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1. Introduction
In retailing, inventory decisions have direct impli-
cations on product availability to customers. When
making decisions related to the inventory levels of a
product category, store managers need to balance the
costs of holding and replenishing inventory versus the
costs of out-of-stocks. The cost of holding inventory
can be calculated directly using financial measures
available to store managers. In contrast, evaluating
the cost of an out-of-stock requires estimating its
impact on customers’ buying behavior. The lack of
precise measures of the costs of out-of-stocks has been
cited as one of the root causes for the slow adoption
of quantitative models in inventory management by
practitioners (Zipkin 2000).
In terms of the magnitude and prevalence of this

problem, out-of-stocks are certainly not uncommon in
retailing. The average out-of-stock rate in the United
States and Europe is about 8%, and the costs associ-
ated with out-of-stocks vary across product categories

and can be substantial in some cases.1 To quantify the
financial consequences of out-of-stocks, it is useful to
analyze the choices that a customer facing an out-of-
stock could make. First, a customer encountering an
out-of-stock may choose to defer its purchase until the
desired focal product becomes available. Second, the
customer may choose to purchase a substitute product
in the category. Third, a customer may decide not to
purchase any products—that is, the out-of-stock leads
to a lost sale—which has the largest negative short-
term financial impact for the retailer. Our main objec-
tive is to develop a methodology to quantify the effect
of the two latter scenarios, product substitution and
lost sales, that can be implemented using information
commonly available to a store manager.
A major challenge in estimating the impact of out-

of-stocks on retail demand is the lack of precise

1 See Gruen et al. (2002) for a detailed study on the incidence and
consequences of out-of-stocks across different product categories
and geographies.
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data on product availability. One would expect the
extensive adoption of perpetual inventory manage-
ment systems in retailing, which monitor inventory
in real time, to alleviate this data limitation problem.
However, there are two reasons why these inven-
tory systems have not entirely solved this problem.
First, in many cases these systems do not distinguish
between inventory on the shelf or in the backroom,
and as a consequence, the system might report avail-
ability for the store, although the shelf may be empty.
Second, recent work by DeHoratius and Raman (2008)
showed large discrepancies between the actual inven-
tory and system-recorded inventory. Consequently,
audits need to be conducted periodically to recon-
cile actual inventory with what is kept in the inven-
tory system. Therefore, in practice, many retailers
operate with a periodic inventory review system,
where inventory is observed precisely only at spe-
cific time epochs and cannot be perfectly inferred at
other points in time. For these reasons, we design our
methods to work with sparse (partial) information of
product availability, as provided by periodic inven-
tory review systems.
Our estimation approach is based on an extension

of the methodology in Musalem et al. (2008, 2009)
for demand estimation from aggregate data. Accord-
ingly, we treat the sequence of individual purchases
in a given time period (i.e., the order in which indi-
vidual purchases were made) as missing data and
simulate these sequences from their posterior dis-
tribution. Combining these simulated sequences of
purchases with periodic inventory information, we
estimate the evolution of product inventory on the
shelf and make inferences about the demand model,
taking into account the occurrence of out-of-stocks.
Consequently, we explicitly consider the endogenous
variation in product availability, modeling the set of
products available to a customer in a given time
period as a function of the initial inventory and the
sequence of choices made by customers. Moreover,
when used in categories where out-of-stocks occur
frequently, our data augmentation simplifies substan-
tially the estimation of the model parameters relative
to the expectation-maximization (EM) approach used
in previous work (Anupindi et al. 1998, Conlon and
Mortimer 2009). Furthermore, this structural demand
approach to model product availability allows us to
perform policy experiments that can be useful to
estimate lost sales and evaluate the impact of poli-
cies designed to mitigate the consequences of out-of-
stocks.
We illustrate how the model can be used to assist

the decisions of a store manager in two ways. First,
we estimate lost sales and substitution induced by
out-of-stock products, which is used to assign a
“financial” tag to out-of-stock events. Second, we use

the model to evaluate the financial consequences of
temporary price promotions that can help alleviate
the costs of out-of-stocks by recapturing a fraction of
the lost sales.
To summarize, our work makes four important

contributions. First, we develop a methodology that
can be applied in fairly general settings, including
categories with a large number of products, some
of which may be slow-moving products that exhibit
zero sales in some periods. Second, our methodology
explicitly considers the endogenous changes in prod-
uct availability triggered by customer choices. Third,
our structural demand approach allows us to perform
policy experiments that can be useful to estimate lost
sales and evaluate the impact of policies designed
to reduce the consequences of out-of-stocks. Fourth,
the use of data augmentation greatly simplifies the
estimation of the model parameters, especially when
compared with EM or maximum simulated likelihood
approaches.
The rest of this paper is structured as follows. Sec-

tion 2 relates our work to the existing literature. In §3,
we describe the demand model, estimation method-
ology, and how the methodology can be used to
estimate lost sales and stockout-based substitution.
Section 4 presents an empirical application of the
methodology using a data set on shampoo purchases.
Section 5 estimates the costs of out-of-stocks and illus-
trates how the methodology can be used to assess
the impact of different policies aimed at mitigating
their financial consequences. Finally, §6 concludes this
paper with a discussion of interesting avenues for
future research.

2. Literature Review
Our work is related to research streams in the
operations management, marketing, and economics
literatures. For instance, our work is related to analyt-
ical models of inventory management and assortment
planning developed in the operations management lit-
erature (e.g., Zipkin 2000, Smith and Agrawal 2000).
These models typically assume a specific demand for-
mulation that is incorporated into an optimization
problem; but in general they provide little guidance on
how to determine the input parameters of the demand
model. This limits the applicability of this work in two
ways. First, the demand model specification needs to
be validated through empirical data for the prescribed
decisions to be relevant in practice. Second, a naïve
estimation of a correctly specified demand model that
neglects the effect of out-of-stocks on sales can lead
to biased estimates and incorrect model inputs and
managerial recommendations. A notable exception in
this literature is Kök and Fisher (2007), who estimate
a demand model that captures the effect of perma-
nent changes in an assortment on sales, which is then
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used to choose the number of facings of products to
be included in an optimal assortment. Our focus is
different in that we measure the effect of temporary
changes of product availability on sales.2 Recent work
by Vulcano et al. (2008) estimated substitution effects
induced by out-of-stocks, using exact information on
product availability. In contrast, our methodology can
be used with partial information on product availabil-
ity (as in a periodic review inventory system).
In the context of the marketing literature, models

that use individual data (e.g., Fader and Hardie 1996,
Rossi et al. 1996) or aggregate data (e.g., Besanko et al.
2003, Jiang et al. 2009) to estimate consumer demand
are ubiquitous. However, most of this work ignores
the effect of product availability on demand, proba-
bly because of the lack of data.3 Some studies use sim-
ple methods to infer availability from sales data, for
example, by assuming that a product is out of stock
when it has no sales (e.g., Campo et al. 2003, Swait
and Erdem 2002). This approach is imprecise for
categories with slow-moving products. Instead, we
incorporate direct measures of product availability
to estimate customers’ preferences and reactions to
stockouts.
To our knowledge, Anupindi et al. (1998) were the

first to estimate the effect of out-of-stocks on customer
demand using actual measures of product availabil-
ity. Their model accounts for lost sales and product
substitution effects, but unless further restrictions are
imposed to this model, it is necessary to estimate dif-
ferent arrival rates for every possible set of available
alternatives faced by a customer. Therefore, the num-
ber of parameters rapidly grows with the number
of alternatives, and to fully characterize customers’
propensity to buy each alternative, it is necessary to
have observations for every possible choice set.4 To
address this estimation issue, Anupindi et al. (1998)
impose ad hoc restrictions on the substitution pat-
terns.5 Kalyanam et al. (2007) model cross-item substi-
tution through a finite number of categorical variables.
This approach does not capture substitution through
continuous measures such as price, and therefore can-
not be used to compute price elasticities. In our model,
substitution patterns are also restricted but based

2 Kök and Fisher (2007) also develop a model to estimate stockout-
based substitution (temporary changes in availability), which they
do not estimate with their empirical data.
3 An exception is Anderson et al. (2006), who use sales data from a
catalog retailer.
4 Denoting by J the number of alternatives, the number of
nonempty choice sets is equal to 2J − 1.
5 More specifically, they assume “one-stage substitution,” where a
fraction of the demand for an out-of-stock product is transferred
to a second product, but if that product is also out of stock, the
demand is lost.

on a structural model of utility maximization, which
enables us to account for price-based substitution.
In addition, our work is also related to the

literature on consideration sets (e.g., Hauser and
Wernerfelt 1990, Roberts and Lattin 1991, Andrews
and Srinivasan 1995). This body of research focuses on
modeling the set of alternatives that are considered by
a consumer when estimating consumer preferences.
In this paper, we face a similar problem because we
are interested in estimating the underlying set of alter-
natives that are available to each customer. We esti-
mate this set of alternatives combining aggregate sales
data with information on product inventory.
In the economics literature there has been an exten-

sive development of methods to estimate demand
based on random utility maximization (RUM) mod-
els using market-level sales data (e.g., Berry 1994,
Berry et al. 1995). RUM models can be very effective
at providing a parsimonious characterization of con-
sumer preferences, reducing the number of parame-
ters to be estimated. In the context of out-of-stocks,
Bruno and Vilcassim (2008) extend the methodol-
ogy in Berry et al. (1995) to incorporate external
information about product availability, showing that
neglecting the effects of out-of-stocks leads to sub-
stantial biases in the estimation. As pointed out by
Chintagunta and Dubé (2005), a limitation of the
methodology of Berry (1994) and its extensions is that
it cannot be used when some of the products have
zero sales, which is not uncommon for store-level data
of slow-moving categories. In contrast, our method
can be used with store-level data and slow-moving
products. Store-level data have the advantage of pro-
viding more precise information on which products
are out of stock (relative to proxies of product avail-
ability that could be obtained at the market level).
Closest to our work is Conlon and Mortimer (2009),

who estimate the substitution effects induced by
stockouts using a random utility model and partial
data on product availability. They use an EM algo-
rithm to account for the missing data on product
availability faced by each customer. However, the
expectation step becomes difficult to implement when
multiple products are simultaneously out of stock
(as in the case of our empirical application). As we
will explain in the next section, our approach can
be applied to cases where a large number of prod-
ucts become out of stock without increasing the com-
plexity of the estimation method. This enables us to
uncover some interesting patterns describing how the
number of out-of-stock products affects lost sales (the
details are discussed in §5).
In terms of Bayesian methods, our estimation

approach is similar to the methods used by Chen
and Yang (2007) and Musalem et al. (2008, 2009).
In contrast to prior work in this area (e.g., Musalem
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et al. 2008), we not only use aggregate sales data, but
also use periodic information about product inventory.
Conditioning on both types of information, we jointly
estimate the distribution of consumer preferences and
product availability, which enables us to estimate the
impact of out-of-stocks on consumer choices.
Finally, we note that other authors have used con-

trolled laboratory experiments (e.g., Fitzsimons 2000),
field experiments (e.g., Anderson et al. 2006), and
questionnaires (e.g., Campo et al. 2000) to estimate
customer response to out-of-stocks. We focus instead
on developing methods that use field data routinely
collected by store managers.

3. Model and Methodology
This section describes the customer choice model and
the estimation method. The demand model is based
on utility maximization principles and can be esti-
mated with sales data from multiple stores combined
with (partial) information about product availability.
We also discuss identification and endogeneity issues
and show results from a simulation experiment to test
and validate our methodology. Finally, we show how
the model can be used to estimate lost sales.

3.1. Customer Choice Model
We start by specifying a random-coefficients multino-
mial logit (MNL) model for product choice within a
category, a demand specification widely used in the
economics and marketing literature (e.g., Chintagunta
et al. 1991, Train 2003). Consider a customer i that vis-
its store m during time period t and chooses to buy
a single unit from among the alternatives in the set
� = �1� � � � � J � or chooses not to purchase (no-purchase
option). We specify the utility of purchasing product
j ∈ � as follows:

Uijtm = �′
itmxjtm + �jtm + �ijtm� (1)

where xjtm is a vector of covariates that may include
product characteristics, price, and other marketing
variables. The vector of random coefficients �itm,
which varies across customers, describes individ-
ual preferences and is assumed to be distributed
according to a multivariate normal with mean 	̄m and
covariance matrix 
. Note that the vector of prefer-
ence coefficients �itm has i, t, and m subscripts, which
allows different customers visiting a store in each
period to have different preference coefficients, albeit
drawn from the same distribution.6 The mean of indi-
vidual preferences for a given store m is specified as

	̄m = 	 · zm� (2)

6 This corresponds to the independent samples assumption
described in Musalem et al. (2009), where a different random sam-
ple of consumers make purchase decisions in each period. Musalem
et al. (2009) also show that this assumption is asymptotically equiv-
alent to the case where the same consumers make purchase deci-
sions in every time period, i.e., �itm = �im.

where zm is a vector of time-varying characteristics
for store m, which enables a researcher to capture
observed heterogeneity across customers in different
markets and 	 is a matrix of coefficients. The variance-
covariance matrix 
 captures unobserved customer
heterogeneity, which is assumed for simplicity and
parsimony to be constant across stores. The term �jtm
is a demand shock for each product j , common to all
customers, that represents other factors that enter cus-
tomer’s utility that are not captured by xjtm. We also
write Xtm = �x1tm� � � � � xJtm� and �tm = ��1tm� � � � � �Jtm�
to describe the product characteristics and demand
shocks of all products in store m during period t.
The random vectors �tm are independent and iden-
tically distributed (i.i.d.) samples of a multivariate
normal distribution with zero mean and covariance
matrix 
� . For simplicity, we assume that 
� = 2

� ·
IJ (where I is the identity matrix with J rows and
columns). The inclusion of these demand shocks helps
to prevent overfitting problems when aggregate data
are used to estimate the model (Berry 1994). Finally,
�ijtm is an individual-specific demand shock, modeled
as an i.i.d. random variable from an extreme value
distribution.
The probability that a customer chooses a particu-

lar brand during a given time period depends on the
set of alternatives available to a customer. In partic-
ular, because of the occurrence of out-of-stocks, the
choice set of a customer may not include all the prod-
ucts in the set � . Product availability is character-
ized in our model by the vector aitm = �a1

itm� � � � � aJ
itm�,

where a
j
itm = 1 if customer i visiting store m in period t

finds product j available, and a
j
itm = 0 otherwise. With-

out any loss of generality, we index customers in
each period by their order of arrival to the store. The
matrix Atm = �a1tm� � � � � aNmtm� contains the unobserved
product availability information for all customers vis-
iting that store in period t, which will be structurally
inferred.
Let yitm denote the product chosen by customer i in

period t and market m, and let Ui0tm = �i0tm be the util-
ity of the no-purchase option (the subscript 0 denotes
the no-purchase option). The probability that a cus-
tomer i facing availability aitm purchases product j is
given by

pj��itm� �tm � aitm�Xtm�

≡ Pr�yitm = j � �itm� aitm� �tm�Xtm�

= a
j
itm · exp��itmXjtm + �jtm�

1+∑
k∈� ak

itm · exp��itmXktm + �ktm�
� (3)

whereas the probability of choosing the no pur-
chase option is given by p0��itm� �tm � aitm�Xtm� =
1 − ∑

j∈� pj��itm� �tm � aitm�Xtm�. Note that this cus-
tomer model is similar to the one used by Bruno and
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Vilcassim (2008) and Conlon and Mortimer (2009) and
represents an extension to random coefficients to han-
dle (observed or unobserved) product availability.7

3.2. Derivation of the Likelihood Function of the
Aggregate Data

As is evident from Equation (3), computing the prob-
ability of purchase requires information about the
choices of each customer visiting the store (yitm) and
the set of products available to each of them (aitm). As
we mentioned in the introduction, this information is
not always available in practice. Therefore, we seek
to estimate the parameters of the customer choice
model, ���
���, using the following aggregate data:
(1) sales of each product for each store period, Sjtm;
(2) inventory at the store at the beginning and end
of each period, Ijtm and Îjtm, respectively; and (3) the
number of customers making purchase decisions in
each period, Ntm.8 Information about Ntm can be
obtained, for example, from the total number of
transactions recorded for each store in each period.
Alternatively, it is also possible to use demographic
information (e.g., population data) to estimate the size
of the market (i.e., the maximum number of con-
sumers that would purchase any of the alternatives
in the product category in a given time period; see
Berry et al. 1995). The number of customers choos-
ing the no-purchase option is then given by S0tm ≡
Ntm −∑J

j=1 Sjtm. If there are replenishments, the defini-
tion of the time periods is such that they occur just
before the beginning of the period and are therefore
accounted in Itm.

Note that when a store m runs out of stock for some
product j during period t� we observe that I

j
tm > 0 and

Î
j
tm = 0 but we do not know the exact time the product
went out of stock. This missing piece of information
is important because it determines how many cus-
tomers were exposed to the out-of-stock. For exam-
ple, if the first customer visiting the store purchased
the last unit of product j , then all other customers
were exposed to this out-of-stock. In contrast, if the
last customer visiting the store purchased the last unit
of product j , then no customers were affected by this
out-of-stock. Because this information is not directly
observable, we do not know a priori whether cus-
tomers buying product k �= j during that period chose
this product because it was their most preferred item
or because it was their second preferred option when
product j , the preferred product, was not available.

7 Campo et al. (2003) make use of a similar extension to the MNL
model, but do not incorporate random coefficients.
8 Note that store sales are usually monitored more frequently than
product availability. In those cases, our method can still be applied
after aggregating sales to form a sales series with the same fre-
quency as the availability data.

Consequently, given that the purchasing probability
depends on the availability vector a, the likelihood
function for this problem cannot be expressed only in
terms of sales data and the coefficients of the utility
function of each customer, as in standard applications
of choice models to purchase data.
These difficulties caused by sparse product avail-

ability data were recognized by Anupindi et al. (1998)
and Conlon and Mortimer (2009). They develop a
model where the time epoch of each out-of-stock is
treated as missing data, and use an EM algorithm for
estimation. The EM algorithm facilitates the search for
the maximum likelihood (ML) estimators. However,
the closed-form expressions used in their expectation
step become complicated as the number of out-of-
stocks in a single period increases.9

Our methodology instead uses a data augmentation
approach to incorporate incomplete data on prod-
uct availability into the estimation. This approach
circumvents some of the limitations of other methods,
in particular, it can be easily implemented when some
periods have multiple stockouts. These augmented
data are described as follows. Let w

j
itm be a choice

indicator equal to 1 if yitm = j , and let witm be a row
vector containing these indicators (defined similarly
as aitm). The matrix Wtm = �w1tm� � � � �wNmtm� contains
all of the choice indicators corresponding to period t
and market m. A key element of our approach is that
Wtm, sales Stm, and the initial and ending invento-
ries (Itm� Îtm� uniquely determine the set of products
available to each customer, aitm, through the following
structural relationships:

a
j
itm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if I
j
tm > 0� Î

j
tm > 0�

0 if I
j
tm = Î

j
tm = 0�

1
{i−1∑

k=1

w
j

ktm < Sjtm

}
if I

j
tm > 0� Î

j
tm = 0�

(4)

The augmented data are defined by Atm and Wtm for
all stores and periods, whereas the observed data are
given by �Stm� Itm� (the ending inventory vector Îtm can
be obtained as Itm − Stm and is therefore redundant).
The augmented data (Atm�Wtm� are exactly consistent
with the observed data if they satisfy Equation (4)
and if

Ntm∑
i=1

wijtm = Sjtm for all j ∈ �� (5)

w
j
itm ≤ a

j
itm� (6)

9 Anupindi et al. (1998) derive expressions for no more than two
out-of-stocks taking place in the same period. Conlon and Mortimer
(2009) provide simulation techniques to approximate the expecta-
tion step when multiple stockouts occur in the same period.
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Accordingly, let �tm�Stm� Îtm� be the set containing
all values of Atm�Wtm that are consistent with the
observed data (defined by (4), (5), and (6)).
Our data augmentation approach can be illustrated

with the following example. Suppose that two prod-
ucts, B and C, are available at the beginning of a given
time period, but only product C is available at the
end of the period. We observe total period sales for
each product: SB = 1 and SC = 2 (we suppress indexes
t and m for convenience). Therefore, we know that
initially there was exactly IB = 1 unit of B and at
least IC = 3 units of C in inventory. Furthermore, sup-
pose we also observe that N = 6 customers visited
the store during this period; therefore, N − SB − SC = 3
customers chose the no-purchase option, denoted
by 0. We index customers by their order of arrival
and the choice of each customer by yi ∈ �B�C�0�.
The vector y = �y1� � � � � y6� characterizes the order of
purchases and determines the choice indicators wij .
If y = �C�0�C�0�0�B�, then all six customers found
both products available. If we consider instead a
different value of the vector of individual choices
by swapping the choices of customers 1 and 6, we
obtain y = �B�0�C�0�0�C�. In this case, customers 2–6
found product B out of stock. Also note that had we
swapped instead the choices of customers 1 and 2,
y = �0�C�C�0�0�B�, then the set of products available
to each customer would be unchanged.
We now derive the likelihood function in several

steps. All the expressions below are conditional on
X and Z, which we omit to simplify the notation.
First, note that the likelihood of the observed data can
be expressed in terms of the likelihood of the aug-
mented data using the law of total probability:

Ltm�	�
�
� � Stm� Itm�

= ∑
�Wtm�Atm�∈�tm�Stm� Itm�

Ltm�	�
�
� � Wtm�Atm�� (7)

Second, the likelihood conditional on the aug-
mented data Wtm�Atm can be computed conditioning
on �itm and �tm and integrating over their distribution:

Ltm�	�
�
� � Atm�Wtm�

=
∫

�tm

Nm∏
i=1

∫
�itm

Litm��itm� �tm � witm� aitm�

· ���itm�	′Zm�
����tm�0�
��d�itm d�tm� (8)

where Litm��itm� �tm � witm� aitm� is the likelihood for an
individual customer as a function of her preference
coefficients �itm and the demand shock �tm. Using the
individual choice probability defined in (3), this like-
lihood can be calculated as

Litm��itm� �tm � witm� aitm� =
J∏

j=0

pj��itm� �tm � aitm�w
j
itm � (9)

Equations (7), (8), and (9) completely characterize
the likelihood for store m and period t in terms of
the observed data. Consequently, the total likelihood
(including all stores and periods) is given by

L�	�
�
� � S� I� =
M∏

m=1

T∏
t=1

Ltm�	�
�
� � Stm� Itm�Xtm��

This likelihood function is difficult to compute
because of the summation over all possible configu-
rations of choice indicators (Wtm) exactly consistent
with the aggregate data (see Equation (7)).10 Instead of
using an ML approach, our strategy is to apply data
augmentation together with Markov chain Monte
Carlo (MCMC) methods to facilitate the estimation
of the parameters of the model. Accordingly, we will
treat the augmented data �Wtm�Atm� as model param-
eters that are estimated using MCMC simulation. This
approach is described in the next subsection.

3.3. Bayesian Estimation
In contrast to an ML approach, which seeks to find a
point estimate for the parameters of interest �	�
�
��,
a Bayesian approach seeks to estimate the posterior
distribution for the parameters, given the observed
data. Toward this objective, we define the hyper-
prior distribution ��	�
�
��, which formalizes the
researcher’s prior beliefs about the demand parame-
ters. The posterior density of �	�
�
��, ��itm�, and the
augmented data �Atm�Wtm� given the observed data
is proportional to

p�	�
�
�� �Atm�� �Wtm�� ��itm� � S� I�

∝∏
t

∏
m

1��Atm�Wtm� ∈ ��Stm� Itm�����tm�0�
��

×
Ntm∏
i=1

���itm�	′Zm�
�

· Litm��itm� �tm � aitm�witm���	�
�
��� (10)

where the indicator function ensures that the aug-
mented data are exactly consistent with the observed
data.
We seek to estimate the posterior (10) using MCMC

methods. Conditional on the augmented variables
(a�w), the parameters ��itm�� 	, 
, and 
� can be
sampled using existing Bayesian methods for indi-
vidual level data (e.g., Allenby and Rossi 2003). In
particular, we combine these existing methods with
a sampling scheme for the missing data A and W .
Following Musalem et al. (2009), posterior samples

10 Another complication of implementing a maximum likelihood
approach is that the integrals in Equation (8) cannot be expressed
in closed analytical form and have to be approximated through
simulation.
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Table 1 Gibbs Sampling Example

Customer i yi aB
i aC

i y ∗
i aB∗

i aC∗
i

1 C 1 1 C 1 1
2 0 1 1 B 1 1
3 C 1 1 C 0 1
4 B 1 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1

for these variables can be obtained by deriving the
full-conditional distribution of the augmented choices
and availability data. Note that the full-conditional
distributions have a simple structure if we partition
the set of customers into pairs and consider the dis-
tribution of the choices of customers in a given pair,
holding constant all other choices.11 This enables us
to define a direct Gibbs mechanism to sequentially
sample a and w from their posterior distribution for
each pair of customers in contrast with other meth-
ods that utilize Metropolis–Hastings approaches (e.g.,
Chen and Yang 2007). We illustrate this sampling
scheme with an example (see Table 1).
To simplify notation, we suppress time (t) and

store (m) indexes for this example. Consider the set
of products formed by {B, C} plus the no-purchase
option 0. The observed data are SB = 1, SC = 2, N = 6,
IB = 1, and IC = 3 (which implicitly define the end-of-
period inventories ÎB = 0 and ÎC = 1). We start with
an initial assignment of choices given by y (see the
second column in Table 1), which is consistent with
the observed sales data. We now show how to sam-
ple a new vector y′� We randomly generate a partition
of the set of customers into three pairs: for exam-
ple, �1�3�� �2�4�� �5�6�� We are interested in calculat-
ing the full-conditional distribution of the choices of
customers in one of these pairs, say �2�4�. Condition-
ing on the choices of all other customers �1�3�5�6�,
denoted by y−24, and the observed data, there are
only two vectors of choices that are consistent with
the sales data: the current choices (y) and the choice
vector y∗ (see the fifth column in Table 1) where the
choices of customers 2 and 4 are swapped.
Note that when exchanging the choices of cus-

tomers 2 and 4, the sets of available products to
customers arriving between customers 2 and 4 may
endogenously change (hence the structural estima-
tion of out-of-stocks), but the choice set of all other
customers remains unchanged. In the example, cus-
tomers 2, 3, and 4 find alternative B available under
the current configuration of choices (y, see the third

11 As mentioned in Musalem et al. (2009), one could also consider
partitioning the set of customers into larger groups (e.g., triplets
or quadruplets). This may provide a more efficient approach to
estimate the posterior distribution of the model parameters, but it
increases the computational cost of each simulation.

column in Table 1), whereas only customer 2 finds
this alternative available under the new configura-
tion (y∗, see column 6 in Table 1). In addition, prod-
uct availability for all other customers (1, 5, and 6)
remains constant. Therefore, swapping the choices of
customers 2 and 4 can only affect the likelihood of
customers 2, 3, and 4.12 When sampling from this full-
conditional distribution, the probability of generating
a draw where the choices of 2 and 4 are exchanged is

Pr�y∗ � y−�2�4��

=
∏4

i=2 Li��i� � � a∗
i �w∗

i �∏4
i=2 Li��i� � � a∗

i �w∗
i � +∏4

i=2 Li��i� � � ai�wi�
(11)

where a∗�w∗ is the augmented data implied by the
vector of choices y∗, and Li��i� � � a∗

i �w∗
i � is the

individual likelihood defined in (9). The new draw
is equal to the previous draw y with probability
1−Pr�y∗ � y−�2�4���
Based on this intuition, the Gibbs sampling scheme

for the missing data �Atm�Wtm� of each store period
can be formalized as follows.
Step 1. In a given iteration r , randomly generate a

partition of customer pairs, denoted Ptm, of the Ntm

customers.
Step 2. For a given pair �l� k� ∈ Ptm, exchange the

choices of customers l and k. Generate the new choice
vector y∗

tm and the corresponding choice indicators
W ∗

tm and availability matrix A∗
tm. The new variables

are accepted with probability

Pr�accept�

=
∏k

i=l Litm��itm��tm �a∗
itm�w∗

itm�∏k
i=l Li��itm��tm �a∗

itm�w∗
itm�+∏k

i=l Li��itm��tm �aitm�witm�
�

If accepted, update y
�r+1�
tm ← y∗

tm, a
�r+1�
tm ← a∗

tm, and
w

�r+1�
tm ← w∗

tm, otherwise set y
�r+1�
tm ← y

�r�
tm , a

�r+1�
tm ← a

�r�
tm,

and w
�r+1�
tm ← w

�r�
tm . Repeat Step 2 for a new pair in Ptm

until no pairs are left.
The Gibbs sampling scheme ensures that every

feasible choice vector y can be sampled with positive
probability. Therefore, when combined with a proper
sampling scheme for ��itm�, ��tm�, 	� and 
, it gen-
erates an irreducible Markov chain with stationary
probability distribution equal to the posterior distri-
bution of the parameters of the model.

3.4. Identification and Assumptions
In this subsection, we discuss issues related to identi-
fication of our model. In the economics and marketing
literature, variations in prices, promotions, and other

12 In general, only customers within the range of the swapped
choices can be affected, which provides significant computational
savings.
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marketing variables are usually exploited to iden-
tify and estimate demand models (e.g., Villas-Boas
and Winer 1999). In this paper, another important
source of identification arises from changes in product
availability. In particular, observing customer behav-
ior under different choice sets provides useful infor-
mation to uncover the patterns of substitution among
different alternatives. One difficulty is that the varia-
tion in product availability is not perfectly observed
and this may lead to some challenges in the identifi-
cation of the model parameters.
Consider the following example. A few units of

product A are available at the beginning of a period,
and at the end of period the product is out of stock.
There are two possible explanations that fit these data.
In the first one, customers have a low utility for prod-
uct A (relative to other products), which generates just
enough demand for all the units initially available. In
this case, the out-of-stock of product A occurs toward
the end of the period. A second explanation is that
customers place a high utility on product A, and the
first customers visiting the store purchase product A,
generating an out-of-stock early in the period. With-
out additional information, we cannot distinguish
between these two alternative explanations. How-
ever, we may also observe data for (1) the sales for
other products with similar characteristics to product
A, which were available throughout the period; and
(2) sales during other periods where product A had
full availability. This additional information is useful
to separately identify the utility of product A and the
latent distribution of product availability.13

Although periodic inventory data provides suf-
ficient information on product availability to esti-
mate the model, the estimation could still be carried
out without the exact inventory counts. More specif-
ically, Equation (4) requires information on prod-
uct availability—whether a product is available or
not—at the beginning and end of each period, but
the actual inventory counts are not required for the
estimation. This is important, because it has been doc-
umented that inventory count data are not always
reliable in practice (e.g., DeHoratius and Raman
2008). Tracking product availability is less costly than

13 The demand model could also be estimated by considering only
the time periods for which the set of available alternatives does
not change, i.e., periods in which the set of products available at
the beginning and end of the period is the same. Although this
would certainly reduce the complexity of the estimation method,
this approach exhibits several disadvantages. First, there is a sam-
ple selection problem, because periods where a product becomes
unavailable are likely to have higher than average demand. Sec-
ond, one would be forced to discard valuable information about
the customer demand, and this approach would only work if there
are enough time periods that meet this requirement. In particular,
for longer time periods, it is more likely to have some products
that stock out during the period.

tracking inventory counts, and retailers often run
periodic inspections of shelves to check which prod-
ucts are out of stock.
An additional challenge that we face in the

estimation of our model is related to the poten-
tial endogeneity of inventory. Inventory is a sup-
ply decision made by managers that usually requires
forecasting of future demand (e.g., see Cachon and
Terwiesch 2005). Mismatches between supply and
demand, which lead to stockouts or excess inventory,
suggest that managers cannot predict demand per-
fectly, i.e., there is demand uncertainty from the man-
agers’ point of view. Our model captures this demand
uncertainty through the demand shock �jtm, which
accounts for unpredictable factors (from the managers’
perspective) that determine actual demand. However,
in some cases it may be difficult to obtain all the
relevant demand information that was accounted for
in the inventory decision. For example, some retail
chains decentralize inventory decisions to store man-
agers to take advantage of local demand information
(see O’Connell 2008). However, this local information
may not be easy to transfer to a central analyst of the
chain who is using our model to conduct demand esti-
mation. In this case, the demand shock �jtm would also
include factors that are observed by the store manager
(e.g., information about local demand patterns) but are
not available to the central demand analyst. Hence, Ijtm
and �jtm may not be independent, which leads to an
endogeneity problem. As pointed out by Manchanda
et al. (2004), conducting the estimation using the con-
ditional likelihood (9), which ignores the dependency
of inventories on the unobservable components of the
demand, could lead to biased estimates.
To mitigate the potential endogeneity bias, our

empirical application includes covariates measuring
seasonal demand variation and promotional activ-
ity, which capture most of the demand shifts that
could be anticipated by the store manager (the data
set is described in more detail in §4). In addition,
it is possible to use a Bayesian instrumental vari-
able (IV) approach similar to the one developed
by Yang et al. (2003) to capture the dependency of
the inventory levels on demand shocks mitigating a
potential endogeneity bias. Specifically, the demand
system could be estimated simultaneously with an
additional regression equation specified as

ln�1+ Ijtm� = �xXjtm + �zZjtm + �jtm� (12)

where Zjtm is a vector of instrumental variables that
are excluded from the demand model and orthogonal
to the demand shock �jtm. Examples of valid instru-
ments include factors that affect inventory holding
costs (such as capital costs or store rent), frequency
and lead times of replenishments (e.g., distance to
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warehouse), and factors that affect target service lev-
els (e.g., cost markups; see Cachon and Olivares 2010).
To account for inventory endogeneity, �jtm and vjtm
should be allowed to be correlated, for example, by
assuming a bivariate normal distribution with zero
mean and covariance matrix ���� . Equation (12) could
then be incorporated into the likelihood function (9),
estimating the parameters �x, �z, and ���� jointly
with the parameters characterizing the demand sys-
tem. When the off-diagonal terms of this covariance
matrix are nonzero, the distribution of Ijtm conditional
on X, Z depends on �jtm, thereby capturing the depen-
dency of inventory levels on potential unobservable
factors entering the store manager’s inventory deci-
sion. Further details on this instrumental variable
approach using hierarchical Bayes methods can be
found in Yang et al. (2003).
As we discuss in §4, our empirical results show

that the demand parameters obtained from this joint
estimation are almost identical to those obtained with
the demand system alone. Nevertheless, extending
the model to account for a potential dependency
between inventories and demand shocks (through
Equation (12)) could be relevant in other applications
where the information used by the store manager to
predict demand is not available to the researcher.
In the abscence of instruments, it is possible to

follow an approach similar to that of Manchanda
et al. (2004) to account for inventory endogene-
ity. For example, we can assume that each demand
shock �jtm is distributed according to a Normal dis-
tribution with mean �̄jm and variance 2

� , where
the means are treated as random coefficients. If we
replace Zjtm by �̄jm in Equation (12) and assume that
Cov��jtm� �jtm − �̄jm� = 0, our model becomes a special
case of the model developed by Manchanda et al.
(2004), which can be estimated with the Bayesian tech-
niques described therein.
Finally, another potential endogeneity problem may

arise from serially correlated demand shocks (�jtm).
Today’s inventory depends on yesterday’s demand,
which induces a correlation between current inven-
tory and previous demand shocks. In addition, if
demand shocks are autocorrelated, current demand
shocks will be correlated with previous shocks that
are in turn correlated with today’s initial inventory,
leading to an endogeneity problem. As we previously
mentioned, we do not expect to observe autocorre-
lation in demand shocks in our application once we
control for seasonality. Nevertheless, the methodol-
ogy presented here could be extended to allow for
demand shock persistence, which would eliminate
this form of endogeneity.

3.5. Numerical Experiment
In this subsection, we test the proposed methodol-
ogy using simulated data. We generated sales and

inventory data for J = 10 purchase alternatives and a
no-purchase option available in M = 12 markets and
T = 15 periods. We included four variables (x1� � � � � x4)
in the utility function. We use random coefficients for
x3 and x4 and assume fixed (i.e., constant across cus-
tomers in a given market) coefficients for x1 and x2.
The first two variables correspond to two brands
dummies, one for alternatives 1, 2, and 3 (x1), and
another for alternatives 4, 5, and 6 (x2). The third vari-
able is a dummy variable equal to 1 for all purchase
alternatives (x3), whereas the fourth variable is gener-
ated from a normal distribution (x4). To replicate some
of the features of the data set used in our empirical
application, the continuous variable is generated so
that its values for a given brand and market are the
same across all time periods. Accordingly, the values
of x4 for each brand and market are generated from
a normal distribution with mean equal to 2 and vari-
ance equal to 1.
Based on these four explanatory variables, customer

coefficients for a given market m are generated from
a four-dimensional multivariate normal distribution
with mean 	̄m = 	′Zm as in Equation (2) and variance

, where Zm represents a two-dimensional vector of
demographic variables. In terms of the demographics,
the first variable z1m is equal to 1 for all markets (inter-
cept), whereas the second variable z2m is generated
from a uniform distribution in the interval �−1�5�1�5�.
The true value of 	 corresponds to

	 =
[
2�0 1�5 −3�0 −2�5

0�5 −0�5 0�0 0�7

]
�

The variance of the random coefficients (
) is equal to
a diagonal matrix with elements equal to 0.8 and 2.0
for x3 and x4, respectively, and elements equal to
zero for the two variables with fixed coefficients
(x1 and x2). The size of each market (Nm) is gener-
ated by taking the integer part of a uniform random
variable defined on the interval �0�300�. In addition,
common demand shocks for each alternative in each
period and market (�jtm) are generated from a nor-
mal random variable with zero mean and variance 2

�

equal to 0.5. Finally, initial inventory levels for each
alternative are generated by taking the integer part
of a uniform random variable in the interval �0� I�.
We use three different values of I (10, 60, and 400),
which lead to different inventory service levels. In the
first case (I = 10), each alternative stocks out, on aver-
age, in 28.9% of the time periods across all markets,
whereas this fraction corresponds to 8.7% and 1.3%
for the second and third cases, respectively.
For each of these three data sets (I = 10, I = 60,

and I = 400) we estimated 	, 
, and 2
� using the

method described in §3.3 and based on the aggregate
data available for each period (sales and initial inven-
tory). We also estimated these parameters ignoring
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Table 2 Results: Estimated Posterior Means, Standard Deviations, and Quantiles for �, �, and � 2
� , Ignoring (Benchmark Model) and Accounting for

(Full Model) the Occurrence of Out-of-Stocks

Main effects (�z1 � ·) Demographic interaction (�z2 � ·) Heterogeneity (�)

Model Brand 1 Brand 2 Intercept Covariate Brand 1 Brand 2 Intercept Covariate Intercept Covariate � 2
�

Benchmark Mean 1�45 1�30 −4�13 −1�52 0�41 −0�39 0�00 0�53 0�66 0�93 0�48
I = 10 SD 0�09 0�09 0�22 0�22 0�09 0�10 0�10 0�06 0�39 0�24 0�06

2�5% 1�28 1�14 −4�60 −1�96 0�23 −0�59 −0�19 0�43 0�24 0�54 0�36
50�0% 1�45 1�30 −4�11 −1�49 0�41 −0�39 0�01 0�53 0�49 0�90 0�48
97�5% 1�62 1�48 −3�78 −1�13 0�60 −0�18 0�19 0�65 1�58 1�46 0�60

Benchmark Mean 1�82 1�37 −3�39 −2�14 0�41 −0�50 −0�02 0�70 0�85 1�56 0�61
I = 60 SD 0�07 0�08 0�09 0�12 0�10 0�10 0�09 0�06 0�24 0�19 0�05

2�5% 1�68 1�22 −3�58 −2�38 0�22 −0�71 −0�18 0�59 0�47 1�23 0�52
50�0% 1�82 1�37 −3�40 −2�13 0�41 −0�50 −0�02 0�70 0�82 1�54 0�61
97�5% 1�96 1�54 −3�21 −1�94 0�59 −0�30 0�14 0�81 1�41 1�95 0�72

Benchmark Mean 1�94 1�70 −3�09 −2�54 0�38 −0�62 0�06 0�71 0�52 2�04 0�60
I = 400 SD 0�09 0�09 0�11 0�11 0�09 0�09 0�08 0�04 0�22 0�17 0�05

2�5% 1�77 1�52 −3�32 −2�76 0�21 −0�80 −0�12 0�62 0�20 1�75 0�51
50�0% 1�95 1�70 −3�09 −2�54 0�38 −0�62 0�06 0�71 0�49 2�03 0�60
97�5% 2�12 1�88 −2�89 −2�35 0�57 −0�45 0�21 0�79 1�06 2�41 0�69

Full Mean 1�92 1�70 −3�24 −2�41 0�50 −0�53 −0�08 0�79 0�91 1�91 0�61
I = 10 SD 0�11 0�11 0�25 0�27 0�10 0�11 0�11 0�08 0�39 0�40 0�08

2�5% 1�70 1�49 −3�75 −3�03 0�29 −0�76 −0�32 0�64 0�41 1�25 0�47
50�0% 1�92 1�69 −3�24 −2�38 0�50 −0�53 −0�08 0�79 0�80 1�85 0�61
97�5% 2�12 1�91 −2�71 −1�94 0�70 −0�31 0�12 0�95 1�85 2�87 0�78

Full Mean 1�97 1�48 −3�36 −2�36 0�53 −0�51 0�03 0�73 1�76 1�87 0�55
I = 60 SD 0�07 0�09 0�14 0�13 0�10 0�11 0�10 0�06 0�52 0�22 0�05

2�5% 1�82 1�31 −3�64 −2�62 0�33 −0�72 −0�14 0�61 0�99 1�47 0�45
50�0% 1�97 1�48 −3�35 −2�36 0�53 −0�51 0�03 0�73 1�67 1�86 0�54
97�5% 2�11 1�66 −3�12 −2�12 0�71 −0�30 0�23 0�84 2�88 2�33 0�65

Full Mean 1�97 1�73 −3�15 −2�51 0�41 −0�62 0�06 0�70 0�67 2�00 0�59
I = 400 SD 0�08 0�09 0�09 0�11 0�09 0�10 0�10 0�04 0�31 0�18 0�05

2�5% 1�81 1�56 −3�32 −2�72 0�22 −0�82 −0�14 0�62 0�19 1�69 0�51
50�0% 1�97 1�73 −3�15 −2�51 0�41 −0�61 0�07 0�70 0�64 1�99 0�59
97�5% 2�13 1�89 −2�98 −2�32 0�59 −0�41 0�27 0�78 1�37 2�37 0�69

True 2�00 1�50 −3�00 −2�50 0�50 −0�50 0�00 0�70 0�80 2�00 0�50

the occurrence of out-of-stocks (assuming all products
were available for every single period and market).
In both cases, we used the following weakly informa-
tive prior distributions: 	 ∼ N�0�100 I8�, 
jj ∼ scaled
inverse chi-square �df = 3; scale= 1�; and 2

� ∼ scaled
inverse chi-square �df = −1; scale = 0�01�. The results
are presented in Table 2 and they are based on a sin-
gle run of 100,000 iterations from an MCMC sampler,
where the last 50,000 iterations are used for parameter
estimation.
From the results in Table 2, we observe important

differences in terms of parameter inference compar-
ing the case where out-of-stocks are modeled with the
one in which out-of-stocks are ignored. Considering
the results in the first three blocks of Table 2, it is
evident that when out-of-stocks are ignored, our infer-
ences about the model parameters are biased, espe-
cially when out-of-stocks are more frequent (see the
first and second blocks of Table 2). Specifically, when
I = 10, the 95% posterior probability intervals for most

of the components of 	 do not cover the correspond-
ing true values. For example, 	z1�x3

, which is used to
derive the mean utility of all the purchase options, is
underestimated when out-of-stocks are ignored (the
true value is −3; 95% posterior probability inter-
val, �−4�60�−3�78�). In addition, the heterogeneity in
the random coefficients for the continuous variable
(
x4�x4

; the true value is 2; 95% posterior probability
interval, �0�54�1�46�) is underestimated. As expected,
the estimation results for the naïve model improve
as out-of-stocks become less frequent. In particular,
in the third case, where out-of-stocks are on-average
observed only in 1.3% of the time periods for each
alternative (I = 400), the results are very similar across
both models (see the third and sixth blocks in Table 2),
a good sign for our approach.
In terms of the full model, the results in the last

three blocks in Table 2 show that the method recovers
well the original parameters under each of the three
scenarios. In fact, the posterior means are close to
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their true values (on average, within 0.8 posterior
standard deviations from the corresponding true val-
ues). In addition, in all but four cases (	z1�x3

and 
x3�x3
in the fifth block and 	z1�x2

and 
� in the sixth block
of Table 2), the true values are contained within the
95% posterior probability intervals.
Finally, it is important to mention that we also con-

ducted an additional simulation study by generating
50 data sets for the case where I = 10. We estimated
the model parameters using the proposed method
and also ignoring the occurrence of out-of-stocks. The
results of this simulation study confirm the basic
findings discussed in this subsection (please refer to
Online Appendix A, provided in the e-companion).14

3.6. Estimating Lost Sales
An important factor that determines inventory levels
in retailing is the cost of shortage. This cost is closely
related to the behavior of customers that encounter
an out-of-stock. The cost of an out-of-stock increases
with (i) the markup of the product that sells out, and
(ii) the fraction of customers that choose not to pur-
chase after experiencing an out-of-stock. 15 The former
is known by the store manager, but the latter is not
directly observable. In what follows, we show how
to use the model to estimate lost sales—the fraction
of customers that chose not to purchase but would
have purchased if some of the out-of-stock products
had been available—for a given inventory policy. This
estimate can be used to compute performance mea-
sures such as the fill rate, defined as the fraction of
demand filled from stock, which is commonly used
in retail operations management. It can also be used
together with markup information to assign a dollar
value to the cost of shortage.
Consider a customer i facing a set of available prod-

ucts ai who chose the no-purchase option (there is a
slight abuse of notation here, because ai is now a set
rather than a vector). We drop the time (t) and mar-
ket (m) subscripts for ease of exposition. The set of
out-of-stock products, denoted by ac

i = �\ai , includes
product k. The probability that customer i would have
purchased product k had it been available is given by

Pr�choose k �choose 0 from ai�

=
∫
Pr�choose k �choose 0 from ai��i�

·f ��i �choose 0 from ai�d�i

=
∫ eVik

1+∑
j∈ai∪�k� e

Vij
f ��i �choose 0 from ai�d�i� (13)

14 An electronic companion to this paper is available as part of the on-
line version that can be found at http://mansci.journal.informs.org/.
15 Also note that the cost of an out-of-stock decreases with the
markup of the products that capture the demand for the non-
available products and leads to the possibility of “strategic out-of-
stocks” by the retailer, which we do not pursue here.

where �i is the (random) preference coefficient of the
customer, f ��i � ·� its conditional density, and Vij ≡
�ixj +�j is the conditional expected utility of purchas-
ing product j . The first equality comes from condi-
tioning on the customer’s preferences (�i). The second
equality comes from standard properties of the multi-
nomial logit choice model.16 Similarly, the probability
that the customer would have chosen any of the miss-
ing alternatives had they been available is given by

Pr�choose ac
i � choose 0 from ai�

=
∫ ∑

k∈ac
i
eVik

1+∑
j∈� eVij

f ��i � choose 0 from ai� d�i� (14)

There are two challenges in computing lost sales
via Equations (13) and (14): (1) the conditional density
f ��i � choose 0 from ai� is difficult to compute analyt-
ically, and (2) the set of available products available
to each customer is not always known, the problem
considered in this paper. Therefore, it is more conve-
nient to estimate lost sales using simulation, which
we describe next.
Our goal is to forecast expected lost sales for a

period with initial inventories I1� � � � � IJ generating
estimates of lost sales in each of the R iterations of the
Gibbs sampler. Specifically, for each iteration r� we
obtain a draw of the parameters �	�
�
�� from the
MCMC simulation. Then, we generate N new draws
of �i from a MVN�	′Z�
� (one for each customer) and
� from a MVN�0�
�). These can be used to calculate
the expected utilities Vij = �ixj + �j for each customer
and product.
Next, we sequentially simulate the choices of each

customer. Specifically, given the initial inventories,
we determine the set of products available to the
first customer, a1, and sample the customer choice,
y1, from a multinomial distribution with probabili-
ties specified by (3). Given this choice, we update
inventories by subtracting one unit from the cho-
sen product (unless y1 = 0, in which case invento-
ries remain unchanged) and proceed to next customer.
The process is repeated for all the N customers. Cus-
tomers who chose the no-purchase alternative are
recorded in the set Or (keeping the corresponding val-
ues of the Vij ’s and ai). Accordingly, the expected lost
sales can be estimated as follows:

E(LostSales)= 1
� R �

R∑
r=1

∑
i∈Or

∑
k∈ac

i
eV

�r�
ik

1+∑
j∈� eV

�r�
ij

� (15)

16 Conditioning on choosing the no-purchase option, the random
utility Ui0 is distributed according to an extreme value distribution
with mode (location) equal to ln�1+∑

j∈ai
eVij � and scale equal to 1.

Hence, the probability of preferring k over the no-purchase option
is eVik · �1+ eVik +∑

j∈ai
eVij �−1.
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where V
�r�
ij denotes the value of Vij in iteration r .

This simulation procedure can be used to forecast lost
sales for any initial inventory levels I1� � � � � IJ . Alter-
natively, one could estimate lost sales retrospectively
for a time period where the observed data on inven-
tories and sales were collected. The only adjustment
to this method is that samples of �i, ai, �i, and yi are
obtained directly from the MCMC simulation used in
the estimation. This ensures that the distribution of
customer preferences and availability are conditioned
on the observed data.
We tested the accuracy of this method to esti-

mate expected lost sales using the simulated data
described in §3.5. Actual lost sales were calculated
using the simulated utilities by counting customers
who chose the outside good, but would have pur-
chased a product under a full assortment. We com-
pared these actual lost sales with those estimated
using Equation (15) and the estimated parameters.
The correlation between the actual and estimated lost
sales is 98.2%, and the mean absolute percentage error
is 11.99%. Overall, this method provides a fairly accu-
rate estimate of the expected lost sales for a wide
range of inventory levels.
A similar simulation approach can be used to esti-

mate stockout-based substitution. At the end of each
iteration r , we can store the set of customers Pr

that purchased any available product. The number of
these customers that would have instead purchased
the out-of-stock product k when all products are avail-
able can be estimated as

E(Substitution�k�� = 1
� R �

R∑
r=1

∑
i∈Pr

eV
�r�
ik

1+∑
j∈� eV

�r�
ij

� (16)

The next section describes an application of the
methodology based on data from the shampoo prod-
uct category.

4. Empirical Application: Demand
Estimation in the Shampoo
Product Category

We use data on shampoo purchases from six super-
market stores located in different regions of Spain to
illustrate the methodology. The stores are owned by a
major supermarket chain, with more than 400 stores
in this country. The data set was collected from six
of these stores including daily sales during 15 consec-
utive days (excluding two Sundays in which stores
are closed) between May 13 and May 29, 1999. The
product category includes 24 different stock keeping
units (SKUs), but not all SKUs were offered in each
store during the study period. In addition to the sales
data, information about product availability on the
shelf was recorded at the beginning and end of each

day. In total, 291 days with zero final inventory were
recorded across all days, stores, and products.
The data also contain price and promotion infor-

mation for every product on each store-day. From
the 24 products in the data set, 16 products exhib-
ited price variation across stores, but very few prod-
ucts exhibited temporal price variation within a given
store during the study period. Table 3 displays the
brands of each product and shows summary statis-
tics for each of the products in terms of daily unit
sales, prices (in Spanish pesetas), promotion inci-
dence, availability, and number of stores where each
product is offered.17

4.1. Model Specification
We include nine covariates (Xjtm) in the utility func-
tion of each customer. Two of these covariates have
random coefficients: Price and Purchase option. The lat-
ter is a dummy variable equal to 1 in every period
for all options except the no-purchase option. This
variable captures total category demand for shampoo
products as higher coefficients associated to this vari-
able raise the utility of all purchase alternatives in
relation to the utility of the no-purchase option. In
addition, we include dummy variables for the fol-
lowing brands: Pantene, Herbal Essences, Head &
Shoulders (H&S), Cabello Sano, and Timotei. We also
include a dummy variable (Weekend) to control for
seasonality (changes in demand during weekends).
This variable is equal to 1 for all purchase alterna-
tives for every time period corresponding to a Satur-
day and is equal to 0 otherwise (recall that the stores
are closed on Sundays). Finally, we control for promo-
tional effects by using a dummy variable (Promotion)
equal to 1 if an item was promoted and zero other-
wise during a given time period and store. We note
that these last two variables (Weekend and Promotion)
also enable us to explicitly consider in the utility func-
tion changes in demand that might be anticipated by
the store manager, given that promotional activity can
(and is expected) to cause increased demand.
We use store-level demographic information to cap-

ture observed preference heterogeneity across stores
(unobserved heterogeneity is captured through ran-
dom coefficients). Specifically, we collected informa-
tion on average declared income for each market.
Accordingly, the vector of demographic variables for
a given store m (Zm) has two components: an indica-
tor equal to 1 for all stores (intercept) and the stan-
dardized natural logarithm of income.18 In addition,

17 Availability is measured as the fraction of days with zero end
inventory for a given product.
18 We also experimented using additional demographic information
(e.g., age), but the results and the fit of the model did not substan-
tially change.
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Table 3 Brands and Summary Statistics for the Shampoo Data: Brands, Means, and Standard Deviations of Daily Sales and
Prices, and Promotion Incidence, Fraction of Out-of-Stocks (OOS), and Number of Stores for Each Product

Daily unit sales Price
Promotion OOS Number of

Product Brand Mean SD Mean SD incidence incidence stores

1 Other 0�08 0�27 3�99 0�00 0�00 0�00 6
2 Other 0�00 0�00 4�97 0�04 0�00 0�11 3
3 Other 0�07 0�25 4�97 0�04 0�00 0�12 4
4 Timotei 0�12 0�39 6�03 0�10 0�00 0�27 6
5 Timotei 0�12 0�33 5�99 0�27 0�00 0�10 6
6 Timotei 0�17 0�43 6�03 0�10 0�00 0�26 6
7 Timotei 0�06 0�23 5�79 0�41 0�00 0�16 5
8 Other 0�03 0�18 4�72 0�32 0�00 0�38 4
9 Other 0�06 0�23 4�75 0�00 0�00 0�20 6

10 Pantene 0�17 0�37 4�50 0�11 0�20 0�33 6
11 Pantene 0�28 0�97 4�50 0�16 0�20 0�40 5
12 Pantene 0�29 0�89 4�50 0�11 0�18 0�39 6
13 Pantene 0�28 0�73 4�45 0�15 0�20 0�39 6
14 Other 0�07 0�29 4�99 0�00 0�00 0�17 6
15 Other 0�24 0�53 2�07 0�03 0�00 0�11 5
16 Other 0�24 0�53 4�85 0�00 0�00 0�03 6
17 Herbal Essences 1�03 1�47 4�55 0�19 0�63 0�08 6
18 H&S 0�32 0�68 5�20 0�22 0�00 0�36 6
19 H&S 0�21 0�63 5�17 0�19 0�00 0�31 6
20 Other 0�19 0�45 4�99 0�00 0�00 0�11 6
21 Cabello Sano 0�11 0�32 3�45 0�00 0�01 0�12 5
22 Cabello Sano 0�27 0�61 3�45 0�00 0�01 0�08 6
23 Cabello Sano 0�30 0�64 3�47 0�04 0�00 0�42 6
24 Other 0�06 0�23 4�25 0�00 0�00 0�17 5

the size of the market for each store was estimated
combining data on population and total consumption
of shampoo in Spain.19 We note that, as is common
in the marketing and economics literature, the market
size is assumed to be constant across time periods,
although it is important to highlight that our model
allows for a different fraction of the market to make
purchases in different periods.20

4.2. Results
Using the method introduced in §3, we estimated
the model based on the covariates and demographic
variables described previously. We also estimated
a benchmark model that ignores out-of-stocks, i.e.,
every product offered in a given store is assumed to
be available to all customers in every time period.

19 The population data were downloaded from http://www.ine.es,
whereas the consumption data were obtained from Euromonitor
International. We also experimented with an alternative definition
of the market size (approximately twice the size of the one used in
this section) and obtained very similar results.
20 We also tested the consequences of this assumption using sim-
ulated data where the market size fluctuates over time and esti-
mating this model assuming the market size is constant and equal
to its average. When the variability of the market size increases,
we find a slight decrease in the estimated variance of the inter-
cepts that affect the utility of all purchase alternatives, and a slight
increase in the estimated variance of the demand shocks. The mean
of consumer coefficients does not exhibit any systematic changes.
Detailed results are available from the authors upon request.

However, products that were never available in a par-
ticular store were excluded from the choice set in
the benchmark model. We computed the log-marginal
likelihood for the full and benchmark models and
obtained a log-Bayes factor equal to 74.5, which gives
very strong empirical support for the full model (Kass
and Raftery 1995). Table 4 reports the estimation
results for the hyperparameters 	, 
, and 2

� under
both model specifications.
From the results of the full model, we note

that products from the brands Herbal Essences and
H&S are on average more demanded than all other
products (see the results for 	Intercept in Table 4). Fur-
thermore, the results for 	Income show higher intrin-
sic demand for Pantene and H&S products in stores
reaching customers with higher income levels. As
expected, the price, weekend, and promotion effects
(see 	Intercept�Price, 	Intercept�Weekend, and 	Intercept�Promotion) show
a significant disutility associated with higher prices
and higher levels of demand during Saturdays and
when items are promoted. These results also show that
the promotional and weekend effects are stronger for
lower-income markets.
In addition to the observed heterogeneity across

stores captured by 	Income, the results for 
 show the
magnitude of the unobserved heterogeneity within
stores in terms of total demand (Purchase option)
and price sensitivity (Price). The variances for these
random coefficients are estimated as 0.70 and 0.24,
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Table 4 Empirical Results: Estimated Posterior Means, Standard Deviations, and 25% and 75% quantiles for �, �, and �� (Iterations 200,001–400,000)

Full model Ignoring out-of-stocks

Variable Mean SD 25% 75% Mean SD 25% 75%

Main effects Pantene 0�78 0�23 0�62 0�94 0�45 0�22 0�30 0�59
��Intercept �·	 Herbal Essences 1�34 0�34 1�11 1�58 1�22 0�30 1�01 1�43

H&S 1�31 0�27 1�13 1�49 1�08 0�24 0�92 1�25
Cabello Sano 0�68 0�23 0�52 0�84 0�48 0�24 0�32 0�65
Timotei 0�43 0�31 0�22 0�64 0�30 0�31 0�10 0�51
Promotion 0�94 0�29 0�75 1�14 1�21 0�27 1�02 1�39
Weekend 1�06 0�22 0�91 1�20 1�16 0�24 0�99 1�32
Purchase option −5�10 0�57 −5�46 −4�67 −5�06 0�56 −5�42 −4�69
Price −0�85 0�19 −0�97 −0�72 −0�95 0�20 −1�08 −0�81

Income Pantene 0�24 0�23 0�08 0�39 0�29 0�23 0�14 0�44
interactions Herbal Essences −0�15 0�34 −0�37 0�09 −0�10 0�33 −0�33 0�13
��Income �·	 H&S 0�57 0�26 0�40 0�74 0�66 0�25 0�48 0�83

Cabello Sano 0�09 0�24 −0�08 0�25 −0�08 0�23 −0�23 0�07
Timotei −0�01 0�32 −0�21 0�21 0�17 0�31 −0�04 0�38
Promotion −0�43 0�29 −0�62 −0�23 −0�51 0�29 −0�71 −0�32
Weekend −0�23 0�21 −0�37 −0�09 −0�22 0�22 −0�36 −0�08
Purchase option −0�38 0�53 −0�73 −0�02 −0�37 0�52 −0�70 −0�03
Price −0�05 0�12 −0�13 0�03 −0�07 0�12 −0�15 0�02

Heterogeneity Purchase option 0�70 0�39 0�42 0�89 0�86 0�80 0�42 0�94
(�) Price 0�24 0�09 0�17 0�28 0�29 0�12 0�20 0�35

Demand shock
variance (� 2

� ) 1�00 0�04 0�97 1�03 1�00 0�04 0�98 1�03

respectively. The results for the variance of the
demand shocks (2

� ) suggest that these unobserved
demand effects are substantial (the posterior mean of
2

� is estimated as 1.00).
Finally, when comparing the full and benchmark

models, we note that the posterior means of 	Intercept

for the brands Pantene, H&S, and Cabello Sano are
smaller under the benchmark model than in the full
model (these posterior means are approximately one
posterior standard deviation from each other). These
differences do not exhibit a strong level of statistical
significance, but their direction suggests that ignoring
out-of-stocks leads to lower estimates of demand for
these brands. In contrast, the corresponding posterior
mean for Herbal Essences is very similar across both
models, which is consistent with the high availability
of this product on the shelf (92%, see fraction of out-
of-stocks for product 17 in Table 3).
We tested the robustness of these results with

respect to a potential inventory endogeneity bias.
Using the extensions described in §3.4, we accounted
for a possible correlation between inventory and the
demand shocks by adding Equation (12) into the
estimation, which helps to mitigate this endogeneity
problem. We used the products’ cost markup as an
instrumental variable, which varies across products
and stores but not across days. The results from this
extended model suggest a small correlation between
inventory and demand shocks (the estimated pos-
terior mean of the correlation between � and � is

equal to 0.26).21 Furthermore, there is strong empiri-
cal support favoring the model where the correlation
between � and � is zero (log-Bayes factor = −716�6).
The estimated marginal posterior distribution of each
parameter in the extended model exhibits a reason-
able precision, suggesting that the parameters are
identified after controlling for inventory endogeneity
(see Allenby and Rossi 2003 for more details on iden-
tification of Bayesian IV models). In addition, the esti-
mated demand parameters from this extended model
and the full model presented in §4.2 are very similar
(results are available from the authors upon request),
which implies that the potential bias due to inven-
tory endogeneity is small. Recall that the demand
specification of this application includes factors that
measure seasonality, promotional activity, and brand
effects, capturing most of the variation in demand
that can be anticipated by the store manager. This
helps to reduce endogeneity problems arising from
omitted variables in the demand specification.

5. Estimating and Mitigating the
Costs of Out-of-Stocks

Using the expressions derived in §3.6 (see Equa-
tion (15)), we estimated lost sales for every time

21 Interestingly, we obtained a positive coefficient for price margin,
which is consistent with theoretical predictions from the inventory
management literature (e.g., Porteus 2002). Detailed results about
this sensitivity analysis are available from the authors upon request.
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Figure 1 Percentage of Lost Purchases as a Fraction of
Full-Availability Sales vs. Number of Out-of-Stock Products
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period in each store. We are particularly interested
in estimating how the number of out-of-stock prod-
ucts affects lost sales. In our application, the number
of products simultaneously out of stock on a given
day ranges between 0 and 10 SKUs. Our methodology
is sufficiently flexible to estimate lost sales for all of
these possible scenarios without increasing the com-
putational complexity of the method. Figure 1 shows
the estimated average lost sales as a function of the
number of out-of-stock products. The figure reveals
that lost sales increases nonlinearly in the number
of products not available. When five or fewer prod-
ucts are out of stock the average lost sales are equal
to 5.9% of the full-availability sales. But when six
or more products are out of stock, lost sales grow
by more than three times, up to 20.2% of the full-
availability sales. This suggests that the first products
that stock out have a smaller impact on category sales,
but lost sales increase more rapidly as more prod-
ucts become unavailable. This pattern has important
implications for assortment planning and inventory
replenishment decisions. In supermarkets, there are
substantial fixed costs of replenishing products on the
shelf. Hence, Figure 1 suggests that replenishments
may be postponable until several products become
out of stock without substantially affecting category
sales, although the profitability consequences of such
a policy will depend on the retail margins of each
of the products and the stockout-based substitution
patterns.
Note that in this analysis lost sales are estimated

for each period and store in our data set. Alterna-
tively, one could estimate lost sales for a new time
period by simulating a sequence of consumers mak-
ing choice decisions under limited and infinite inven-
tory levels. In the context of the MCMC estimation,
this analysis can be easily performed, and we use
these results for a particular store (store 5) to illus-
trate how consumers switch from one product to

another when their most preferred item is not avail-
able. As we show in Table 5, for the segment of cus-
tomers who intend to buy each product i (rows), we
estimate the percentage that choose instead alterna-
tive j (columns) considering representative levels of
product inventory and the utility function covariates.
The NP column shows the customer that choose not
to purchase, which are counted as lost sales. This anal-
ysis enables us to provide a detailed characterization
of the expected consequences of out-of-stocks on cus-
tomers’ buying behavior.22

Specifically, the diagonal elements in the first block
of this matrix indicate the percentage of customers
that are able to find their most preferred product and,
consequently, provide an estimate of the level of “ser-
vice” provided by the retailer to its customers. Con-
sidering all alternatives (not just those reported in
Table 5), although some products exhibit very high
levels of availability (e.g., products 5, 6, 17, and 22),
most of them show availability levels below 50%
(e.g., product 10). In this regard, it is informative
to consider the off-diagonal elements of this switch-
ing matrix. For example, when product 10 (Pantene)
is not available, most customers intending to buy
that item would not buy any of the available prod-
ucts: 37.3% of the customers intending to buy prod-
uct 10 choose the no-purchase option compared to
only 13.7% (i.e., 100%–49.0%–37.3%) that substitute
this product with an available one. Among the lat-
ter group of customers, most of these stockout-based
substitutions correspond to purchases of product 17
(Herbal Essences). Overall, we estimate that for most
products, between one- and two-thirds of the cus-
tomers that intend to buy a product are not able to
find their most preferred alternative and decide not
to buy. Finally, the last column of Table 5 shows the
change in contribution margin due to lost sales and
stockout-based substitution. For most products with
low availability (20% or below), contribution margins
decrease between 30% and 65%. Overall, this analy-
sis suggests that the financial consequences of out-of-
stocks can be sizable.
In addition to estimating stockout-based substitu-

tion and lost sales, we also evaluate the effect of a
strategy that seeks to mitigate the effect of out-of-
stocks: conducting a temporary price reduction for a
single product to recapture a fraction of lost sales.
Price discounts increase the attractiveness of substi-
tute products, inducing some customers whose pre-
ferred product is not available to substitute their
intended purchase with another product rather than
choose the no-purchase option. In what follows, we

22 For space considerations, we display the results of this analysis
for only 10 of the 24 products for store 5. Therefore, the sum of the
substitution rates in each of the rows of Table 5 is not equal to 1.
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Table 5 Estimated Switching Matrix, Full-Availability Sales, and Change in Contribution Margin for Selected Products

Actual choice

4 5 6 8 10 17 18 19 22 23 25 Expected Contribution
Intended demand margin
choice Brand T T T O P HE H&S H&S CS CS NP (units) reduction (%)

4 T 20�1 3�9 3�6 0�0 0�0 17�2 0�0 0�0 2�5 0�0 44�5 2�2 53�0
5 T 0�0 100�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 2�1 0�0
6 T 0�0 0�0 99�8 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�1 2�1 0�2
8 O 0�2 2�6 2�7 5�5 0�8 13�7 0�3 0�4 1�8 0�1 63�2 1�6 64�4

10 P 0�0 1�0 1�3 0�0 49�0 6�8 0�0 0�0 1�3 0�0 37�3 4�7 32�0
17 HE 0�0 0�0 0�0 0�0 0�0 99�9 0�0 0�0 0�0 0�0 0�1 19�2 0�1
18 H&S 0�0 2�4 2�7 0�0 0�0 14�0 20�4 0�0 1�9 0�0 52�3 3�6 46�9
19 H&S 0�0 2�4 2�5 0�0 0�0 13�7 0�0 19�4 2�1 0�0 53�3 3�4 48�0
22 CS 0�0 0�0 0�0 0�0 0�0 0�0 0�0 0�0 99�7 0�0 0�2 3�9 0�2
23 CS 0�0 1�2 1�2 0�0 0�0 8�9 0�0 0�0 1�7 20�9 61�6 4�0 55�9

Notes. Within the first block of this table, cell entries �i� j	 where i indexes row and j indexes column indicate the percentage that choose alternative j among
the segment of customers who intend to buy product i. O, Other; T, Timotei; P, Pantene; HE, Herbal Essences; CS, Cabello Sano; NP, no purchase. Expected
demand indicates the total number of units that would be sold during 15 days if all products were available. Contribution margin reduction indicates the
percentage of forgone contribution margin as a fraction of the total contribution margin that would be obtained if all products were available.

show how to use our model to quantify the expected
fraction of lost sales that would be recaptured (from
the no-purchase option) through these temporary
price promotions. Consider the set OA of customers
who chose not to purchase when assortment A was
available. Suppose that the price of product k ∈ A is
discounted by some fraction of the original price. For
each customer i ∈ OA, we define two events: (1) Ei1
is the event that customer i would have purchased
some of the unavailable products (i.e., products in Ac)
had they been available; (2) Ei2 is the event that the
customer would purchase the discounted product k
when only products in A are available. All customers
in OA experiencing Ei1 are counted as lost sales; those
who in addition experience Ei2 count as recaptured
lost sales. Therefore, the fraction of lost sales that is
recaptured can be calculated as

Lost Sales Reduction=
∑

i∈OA
Pr�Ei1�Ei2 � i ∈ OA�

LostSales
�

where LostSales can be estimated using the simu-
lation procedure described in §3.6. Details on how
to calculate the numerator of the expression above
are shown in Online Appendix B, provided in the
e-companion.
Accordingly, the model was used to measure the

effectiveness of implementing price reductions of 20%
for different store-days. We consider scenarios where
only one product is discounted at a time. As an
illustration, we report results for two store-days with
very different levels of availability: (i) day 3 in mar-
ket 5, where 10 SKUs have zero final inventory; and
(ii) day 15 in market 2, where only one product has
zero final inventory—SKU 15 (Pantene). In the case of
day 3 in market 5, a price promotion on product 17

(Herbal Essences) reduces lost sales by 2.0%; all other
promotions reduce lost sales by less than 1%. How-
ever, in the case of day 15 in market 2, it is more effec-
tive to discount product 13 (Pantene), which leads to
a lost sales reduction of 4.2%. In this case, a promo-
tion of product 17 leads to a 1.6% reduction in lost
sales.
The comparison of the results from these two store-

days provides insights on the effectiveness of price
promotions at mitigating the consequences of out-of-
stocks. In the case of day 15 in market 2, where only
one product was out of stock, a price promotion on
a product with similar characteristics to the missing
product is more effective to recapture lost sales. In
contrast, when many products are missing, it is more
effective to use a price promotion on a popular prod-
uct (SKU 17).
These results show that price promotions can be

useful to reduce lost sales and improve customer ser-
vice. However, promotions may also have negative
consequences, including (1) a reduction in the mar-
gin of the discounted product, and (2) cannibalization
of sales from other products with higher margins.23

These consequences can also be easily estimated with
our model if data on the cost of goods sold by
SKU are available. Using gross margin data from the
supermarket chain under study, we evaluated the net
change in category profits accounting for the effect
of increased sales, reduced markups, and cannibaliza-
tion. In the case of day 3 in market 5, the promo-
tion on product 17 increased total profits by 13.2%.

23 Other negative effects not considered here include stockpiling
effects that occur when customers buy the promoted product ear-
lier because of the discount, which leads to a cannibalization of
future sales.
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In contrast, in the case of day 15 in market 2, the price
promotion on products 13 and 17 reduces profits by
32.5% and 10.7%, respectively.24

In summary, this section illustrates how the
methodology can be used to assess the consequences
of policies aimed at mitigating the costs of out-of-
stocks (e.g., lost sales reduction, impact on category
profits). Many additional policy experiments could
be also performed, including discounts on multiple
products and experimenting with different magni-
tudes for price discounts. These additional policy
experiments can be easily implemented using the esti-
mated model. Note, however, that our estimation and
subsequent analysis do not consider any long-run
effects on customer behavior. For example, some of
the customers that do not find their most preferred
item available might return to the store in future peri-
ods to buy the missing product. Alternatively, it is
possible that some of these customers might reduce
their likelihood of returning to the store in future peri-
ods, transferring not only their shampoo purchases,
but also those in other product categories, to com-
peting retailers. Studying these long-term effects con-
stitutes a very interesting avenue for future research
that would probably require getting access to cus-
tomer panel data with a longer time series of sales
and inventory data from multiple product categories.

6. Conclusions
In this paper, we have proposed a method to cap-
ture the effects of out-of-stocks on customer behavior
using data commonly available to a store manager.
Lack of precise availability data in real time, which is
common in practical retail settings, introduces a major
challenge in identifying the effect of out-of-stocks on
sales. To overcome these difficulties, our methodol-
ogy simulates the transition of the inventory on the
shelf conditioning on snapshots of information about
product inventory, which can be obtained through
a periodic inventory review system. These data are
combined with daily sales and pricing data to esti-
mate a structural model of demand for a product
category.
The method has several attractive features. First,

the model can be estimated using data from multiple
stores and markets. Second, our method is applica-
ble in categories with many products and with slow-
moving products exhibiting frequent out-of-stocks.
Previous methods in this area were limited by the
number of products, the type of substitutions, and the
number of products that could be simultaneously out
of stock. Third, our structural demand model allows

24 Promotions on other products, such as SKU 10, reduced lost sales
by about 1% without substantially changing profits.

the evaluation of policies to mitigate the consequences
of out-of-stocks (such as temporary price promotions).
Fourth, the methodology explicitly models the dis-
tribution of the timing of out-of-stocks (which are
unobservable in periodic inventory systems), provid-
ing useful information on product availability.
In terms of future research, several interesting

generalizations can be identified. Considering the
demand model, alternative specifications or behav-
ioral assumptions could be studied (e.g., probit
model, complexity of choice decisions). In addition,
the model could be extended to explicitly consider
the possibility of some customers returning to the
store in future periods if they did not find a prod-
uct in a given time period. Because our methodology
is based on estimating the joint distribution of avail-
ability and sales, another possible extension could be
developed for the detection of out-of-stocks based on
point-of-sales data. Finally, the model could be gen-
eralized to consider purchase quantity decisions (e.g.,
Kim et al. 2002).
In summary, we hope that the methodology pre-

sented in this paper may provide useful tools for
researchers and managers to estimate the conse-
quences of out-of-stocks and assess the impact of
policies to mitigate their costs. This issue is certainly
relevant for audiences in the operations management,
marketing, and economics disciplines, and we hope
this work stimulates more cross-disciplinary research
in this area.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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