and IV are identifiable, however, they are most likely 

preferable. The latter models allow the relationship between neighbor- 
hood climate and personal experience to be stochastic. That is, some 

residents of dangerous neighborhoods have not been victims, and con- 

versely, some residents of safe neighborhoods have been victims. Models 
I and III, in contrast, assume that whether or not an individual has been 

a victim exactly differentiates neighborhoods by their safety. 
These examples raise the issue of testing rigorously among the alter- 

native models. In practice, this requires that a more general model, one 
in which both the continuous and discrete effects of Y are estimated, be 

compared to the two more restrictive models (either I and III or II and 

IV). This procedure is illustrated in Section IV. 

Of the four models considered in this section, model IV is closest to 
the recursive systems of logit equations for the causal analysis of discrete 

data discussed by Goodman (1972, 1973a, 1973b, 1979) and others. In 

these systems, when the discrete intervening variable is a dependent 
variable, it is formulated as the logit of the unobserved probability of an 
outcome on the discrete variable.9 When the discrete variable is an in- 

I The models discussed by Goodman (e.g., 1979) are equivalent to model IV if E, = 0 and 

Y* is viewed as a transformed unobservable probability p that has no substantive content 

beyond that contained in p itself. Model III can also be estimated as a log-linear or logit 

model, but here Y* is viewed as an unobserved continuous variable with discrete indicator 

d,. This is a different formulation from that of Goodman. 
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dependent variable, it is a dummy variable. Thus these methods for 
analysis of recursive systems are best applied to the substantive contexts 
for which model IV is appropriate. 10 

II. MODEL IDENTIFICATION 

This section discusses the identification of recursive models for discrete 
data typified by models I-IV. First it examines the problem of identifying 
parameters in these models, focusing initially on single-equation models 
for discrete response variables and then on models I-IV in turn. The 
discussion of model identification assumes that equations with continuous 
response variables can be estimated by ordinary least squares (OLS), that 
equations with binary response variables can be estimated by logit or 
probit analysis, and that models with two or more equations can be 
estimated by extensions of these procedures. These methods of estimation 
are discussed in the Appendix. 

Identification of parameters in structural equation models with discrete 
variables comprises two parts, the identification of parameters in a single 
equation with a continuous unobserved dependent variable indicated by 
an observed dichotomous variable, and the identification of parameters 
in multiequation models. 

1. Single-Equation Models with Binary Dependent Variables 

The preceding section discussed models in which discrete variables are 
indicators of unobserved continuous dependent variables, a formulation 
that was termed the "threshold model." As before, let dy be a discrete 
response variable; X and W be observed independent variables; Po, P,, 
and 3, be parameters; Y* be an unobserved continuous variable; and ey 
be a stochastic disturbance with variance O,, 2 assumed to be uncorrelated 
with X or W Following the earlier discussion of the threshold model, Ye 

=PO + 1X + 2W + ey, whered = 1 ifYe L, dY OifY*<L, 

and L is the threshold parameter. 
Without further specification, this model is underidentified because the 

scale of the unobserved variable Y*, and thus of ey, is unknown. Under 

10 In practice, issues of identifiability and the treatment of the stochastic disturbances in 

these models are not addressed explicitly. Typically, it is assumed in the notation of model 

IV that X = 1 and E, = 0. Given the binomial trials interpretation that underpins such 

models, however, the parameters estimated under these systems of logit equations for the 

effect of X on Y are best interpreted as XA3, i.e., the product of the structural and measurement 

parameters. With sufficient information, however, the measurement and structural parts 

of model IV can be identified. 
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either a logit or probit specification, the estimated model is y = b0 + 

bjX + b2W + ey, wherey = jY*/, bo = rJo-r b = 32/UY and eI = 

ey/-,Y. To identify the structural parameters P, 1 12, and o, an as- 

sumption about the variance of Y* or ey is required. For example, if 

OY2 = 1 then 0 = b, = b1, and 12 = b2. An alternative scaling 

assumption, employed throughout this article, is that var (Y*) = 1. Under 

this assumption, 

1 = 12 var (X) + 12 var (W) + 21312 cov (X,W) ? u2 

=UEY2bl2var (X) + uEY2b22 var (1) + 2o, 2b1b2 cov (X, W)?+ 0EY2, 

and thus the parameters of interest can be obtained from the estimated 

parameters with the equations 

(Tr = \1/11[b 2 var (X) + b22 var (W) + 2b1b, cov (X,W) + 1]; 

Po 
= boUEy; 1 = b1u,cy; 132 = b2ff>, 

In contrast to models with observed continuous dependent variables, 
therefore, a scaling assumption is required to identify model parameters." 

With the scaling assumption used here, the slope parameters 1, and 2 
measure the effects of a unit change in the independent variables X and 

W measured in standard deviations of the latent variable Y*. Similar 

arguments are necessary to identify parameters in multiequation models 

discussed below. 12 

The binomial trials model presents identification problems in addition 
to that of scale identification. Consider again the threshold representation 
of the binomial trials model, that is, as in equations (8) and (9) above: 
Y* =1?P + X + Ey Y' = XY* + Ey, whered = 1 ifY' ? M, dy = 

O if Y' < M. Because this model contains an additional source of variation, 
namely, Ey, and an additional parameter X, assumptions about the vari- 

ances Y* and Y' are insufficient to identify the model. Assume that both 
Y* and Y' have variances of unity. Substitution of (8) into (9) yields Y' 
= X1o + X13X + XEY + Ey. Because this equation can be estimated 

11 This discussion has used the notation of the threshold model (eqq. [1] and [2]). The same 

issue of scale identification arises in the binomial trials model (eqq. [3}-[9]), although the 
additional parameter X in the latter model raises additional identification problems (see 

below). 

12 A further requirement for the identification of single-equation models is that the dichot- 

omous dependent variable does not classify perfectly any of the independent variables or 

linear combinations of the independent variables; i.e., there can be no value of an inde- 

pendent variable above which all values of d, are 1 and below which all values are 0 

(Heckman 1978). 
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directly through logit or probit analysis, the quantities Xpo and XAl are 
identified, but the separate structural and measurement parameters 13, 

3l, and A are not. 
If one assumes, however, that Y* is an exact linear function of X, that 

is, that ey = 0 for all observations, it is possible to identify both the 

structural and measurement parameters. Substitution of (8) into (9) as- 

suming ey = 0 yields Y' = X3o + Xf3X + ey, which can be estimated 

by probit or logit analysis. As in the case of the threshold model, however, 

the estimated equation is Y' = co + cjX + ey, where y' = Y'/o>y, co = 

x3o/O*>y'e c, = Xf3l/Y(3,, ey = ey/o(E<Y, and (OEy'2 = var (ey). If var (Y') = 

1, then OEy,2 = 1/[1 + C12 var (X)] and 

X = 1 - ViI[i ? c12 var (X)] 

The structural parameters can be obtained as follows: o = cOUEY/X; Pi 

= c IUEY/X. Alternative strategies are discussed below. One means of iden- 

tifying both the structural and measurement parts of the binomial trials 

model is to employ multiple indicators of Y* (Muthen 1979). This ap- 

proach is illustrated for model IV below. Another approach is to use 

additional information in the form of an instrumental variable. This is 

illustrated for model III. 

2. Model I 

Consider again the structural equations of model I: 

Z = cxo + ox1X + (X2Y* + eZ, (10) 

ye Po + ,IX + Ey ; (11) 

where dy = 1 if Y* - L, dy =0 if Ye < L, Y* is a continuous unobserved 
variable, cov (EZ,eY) = 0, var (Y*) = 1, var (ez) = UEz2, and var (eY) = 

uEY2. Equation (11) can be estimated directly by probit or logit analysis, 

given the scale identification assumption on Y*. Thus Po, 3l, and oEy 2 are 

identifiable. Equation (10), however, creates additional problems because 

Y* is unobserved and thus standard estimation procedures for either 

discrete or continuous measures of Z cannot be applied directly. Equation 

(10) is nonetheless identified, as can be seen by substituting (11) into (10) 
to yield the reduced-form equation 

Z = yo + l?X?+ qlz (12) 

where 

Yo= (0 + OL2j0 , (13) 
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1= (1 + OL2f1 , (14) 

nqz = Ez + 2Ey e 

(15) 

var (Tb) = n2 = 2 2 + ? 2a2E 

and 

COV (qr ,Ey) = 2EY. (1 6) 

If Z is continuous, (12) can be estimated by OLS; if Z is discrete, (12) 
can be estimated by probit or logit analysis. As is shown in the Appendix, 
if an assumption is made about the multivariate distribution of E, and E, 

and thus about n,, it is possible to estimate cov (,Ey) Thus (13), (14), 
and (16) provide three equations in the three unknown parameters cx0, 

c1, and CX2* The parameters of (10), therefore can be identified from the 

equations: 

= -1 1 [cov(m ] 

coy (nz,E) 
(E 

2 

Thus, model I is identifiable from equations predicting Y* and from the 

parameters of the reduced-form equation for Z. 
This identification procedure requires that an estimate of the distur- 

bance covariance, cov (m,EY), for (11) and (12) be obtained. Although this 

is always possible, it requires that one assume a particular multivariate 

distribution for E, and Ey, and it is computationally burdensome. 13 In the 

absence of this estimate, model I cannot be identified. However, if there 

is additional information in the form of an instrumental variable for Y1* 
that is, a variable, say W, that affects Y* but does not affect Z directly- 

13 We are unaware of any research on the robustness under alternative distributional as- 

sumptions of the models considered here. As is well-known, maximum likelihood estimates 

are inconsistent if they rest on incorrect distributional assumptions, and it is usually pref- 

erable to adopt methods that are robust. Although it is applied to models quite different 

from those considered here, recent work by Heckman and Singer (1981) and by Goodman 

(1981) explores the implications of varying distributional assumptions and may lead to more 

robust methods. 
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then it is possible to identify the model without cov (qrL,e,E). To see this, 
modify (11) as follows: 

Y* = 130 + lX + P2W + E'y(11*) 

Then the reduced-form equation for Z (eq. [12]) becomes 

Z = 'YO + ?ylX + ?y2W + ?q., (12*) 

where 

Y2 = 002 (17) 

Equations (13), (14), and (17) contain the three parameters co0, x1, and o-2 

and can be solved for them as follows: cxO = YO- (POY2/12); 0-1 = l- 

(PlY21P2); c-2 = Y2/P2 

3. Model II 

Model II, in which the observed discrete variable dy is related stochas- 

tically to an unmeasured continuous variable, contains one more param- 
eter than model I. As a result, without additional information it is not 

identified. To see this, consider the model, which is diagramed in figure 
4B: 

Z = cxo + alX + a2Y* + eZ, (18) 

y* = 0 + ? X + Ey I (19) 

Y' = Y* +? ey ; (20) 

where dy = 1 if Y' ? M, dy = if Y' < M, var (Y') = var (Y*) = 1, 
cov (e,ey) = cov (eY,eY) = cov (e,,ey) = 0, var (es) = oEz2, var (eY) = 

-y var (ey) = o-y/2, and all other notation is as described above. Equa- 
tions (18), (19), and (20) can be expressed in reduced form for Z and Y' 
as follows: 

Z =zyO + '1X + 'qlz 1(21) 

Y = 00 + ? X + qlY; (22) 

where 

YO = o0 + OL2P0 a (23) 
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1= I t ?+ O2j1 , (24) 

00 = X, (25) 

0, = ?I31, (26) 

cov (m,) = cov (Ey, + XE,,Ez + (X2E,) 
(27) 

= cX 2A EY2 

var (T2) = 0E ? OL22EY2 (28) 

var(r,) = (.2 + ?2 2 (29) 

The reduced-form equations (21) and (22) can be estimated by OLS (for 

continuous Z) and either logit or probit analysis, respectively, providing 

estimates of yO, Yl, 00, 0,, cov ('q,) var (,r,), and var (,r). These 

estimates, however, yield seven equations, (23)-(29), in eight unknown 
structural parameters: oxo, xl X2, OI lA, X, KE, and uEy None of these 
parameters is identifiable. Note, however, that if X = 1, model II reduces 
to model I and all parameters can be estimated as for the latter model. 

Model II can, nonetheless, be identified in its own right with additional 

information. In particular, if there exists another exogenous variable, say 

W, that affects Y* but not Z, model II can be identified. Alternatively, 
if there are two observed dichotomous variables that index Y*, say dyl 
and dY2, instead of just one, then, too, the model can be identified. The 

following shows how an instrumental variable W can be used to identify 

model II. The use of multiple discrete indicators is outlined in the dis- 

cussion for model IV below. 
Modify model II by replacing (19) with 

Y* = 30 + lX + 2W+ E (19*) 

but allawing (18) and (20) to remain as above. Then the reduced forms 
become 

Z =yO + Y?1X + ?y2W + ?z, (21*) 

Y= 00 + 01X + 02W+ ? ' (22*) 

where equations (23H29) hold as before and, in addition, 

02 = 2 , (30) 

= 
I 

2I02 (31) 
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Equations (23)-(3 1) now provide nine independent equations in the nine 
unknown structural parameters. These equations, along with the scaling 
assumptions on Y* and Y', yield the following solutions for the structural 
parameters: 

) = V/L1 - varQriy) ? COV (zvny')] =k; 

?= k; ~1 = ; 2 = k 0 
k'1k1 

_Y200 Y201 
-0 =yo 1 -0 = ,Y - ; 

02 02 

ctE. = /var (Tre) -Ccoy (1lly ) - 
02 _Y02 

Thus the introduction of an instrumental variable W that affects Y* but 

not Z allows the identification of all structural parameters. The single 

restriction that W does not affect Z compensates for the single additional 

parameter A included in model II but not model I. 

4. Model III 

Recall that in model III the observed discrete response dy is related de- 

terministically to a latent continuous variable Y* and has a direct impact 
on the endogenous variable Z (see fig. 5). That is, Z = ot + OL1X + Ot3dy 
+ E, and Y* = Po + PlX + Ey where var (Y*) = 1, cov (E,EY) = 0, 

and all notation is as defined above. Since all the independent variables 
are observed, model III can be estimated by the usual single-equation 
methods; that is, OLS for continuous Z or logit or probit analysis for 

discrete Z and logit or probit analysis for Y*. Subject to the scale restric- 
tions on Y*, the model is identified directly and presents no special prob- 
lems. 

5. Model IV 

Finally, consider model IV, which differs from model III only in that the 

relationship between the observed discrete variable and the latent con- 
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tinuous variable to which it corresponds is stochastic. This model, dia- 

gramed in figure 6B, is written as above: 

Z = 0cxv + oxX + ?c3dy + E, (32) 

Y* = Po + PlX + Ey, 1(33) 

Y' = XY* + ey ; (34) 

where dy - 1 if Y' 
, 

M, dy = 0 if Y' < M, cov (E,Ey) = cov (Ey,) = 

cov (E,Ey) = 0, var (Y') = var (Y*) = 1, and all other notation is as 

described above. Equation (32) can be estimated directly by OLS if Z is 

continuous or by logit or probit analysis if Z is discrete. Equations (33) 

and (34), however, are not identifiable. To see this, consider the reduced- 

form equation for Y', Y' = 00 + 01X + my, where 00 = Xjo, 01 = X3l, 
and var Qq/) = ?eY2 + X2o ,2. Since cov ('ryi,e,) = 0, there are only three 

equations from which to estimate the four parameters X, OI Pi, and 

UEY2. A key feature of this model is that, although the measurement pa- 
rameter X cannot be separated from the structural parameter P1, the effect 

of X on Z via Y* can nonetheless be calculated from the reduced-form 

parameter 01. This will be shown in the next section. 

Unlike model II, which is also underidentified without additional in- 

formation, model IV cannot be identified by resort to instrumental vari- 

ables, that is, variables affecting Y* but not Z. An alternative method 

that does permit identification, however, is to obtain additional categorical 

indicators of Y*. Muthen (1979) shows that repeated observations on Y* 

can be used to identify models similar to model IV. Consider an extension 
of model IV which retains (33) but replaces (32) and (34) with the three 

equations: 

Z =o?+lX? +3dY + ?4d2 d , ' (32*) 

y 1 = AY* + Ey' 1 e(35) 

Y 2 =X2Y* + EYE2; (36) 

where d= 1 if Y' Ml d 0 if Y' < Ml, dY2 = 1 if Y'2 -Al2, 
dY2 = 0 if Y'2 < M2; var (Y'l) = var (Y'2) = 1; Ez, EY', and EY'2 are 

uncorrelated; Ml and M2 are threshold parameters; and 

var (EY1) = CEy2 and var (Y'2) = 

This model, which is diagramed in figure 7, contains two observed di- 
chotomous indicators, dyl and dY2, of the underlying construct Y*. As in 
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the single-indicator case, Y', and Y', are related linearly but stochastically 
to Y* but related deterministically to dyl and dy2, respectively. This model 
might be applied to an extension of the robbery victimization-gun own- 
ership example discussed above. Let X denote personal background char- 
acteristics, Y* denote neighborhood climate, dy, denote whether the 
individual has recently been robbed, dY2 denote whether or not the in- 
dividual knows someone else who has recently been robbed, and Z denote 
gun ownership. Model IV then models the effects of personal experiences 
with robbery on ownership. 

This model can be identified as follows. Again the equation for Z can 
be estimated directly using a method appropriate to the way that Z is 
measured. To obtain the remaining parameters, solve (35) and (36) to 
obtain the reduced-form equations for Y', and Y'2: Y'1 = 00+ 01X + 

NY'I and Y'2 = 4K + +1X + TY'21 where 

00= 30i1; 01 = 311; = 3OX2; 'jl = 2 

COV (qY'1qY'2) = K 12Coey ; varQq') = y2+ i2Oy2; 

var (q'2) = C'Y'22+ X\22C2 

These equations can be solved for the parameters of interest; that is, 

y 

y~~~~~~~~~~~~~~~~~~~~ y 

61/~~ ~~~~ y2 dY2 

z 

FIG. 7.-Threshold representation of model IV with multiple indicators 
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1 - var (Qr') + cov (Y 2) = ki I 

K2 = +/1 - var (TqIY') + - cov (1y',,1Y'2) = k-, 

0 0 _ _ _ _ 

30 =-l; 32 =cov (cY',o'q ) 
PO 

ki 
I Pi 

ki 
I _y 

~k1k2 

U,y, 2 =1 - k 2 
; CFy122 

=1 - k2Y2 k 

Thus multiple indicators of Y* permit model IV to be identified. 

The foregoing discussion has shown that the four basic recursive models 

vary considerably in their ease of identification. The alternative avenues 

to identification for these models are summarized in table 1. 
Models I, II, III, and IV, of course, are not the only possible recursive 

models. An important type of model is one that combines the features of 

models I and III or those of models II and IV. That is, the effects of a 
discrete variable result from both the discrete variable, per se, and a 
latent continuous variable of which the discrete variable is an indicator. 

Indeed, such models are necessary to assess the relative importance of 

the features of models I and III or those of II and IV. It can be shown 

that a model that combines the features of models I and III can be 

identified under the same conditions as model I. That is, simple single- 

equation estimates will not suffice to identify the model, but using an 

estimate of the reduced-form error covariance (cov [,Ey]) or an instru- 

mental variable that either affects Y* but not Z or has multiple indicators 

of Y*, allows the model to be identified. Similarly, it can be shown that 

a model that combines the features of models II and IV can be identified 
under the same conditions as model IV. That is, multiple indicators of 
Y* identify the model. These procedures are illustrated in Section IV 

below. 

III. PATH ANALYSIS IN RECURSIVE MODELS WITH DISCRETE 
ENDOGENOUS VARIABLES 

This section shows that the same principles of path analysis that have 
been applied to models with continuous dependent variables (Alwin and 

Hauser 1975; Duncan 1966) can be applied to the models considered in 

this article. That is, the total effect of a predetermined variable, say X, 
on an endogenous variable, say Z, can be apportioned into a component 
due to the indirect effect of X on Z through an intervening variable, say 
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Y, and a direct effect of X on Z net of Y The "calculus of paths" is slightly 
more complex when Z or Y is discrete than when both are continuous 
because not all the relationships in the model are linear. Stolzenberg 
(1979), however, shows thaf such calculations are feasible for nonlinear 
models in general, and this section applies his methods to nonlinearities 
arising in models with discrete variables. 

1. Continuous Endogenous Variables 

Consider again the two-equation model for the ith observation: Z = O 
+ ctlX + Ox2Y + E, and Y = 30 + ,31X + E, where cov (E,Ey) = 0. If 
both Z and Y are continuous, the direct and indirect effects of X and Z 
are given by 

bzx = (t1 + 2P1 3I 

(total) (direct) (indirect) (37) 

where b,, is the zero-order (and rediced-form) regression of Z on X. This 
relationship holds whether Z and Y are observed continuous variables or 
latent variables with dichotomous indicators, say dcI and d,. Thus (37) is 
an appropriate decomposition of the direct and indirect effects of X on 
Z for models I and II (see figs. 3 and 4), in which the effect of Y is 
hypothesized to be that of a latent continuous variable. 

2. Continuous Intervening Variable; Discrete Z 

The decomposition (37) is measured in units of the continuous variable 
Z, whether observed or unobserved. In any of models I through IV, 
however, when Z is a latent variable corresponding to a discrete variable 

d,, the analyst may wish to calculate the effects of X on Z in terms of the 
discrete variable d, rather than the continuous variable itself. It may, for 
example, be more meaningful to determine the effects of X on the prob- 
ability that d, = 1 than on the logit or probit transform of that probability. 
In this case, and in models III and IV, where the effect of Y is hypothesized 
to be that of an observed discrete variable dy, (37) must be modified to 
take into account the nonlinear relationships between the discrete and 
continuous variables. 

By elementary calculus, a dependent variable Z may be decomposed 
by its total differential dZ = (aZIhX)dX + (aZA3Y)dY, which implies the 
general formula 

dZ az + aZ dY 

dX aX aY dX' (38) 
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of which (37) is a special case (Stolzenberg 1979). Now let Z be a latent 
variable indicated by an observed dichotomous variable d, and let Y be 

a continuous variable. This is again model I or II. It is possible to calculate 

the expected effects of X on d,, that is, the effects of X on the expected 
values of d, (given X), 14 The expected values of d, are given by the equation 
p(dz = 1) = F(cot + ox1X + ot2Y), where, as before, F is a general function 

that is typically the logistic or cumulative normal. Then the total effect 

of X on p(d, = 1) is, using (38), decomposed as 

dp(d,~= 1)dY 

dX = cx1f(cxo+ cxX+ 2Y) + x2[jf(xOt+O1X+O2Y)] 

= al f(ot+ t1X+ t2Y) + O2[f(O0 + t1X+ 2Y)]f1, (3) 

(total) (direct) (indirect) 

where f is the derivative of F, that is, the probability density function 

corresponding to F (Hanushek and Jackson 1977). If F is the logistic 
function, 

dp(dz = 1) _ c1 exp (o0 + o1X + o2Y) + 2f31 exp (Y0 + c1X + Y2Y) 

dX [1 + exp (cxO + c1X + cx2Y]2 [1 + exp (cxO + clX + cx2Y)]2 (40) 

= cOL1P(1-P ) + XAP31P(1-p ), 

where p, = p(dz = 1) is the probability that d, = 1. If F is the cumulative 
normal distribution function, 

dp(d - = 1) o1 exp (-t212) cx2f1, exp (-t212) (41) 
dX r . 

where t is the standardized normal variable corresponding to p(d, = 1) 
under the probit transformation. The key feature of these decompositions 

14 The motivation for examining "expected effects" of independent variables on dichotomous 
dependent variables differs somewhat under the binomial trials and threshold views of 
discrete variables. In the binomial trials model, where each observation has an unobserved 
probability, say p, that it will take the value 1 on dy, the expected effect can be interpreted 
as the expected change in p from observation to observation for a change in the value of 
X. In the threshold model, in contrast, changes in X change dy only when Y* is at its 
threshold L; i.e., d(dy)IdY* = Q if Y* * L, d(dy)IdY* = 

Jr -o if Y* = L. In this case the 
expected effect can be interpreted as the effect an observer might expect for a group of 
observations with a common value on X; i.e., the effect is the average for the population 
of observations with the same values on X. If the observations refer to individuals, then, 
in the binomial trials model, the estimated effects are those that can be expected for both 
the individual and the investigator. In the threshold model, the estimated effects are expected 
only by the investigator who examines a group of individuals with a common value on X. 
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is that they depend on the observations being considered; that is, the 
effects of X on d, depend on the level of X. This is, of course, exactly 
what the nonlinear hypothesis of the probit or logit model requires. In 
practice, therefore, one should calculate the effects of X for a range of 

values of X or p to chart the nonlinear relationship. Among other values, 
perhaps the most useful summary calculation is to choose the sample 
proportion of cases for which d, = 1. This proportion can be substituted 

for p, in (40) or its normal probability transform t can be substituted in 
(41). Note, however, that the relative importance of the direct and indirect 

effects is invariant under the choice of X or of p because f(cx, + ox,X + 

CO2Y) is simply a constant of proportionality in (39). Moreover, for models 
I and II, the relative importance will be the same whether the effects of 
X are decomposed in the scale of the latent continuous variable Z as in 

(37) or in the scale of p(d, = 1) as in (39). 

3. Discrete Intervening Variable 

The preceding discussion assumed that the intervening variable Y affected 
Z as a continuous variable, either latent or observed. Now consider the 

decomposition for models III and IV (figs. 5 and 6) where the discrete 
variable dy affects Z directly. The model is Z = cot + ox1X + cx3dy + Ez, 

and Y = f30 + 1jX + Ey, where cov (E,EY) = 0. 

Model 111.-For decomposition it is necessary to take account of the 

nonlinear relationship between dy and X. The expected value of dy is 

p(dy = 1) = F(130 + f1X), where F is typically the logistic or cumulative 
normal function, and thus the expected effect of X on dy is given by dp(dy 
= 1)IdX = I1lf(I30 + j1,X), where f is the probability density function, 
either extreme value or normal, corresponding to F (Hanushek and Jack- 
son 1977). Now if Z is continuous, the effect of X on Z15 iS 

dZ t3dp(dy =1) 

dX cx dX 
(42) 

= ?t1 + t3P1f(PO+131X) 

(total) (direct) (indirect) 

If F is logistic, dZIdX = ot, + O3tA1py(1 - py), where py = p(dy = 1) and 

py= exp (P30 + 131X)I[1 + exp (P30 + f31X)]. If F is the cumulative normal 
function, dZIdX = oti + 43,1 [exp (-t212)I 27n]. If Z is a discrete 

15 More precisely, this formula gives the expected effect of X on Z, i.e., dE(Z)IdX, inasmuch 

as the indirect effect of X on Z includes the effect of X on p(dy = 1). For expository 

convenience, this mathematical nuance is ignored in the formulas presented in this section. 

85 



American Journal of Sociology 

variable and the effects of X on the expected values of d, are required, 
the decomposition is 

dp(d. = 1) = + cxX + 03d) 

dX3 

(total) (direct) (43) 

+ ot3f(ot0 + cx1X + cx3dy)f3f(o30 + 131X). 

(indirect) 

As before, f is the extreme value density function under a logit model or 
the standard normal density function under the probit model. In the 
former case, for example, the decomposition is dp(d, = 1)IdX =ocp1 
- Pz) + ot3pk(1 -pz)P3jpy(1 - py), where specific values of p, = p(dz = 
1) andpy = p(dy = 1), say the sample proportions for which d, = 1 and 

for which dy = 1, must be chosen. 
Model IV In addition to the structural equations given above, model 

IV includes the measurement equation Y' = KY + Ey, indicating that 

the link between Y and d, is stochastic as well as nonlinear. Under this 
model, dp(d. = 1)/dX = [dp(dv = 1)/dY ] dYldX = r1iXf(r30 + 131X). If 
Z is continuous, the decomposition of direct and indirect effects of X on 
Z is 

dZ OL + x3A1KOf(f30 + 131X). 
dX 

(total) (direct) (indirect) 

If the effects of X on d, are required, the decomposition is 

dp(dz = 1) = 
L- f(oto + cLX + Ot3dy) 

dX 

(total) (direct) 

+ tA3[ f(OO + xt1X + ot3dy)]fKA[f(fO + AX)]. 

(indirect) 

Here and in (42) and (43) the relative sizes of the direct and indirect 

components are unchanged whether one calculates the effects on Z or on 

p(dz = 1). Note also that for model IV it is unnecessary to identify the 
measurement parameter K to calculate the path decomposition. It suffices 
to be able to identify 131K since only this product is used in the calculations. 
Thus the decomposition for model IV is feasible under broader circum- 
stances than those in which the model itself can be identified. 
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IV. EMPIRICAL EXAMPLES 

This section illustrates the models and methods presented above with two 
numerical examples. The first applies models I and III to the effects of 
social background and parental factors on college plans of high school 
seniors. The second applies models II and IV to the effects of state Fair- 
Employment-Practices Legislation and other social factors on the relative 
earnings of black and white workers. 

1. Social Background, Parental Encouragement, and College Plans 

Using a sample of high school seniors, Sewell and Shah (1968) and Fien- 
berg (1980) examine the effects of social background factors, including 
sex, socioeconomic status, and intelligence, on the extent to which their 
parents encourage them to attend college, and the effects of both social 
background and parental encouragement on whether the seniors them- 
selves plan to attend college. The researchers apply a simple recursive 
model with two endogenous variables: parental encouragement and col- 
lege plans. Encouragement is interpreted as intervening causally between 
social background and plans. Both endogenous variables are measured 
discretely. Whether or not the senior plans to attend college is coded yes 
or no. Parental encouragement to attend college is coded as high or low. 
Previous analyses of these data have examined the effect on college plans 
of a dummy variable for parental encouragement, with the social back- 
ground variables controlled, and the effects of the background variables 
on parental encouragement. This two-equation model, therefore, is an 
instance of either model III or model IV discussed above. Parental en- 
couragement, however, may be better modeled as resulting from variation 
on an unmeasured continuous variable indicating that degree of encour- 
agement is a continuum from none to a great deal, than as a simple binary 
difference between those coded as experiencing "high" or "low" encour- 
agement. In this case, the recursive model of choice is either model I or 
model II discussed above since these models allow the effects of discrete 
intervening variables to result from continuous latent variables. These 
models do not necessarily fit the data equally well. Nor do they have the 
same implications for the degree to which parental encouragement me- 
diates the effect of social background on college plans. 

Data.-The data are a cross-classification of the characteristics of 10,318 
Wisconsin high school seniors in 1957. The characteristics and their mea- 
surement are as follows: socioeconomic status (S) (high, upper-middle, 
lower-middle, low), intelligence (Q) as measured by the Hammon-Nelson 
Test of Mental Ability (high, upper-middle, lower-middle, low), sex (X) 
(female, male), parental encouragement (P) (high, low), and college plans 
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(C) (yes, no). The data are reported by Sewell and Shah (1968) and by 
Fienberg (1980, p. 130). 16 In the models estimated here, both IQ and 
socioeconomic status are coded as continuous variables scaled to have 
means of zero and variances of unity.17 

Models.-As noted above, it is of interest to contrast alternative roles 

of parental encouragement in recursive models of background effects on 
college plans. To carry this out, models I and III and a model that 
combines the effects of models I and III are estimated. Models I and III 

are nested within the latter model, and thus their relative fits to the data 

cap be derived from the three models. Models I and III rather than models 
II and IV are considered here because the former are identifiable without 
additional assumptions, whereas the latter are not. In modeling parental 
encouragement, moreover, models I and III are substantively plausible. 
That is, the continuous underlying variable for parental encouragement 
may be reasonably assumed to be classified perfectly by the observed 

dichotomous variable. That is, there are no individuals with high scores 
on the unmeasured encouragement measure who are coded "low" on the 
observed variable or vice versa. Measurement error is, of course, always 
possible, but there is no other substantive reason for modeling the link 
between the continuous and discrete variables as stochastic. 

For models I, III, and their combination, the effects of social back- 

ground can be modeled as P* = f30 + f1,X + f32Q + 13S + Ep, where Ep 
is a normally distributed stochastic disturbance, P* is an unmeasured 

continuous variable, and P = "high" if P* , L, P = "low" if P* < L, 
where L is an unobserved threshold. For model I the effects of background 
and parental encouragement can be written C* = cot + ot,X + oX2Q + 

ot3S + (t4P* + E, where E, is a normally distributed disturbance, C* is 
an unmeasured continuous variable, and C = "yes" if C* : N, C = "no" 
if C* < N, where N is an unobserved threshold. For model III the effect 

of P on C is discrete, and the model can be written C* = cot + ot,X + 

Ox2Q + 03S + Ot5P + es Finally, the combined model is C* = o0 + 

16 The data are also available from us on request. 

17 Fienberg's (1980) reported results as well as additional analyses of the data show that 

some of the effects of socioeconomic status and intelligence in the model are nonlinear. 

Fienberg also reports significant three-way interactions among pairs of the background 

variables and the endogenous variables. The models reported here assume both linearity 
of the background effects and additivity of all effects in the model. These simplifications 

clarify the exposition and yield substantively plausible results. The models presented here 

do not fit the data as well as the more complex models estimated by Fienberg, and the 

differences in fit between models I and III reported below may result in part from failure 

to fit higher-order interactions to the data. It is nonetheless straightforward to incorporate 

nonlinearities and higher-order interactions into the models presented here. However, in 

practice, models with higher-order interactions and models with latent continuous variables 

may be empirically indistinguishable without prior conceptions of which specification is 

more plausible. 
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x1X + x2Q + ot3S + ct4P* + ot5P + es For all models, E, and Ep are 
assumed to be uncorrelated. 

Identification and estimation.-Models I, III, and their combination 
are identifiable by the arguments presented above. Model III can be 
identified directly from the parameters of single-equation estimates of the 

determinants of parental encouragement and college plans. Model I and 

the model that combines the effects of models I and III can be identified 
and estimated from the parameters of the equation for parental encour- 

agement, a reduced-form equation for college plans, and the disturbance 

covariance for the two reduced-form equations. Given the normality as- 

sumption of the errors in the structural equations, the models were es- 
timated by maximum likelihood probit analysis (see Appendix). 18 

Results.-Table 2 presents the log likelihood statistics for four models 

estimated by maximum likelihood probit analysis. From these models can 

be derived the structural parameters for the models of interest. The four 
include a model in which (1) there is no effect of parental encouragement 

TABLE 2 

LOG LIKELIHOODS AND LIKELIHOOD RATIO x2 TESTS FOR ALTERNATIVE MODELS OF 

EFFECTS OF SOCIAL BACKGROUND ON PARENTAL ENCOURAGEMENT 

AND COLLEGE PLANS 

A. LOG LIKELIHOODS 

Model* Log Likelihood 

A. No effect of parental encouragement on college plans ... .... - 10,903 21 

B. Effect of observed dummy variable for high parental 

encouragement on college plans (model III) ..... ........... - 10,078.14 
C. Effect of unobserved continuous variable for parental 

encouragement on college plans (model I) .. ............... - 10,069.75 

D. Effect of both unobserved continuous and observed dummy 

variables on college plans (models I and III) ................ - 10,069.06 

B. LIKELIHOOD RATIOS 

Degrees of 

Model Comparison Likelihood Ratio x2-t Freedom P 

B vs. A ....................... 1,650.1 1 <.001 

C vs. A ....... ......... .... 1,666.9 1 <.001 

D vs. B . ............. . ... 18.2 1 <.001 

D vs. C ...................... 1.4 1 .2<P<.3 

* All models include effect of sex, IQ, and parental socioeconomic status on both parental encouragement and college 
plans See text for discussion of data and measurement 

t Likelihood ratio x2 statistics are computed as -2 times the differences of the appropriate log likelihoods 

18 A computer program for estimating two reduced-form equations with binary dependent 

variables and correlated disturbances by maximum likelihood probit analysis is available 

from us. 
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on college plans, (2) the dummy variable for encouragement affects college 
plans but the reduced-form disturbance covariance is assumed to be zero 

(model III), (3) the dummy variable for encouragement does not affect 

college plans but the disturbance covariance is nonzero (model I), and (4) 
the disturbance covariance is nonzero and there is a dummy variable 
effect of encouragement on college plans (models I and III combined). 

The log likelihoods in table 2 indicate the relative fits of alternative 

models for the parental encouragement effect on college plans. When the 
log likelihood of a model is subtracted from the log likelihood for a model 

within which the first model is nested, - 2 times the difference is dis- 
tributed as X2 with degrees of freedom (df) equaling the difference in 
numbers of parameters between the two models (e.g., Hogg and Craig 
1970). The lower panel of table 2 contrasts several pairs of models. The 
first two lines show the improvement in fit of the model when the two 

types of parental encouragement effects on college plans are added sep- 
arately to a model that includes only background effects on college plans 
and on parental encouragement. The dummy and continuous latent vari- 
able effects reduce X2 by 1,650 and 1,667, respectively, both highly sig- 
nificant improvements in fit. To see whether both types of effects are 
necessary, a model that combines the effects of models I and III is con- 
trasted with the models that include either the dummy variable or the 

latent continuous variable for parental encouragement. These contrasts, 

shown in the last two lines of table 2, show that whereas the elimination 

of the continuous latent variable from the model significantly weakens 
the fit of the model (X2 = 18.2 with 1 df ), the exclusion of the dummy 
variable has no significant impact on the fit of the model (X2 = 1.4 with 

1 df ). Thus, relative to the combined model, model I, which includes the 

effect of a latent continuous variable for encouragement and excludes the 

dummy variable, cannot be rejected, but model III, which includes the 

encouragement effect as a dummy variable and excludes the latent vari- 

able, is rejected. 
Table 3 presents the reduced-form probit coefficients for the determi- 

nants of parental encouragement and college plans under alternative 
models. These coefficients are expressed in raw form under the assumption 
that the disturbance variances of the equations are unity. As indicated 

by the asymptotic normal statistics, both the effects of the dummy variable 
for parental encouragement in model III and the disturbance correlation, 
from which is derived the effect of the latent variable for encouragement 
in model I, are highly significant (see the third and fourth columns). When 
both the error correlation and the dummy variables are included in the 

model, as shown in the last column, the error correlation remains highly 
significant, but the dummy variable coefficient is negative and insignif- 
icant. This is consistent with the goodness-of-fit results reported in table 
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2. These results suggest that parental encouragement is better modeled 

as a latent continuous variable in its effects on college plans than as the 
discrete variable that is directly measured. 

Table 4 presents the structural parameters that are derived from the 
coefficients in table 3 through the identification methods presented in 
Section II. The first column presents the parental encouragement equa- 

tion, and the second, third, and fourth columns present the coefficients 

for the reduced form and models III and I, respectively.19 To obtain the 

coefficients for the parental encouragement equation in table 4, the raw 
coefficients are rescaled under the assumption that the latent variable for 
encouragement has variance of unity. This requires an estimate of the 
error variance which is, using the results of Section II. 1, 

Cep2 1/[b12 var (X) + b2 var (Q) + bj var (S) + 2b,b2 cov (X,Q) 

+ 2b1b3 cov (X,S) + 2b2b3 cov (Q,S) + 1], 

TABLE 4 

STRUCTURAL COEFFICIENTS FOR EFFECTS OF BACKGROUND FACTORS ON PARENTAL 

ENCOURAGEMENT AND COLLEGE PLANS UNDER MODELS I AND III 

DEPENDENT VARIABLE* 

College Plans 

Model 

PARENTAL 

INDEPENDENT VARIABLE ENCOURAGEMENT Reduced Form III I 

Sex (female) ........ ..... -.290 -.203 -.083 -.004 

(-13.3) (-9.0) (-3.9) (-0.2) 

IQ ..................... .269 .360 .254 .175 

(24.1) (30.6) (23.0) (17.6) 

SES .................... .434 .389 .208 .091 

(37.3) (32.5) (17.8) (8.2) 

Parental encouragement 

(observed dummy) ..... ... ... .942 ... 

(38.1) 

Parental encouragement 

(unobserved continuous) ... ... ... .686 

(57.2) 

Constant ............... .202 .351 .934 .251 

(12.1) (21.6) (39.2) (17.7) 

Error variance .......... .650 .633 .472 .327 

NOTE-Numbers in parentheses are asymptotic normal statistics (Z-scores) 

* Calculations assume that unmeasured continuous variables for parental encouragement and college plans have 

variances of unity 

19 Structural coefficients for the model combining the effects of models I and III are similar 

to those for model I. 

92 



Discrete Data 

where 1 2, and f3 are the raw coefficients reported in the first column 
of table 3. The variances and covariances of the observed independent 
variables are as follows: 

X Q S P 

X .250 -.006 -.008 -.031 

Q 1.000 .278 .162 

S 1.000 .214 

p .250 

Thus 

TEP2 = 1/[(- .359)2(.250) + (.334)2 + (.538)2 + 2(- .359)(.334)(- .006) 

+ 2(-.359)(.538)(-.008) + 2(.334)(.538)(.278) + 1] 

= .650. 

With this estimate in hand, the rescaled coefficients can be obtained 

directly. For example, the rescaled coefficient for sex is (-.359)( .650 
= -.290. The coefficients for IQ, socioeconomic status, and the constant 
are similarly calculated as the products of rEP and the unscaled coefficients 

in table 3. The structural coefficients and error variances for the reduced- 
form and model III college-plans equations are derived by the same method. 

The derivation of the structural parameters for model I, shown in the 
last column of table 4, follows the method outlined in Section 11.2. The 
reduced-form error covariance for the parental encouragement and col- 
lege-plans equation is 

p u\/Uo'22 

where p is the disturbance correlation and arEp2 and O 2 are the error 
variances of the reduced-form equations for parental encouragement and 
college plans, respectively. Thus cov (-qc,Ep) = .695X/(.650)(.633) = .446. 

Then the structural coefficient for the effect of the latent variable for 
parental encouragement on college plans is .446/.650 = .686 reported in 
the final column of table 4. The remaining structural coefficients for the 
social background effects in model I are calculated from the reduced- 
form equations using the formulas in Section IL.2. The coefficient for sex, 
for example, is (-.203) - (-.290)(.686) = - .004. The IQ, SES, and 
constant coefficients are calculated similarly. Finally, the error variance 
for the college-plans equation under model I is OE,c2 = cr lc2 - 32crEp2 

.633 - (.686)2(.650) = .327. 

The structural coefficients for the college-plans equation differ sub- 
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stantially between models I and III. The coefficients of the social back- 
ground factors are smaller in model I, indicating weaker net effects than 
in model III. The coefficients for the two parental encouragement vari- 
ables are not comparable inasmuch as they are measured in different 
scales. In model III the coefficient indicates that, for a latent variable in- 

dexing intention to attend college, there is a .942 standard deviation (SD) 
difference between individuals coded as high and those coded as low 
on parental encouragement. Under model I, the coefficient indicates that 
a 1 SD change in parental encouragement yields a .686 SD change in the 
latent variable for college plans. Finally, the error variance for model I 
is approximately 30% smaller than for model III, indicating that the model 
in which parental encouragement is treated as continuous is more suc- 
cessful in explaining college plans. 

Direct and indirect effects of social background.-Models I and III 

have different implications for the allocation of the effects of social back- 
ground on college plans into direct effects and indirect effects through 
parental encouragement. The decomposition of direct and indirect effects 
under the two models is shown in table 5. The top panel of the table 
shows the effects in SD units of the latent continuous variable for college 
plans. The bottom panel expresses the direct and indirect components as 
proportions of the total (reduced-form) effects of social background on 

TABLE 5 

DECOMPOSITION OF EFFECTS OF SEX, IQ, AND SOCIOECONOMIC STATUS ON 

COLLEGE PLANS UNDER ALTERNATIVE MODELS 

MODEL I MODEL III 

Indirect via Indirect via 

Parental Parental 

VARIABLE Total Direct Encouragement Total Direct Encouragement 

Absolute effects: 

Sex ...... -.203 -.004 -.199 -.192 -.083 -.109 

IQ ....... .360 .175 .185 .345 .254 .100 

SES ...... .389 .091 .298 .371 .208 .163 

Relative effects: 

Sex ...... 1.000 .020 .980 1.000 .432 .568 

IQ ....... 1.000 .486 .514 1.000 .726 .290 

SES ...... 1.000 .234 .766 1.000 .561 .439 

NOTE -College plans are measured in probit transformed scale of probabilities of planning to attend college, that is, 

+-2(p), where 4 is the cumulative normal function and p is the probability of planning to attend college To obtain 

decomposition of the actual probability of attending college, multiply each entry by (1/\/2ir) exp (-z2/2), where 

p exp (-) du 

for a selected value of p (Hanushek and Jackson 1977, p 189) At p = 327, the overall sample proportion planning to 

attend college, z = - 448 and (1/V\2rr) exp (-z2/2) = 361 Relative effects, however, are invariant under this transfor- 

mation 
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college plans. For model I, the absolute effects are calculated using the 
basic methods of path analysis. The direct effects are simply the structural 
coefficients for the background variables reported in the last column of 
table 4. The indirect effects are the products of the social background 
coefficients in the parental encouragement equation and the structural 
parameter for encouragement in the model I college-plans equation. For 
model III, the direct effects are again the structural coefficients for the 
social background factors obtained under that model and reported in the 
third column of table 4. The indirect effects are the products of three 
factors: the coefficient for the independent variable in the encouragement 
equation, the coefficient for the dummy variable for encouragement in 
the college-plans equation, and a factor exp (- z2/2)\/2, where 

1 _ZIu20 
p = e> p (2u2)du 

for a selected value of p. This last factor is simply the ordinate of the 
normal curve corresponding to the "area" under the curve measured by 
p. Taking p to be the sample proportion with "high" parental encour- 
agement, p = .5188, z = .0471, and exp (-z2/2)/V27r = .3985. Then, 
for example, the indirect effect of sex on college plans is (-.290)(.942)(.3985) 
= - . 1089. 

The table of relative effects shows that under model I, a much larger 
proportion of the social background influences on college plans occurs 
through differential parental encouragement than under model III. For 
example, according to model I, three-fourths of the effect of parental 
socioeconomic status on college plans can be attributed to the effects of 
SES on parental encouragement and the effect of the latter on college 
plans. Under model III, however, less than one-half of the SES effect on 
college plans is due to the intervening mechanisms of parental encour- 
agement. These results reflect the more powerful influence of the contin- 
uous latent variable for encouragement relative to that of the observed 
dichotomous variable. 

2. Fair-Employment-Practices Legislation and Relative Wages 

Landes (1968) and Heckman (1976) examine the possible effects of state- 
level Fair-Employment-Practices Legislation (FEPL) on the relative wages 
of blacks and whites. The correlation between the existence of FEPL and 
the level of black wages relative to that of whites is positive, but such a 
correlation may arise through several mechanisms. The legislation itself 
may have an active effect by deterring employers who would otherwise 
discriminate against blacks in wages. Alternatively, the law itself may 
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have no effect; it may be symptomatic of other social and historical factors 
that lead states not only to pass progressive laws but also to treat the 
races equally in the labor market. Under this Durkheimian view of the 
law, the accumulated sentiments in a state, not their legal manifestations, 
affect the relative wages of blacks and whites. For the purposes of this 

discussion, this factor will be termed "progressive sentiment." A third 
hypothesis is that neither the law nor progressive social conditions but 
other characteristics of states correlated with the existence of FEPL ex- 
plain the positive zero-order correlations between the existence of FEPL 
and the relative standing of blacks. 

These competing views can be represented in models II and IV. Under 
model IV, FEPL affects relative wages directly. Under model II, an 
unmeasured variable, of which FEPL is an indicator, affects relative 
wages, but FEPL itself does not. This latent variable can be interpreted 
as degree of progressive sentiment. In these models, the relationship be- 
tween sentiment and FEPL is stochastic; that is, despite the positive 
association between FEPL and progressive sentiment, some progressive 
states may lack FEPL and, conversely, states where sentiments favoring 
discrimination are widespread may have FEPL. Under both models II 
and IV, progressive sentiment intervenes causally between other social 
factors and the relative wage levels of blacks and whites. Model IV cannot 

be identified with only a single indicator of the unmeasured variable. 

Moreover, progressive sentiment is better modeled as having several in- 

dicators. Thus a second indicator of progressive sentiment, based on state 

voting behavior, is included in the models discussed below. 

Data and models.-The data for this example derive from published 
sources for the 48 continental United States during the 1950s and 1960s.20 

The relative wages of blacks and whites are measured as the ratio of 

wages of black males to those of white males in 1959 (B). Progressive 
sentiment (P*) is indicated by two binary variables: (1) whether a state 
had a Fair-Employment-Practices Law before 1959 (F), and (2) whether 

a state gave less than 10% of its vote to George Wallace in the 1968 
presidential election (W).21 Progressive sentiment is assumed to arise from 

past and contemporary social conditions. To reflect this, two independent 
variables are assumed to affect sentiment, the percentage of the civilian 

labor force that was unionized in 1953 (N) and the percentage of the white 
work force with more than 12 years of schooling in 1959 (E). Both vari- 

20 For further documentation of the variables discussed below, see Landes (1968). The data 

are available from us. 

21 The 10% cutoff point on the Wallace vote is arbitrary. Two dichotomous indicators of 

progressive sentiment are used in this example to follow the general form of model IV as 

discussed in Section II. A better formulation, which could be estimated by simple extensions 

of the methods discussed here, would treat the Wallace vote as a continuous indicator of 

progressive sentiment. 
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ables are assumed to affect progressive sentiment positively and to in- 
crease the likelihood of FEPL and a low Wallace vote. As discussed thus 
far, the model is P* = 0 + 13N + 32E + Ep, where Ep is a normally 
distributed disturbance and var (P*) = 1. In addition, F' = AFP* + EF, 

and W' = X,P* + E,, where var (F') = var (W') = 1; Ep, EF, and Ew 

are mutually uncorrelated; F = 1 if F' Ml; W = 1 if W' : M2; F = 
O if F' < M; W = O if W' < M2; and Ml and M, are unobserved thresholds. 
This part of the model is similar to the relationships among X, Y*, YI, 

Y2, dy,, and dY2 in figure 7. 

In addition to FEPL and progressive sentiment, several other variables 
are assumed to affect relative wages. These include the ratio of nonwhite 
to white males in the civilian labor force in 1959 (L); the ratio of the 

percentage of the nonwhite male population living in urban areas to the 
corresponding percentage for white males in 1959 (R); the percentage of 
the total male population living in urban areas in 1959 (U); and the ratio 
of nonwhite male to white male mean years of schooling completed in 
1959 (S). Then a general equation for the relative wages can be written 
B = oL0 + ,1L+ -2R + ,3U + R4S + (x5F + oX6P* + EB where EB iS 

a normally distributed disturbance that is uncorrelated with Ep, EF, and 
EB. Under model II, i5 = 0, whereas under model IV, a- = 0. If neither 
FEPL nor the sentiment that it indicates affects relative wages, then CX5 

a6 
= 0.22 

Identification and estimation.-These models are identified using the 
methods discussed in Section 11.5 for model IV. The measurement and 
structural equations for progressive sentiment can be identified separately 
from the relative wage equation. The models estimated here are over- 
identified inasmuch as each endogenous variable is affected by several 
exogenous variables that do not affect each other. Because no computer 
software that imposes the overidentifying restrictions is available, the 
estimates reported below are not unique but instead depend on the equa- 
tions used in the solution. Moreover, since the sentiment and wage equa- 
tions are estimated separately, no global goodness-of-fit statistics for the 
models are available. The R2s of the alternative relative wage equations 
are compared in the discussion below, but they do not provide valid tests 
of the fits of the models. 

Results.-Table 6 contains the reduced-form estimates for the equations 
predicting the two indicators of progressive sentiment. These estimates 

22 The rationale for these independent variables is discussed in Landes (1968). Heckman 
(1976) investigates the possible effects of FEPL and of progressive sentiment using somewhat 

different models from those investigated here His models treat FEPL as related determin- 
istically to the latent variable for sentiment; in this they are similar to models I and III. 

Heckman also explores, however, the possible simultaneity of legislation and relative wages, 

an issue not considered here. 
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are scaled such that their corresponding latent variables F' and W' have 

variances of unity. From these parameters the measurement and structural 

parameters for progressive sentiment are obtained. Thus, from the for- 

mulas given in Section 11. 5, and arbitrarily using the coefficient on school- 

ing, measurement parameters are given by 

XE = 1 - .572 + (.141) (.620)(.756)(.856) = .909 

/ ~~~(.141) 

w = 1 - .731 + (.140) (.620)(.756)(.856) = .820 

and 

'F 
2 

1 (.909) 
2 173; Uy2w = 1 - (.820)2 = .328, 

_ (.620)(. 756)(.856) 
op 

(.909)(.820) 

Given the measurement parameters, consistent estimates of the structural 

equations for P* can be obtained by arbitrarily focusing on the parameter 

for FEPL: 13o = -5.897/.909 = -6.487; 13 = .109/.909 = .120; 132 = 

.140/.909 = .154. These are reported in the first column of table 7. 

TABLE 6 

REDUCED-FORM MAXIMUM LIKELIHOOD PROBIT PARAMETER ESTIMATES FOR EFFECT 

OF LEVELS OF SCHOOLING AND UNIONIZATION ON INDICATORS 

OF PROGRESSIVE SENTIMENT 

DEPENDENT VARIABLES 

INDEPENDENT VARIABLES* FEPL (F) Wallace Vote (W) 

Unionization (N) . ................. .101 .056 

(3.3) (2 1) 

Schooling (E) .......... ........... .140 .141 

(1.3) (1.3) 

Constant ........................ -5.897 -3.716 

(-2.5) (-1.8) 

Error variance . ................... .572 .731 

Disturbance correlation .620 

(2.4) 

Log likelihood -48.39 

N ..48 

NOTE -Coefficients are scaled under assumption that latent variables for FEPL and Wallace vote have variance of 
unity FEPL denotes whether or not a state had a Fair-Employment-Practices Law before 1959 Wallace vote denotes 
whether or not a state gave less than 10% of its popular vote to George Wallace in the 1968 presidential election Numbers 
in parentheses are asymptotic normal statistics (Z-scores) 

* For discussion of independent variables, see text 
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The equations for relative wages in which neither F nor P* has an 
effect and in which only F has an effect are estimated directly by OLS. 
The results are reported in the second and fourth columns of table 7. The 
equations for relative wages that include an effect for progressive senti- 
ment and that include both sentiment and FEPL effects are estimated as 
follows. First, estimated values of P* are obtained using the structural 
parameters reported in the first column of table 7, that is, P* = -6.487 

+ .120N + .154E for each observation. Then the P*s are entered into 
the relative wage equations in place of the unobserved P*. These equa- 
tions are estimated by OLS and yield estimates for model II and the 
combined effects for models II and IV which are reported in the third 
and fifth columns of table 7.23 

TABLE 7 

STRUCTURAL COEFFICIENTS FOR EFFECTS OF SOCIAL FACTORS ON PROGRESSIVE 

SENTIMENT AND RELATIVE WAGES UNDER MODELS II AND IV 

DEPENDENT VARIABLES 

Relative Wages (B) 

Model 

PROGRESSIVE No Effect of II and IV 
INDEPENDENT VARIABLES* SENTIMENT Law II IV Comblned 

Unionization (N) .. .120 ... ... ... ... 
Schooling (E) ..154 ... ... 
Relative labor 

force participation (L) ...... ... - .651 - .563 - .688 - .608 

(.126) (.115) (.115) (.110) 
Relative schooling (S) ....... ... .115 .081 - .010 - .009 

(.146) (.130) (.139) (.128) 
Relative urbanization (R) .... ... .099 .095 .108 .103 

(.032) (.029) (.030) (.027) 
Urbanization (U) ............ ... - .033 - .134 - .164 - .216 

(.062) (.062) (.070) (.067) 
FEPL (F) ............... ... ... ... .073 .056 

(.023) (.022) 
Progressive sentiment (P*) ... ... ... .026 ... .022 

(.008) (.007) 
Constant ......... . - 6.487 .524 .628 .678 .723 

(.128) (.118) (.127) (.118) 
Error variance ............. .545 .165 .128 .134 .111 

R2t .. ............ . ... .749 .806 .797 .832 

NOTE -Numbers In parentheses are estlmates of coefficient standard errors under the assumptlon of OLS For model 
II and the combination of models II and IV, the assumption of homoscedastlclty is not met and thus estimated standard 
errors are not unblased (Heckman 1978) 

* For discusslon of independent variables, see text 
t R2 is calculated under assumptlons of OLS 

23 This procedure is equivalent to the method of solving overidentified models from reduced 

forms given in Section 11.3. 
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Although these calculations preclude rigorous tests of significance, they 

suggest that both FEPL and progressive sentiment affected the relative 
economic standing of blacks in 1959. With neither effect present, the 
remaining variables explain approximately 75 % of the variance in relative 

wages, whereas FEPL and progressive sentiment each add approximately 

5% to explained variance when added separately, and together add 8% 

explained variance. The results suggest that simply looking at the effect 

of FEPL alone gives an overestimate of its impact: when progressive 

sentiment is controlled, the coefficient for FEPL drops by almost 25%, 

although it remains substantial. 

V. CONCLUSION 

This article has reviewed alternative formulations of the role of discrete 

variables in recursive structural equation models. Discrete variables arise 
in many ways in empirical social science, and structural equation models 

that are sensitive to these varying substantive contexts are available. In 

particular, discrete variables may enter structural equations as measures 
of inherently discrete processes or as indicators of unmeasured continuous 
variables. When discrete variables are dependent, they are best modeled 
as having underlying continuous counterparts, but these latent variables 

may be related either deterministically or stochastically to the observed 

discrete variables. This article has illustrated the alternative substantive 

contexts in which the various combinations of discrete variable charac- 

teristics may be appropriate. In addition, it has discussed a set of recursive 
models in which discrete and continuous dependent variables can be 

considered within single models. Thus, models with discrete variables 

have the same flexibility as structural equation models with only contin- 

uous dependent variables. Finally, this article has shown that methods 
of path analysis for continuous variables can be applied with little ad- 

ditional difficulty to systems of variables in which some endogenous vari- 

ables are discrete. 

APPENDIX 

Methods of Estimation 

As shown in Section II, model identification can be achieved typically 

through solving the structural equations for reduced-form equations, ob- 

taining reduced-form estimates, and using these estimates to derive the 

structural parameters. For model III this step is unnecessary; structural 

estimates are estimable directly without resort to the reduced form. Models 
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I, II, and IV, however, in the absence of other overidentifying restrictions, 
require not only reduced-form coefficients but also an estimate of the 
covariances between the disturbances in the two equations of the model. 
The following discussion reviews procedures for estimating the reduced- 

form parameters and the disturbance covariance which yield the struc- 

tural parameters through the steps outlined above. It first reviews methods 

for estimating single equations with binary response variables and then 

discusses methods for jointly estimating pairs of equations in which one 

or both of the dependent variables is discrete. These latter methods pro- 
vide estimates of covariances among disturbances required for identifying 
models I, II, and IV. 24 

I. SINGLE-EQUATION ESTIMATION 

As is well-known, logit and probit models estimated by maximum like- 
lihood are suitable methods for estimating the effects of independent 

variables on a dichotomous dependent variable (Cox 1970; Finney 1971; 

Hanushek and Jackson 1977; Nerlove and Press 1976). These methods 

are briefly reviewed here. Recall equation (2), for the effects of an in- 

dependent variable on a latent continuous variable Y* of which d, is an 

observed dichotomous indicator: 

Y*, -3 + f3X + Eyt, (2) 

where i denotes the ith observation (i = 1, . . . , N) and all other notation 
is as defined above. Let cy5 = ((3JcT) + (r,l1aEY)XZ. Then 

P(dyt=1) = Ef1(a )dEy, 

24 This discussion emphasizes methods that are computationally feasible at the present time. 
There is no reliable general computer program for maximum likelihood estimation of struc- 
tural equations with discrete variables that parallels LISREL for continuous variables (j.- 
reskog and Sorbom 1978; Joreskog 1973). The methods for calculating reduced-form equations 
discussed below include both maximum likelihood and less efficient methods. Maximum 
likelihood estimation of reduced-form equations, however, does not, in general, yield max- 
imum likelihood estimates of corresponding structural parameters inasmuch as overiden- 
tifying restrictions on the structural form of the model are not always imposed and may 
lead to multiple solutions for the same structural parameter. An alternative strategy, not 
used here, is to compute tetrachoric correlation coefficients between pairs of discrete vari- 
ables and biserial correlations between discrete and continuous variables and to estimate 
structural equation models based on the resulting correlation matrix using LISREL (Joreskog 
and Sorbom 1981). This method provides unique estimates of coefficients in overidentified 
models if the estimated correlation matrix is positive definite. The latter condition is not 
guaranteed by pairwise estimation of tetrachoric and biserial correlations, nor does this 
procedure yield correct estimates of coefficient standard errors or of test statistics. 
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= Jf~Yz f(t)dt, 

and 

p(dy= ) = 7 f(t)dt, 

where f is the probability density function for the distribution followed 
by Ey, and t = EY/o-Y. Then iff is the density function of the extreme value 

distribution, 

(dyt= 1) = exp (t)/[l + exp (t)]2dt 
-~~~~~~~~~~~~ ~~~~~(Al1) 

exp 
PO + PI ? xz) + exp (Po + 

z+-?)]I 

and 

pd =0) =1 Li + exp (0j + PiX 
/ [ ((J6~U'Y UJ{Y)] 

which defines the logistic model. Then the likelihood is 

L = l exp ( +f X, xdy/[1 + exp fi+ X,] 

and maximum likelihood estimates are obtained by picking values of 

f30kre and l/cra. that make L as large as possible (Cox 1970; Hanushek 
and Jackson 1977). 

Alternatively, if Ey follows a normal distribution, 

P(dy1 = 1) = f exp (t2)dt 

p(dy, = o) = t.j, exp (j2)dt, (A2) 

which define the probit model. Then 

N [ C'y, 
y (1 -d 

L=H 1 1 exp (-t2)dt 1 f exp (-t2)dt 
I0 LV2 L /A 
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and maximum likelihood estimates are obtained by picking values of 

3/0reY and ,/kr,y that make L as large as possible (Finney 1971; Hanu- 
shek and Jackson 1977). Computer programs for estimating logit and 
probit models by maximum likelihood are widely available (e.g., Baker 
and Nelder 1978). 

II. LOGIT VERSUS PROBIT 

For the estimation of single-equation models with dichotomous dependent 
variables, logit and probit models are virtually interchangeable. In spe- 
cialized circumstances, mathematical models of scientific phenomena may 
imply one or the other model (Berkson 195 1), but in most applications, 
logit and probit models differ only in their underlying distributional as- 
sumption. This is a trivial difference given the similarity of the logistic 
and cumulative normal functions (Hanushek and Jackson 1977). Logit 
models are attractive because they can be derived from log-linear models 
for frequency data (Fienberg 1980) and provide a closed-form expression 
for probabilities (compare [Al] and [A2]), but this feature provides no 
advantage or disadvantage in the analysis of binary data per se. 

For multiequation models, in contrast, the choice of logit or probit 
models is more consequential. As noted above, the main complication in 
estimating multiequation structural models with discrete endogenous vari- 
ables is the estimation of the covariance of the disturbances in the reduced- 
form equations. When the logit model is extended to more than a single 
dichotomous dependent variable, in its psual form it fails to yield an 
estimate of the disturbance covariance. In the multinomial logit model, 
the most common extension of the binary logit model in use, the dis- 
turbance covariance is assumed to be zero (McFadden 1974). Naturally, 
this precludes estimation of the cross-equation dependence implied by the 
models discussed here.25 In contrast, the probit model is more easily 
generalized to a multiequation problem. For a pair of probit equations, 
the disturbances are bivariate normal, and their covariance can be esti- 
mated from the parameter for correlation in the bivariate normal model. 
Moreover, the assumption of normally distributed disturbances in the 
probit model facilitates estimation of models with both discrete and con- 
tinuous dependent variables. Models for the latter typically assume nor- 
mality of disturbances, and thus two-equation models with one continuous 

25 There are other bivariate distributions than the multinomial that possess logistic marginals 
and allow disturbances to be correlated. Gumbel (1961) discusses two such distributions, 
but they have the disadvantage that the correlation is either restricted to a specific value 
or varies over a limited range. McFadden (1978, 1980) considers a generalization of the 
extreme value distribution that allows for correlated errors, but this distribution has yet to 
achieve wide acceptance. 
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and one discrete response variable can be estimated under the assumption 

of bivariate normality of the disturbances when the discrete equation is 

specified as a probit model. In the following discussion, therefore, the 
multivariate normal model, based on extensions of probit analysis, is 

employed to estimate the reduced-form error covariance required for the 
identification of the models discussed above.26 

The following discussion of the multivariate probit model first presents 

the likelihood equations for two equations with discrete dependent vari- 

ables and for two equations when one has a discrete and the other a 

continuous dependent variable. Then it turns to alternative methods for 

estimating the coefficients and disturbance covariance for such models 
when computer software for maximum likelihood estimation for multi- 
equation systems is unavailable. 

III. MAXIMUM LIKELIHOOD FOR TWO-EQUATION MODELS 

1. Two Discrete Dependent Variables 

Recall that the identification of model I is based on two equations, the 
structural equation for Y* and the reduced-form equation for Z: 

Y*t = o + 13Xj + Eyi, (11) 

Zt = 7o + 'Yixt + 'qZ' 1 (12) 

where i denotes the ith observation. The maximum likelihood procedure 

can be illustrated for this reduced-form model, but the identical estimation 

problem arises for model II (for the reduced forms for Y' and Z) and for 

model IV (for reduced forms for Y'l and Y'2). Let Z be a latent continuous 
variable that is indicated by an observed dichotomous variable dz. Assume 

that Ey and y, follow a bivariate normal distribution with var (EY) 

o1J, var (') = , and cov (Ey,)m) = pUreYcr,. Define ty = EY/Y and tz 
= -r,Z as standardized normal variables. Then the probability density 

function for ty and tz is the bivariate normal density (e.g., Hogg and Craig 

1970): 

g(ty,tz) 
t 

-2 1exp[-(t 2 - 

2pt.tz 

+ tz2)/(1 - p2)]. (A3) 

26 This argument implies that when the disturbance covariance is unnecessary to achieve 

identification, as in the modification of model I in which there is an instrumental variable 

that affects Y* but not Z, the logit model may still be used. For an example of this approach, 

see Duncan and Duncan (1978, pp. 287-96). Nonetheless, when Z is continuous, it remains 

attractive to estimate both equations under the assumption of normally distributed errors. 
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For this model there are four possible outcomes on the dependent vari- 
ables, namely (1) dy = dz~ = 1; (2) dy = 1, dz = 0; (3) dy = O, dz = 1; 
(4) dy =dz = 0. Let cy, = (f3OkEY) + (f,3lX?kEY) and c, = 

(yo/zj) + (yXA/ 

uCz). Given the bivariate normal model, then 

P(dyl = 1, d- 1) f g(ty,tz)dtzdty 

y(d = 1, dz, 0) = 1 7 g(ty,tt)dtzdty 

(d = 0, d., = 1) - f fZg(ty,tj)dt dty, 

xrt 

(dyl = 0, dz, = 0) f f g(ty,tk)dt.dt&; 

and the likelihood is 

N 

L rI[ [p(dy, = d.t 1)jdY,dX2 [p(dy, = 1, d 
= 

0)]dYz1l-dzz) 
I = I 

[p(dyl = 0, dz, dzl)]2( -Y2) [p(dl = d - 0)]( 
dy,)(I -d2z) 

Maximum likelihood estimates are obtained by picking values of f00Ar.Y, 
P1'eyU lO/anyI 'y,/F, and p that make L as large as possible. The error 
variances aTYj and a 2 can be derived through scale restrictions on Ye 
and Z, and thus the disturbance covariance can be obtained from the 
equation 

cOV (ry,EY) P= PayO"e. (A4) 

2. One Continuous and One Discrete Dependent Variable 

Now consider model I again but allow Z to be an observed continuous 
variable instead of a latent variable. Identical estimation problems arise 
for model II (for the reduced forms for Y' and Z). As before, define ty = 

Ey/O,EY, but define t, (Z - - ylX)I/o,,z, which indicates that Z, unlike 
Y*, is observed. Again, let g(ty,tz) be the bivariate normal density defined 
above (A3). Then the likelihood is 

L 
Lj g(ty)tz)dty fj g(ty)tz)dty] 
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Maximum likelihood estimates are obtained by picking values of 130/UEY, 

p3l/aUy, Yo, y1 uc,,, and p that make L as large as possible. The error 
variance uEy2 can be derived through a scale restriction on Y* (no such 
restriction is required to identify oz2 since Z is observed). As before, the 

disturbance covariance is obtained from (A4). 

IV. NONLINEAR WEIGHTED LEAST SQUARES ESTIMATORS 

The methods just discussed provide efficient estimates of the reduced- 
form parameters and the disturbance covariances, from which the struc- 
tural parameters may be derived. These methods are computationally 
expensive and difficult to implement in the absence of reliable computer 
software. Most critically, when the number of discrete endogenous vari- 
ables exceeds two or three, the computation of multivariate normal prob- 
abilities becomes intractable inasmuch as each iteration of calculation 
requires the evaluation for each observation of a probability which is a 
multiple integral of the same order as the number of discrete endogenous 
variables (e.g., Muthen 1979). Fortunately, alternative methods are avail- 
able that hold the promise of allowing consistent (though not efficient) 
estimation of overidentified structural equation models with discrete vari- 
ables as well as correct estimation of parameter standard errors and 

suitable test statistics. These methods, noted briefly here, are discussed 

more fully elsewhere (Avery, Hansen, and Hotz 1981; Avery and Hotz 

1981). 

The alternative estimation methods, which employ a nonlinear least 

squares procedure, use only a subset of the information available about 

the joint distribution of the discrete endogenous variables that is used in 

maximum likelihood. In particular, they use the univariate and bivariate 
moments of the discrete variables but ignore the higher-order moments, 
thereby avoiding the calculation of higher-order multiple integrals. The 
estimation strategy is as follows. First, solve the structural equation model 
for its reduced form and consider the nonlinear functions for each dichot- 

omous dependent variable and for each pair of dependent variables, that 
is, for the jth dichotomous endogenous variable dy, (j = 1, . . p, ) (ex- 

cluding a subscript for individual observations), 

d= J (t_)dt_ + v 

and, defining dyk = dykdye(l < k p) 

r rmkXm r lm 

d Yk 
fm g(tktl)dtkdt, + Wkl 
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where d, is a dichotomous variable taking the value 1 or 0, Elm1 is the 
reduced-form parameter for the effect of the mth exogenous variable Xm 
on the jth endogenous variable dyJ, 4(t1) and g(tktl) are the standard uni- 
variate and bivariate normal probability density functions, respectively, 
and v1 and Wkl are residuals. 

Second, apply a weighted nonlinear least squares criterion to estimate 
the structural parameters from the system of p + p(p - 1)12 reduced- 
form equations by minimizing the weighted sums of squares of the resid- 
uals v1 and Wkl with respect to the structural parameters. The weighting 
procedure takes account of the differential variances associated with dif- 

ferent sums of squared residuals and provides a rigorous method of com- 
bining overidentifying restrictions to yield unique estimates. The 

minimization and the solution of the resulting system of nonlinear equa- 

tions can be carried out using standard methods for nonlinear estimation 

(e.g., Goldfeld and Quandt 1972). The procedure leads straightforwardly 
to estimates of the variances and covariances of the estimated parameters 
(Avery and Hotz 1981). Although these methods are not yet in wide use, 
they have been applied in special cases (Avery et al. 1981). Computer 
software soon to be available will allow their application to the general 
set of models discussed in this article (Hotz, personal communication, 
1982). 
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