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Abstract 

 
An error was discovered in the ALGEBBRA script used to calculate the disturbed rock zone around the 

disposal room and the shear failure zone in the anhydrite layers in the original version. To correct the er-

ror, a memorandum of correction was submitted according to the Waste Isolation Pilot Plant (WIPP) 
Quality Assurance program. The recommended course of action was to correct the error, to repeat the 

post-process, and to rewrite Section 7.4, 7.5, 8, and Appendix B in the original report. The sections and 

appendix revised by the post-process using the corrected ALGEBRA scripts are provided in this revision. 
The original report summarizes a series of structural calculations that examine effects of raising the 

WIPP repository horizon from the original design level upward 2.43 meters. Calculations were then re-

peated for grid changes appropriate for the new horizon raised to Clay Seam G. Results are presented in 
three main areas: 1. Disposal room porosity, 2. Disturbed rock zone characteristics, and 3. Anhydrite 

marker bed failure. No change to the porosity surface for the compliance re-certification application is 

necessary to account for raising the repository horizon, because the new porosity surface is essentially 
identical. The disturbed rock zone evolution and devolution are charted in terms of a stress invariant crite-

rion over the regulatory period. This model shows that the propagation of the DRZ into the surrounding 

rock salt does not penetrate through MB 139 in the case of both the original horizon and the raised room. 
Damaged salt would be expected to heal in nominally 150 years. The shear failure does not occur in either 

the upper or lower anhydrite layers at the moment of excavation, but appears above and below the middle 

of the pillar one day after the excavation. The damaged anhydrite is not expected to heal as the salt in the 
DRZ is expected to. 
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1 INTRODUCTION 

1.1 About This Revision 

An error was discovered in the ALGEBBRA script used to calculate the disturbed rock 

zone (DRZ) around the disposal room and the shear failure zone (SFZ) in the anhydrite 

layers in the original version [Park and Holland, 2004]. To correct the error, a memoran-

dum of correction [Park and Holland, 2006] was submitted according to the Waste Isola-

tion Pilot Plant (WIPP) Quality Assurance (QA) program. This memorandum describes 

the error, scopes its potential importance, and provides recommendation for remediation. 

The recommended course of action was to correct the error, to repeat the post-process 

under the Concurrent Version System (CVS) script run control [Park and Kirchner, 

2005], and to rewrite Section 7.4, 7.5, 8, and Appendix B in the report for Clay Seam G 

[Park and Holland, 2004]. The sections and appendix revised by the post-process using 

the corrected ALGEBRA scripts are provided in this revision. The files related to the cor-

rection will be stored in the subdirectory of /data/bypark/clayg/correction/ in the CVS on 

the workstation ELO at Sandia Carlsbad Program Group. In addition, Section 7. 3, which 

describes the porosity surface, is revised. 

1.2 Objective 

This report summarizes the calculations of the structural response of waste-filled disposal 

rooms, raised 2.43 meters above the level of disposal operations at WIPP. The analysis 

period is 10,000 years after initial waste emplacement. The calculations of the mechani-

cal creep closure response of a disposal room containing waste but no crushed salt back-

fill were performed to allow three-dimensional porosity surfaces (Figure 1) to be con-

structed for WIPP performance assessment (PA) activities. On the basis of the calcula-

tions, an assessment was made to determine whether raising the repository 2.43 meters 

(i.e., so the roof is at an elevation coincident with Clay Seam G) has any significant im-

pact on the conceptual models used in the PA.  

1.3 Background 

The Department of Energy (DOE) on June 26, 2000 asked permission of the Environ-

mental Protection Agency (EPA) to raise the disposal room 2.43 m above the present 

level. This change means the roof of a disposal room would coincide with the Clay Seam 

G horizon and the floor would be separated from the underlying Marker Bed 139 by 3.81 

m instead of 1.38 m (the existing design separation in disposal panels 1 and 2). The EPA 

on August 11, 2000 approved the request and agreed that this mining change will en-

hance operational safety without significantly affecting the long-term performance of the 

facility. The EPA on August 6, 2002 sent DOE a letter that stated:  “The conceptual 

model for the repository should reflect the change to raise the level of excavation to clay 

seam G. The conceptual change should be appropriately addressed in modeling, if war-

ranted.” 
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The change in the repository horizon was requested to ease ground control efforts. Frac-

tures surrounding the existing horizon tend to coalesce in an arch, which mimics the 

shear stress trajectories. These patterns can be seen in the underground today where the 

roof has been taken down along the length of the East 140 drift. The roof rock of the 

original horizon tends to de-couple at Clay G, as exhibited by the shear fracture patterns. 

Underground operations personnel believe that roof support requirements and other 

ground-control maintenance would be greatly reduced if the roof of the disposal rooms is 

raised to Clay G. Because this change incorporates a geometry of the WIPP underground 

that is different from the compliance baseline, as modeled for the Compliance Certifica-

tion Application (CCA), it is necessary to evaluate the impact of this proposed mining 

change on performance. For this report, the structural implications of raising the reposi-

tory horizon were assessed using the calculation procedure described in the AP-093 

(Park, 2002).  

1.4 Overview of Analyses 

This analysis was based on the “Final Disposal Room Structural Response Calculations, 

SAND97-0795” (Stone, 1997a), which was the referenced baseline report for the CCA. 

The calculational procedures and data described in SAND97-0795 were used in this cur-

rent analysis so a direct comparison between the results of this analysis and those pre-

sented in SAND97-0795 could be made. Therefore, the initial calculations replicated 

room pressure and porosity histories for various gas generation rates for a period of 

10,000 years following excavation and waste emplacement. The data used in this analysis 

such as the stratigraphy, waste characterization, gas generation potential and material re-

sponse, etc. are identical to that used in Stone’s analysis (Stone, 1997a). 

The analysis results are split into three parts. The first one is the change of the porosities 

due to the disposal room creep closure. The second one is the change of the disturbed 

rock zone (DRZ) with time. The third one is the change of the shear failure zone in anhy-

drite with time. The results of the porosity changes will be provided to the BRAGFLO 

analyst as the look-up table. The results of the DRZ changes provide basic data for per-

formance assessment treatment of the DRZ and the groundwater flow analysis. Results 

from the anhydrite shear failure provide a structural assessment of marker bed damage 

that can persist and thereby provide preferred flow paths out of the repository.  

The quasistatic, large deformation finite element code SANTOS (Stone, 1997b) version 

2.1.7, installed on the Warthog workstation with the Linux operating system, was used 

for the analyses. SANTOS 2.1.7 was qualified though 21 test cases which are consistent 

with SANTOS – Verification and Qualification Document of 1996, the validation of 

SANTOS 2.1.0 (Arguello et al. 1996).  The Verification and Validation Plan/Validation 

Document for SANTOS 2.1.7 discusses the testing in detail (WIPP PA 2003). Figure 2 

shows a models and data flow diagram of the WIPP CRA PA calculation. Several proc-

esses are performed to generate the CCDF curves. The final goal of the analyses is to pro-

duce CCDF curves to compare releases from the repository. The SANTOS results feed 

BRAGFLO analyses which simulates the brine and gas flow in Salado formation. 
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1.5 Report Organization 

The next section of the report presents the analysis models used in Stone’s (1997a) analy-

sis including the disposal room model that describes the disposal room and the waste con-

tents and the geomechanical model that describes, among other features, the idealized 

stratigraphy. Also included in Section 2 are descriptions of the constitutive models used 

in the analyses. References for the sources of all of the dimensions, values for constitu-

tive model parameters, and other input information are given in Butcher (1997). Section 3 

presents the discretized finite-element model developed to simulate the 2.43 m change in 

the disposal room elevation.  In Section 4, the applied formulation to calculate the change 

of the DRZ boundary with time is described. Section 5 describes the computer code, 

SANTOS, used for the analyses.  The analyses procedure is described in Section 6. Sec-

tion 7 describes the results including a comparison of current results with those of Stone 

(1997a), the disposal room creep closure, the three-dimensional porosity surface, the 

changes in the DRZ, and the failure pattern in anhydrite. Section 8 provides the summary 

and conclusions of the analyses. 

 

 

Figure 1: A typical porosity surface used for the 1992 comparison of predicted 
WIPP performance with 40 CFR Part 191, Subpart B (Butcher and 
Mendenhall, 1993) 
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Figure 2: A model and data flow diagram for the WIPP CRA PA. 
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2 ANALYSIS MODEL 

2.1 Disposal Rooms Model 

The rectangular-shaped underground disposal rooms are mined at a depth of 655 m from 

the bedded salt formations in southeastern New Mexico and are designed to dispose of 

transuranic waste.  The regulatory period is 10,000 years. With time, the creep of the rock 

salt closes the room and encapsulates the waste until equilibrium is established. 

2.1.1 Initial porosity 

The disposal room model is developed around a rectangular room 3.96 m high by 10.06 

m wide by 91.44 m in length with an initial room free volume of 3,644 m
3
. The current 

disposal configuration calls for 6,804 drums of uniformly-distributed unprocessed waste 

to be stored in the disposal room in 7-pack units. There are 972 of these units stacked 

three high along the disposal room floor. This analysis considered a disposal room con-

taining wastes only; no crushed-salt and MgO backfill is placed either around the waste 

or in the void space between drums. The corresponding volume occupied by the waste 

and the drums is 1,728 m
3
.  

The transuranic waste form is a combination of metallics, sorbents, cellulose, rubber and 

plastics, and sludges. Table 1 summarizes the data used in the CCA for characterizing the 

waste. The initial waste density, 0ρ , is 559.5 kg/m
3
 and the solid waste density, sρ , is 

1,757 kg/ m
3
. The initial waste density is the sum of the densities of the constituent waste 

forms. Using the following definition of porosity, sρρφ /1 0−= (refer to App. A-1)), the 

initial waste porosity, 0φ , is calculated to be 0.681 resulting in an initial solid volume of 

551.2 m
3
. Using the difference of the undeformed disposal room volume and the initial 

solid volume to calculate the total void volume of the room, the initial porosity of the un-

deformed disposal room is determined to be 0.849 (refer to App. A-2). 

Table 1: WIPP CH-TRU Waste Material Parameter Disposal Inventory (Butcher, 
1997) 

Waste Form Waste Density 
(kg/m

3
) 

Volume Fraction 

Metallic 122. 0.218 

Sorbents 40. 0.071 

Cellulose 170. 0.304 

Rubber & Plastics 84. 0.150 

Sludges 143.5 0.256 

Sum 559.5 0.999 
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2.1.2 Gas generation potential 

The gas generation potential and gas production rate corresponding to the reference case 

are derived from two sources: anoxic corrosion and microbial activity. Butcher (1997) 

reports that the estimated gas production potential from anoxic corrosion will be 1,050 

moles/drum with a production rate of 1 mole/drum/year. The gas production potential 

from microbial activity is estimated to be 550 moles/drum with a production rate of 1 

mole/drum/year. Based on these potentials and production rates, microbial activity ceases 

at 550 years, while anoxic corrosion will continue until 1,050 years after emplacement. 

The total amount of gas generated in a disposal room for the reference case was based on 

6,804 unprocessed waste drums per room. The total gas potential for the reference case is 

shown in Figure 3. The gas generation potential assumes that no gas bleeds off through 

flow through the surrounding lithologies. 

The gas pressure in the disposal room was computed from the ideal gas law based on the 

current free volume in the room. Specifically, the gas pressure, pg, was computed with the 

following relationship: 

V

NRT
fpg ⋅=       (1) 

where N, R and T are the mass of gas in g-moles for the baseline case, the universal gas 

constant, and the absolute temperature in degrees Kelvin, respectively. For the current 

analyses, the absolute temperature is taken to be 300 ºK. The variable, V, is the current 

free volume of the room. For each iteration in the analysis, the current room volume is 

calculated based on the displaced positions of the nodes on the boundary of the room. 

The free room volume, V, is computed by subtracting the solid volume of the waste, 

551.2 m
3
, from the current room volume. The gas generation variable, f, is a multiplier 

used in the analyses to scale the pressure by varying the amount of gas generation. A 

value of f=1 corresponds to an analysis incorporating full gas generation, while a value of 

f=0 corresponds to an analysis incorporating no internal pressure increase due to gas gen-

eration. This portion of the analysis is identical to that implemented by Stone (1997a). 

The porosity surface defines the relationship between disposal room porosity, amount of 

gas present in that porosity, and time. The porosity can be computed directly from the 

disposal room deformed shape. The concept of the porosity surface comes from the ob-

servation that the disposal room closure is directly influenced by gas generation. This ob-

servation allows a surface to be constructed incorporating the closure results for various 

values of f, which is a convenient way to express the amount of gas generation occurring. 
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Figure 3: History of the reference gas generation potential used for the disposal 
room analyses, f = 1.0. (Stone, 1997a) 

2.2 Geomechanical Model 

2.2.1 Stratigraphy 

The base idealized stratigraphy for the WIPP underground used in the geomechanical 

model is the stratigraphy as defined by Munson et al. (1989). This stratigraphy is shown 

in Figure 4 with the disposal room located at the original horizon. Work by Osnes and 

Labreche, included as an appendix in Butcher (1997), quantified the differences in room 

closure obtained by assuming different stratigraphic models that incorporate different 

numbers of clay seams and anhydrite marker beds. They compared a full stratigraphic 

model consisting of 12 clay seams and 7 anhydrite layers to analysis results using smaller 

combinations of clay seams and marker beds. Their work showed that room closure and 

room porosity results from the full model could be reproduced using the simpler models. 

Butcher (1997) performed a set of calculations that identified a simple stratigraphic 

model that captured most of the room closure and room porosity results seen in the more 

complex stratigraphic models. The stratigraphic model used in Stone’s (1997a) analyses 

is composed of mainly argillaceous salt with a clean salt layer above the disposal room 

between Clay G and Clay I, anhydrite MB 139, and a thin anhydrite layer located in the 

clean salt layer identified as anhydrite A. Based on the prior study by Butcher (1997), no 

clay seams were included in the model. The final stratigraphic model used for Stone’s 

(1997a) analyses is shown in Figure 5. 

This stratigraphic model is changed as shown in Figure 6 to raise the disposal room by 

2.43 m. The stratigraphic model, including disposal room dimensions, is identical to the 

previous model, except the disposal room is translated vertically to make the room ceiling 

coincident with Clay Seam G. 
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Figure 4: Idealized stratigraphy near the disposal room horizon defined by 
Munson et al. (1989) 
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Figure 5: Simplified stratigraphic model for the current level of the disposal room 
(Butcher, 1997) 
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Figure 6: Simplified stratigraphic model used for Stone’s (1997a) analyses (left) 
and the new one (right). 
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2.2.2 Halite constitutive model 

A multi-mechanism deformation (M-D) model proposed by Munson and Dawson (1979, 

1982, 1984) and extended by Munson et al. (1989), has been included in SANTOS to 

model the creep behavior of rock salt. This model was used for the clean and argillaceous 

salt. The model can be decomposed into (1) an elastic volumetric part defined by 

K

kk
kk

3

σε =       (2) 

where, ijε  =  the total strain components  

ijσ  = the total stress components 

K = the elastic bulk modulus 

and (2) a deviatoric part defined by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ −+−= ijpjip

ij

sijij Jss
JJ

s
FeGs δ

θ
θ

θ
θ

ε 2

22
3

2

3cos

sin3

3cos

2cos
2 &&&   (3) 

where, 
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kk
ijijs

σσ −= : the deviatoric stress  

G  = the elastic shear modulus 

3
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ijije

εε −= : the deviatoric strain 

jifor  0  j;ifor  1  deltaKronecker  ≠====ijδ  

J2 and �  are the second invariant of the deviator stress and the Lode angle, respectively, 

and are defined later. 

The second term of the above equation represents the creep contribution. In the creep 

term of Equation 3, F is a multiplier on the steady-state creep rate to simulate the tran-

sient creep response according to the following equation, 
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where, =Δ  work-hardening parameter 

 =δ recovery parameter 

 =*

tε  so-called transient strain limit 

Finally, ζ  is an internal state variable whose rate of change is determined by the follow-

ing evolutionary equation, 
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sF εζ && )1( −=       (5) 

In Equation 4, the work-hardening parameter Δ  is defined as,  

)/log( Gσβα +=Δ      (6) 

 where, α  and β are constants. The variable σ  is the equivalent Tresca stress given by 
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The recovery parameter, δ , is held constant. The transient strain limit is given by 
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where 0K , c, and M are constants.  

The steady-state, or secondary creep strain rate, sε& , is given by 
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where the iA s and iB s are constant 

 iQ s are activation energies 

 T = the absolute temperature 

 R = the universal gas constant 

 in s are the stress exponents 

 q = the so-called stress constant 

 =0σ  the stress limit of the dislocation slip mechanism 

 =H  the Heaviside step function with the argument )( 0σσ −  

The material constants corresponding to the clean and argillaceous salt, used in the analy-

ses, are given in Table 2 and Table 3. 
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Table 2: Salt elastic properties (Butcher, 1997) 

G 
(MPa) 

E 
(MPa) 

ν  

12,400 31,000 0.25 

 

Table 3: Salt creep properties (Munson et al., 1989) 

Parameters 
(Units) 

Clean Salt Argillaceous Salt 

A1 (/sec) 8.386E22 1.407E23 

Q1 (cal/mole) 25,000 25,000 

n1 5.5 5.5 

B1 (/sec) 6.086E6 8.998E6 

A2 (/sec) 9.672E12 1.314E13 

Q2 (cal/mole) 10,000 10,000 

n2 5.0 5.0 

B2 (/sec) 3.034E-2 4.289E-2 

σ0 (MPa) 20.57 20.57 

Q 5,335 5,335 

M 3.0 3.0 

K0 6.275E5 2.470E6 

c (/T) 9.198E-3 9.198E-3 

α -17.37 -14.96 

β -7.738 -7.738 

δ 0.58 0.58 

 

2.2.3 Waste constitutive model 

The stress-strain behavior of the waste was represented by a volumetric plasticity model 

(Stone, 1997b) with a piecewise linear function defining the relationship between the 

mean stress and the volumetric strain. Compaction experiments on simulated waste were 

used to develop this relationship. The deviatoric response of the waste material has not 

been characterized. It is anticipated that when a drum filled with loosely compacted waste 

is compressed axially, the drum will not undergo significant lateral expansion until most 

of the void space inside the drum has been eliminated (Stone, 1996).  
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For the volumetric plasticity model, the yield surface in the principal stress space is a sur-

face of revolution with its axis centered about the hydrostat and the open end pointing 

into the compression direction (Figure 7). The open end is capped with a plane that is at 

right angles to the hydrostat. The deviatoric part is elastic-perfectly plastic so the surface 

of revolution is stationary in stress space. The volumetric part has variable strain harden-

ing so the end plane moves outward during volumetric yielding. The volumetric harden-

ing is defined by a set of pressure-volumetric strain relations. A flow rule is used such 

that deviatoric strains produce no volume change (associated flow). The model is best 

broken into volumetric and deviatoric parts with the deviatoric part resembling conven-

tional plasticity. The volumetric yield function is a product of two functions, sφ and pφ , 

describing the surface of revolution and the plane normal to the pressure axis, respec-

tively. These are given by 

2

210
2

1
papaass ijijs ++−=φ     (10) 

)( νεφ gpp −=      (11) 

where a0 , a1, a2 are constants defining the deviatoric yield surface, p is the pressure, and 

νε  is the volumetric strain. The form of g is defined in this problem by a set of piecewise 

linear segments relating to pressure-volumetric strain. Table 4 lists the pressure-

volumetric strain data used for the waste drum model and the data are plotted in Figure 8. 

Note that the final point listed in the table is a linear extrapolation beyond the curve data 

given in Butcher (1997). The final pressure of 12 MPa corresponds to an axial stress on a 

waste drum of 36 MPa. The elastic material parameters and constants defining the yield 

surface are given in Table 5. 
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Figure 7: Pressure-dependent yield surface for the waste material model (Stone, 
1997b) 

 

Figure 8: Curve of the pressure-bulk strain input to the volumetric plasticity model 
used to model the waste drums (Stone, 1997a) 
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Table 4: Pressure-volumetric strain data used in the volumetric-plasticity model 
for the waste drums (Butcher, 1997) 

Pressure (MPa) ln ( ρ/ρ0) 

1.53 0.510 

2.03 0.631 

2.53 0.719 

3.03 0.786 

3.53 0.838 

4.03 0.881 

4.93 0.942 

12.0 1.14 

 

Table 5: Material constants used with the volumetric plasticity model for the waste 
(Butcher, 1997) 

Parameter Value 

G 333.0 MPa 

K 222.0 MPa 

a0 1.0 MPa 

a1 3.0 

a2 0. 

 

2.2.4 Anhydrite constitutive model 

The anhydrite layer beneath the disposal room is expected to experience inelastic material 

behavior. The MB 139 anhydrite layer is considered isotropic and elastic until yield oc-

curs (Butcher, 1997). Once the yield stress is reached, plastic strain begins to accumulate. 

Yield is assumed to be governed by the Drucker-Prager criterion 

12 aICJ −=      (12) 

where =2J  the second deviatoric stress invariant 

 =1I  the first stress invariant ( kkσ ) 

A nonassociative flow rule is used to determine the plastic strain components. The elastic 

properties and Drucker-Prager constants, C and a, for the anhydrite are given in Table 6. 

To calculate the shear failure region in anhydrite, the ALGEBRA file to represent Equa-

tion 12 is provided in Appendix B. 
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Table 6: Elastic and Drucker-Prager constants for anhydrite (Butcher, 1997) 

Material 
Young’s Modulus 

(GPa) 
Poisson’s Ratio 

C 
(MPa) 

a 

Anhydrite 75.1 0.35 1.35 0.45 

 

The input to the soil and crushable foam model in the SANTOS code requires the analyst 

to provide TWO MU, (2μ), and the BULK MODULUS, K. The conversion from 

Young’s modulus, E, and Poisson’s ratio, ν, to the SANTOS input parameters is given 

from the following relationships taken from Fung (1965): 

)1(
2

ν
μ

+
=

E
      (13) 

)21(3 ν−
=

E
K       (14) 

SANTOS requires the input to the material model which describes the anhydrite nonlin-

ear response to be given in terms of effective stress, 23J=σ , and pressure, 
3

1I
p = . 

Rewriting Equation 12 in terms of σ  and p , the following relationship is obtained: 

apC 333 −=σ      (15) 

The SANTOS input constant 0A  is C3  and the input constant 1A  is a33 . The set of 

SANTOS input parameters for the anhydrite is given in Table 7. 

Table 7: SANTOS input parameters for the anhydrite layers 

Material 
TWO MU 

(GPa) 

BULK 
MODULUS 

(GPa) 

0A  

(MPa) 
1A  2A  

Anhydrite 55.6 83.4 2.3 2.338 0.0 

 

The calculation sheet to compute the SANTOS input parameters using the above data is 

provided in Appendix A-3. 
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3 MESH GENERATION 

A two-dimensional plane strain disposal room model that was converted from the simpli-

fied stratigraphy (Figure 6, right), as shown in Figure 9, is used for the SANTOS analy-

ses. This discretized finite element model is changed from Stone’s (1997a) mesh, as 

shown in Figure 10, to raise the disposal room by 2.43 m. The mesh is changed as little as 

possible to minimize the margin of error resulting from the change. The mesh, excluding 

the elements immediately adjacent to the room, is the same as the one made by Stone 

(1997a). 

The discretized model represents the room as one of an infinite number of rooms located 

at the repository horizon. Making use of symmetry, only half of the room is modeled. The 

left and right boundaries are planes of symmetry. The upper and lower boundaries are 

located approximately 50 m from the room. A lithostatic stress ( xσ = yσ = zσ ) that varies 

with depth is used as the initial stress on the configuration and the gravity forces are in-

cluded. The model contains 1,680 quadrilateral uniform-strain elements and 1,805 nodal 

points. A zero-displacement boundary condition in the horizontal direction (Ux = 0.0) 

was applied on both the left and right boundaries of the model to represent the symmetry 

condition of a half-symmetry disposal room in an infinite array of rooms. A prescribed 

normal traction of 13.57 MPa was applied on the upper boundary and a vertical zero-

displacement boundary condition (Uy = 0.0) was applied on the lower boundary to react 

to the overburden load. An adaptive internal pressure, gp , was applied around the 

boundary of the disposal room.  

The basic half-symmetry disposal room dimensions are 3.96 m high by 5.03 m wide with 

a significant portion of this area containing the stored CH-TRU waste. The waste is 

stored in 7-packs stacked three high along the drift with a height of 2.676 m. This storage 

configuration contains a large amount of void volume associated with each 7-pack (Fig-

ure 11). To obtain the waste volume dimensions used in the calculations, the assumption 

is made that each waste drum will laterally deform independent of one another. The void 

space between drums must be eliminated in order to have an accurate continuum repre-

sentation of the waste response. To eliminate the void space between drums, the assump-

tion is made that the lateral deformation of a configuration of drums caused by the inward 

movement of the walls of the disposal room is sufficient to eliminate space between the 

drums early in the closure process at low stress levels. In other words, the lateral defor-

mation of the disposal room rib compresses the 7-packs causing the void space between 

the drums to be removed with little or no resistance by the waste drums themselves. This 

assumption allows calculation of an effective lateral dimension for the waste after lateral 

collapse of the space between the drums is complete. The lateral dimension of the waste 

drums within the disposal room is determined from the total initial waste volume of 1,728 

m
3
. Equation 16 was used to determine the compressed dimensions of the waste used for 

the continuum representation.  

1728)2)(2( 000 =−− HDLDW     (16) 
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where, =0W  the nominal uncompressed width of the stored waste in the disposal room 

(8.6 m) 

=0L  the nominal length of the disposal room available for storing waste (89.1 m) 

=0H  the height of the three stacked waste containers (2.676 m) 

=D  the amount of space that must be eliminated between the drums 

Note in Equation 16 that the length of the disposal room has been modified by the same 

amount, D.  Solving for D, we find that the modified width of the waste is 7.35 m and the 

modified length is 87.85 m (refer to App. A-4).  

Contact surfaces were defined between the waste and room boundaries to model the con-

tact and sliding that occurs as the room deforms and entombs the waste. Specifically, 

contact surfaces were defined between the waste and floor of the room, the waste and 

room rib, and the waste and ceiling. All of the contact surfaces were allowed to separate 

if the forces between the surfaces reached a tensile value. This feature allows the room to 

reopen due to gas generation within the disposal room. 
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Figure 9: Mesh discretization and boundary conditions used for the SANTOS 
analyses 
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Figure 10: The discretized finite element model is changed from Stone’s (1997a) 
mesh to raise the disposal room by 2.43 m. 
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Figure 11: Ideal packing of drums in rooms and 10.06 m wide disposal room 
(Modified from Sandia, 1992, however, no backfill is modeled) 
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4 DRZ CRITERIA IN HALITE 

The creation of the openings in salt that is initially under lithostatic stress, causes devia-

toric stress states to develop and the salt begins to creep. Once disturbed, salt rocks will 

continue to creep as long as deviatoric stresses exist. Creep around unsupported openings 

will stop only after the opening is completely closed by creep and lithostatic stresses are 

reestablished in the salt. Despite the substantial deformations that accumulate by creep, 

there is little evidence to suggest the permeability is increased provided the deformation 

occurs through isovolumetric creep. However, deformation that results in an increase in 

the volume of salt (dilation) does result in increased permeability. In certain engineering 

situations, the actual quantification of permeability is secondary to determining the size 

and location of regions that experience the damage and increase permeability. The salt 

dilation zone, as a function of opening size and shape could be used as part of the design 

basis. Such an application could be used for evaluation of design options for seals at the 

WIPP (Van Sambeek, et al., 1993). 

If the stress condition can be calculated using finite element or finite difference methods 

and appropriate material properties, the area around the opening that is expected to ex-

perience dilatancy can be defined through comparison of the calculated stresses with a 

stress-based dilatancy criterion during post-processing of the stresses. An example of the 

application of an engineering dilation criterion is shown in Figure 12 (Van Sambeek, et 

al., 1993). To develop this figure, the stresses around a rectangular opening situated in the 

WIPP stratigraphy were calculated using finite element modeling and WIPP material 

properties (Munson and DeVries, 1991). The calculated stresses were then processed to 

obtain a “damage” factor, D, considering the dilatancy criterion of Ratigan and Van 

Sambeek (1991). 

Ratigan and Van Sambeek (1991) reported a linear dilatancy boundary as follows: 

mIJ σ81.027.0 12 =≥     (17) 

where, 1I  = the first invariant of the stress tensor ( mI σ31 = ) and J2 = the second invari-

ant of the stress deviator as defined earlier by Equation 7. 

Equation 17 was used to define a damage factor. 

1

2

27.0 I

J
D =       (18) 

When 1>D , the shear stresses in the salt ( 2J ) are large compared to the mean stress 

( 1I ) and dilatant behavior is expected. When 1<D , the shear stresses are small com-

pared to the mean stress and dilatancy is not expected. The dark-shaded zone in Figure 12 

shows the areas where dilatant behavior is expected based on the calculated stresses. In 

Figure 12, a zone is also shown that highlights the area with damage factors between 0.8 

and 1.0. While 1<D  suggests no dilatant behavior is expected, the stippled zone for 



    

 34

0.18.0 << D  provides a somewhat more conservative indication of the potential of the 

disturbed zone. 

In this analysis, Equation 17, the linear dilatancy boundary condition reported by Ratigan 

and Van Sambeek, is used for the DRZ criteria. To calculate the dilatant zone, the stress 

analyses results from SANTOS were post-processed using Equation 18. The post-

processing ALGEBRA file to represent Equation 18 is provided in App. B. The healing 

effect of salt also was considered in this file. 

 

 

Figure 12: Calculated damage factors (D) around a 40-year-old rectangular open-
ing within the WIPP stratigraphy consisting of salt, an anhydrite bed 
(MB 139), and three clay seams (Van Sambeek et al., 1993) 
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5 CALCULATION FLOW AND FILE NAMING CONVENTION 

5.1 Computer Codes and Calculation Flow 

FASTQ version 3.12 is used for generating the mesh to raise the disposal room by 2.43 m 

(Figure 10). The input file for the FASTQ mesh generation is provided in Appendix D. 

The FASTQ code is an interactive two-dimensional finite element mesh generation pro-

gram. It is designed to provide a powerful and efficient tool to both reduce the time re-

quired of an analyst to generate a mesh, and to improve the capacity to generate good 

meshes in arbitrary geometries. It has a number of meshing techniques available. FASTQ 

has been designed to allow user flexibility and control. The user interface is built on a 

layered command level structure. Multiple utilities are provided for input, manipulation, 

and display of the geometric information, as well as for direct control, adjustment, and 

display of the generated mesh. Enhanced boundary flagging has been incorporated and 

multiple element types and output formats are supported. FASTQ includes adaptive 

meshing capabilities with error estimation, deformed and undeformed remeshing accord-

ing to the error, element variable remapping, and some basic post-processing plotting 

(Blacker, 1988). 

SANTOS version 2.1.7 is used for the solver in this analysis. The quasistatic, large-

deformation finite element code SANTOS is capable of representing 2D planar or axi-

symmetric solids (Stone, 1997b). The solution strategy, used to obtain the equilibrium 

states, is based on a self-adaptive, dynamic-relaxation solution scheme incorporating pro-

portional damping. The explicit nature of the code means that no stiffness matrix is 

formed or factorized which results in a reduction in the amount of computer storage nec-

essary for execution. The element used in SANTOS is a uniform-strain, 4-node, quadri-

lateral element with an hourglass control scheme to minimize the effects of spurious de-

formation modes. Finite strain constitutive models for many common engineering mate-

rials are available within the code. A robust master-slave contact algorithm for modeling 

arbitrary sliding contact is implemented. SANTOS, version 2.0.0, installed on the Sandia 

Cray J916 computer, was used for the earlier analysis. Recently, an executable SANTOS 

version 2.1.7 was installed on the Warthog workstation with the Linux operating system. 

The source code of SANTOS was copied to the workstation and compiled again.  

All of the verification and qualification test problems were exercised and documented in 

accordance with QA requirements. This SANTOS workstation version is used in this 

analysis. 

BLOTII2 version 1.39 is used as the final post-processor. The disposal room creep clo-

sure, the DRZ boundaries, the shear failure zones and so on, are plotted using BLOT. 

BLOT is a graphics program for post-processing of finite element analyses output in the 

EXODUS database format. It is command driven with free-format input and can drive 

any graphics device supported by the Sandia Virtual Device Interface. BLOT produces 

mesh plots with various representations of the analysis output variables. The major mesh 

plot capabilities are deformed mesh plots, line contours, filled (painted) contours, vector 

plots of two/three variables (e.g., velocity vectors), and symbol plots of scalar variables 

(e.g., discrete cracks). Path lines of analysis variables can also be drawn on the mesh. 

BLOT’s features include element selection by material, element birth and death, multiple 



    

 36

views for combining several displays on each plot, symmetry mirroring, and node and 

element numbering. BLOT can also produce X-Y curve plots of the analysis variables. 

BLOT generates time-versus-variable plots or variable-versus-variable plots. It also gen-

erates distance-versus-variable plots at selected time steps where the distance is the ac-

cumulated distance between pairs of nodes or element centers (Gilkey and Glick, 1991).  

To calculate the volume change of the disposal room with time, NUMBERS version 1.19 

is used. NUMBERS is a shell program that reads and stores data from a finite element 

model described in the EXODUS database format. Within this program are several utility 

routines that generate information about the finite element model. The utilities currently 

implemented in NUMBERS allow the analyst to determine information such as: (1) the 

volume and coordinate limits of each of the materials in the model; (2) the mass proper-

ties of the model; (3) the minimum, maximum, and average element volumes for each 

material; (4) the volume and change in volume of a cavity; (5) the nodes or elements that 

are within a specified distance from a user-defined point, line, or plane; (6) an estimate of 

the explicit central-difference time step for each material; (7) the validity of contact sur-

faces or slide lines, that is, whether two surfaces overlap at any point; and (8) the distance 

between two surfaces (Sjaardema, 1989).  

These pre- and post-processing utilities are considered systems software and not subject 

to the requirements of NP 19-1 (memo 10/26/95 WPO# 27538 and WPO# 37416 for ex-

ceptions). 

To calculate the porosity change in the room as a function of time, GNU AWK version 

3.1.0 is used. The AWK converts the volume change of the disposal room into the poros-

ity change with time. The AWK script is provided in App. C. 

nSIGHTS version 2.01A is used for plotting the three-dimensional porosity surface. 

nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is 

originally a comprehensive well test analysis software package. It provides a user-

interface, a well test analysis model and many tools to analyze both field and simulated 

data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-

radial flow regime, with a borehole at the center of the modeled flow system. In this re-

port, the function of plotting a 3D surface is the only feature used. 

Figure 13 shows the computational flowchart for the Clay Seam G analyses. 
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Figure 13: Computational flowchart for Clay Seam G analyses 
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5.2 File Naming Convention 

The general path for any of these subdirectories is: /**/clayg/. All of the files related to 

the analyses for the current room exist in the subdirectory of /**/clayg/current/ and ones 

related to the raised room are in the subdirectory of /**/clayg/raised/. All of the files that 

remain within each subdirectory are listed and described in Table 8.  

The suffix the files, 0p0, 0p025, 0p05, 0p1, …, etc. express the gas generation factors. 

For examples, the 0p0 means the gas generation factors is f=0.0, the 0p1 means f=0.1, the 

1p2 means f=1.2 and so forth. 

The name of FASTQ files is 0.00up.fsq and 2.43up.fsq. The 0.00up means unraised 

room, i.e. the current disposal room, and the 2.43up means a disposal room raised 2.43 m 

above the current level.  

Table 8: File naming convention (* means wild card) 

File Prefix/Suffix File Definition 

*.fsq The FASTQ input files for the mesh generation 

*.g 
The FASTQ output files that will be used for the mesh file of 
SANTOS 

clayg*.i The SANTOS input files 

clayg*.e The SANTOS output files in the EXODUS database format 

clayg*.o The SANTOS output files in the ASCII format 

initst_*.f 
The user-supplied subroutine INITST to provide an initial stress state 
and the FPRES to provide the gas generation parameter, f, to 
SANTOS 

initst_*.o The object files from compiling the *.f 

alg.alg The ALGEBRA file to calculate the DRZ and the shear failure region 

porosity.awk The AWK file to calculate the porosity change in the room with time 

*.num 
The NUMBERS output file in the ASCII format to calculate the vol-
ume change of the disposal room with time from the SANTOS output 
files, *.e 

normal*.txt The normalized volume change of the disposal room from *.num 

run*.log The log file from SANTOS run 

clayg*_pgas.dat The result file of the gas pressure change in the disposal room 

poro*.dat The result file of the porosity change in the disposal room 

PGAS_*_SNTS.xls 
The excel file to adjust the gas pressure change data to the same 
number of time steps for plotting the gas pressure surface 

Poro_*_SNTS.xls 
The excel file to adjust the porosity change data to the same number 
of time steps for plotting the porosity surface 

XYZ_*.dat The three dimensional data for plotting the surfaces 
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6  ANALYSES PROCEDURE 

The following procedures were performed to estimate whether raising the repository to 

Clay Seam G has any significant impact on the conceptual models used in performance 

assessment: 

1. The effects of changing the code version on the calculated results were qualified 

by comparing the results for the current horizon using the SANTOS v.2.1.7 (also 

called the workstation (W/S) version) used in this analysis, with the one using 

SANTOS v.2.0.0 used by Stone (1997a). That means, first the baseline results 

provided by Stone (1997a) were replicated. 

2. The effects of raising the room 2.43 m were calculated. The results of the disposal 

room being raised 2.43 m were compared with the baseline porosity surface re-

sults which are replicated for the current horizon by the SANTOS W/S version 

3. Displacement data of the disposal room and wastes from SANTOS W/S version 

analyses were converted into the porosity data by ALGEBRA. A 3D porosity sur-

face was made of these porosity data with the gas generation potential and time. 

4. The structural implication of raising the room 2.43 m was evaluated by: 

o Comparing MB139 to a failure criterion 

o Examining stress conditions in the salt with respect to a damage function 
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7 ANALYSES RESULTS 

The previous analyses using SANTOS, version 2.0.0 installed on the Sandia Cray J916, 

were carried out to a simulation time of 10,000 years by Stone (1997a). Analyses using 

SANTOS, version 2.1.7 installed on the Warthog with Linux OS, were carried out to the 

same simulation time. Thirteen cases of gas generation were investigated, these were for 

f=0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.6, and 2.0. The input file for one 

of the SANTOS analyses is included in Appendix E. The other input files are identical 

except for the title line. The gas generation parameter, f, is set in the user-supplied sub-

routine FPRES. The FPRES subroutine is used unchanged in this analysis. A sample 

FPRES subroutine for f=0.1 is given in Appendix F-1. Stone (1997a) used the user-

supplied subroutine INITST to provide an initial stress state to SANTOS. In this analysis, 

the INITST subroutine is used unchanged from Stone (1997a). A sample INITST subrou-

tine is also given in Appendix F-2. The gas pressure bleed-off by flow through the sur-

rounding lithology is not permitted. 

7.1 Comparison with Stone’s Results 

To identify the differences between the results of SANTOS version 2.1.7 and version 

2.0.0, the analyses were carried out by SANTOS 2.1.7 using the input data, the FEM 

mesh, and related subroutine files that Stone (1997a) used. SANTOS was running on the 

Warthog Workstation. 

The pressure changes in the disposal room with time for thirteen gas generation factors, f, 

are plotted as shown in Figure 14. The porosity histories are plotted as shown in Figure 

15. Each line indicates the results obtained from version 2.0.0, and each symbol indicates 

the results obtained from version 2.1.7. The two results match well each other, which 

means the changes from version 2.0.0 to 2.1.7 of SANTOS had no effect on the results. 

This result further substantiates the results of the verification testing and provide assur-

ance that use of SANTOS 2.1.7 is appropriate and consistent with calculations supporting 

the initial performance assessment for compliance application. 
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Figure 14: Pressure histories for various f by SANTOS version 2.0.0 and 2.1.7: 
Solid lines are for version 2.0.0 and symbols are for version 2.1.7 

 

 

Figure 15: Porosity histories for various f by SANTOS version 2.0.0 and 2.1.7: 
Solid lines are for version 2.0.0 and symbols are for version 2.1.7 

 

7.2 Creep Closure and Porosity Histories 

7.2.1 Disposal room creep closure 

The salt surrounding a disposal room will continue to creep as long as deviatoric stresses 

exist. Figures 16 to 19 show a close-up view of the deformed mesh around the disposal 

room being raised to the Clay Seam G with time, for f = 0, 0.4, 1, and 2 respectively.  

Deformation in the absence of gas generation is shown Figure 16. The ceiling contacts 

the top of the waste due to the salt creep at approximately 25 years. The waste is com-

pressed by the creeping salt after that. Most of the deformation has occurred during the 

first 1,000 years. After that, the deformation has slowed down considerably. The de-

formed shape clearly shows that the maximum compaction of the waste is due to vertical 
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closure of the room. At 300 years, the vertical closure has reached 91 percent of its 

maximum value. The horizontal contact of the rib with the waste occurs at approximately 

150 years. At 10,000 years, the waste has been compacted somewhat by the horizontal 

closure of the rib but not significantly compared to the vertical compaction.  

The closure of the disposal room at 0, 10, 25, 300, 1000, 10000 years for f = 0.4 is shown 

in Figure 17. As seen in the figures, the compaction of the waste is entirely due to the 

vertical room closure, since the deforming rib does not contact the waste at any time dur-

ing the simulation. The gas generation is such that the room porosity is the same at 300 

years as it is at 10,000 years. The gas pressure essentially balances the overburden load 

so that the vertical closure of the disposal room becomes constant.  

In the case of f=1.0 as shown in Figure 18, the roof of the room contacted the top of the 

waste at approximately 30 years, which is later than the case of f=0.4. The creep is much 

slower than the case of f=0.4 due to the generated gas pressure. The roof is beginning to 

separate from the waste at 1,000 years and thereafter inflates. Note: Response of this 

model does not capture the physical reality of hydrofracture propagation of high pressure 

away from the repository. 

In the case of f=2.0 as shown in Figure 19, the creep is much slower than the case of 

f=1.0. The inflation of the room at 1,000 years is much larger than in the case of f=1.0, 

again hydrofracture is not represented in these analyses. The volume of the disposal room 

at 10,000 years becomes almost the same as the volume at 0 years. 

The four figures show that the large deformations result in the contact of the roof and 

floor with the ribs at the corners of the room. The contact in the corners of the disposal 

room is an important feature of the analyses and can be captured using the arbitrary con-

tact surface capability of SANTOS. The roof and floor are either in contact with the 

waste or in contact with the ribs, which means that no significant void spaces are devel-

oped. This deformation mode results in a minimum free volume in the room. 

In conclusion, the volume change of the disposal room is strongly dependent on the gas 

generation factor, f. 

 

Figure 16: Close-up view of the deformed disposal room containing the waste with 
time for f=0.0 
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0 year 10 years 25 years

300 years1,000 years10,000 years  

Figure 17: Close-up view of the deformed disposal room containing the waste with 
time for f=0.4 
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0 year 10 years 25 years

300 years1,000 years10,000 years  

Figure 18: Close-up view of the deformed disposal room containing the waste with 
time for f=1.0 

 

0 year 10 years 25 years

300 years1,000 years10,000 years  

Figure 19: Close-up view of the deformed disposal room containing the waste with 
time for f=2.0 
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7.2.2 Pressure and Porosity histories 

One of the most interesting results from the analyses is the pressure buildup in the dis-

posal room and the corresponding room porosity. Figure 20 shows the disposal room 

pressure histories for the various values of gas generation parameter, f. Obviously for f=0, 

the amount of gas generation is zero resulting in a nominally zero pressure in the room 

for all time. As would be expected in all other cases, the room pressure rises during the 

gas generation period of 1,050 years. Thereafter in time, there appears to be a transition 

in the character of the response at about f=0.4. For f values greater than 0.4, the room 

pressure begins to drop from its maximum value after gas generation stops, and for val-

ues less than 0.4, the room pressure remains constant at its maximum value throughout 

the 10,000 year simulation. For example with f=1.0 (full gas generation) the room pres-

sure increases monotonically during the period of gas generation and reaches a value 

slightly larger than 21 MPa at 1,050 years. When the gas generation ceases at this time, 

the room pressure begins to drop, reaching a value of approximately 17.5 MPa at 10,000 

years. For the highest values of f (1.6 and 2.0), there is very little difference in the maxi-

mum pressure reached, approximately 23 MPa at 550 years. The pressure drops dramati-

cally to 18 MPa at 10,000 years and still appears to be decreasing as the internal gas pres-

sure and overburden approach equilibrium. On the other end of the range for f, an inter-

esting case is f=0.025 (i.e., 2.5 percent of full gas generation). The figure clearly shows 

that for even this small amount of gas generation, the pressure in the room rises signifi-

cantly (2.9 MPa at the end of 10,000 years) to approximately 20 % of the value of the 

lithostatic stress at the repository horizon.  

Figure 21 shows the disposal room porosity histories for the thirteen cases of gas genera-

tion considered. As would be expected, the room porosity drops monotonically from its 

initial value of approximately 85 percent during the first 100 to 500 years, depending on 

the value of f. Thereafter, once again, there appears to be a transition in response at about 

f=0.4. For values of f below that value, the porosity continues to decrease with time but at 

a slower rate, as equilibrium is reached between the internal gas pressure and the salt 

overburden. For values of f greater than 0.4, the porosity starts to increase after reaching a 

minimum value. In fact, for the gas generation case of f=2.0, the room actually inflates to 

a porosity of about 85 percent at the end of the simulation, which is nearly equal to the 

original porosity. The porosity reached at this same time for the case without any gas 

generation, f=0, is approximately 22.7 percent. 
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Figure 20: Pressure histories for various values of the gas generation factor, f, for 

a disposal room being raised to the Clay Seam G, containing the waste 
without backfill.  
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Figure 21: Porosity histories for various values of the gas generation factor, f, for 

a disposal room being raised to the Clay Seam G, containing the waste 
without backfill 
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7.2.3 The effect of raising the room 2.43 m 

In this section, the results for the disposal room raised 2.43 m above the present level are 

compared with the results for the room at the present level to examine possible structural 

effects. 

The pressure histories in a room for various values of the gas generation factor, f, are 

compared with each other as shown in Figures 22 and 23. Each line indicates the pressure 

change in the disposal room at the present level, and each symbol indicates the pressure 

change in the disposal room raised 2.43 m above the present level. The two results coin-

cide well with each other for f=0 to 0.1. The pressures of the raised room are slightly 

higher than the present room for f=0.2 to 0.5. For f=0.6 to 2.0, the pressures of the raised 

room are slightly higher initially; however, the pressures of the raised room become 

lower than the present room after a certain time. In the case of f=0.6, the transition point 

is about 8,000 years. In the case of f=2.0, the transition point is 550 years at which the 

highest pressure is reached. However, the differences are very small from an overall point 

of view.  

The porosity histories in a room for various values of the gas generation factor, f, are 

compared with each other as shown in Figures 24 and 25. Each line indicates the results 

for the present room, and each symbol indicates the results for the raised room. For f=0 to 

0.5, the porosities of the raised room are lower than the current room’s for the entire 

analysis period. For f=0.6 to 2.0, the porosities of the raised room are lower for the short 

term however, the two sets of porosities become the same after a certain time. The transi-

tion point is about 8,000 years for f=0.6. In the case of f=2.0, the transition point is 550 

years. However, all of the differences are less than 5%. This means the effect of raising 

the room 2.43 m is very small on the porosity changes in the room. 

In the case of f=0.0 and 0.025, the pressure histories of the current room are almost same 

as the ones of the raised room, while the porosity histories of the raised room are lower 

than the current room’s. In the case of f=0.2, 0.4, and 0.5, the pressure histories of the 

raised room are higher than the current room’s while the porosity histories of the raised 

room are lower than the current room’s. It seems to be the higher pressure should coin-

cide with higher porosity. However, the initial porosity is changed by the deformation of 

the disposal room due to salt creep closure. The material all around the current room is 

the argillaceous salt while the material of the roof of the raised room is the clean salt as 

shown Figure 6. The creep properties of the clean salt and the argillaceous salt are differ-

ent as shown Table 3. In addition, the floor is separated from the underlying Marker Bed 

139 by 3.81 m instead of 1.38 m and the additional salt is increases closure slightly. Thus, 

the deformation tendencies of the disposal rooms are slightly different and account for 

this minor variation. The porosity history is affected by the deformation characteristics of 

the material around the room as well as the gas pressure. 
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Figure 22: Pressure histories for disposal rooms to 1500 years: Solid lines are for 

current room and symbols are for raised room 
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Figure 23: Pressure histories for disposal rooms to 10,000 years: Solid lines are 

for current room and symbols are for raised room 
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Figure 24: Porosity histories for disposal rooms to 1,500 years: Solid lines are for 

current room and symbols are for raised room 
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Figure 25: Porosity histories for disposal rooms to 10,000 years: Solid lines are for 

current room and symbols are for raised room 
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7.3 Porosity Surface 

The pressure and porosity histories in Figure 22 and 24 are converted into the surface in 

the three-dimensional space as shown in Figure 26, so called a porosity surface like that 

shown in Figure 1. Figure 26 shows the changes of the porosity and pressure in the dis-

posal room being raised 2.43 m with the gas generation factors and time. The porosity 

surface data will be provided for BRAGFLO analyses (refer to Figure 2). 

The change of porosities with the gas generation factors and time is plotted again on a log 

time scale as shown in Figure 27. Figure 28 displays the porosity difference between the 

two porosity changes with the gas generation factors and time in the raised room and the 

current room. Considering the range of f from 0.07 to 0.99 (refer to App. A-5) as used in 

the BRAGFLO calculations to study the effects of gas on the flow of brine through the 

repository and up an intrusion borehole, the differences between the two surfaces are less 

than 5%. This means the effect of raising the room by 2.43 m on the porosity surface is 

inconsequential. 
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Figure 26: Porosity surface for disposal room raised 2.43 m above the current 
level 
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Figure 27: The change of porosities with the gas generation factors and time for 
disposal room raised 2.43 m above the current level (log time scale) 

 

 

Figure 28: The change of porosity difference between the raised room and the cur-
rent room (log time scale, %) 
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7.4 DRZ 

Excavation of the repository and the consequent release of lithostatic stress create a dis-

turbed rock zone (DRZ) around the underground openings. Fractures and microfractures 

within the DRZ increase porosity and permeability of the rock and could provide avenues 

for brine flow from the DRZ to the excavated opening. Salt creep is expected to close the 

fractures in the halite in the DRZ over time, exhibiting what is called the healing effect. 

In this section, the change of DRZ with time is provided through the interpretation of the 

SANTOS analyses results. 

Figures 29 through 32 show the change with time of the DRZ around a disposal room 

raised 2.43 m above the current level for the gas generation factor f=0.0, 0.4, 1.0 and 2.0. 

The undisturbed zone (dark blue zone) in the figures is defined by 1<D  in Equation 18 

in Section 4. The most extensive DRZ occurs at early time, say in the first ten years after 

the opening is mined. As the back stress — caused by resistance to deformation of the 

waste stack — increases, the DRZ disappears according to the stress invariant criterion. 

The undisturbed zone no longer appears after the last time frame (6
th

 frame) in the fig-

ures. This finding is consistent with other similar numerical simulations, such as Van 

Sambeek et al. (1993). They reported “A similar calculation for a brine-filled borehole or 

internally pressurized cavern shows that the thickness of the dilatancy zone depends on 

the internal pressure. The dilatancy zone around a cavern can be completely suppressed 

by an internal pressure equal to a small fraction of the lithostatic stress for the depth of 

the cavern.” Thus, calculations show that the damaged zone within the salt would heal. 

The maximum extent of the DRZ calculated for the raised repository reaches approxi-

mately 3.8 m, the distance to the anhydrite layer (MB 139), below the room. The DRZ 

does not extend through the anhydrite layer that behaves as a buffer. The DRZ above the 

room disappears within a short period after the ceiling of room contacts the waste.  

Modeling of the raised repository can be compared to Figures 33 to 36, which show the 

change of the DRZ around a disposal room at the current horizon with time for f=0.0, 0.4, 

1.0 and 2.0. The largest DRZ occurs early after the excavation for all f values, which is 

very similar to the case for the raised repository. The DRZ under the room does not ex-

tend through the anhydrite layer, in a manner similar to what happens in the case of the 

raised room. A maximum thickness of the DRZ is approximately 3.6 m over the roof of 

the room. The thickness of the DRZ in the floor of the present room is 1.4 m, the distance 

to the anhydrite layer. The DRZ does not extend through MB 139, the same as the case of 

the raised rooms.  

In these calculations, gas production from corrosion and microbial activity initiates in-

stantaneously. Internal gas pressure is a key concern when considering the DRZ evolu-

tion and devolution in terms of the modeling output. As noted previously, rooms in which 

no gas or minimal gas is produced will close completely around the waste, as shown in 

Figures 29 and 33. Gas production from inside the room affects room closure and charac-

teristics of the DRZ. The stress conditions thus created in the rock salt would appear fa-

vorable for healing to occur, but it may be that healing would not occur because gas has 

entered the void space. If the inward creeping rock salt does not experience a solid, me-
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chanical back stress, it will not heal. These concepts need to be taken into account when 

examining the DRZ figures, in which the DRZ is delineated based on the invariant stress 

criterion.   

The vertical closure would evidently be sufficient to create a back stress in the vertical 

direction for all gas generation factors considered. The upper and lower salt DRZ would 

thereby be situated in a stress field favorable for healing. The rib deformation, based on 

these models, is not sufficient to compress the waste laterally when gas is produced 

within the room.  
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Figure 29: Change of the DRZ around a disposal room raised 2.43 m above the 
current level for the gas generation factor f=0.0. 
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Figure 30: Change of the DRZ around a disposal room raised 2.43 m above the 
current level for the gas generation factor f=0.4. 
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Figure 31: Change of the DRZ around a disposal room raised 2.43 m above the 
current level for the gas generation factor f=1.0. 
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Figure 32: Change of the DRZ around a disposal room raised 2.43 m above the 
current level for the gas generation factor f=2.0. 
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Figure 33: Change of the DRZ around a current disposal room for the gas genera-
tion factor f=0.0. 
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Figure 34: Change of the DRZ around a current disposal room for the gas genera-
tion factor f=0.4. 
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Figure 35: Change of the DRZ around a current disposal room for the gas genera-
tion factor f=1.0. 
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Figure 36: Change of the DRZ around a current disposal room for the gas genera-
tion factor f=2.0. 
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7.5 Shear Failures in Anhydrite 

In this section, as discussed in Section 2.2.4, the shear failure pattern with time in the an-

hydrite is interpreted from the SANTOS output using the Drucker-Prager criterion. In the 

case of anhydrite, it is assumed that if MSF<1, the shear failure will have occurred, and 

the tensile strength is zero. The MSF is the cumulative shear failure variable which is de-

fined from Equation (12): 

2

1SF
J

aJC −
=       (19) 

MSF = Min (SF)     (20) 

MSF is the minimum value of SF over all previous time steps. It is defined in this manner 

because, unlike salt, once the anhydrite fails, it does not heal. 

Figures 37 to 40 show the shear failure zones with time in the upper and the lower anhy-

drite layers of the disposal room being raised 2.43 m. The shear failure does not occur in 

either the upper or lower anhydrite layers at the moment of excavation, but appears above 

and below the middle of the pillar one day after excavation. The shear stress in the anhy-

drite increases with time, therefore the extent of the failure zone also increases. The 

maximum extent of the shear failure zone occurs within the first 100 years. The internal 

gas pressure of the room does not affect the size of the failure zone in the anhydrite. 

Figures 41 to 44 show the shear failure zone with time in the upper and the lower anhy-

drite layers of the present disposal room. The failure pattern of the present room is similar 

to the one of the raised room except the shear stress in the anhydrite for the present room 

increases faster than the raised room.  

The distance between the bottom of the disposal room and the lower anhydrite layer is 

increased from 1.38 m to 3.81 m due to raising the room by 2.43 m. In other words, the 

current room is closer to Marker Bed 139. Because of this, the deformation of the anhy-

drite layer with the room closure is larger for the current room than the raised room. The 

shear failure zone is accordingly larger for the current room as shown in Figure 37 to 44. 
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Figure 37: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the disposal room being raised 2.43 m, f=0.0. 
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Figure 38: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the disposal room being raised 2.43 m, f=0.4. 
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Figure 39: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the disposal room being raised 2.43 m, f=1.0. 
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Figure 40: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the disposal room being raised 2.43 m, f=2.0. 
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Figure 41: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the present disposal room, f=0.0. 
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Figure 42: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the present disposal room, f=0.4. 
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Figure 43: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the present disposal room, f=1.0. 
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Figure 44: Changes of the shear failure zone with time in the upper and the lower 
anhydrite layers of the present disposal room, f=2.0. 

 



    

 63

7.6 Effect of the Input Error Found in the Original Input Data 

The calculation sheet to get the SANTOS input parameters using the data in Section 2.1 

and 2.2 is provided in Appendix A-3. By comparing Appendix A-3 and Appendix E, in-

put errors were found in Stone’s original input data. In the case of the waste, the density 

was 752 kg/m
3
 in the Stone’s input while the actual density is 559.5 kg/m

3
 in Section 

2.1.1. Two Mu was 3.333E8 Pa in Stone’s input while the Two Mu of Appendix A-3 is 

6.666E8 Pa. To identify the differences between the results using Stone’s data and the 

corrected density and Two Mu data, analyses using the correct data were carried out for 

the gas generation factors, f = 0.0, 0.4, 1.0, and 2.0. 

The porosity histories in the disposal room with time for four gas generation factors, f, 

are plotted as shown Figure 45. Each line indicates the results using Stone’s erroneous 

data, and each symbol indicates the results using the corrected data. Two results coincide 

well with each other, which means these input errors have no effect on the results. 
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Figure 45: Porosity histories for comparing the results using Stone’s data and the 
corrected data: Solid lines are for Stone’s data and symbols are for the 
corrected data 
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8 SUMMARY AND CONCLUSIONS 

This report summarizes a series of structural calculations executed to examine possible 

effects of raising the WIPP repository horizon from the original design level upward 2.43 

meters.  These calculations allow evaluations to be made of various features involved 

with the conceptual models implemented in WIPP performance assessment.  Notably this 

work addresses issues raised in an EPA letter to Carlsbad Field Office dated August 6, 

2002. In the subject letter, the EPA stated “The conceptual model for the repository 

should reflect the change to raise the level of excavation to clay seam G.  The conceptual 

change should be appropriately addressed in the modeling, if warranted”. The models 

implemented for Salado flow analyses including Option D have been advanced through 

peer review (Caporuscio, et al., 2003). The calculations in this report support the model-

ing concepts used for the disposal area rock mechanics. In addition, details of the geome-

chanical structural elements as modeled here, and provide examples of appropriate treat-

ment of these features in performance assessment.   

These calculations demonstrate that changing the repository horizon upward 2.43 m has 

no appreciable effect on the response of the underground relative to the computations 

made for the CCA. This conclusion is drawn by first comparing new results with the pre-

vious results that underpinned the compliance application. The calculation procedures 

and input parameters were consistent with SAND97-0795 (Stone, 1997a). These analyses 

used the same code, SANTOS, that supported the compliance calculations. A new valida-

tion and qualification of the software and hardware was assembled, as required by Qual-

ity Assurance procedures. Analyses using SANTOS, version 2.1.7 were carried out to a 

simulation time of 10,000 years, including thirteen gas generation cases. The results will 

be discussed in terms of four primary areas: Quality Assurance, Performance Assess-

ment, Disturbed Rock Zone and Anhydrite Fracture.   

Quality Assurance   The calculation software and platform were tested. The test cases of 

functionality produced essentially identical results between SANTOS version 2.1.7 and 

version 2.0.0. The previous results obtained by Stone (1997a) were replicated with the 

new SANTOS version. SANTOS version 2.1.7 was qualified as meeting requirements of 

the Nuclear Waste Management Procedure (NWMP) Quality Assurance Program Docu-

ment (QAPD) software requirements of NP 19-1. 

Performance Assessment   The hand-off to PA from the structural (finite element) calcu-

lations takes the form of a porosity surface.  The models include geomechanical response 

of the Salado stratigraphy, the waste material, and gas generation in the disposal rooms.  

The volume change of the disposal room due to the salt creep is strongly dependent on 

the gas generation factor, f. The calculations used in the CCA were replicated and then 

repeated for grid changes appropriate for the new horizon at Clay Seam G.  The gas pres-

sure histories and porosity histories show minute differences that can be attributed to rais-

ing the disposal room.  All differences between the two resultant porosity surfaces are 

less than 5%. This degree of comparison is believed to be well within the bounds of un-

certainty and accuracy typically experienced with structural finite element models.  Be-

cause the CCA porosity surface calculated for the original horizon and the new porosity 
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surface calculated for the raised rooms are essentially identical, no changes to the poros-

ity surface are necessary to account for raising the repository horizon to Clay Seam G. 

Disturbed Rock Zone   Calculations of the DRZ illustrate several interesting features.  

First the propagation of the DRZ into the surrounding rock salt does not penetrate 

through MB 139 in the case of both the original horizon and the raised room. The most 

extensive DRZ occurs at early time, say in the first ten years after the opening is mined. 

The DRZ above the room disappears within a short period after the ceiling of room con-

tacts the waste. 

• In the case of the raised room, the maximum extent of DRZ reaches approxi-

mately 3.8 m, the distance to the anhydrite layer (Marker Bed 139), below the 

room, while approximately 2.5 m over the roof of the room.  

• In the case of the original horizon, the maximum thickness of upper DRZ is ap-

proximately 3.6 m over the roof of the room, while the thickness of the DRZ in 

the floor is 1.4 m.   

• In all models the DRZ grows until the creeping salt either impinges on the waste 

or internal gas pressure tends to reduce the stress difference. Thereafter, the 

stresses trend back toward lithostatic and the DRZ criterion suggests that the DRZ 

is eliminated due to rock salt healing.   

Based on these modeling results, some uncertainty remains with respect to healing of the 

DRZ.  If gas production in the room provides the counterbalancing back stress, rather 

than the mechanical back stress provided by the waste stack, it may be that the DRZ 

would not heal as it would be permeated by the gas.   

Anhydrite Fracture   The shear failure does not occur in either the upper or lower anhy-

drite layers at the moment of excavation, but appears above and below the middle of the 

pillar one day after the excavation. The shear stress in the anhydrite increases with time, 

the extent of the failure zone also increases. The internal gas pressure of the room does 

not affect characteristics of the shear failure zone in the anhydrite layer. The failure pat-

tern of the present room is similar to the one of the raised room except the shear stresses 

in the anhydrite for the present room increase faster than the raised room. The damaged 

anhydrite is not expected to heal as the salt in the DRZ is expected to.  
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APPENDIX A: CALCULATION SHEET 

A-1 Porosity 
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A-2 Initial Porosity of a Disposal Room 

 

VD.W VD ND.R⋅:=
VD.W 1727.5 m

3
=

Initial Density of the All of Drums filled with Waste: ρ0 559.5
kgf

m
3

⋅:=

Solid Waste Density:
ρs 1757

kgf

m
3

⋅:=

Initial Porosity of the All of Drums with Waste: φ0 1
ρ0

ρs

−:=
φ0 0.682=

Initial Void Volume of the All of Drums with Waste:

Vv.D.W VD.W φ0⋅:=
Vv.D.W 1177.4 m

3
=

Initial Solid Waste Volume: Vs VD.W Vv.D.W−:=
Vs 550.117 m

3
=

Initial Porosity of the Undeformed Disposal Room:

φR.i

VR.i Vs−

VR.i

:=
φR.i 0.849=

Height of Disposal Room: HR 3.96 m⋅:=

Wide of Disposal Room: WR 10.06 m⋅:=

Length of Disposal Room: LR 91.44 m⋅:=

Initial Room Volume: VR.i HR WR⋅ LR⋅:= VR.i 3642.8 m
3

=

Number of Drums in a Disposal Room: ND.R 6804:=

Number of Drums in a Pack: ND.P 7:=

Number of Packs in a Disposal Room: NP.R

ND.R

ND.P

:= NP.R 972=

Volume of 55-gal Steel Drums filled with Waste (SAND92-0700/3 p.3-10): VD 0.2539 m
3

⋅:=

Volume of the All Drums filled with Waste in a Room:
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A-3 Calculating the SANTOS input parameters 

 

R 8.314410
7

⋅
erg

mol K⋅
⋅:=

Temperature:
T 300 K⋅:=

Q1 25000
cal

mol
⋅:= (SAND97-0796, Table 3, p.13)

Q1

R T⋅
41.9633=

Q2 10000
cal

mol
⋅:= (SAND97-0796, Table 3, p.13)

Q2

R T⋅
16.7853=

c 9.198 10
3−

⋅
1

K
⋅:= (SAND97-0796, Table 3, p.14)

C c T⋅:= C 2.7594=

Exponent of workhardening and recovery term used to compute F: RN3 2.0:=

Scalar multiplier of time step needed for stability, default 0.98): AMULT 0.95:=

(SAND90-0543, p.70)

Halite Constitutive Model:

Shear Modulus: μ 12400MPa⋅:= (SAND97-0796, Table 3, p.12)

Young's Modulus: E 31000MPa⋅:= (SAND97-0796, Table 3, p.12)

Poisson's ratio: ν 0.25:= (SAND97-0796, Table 3, p.12)

TWO MU: TwoMu 2 μ⋅:= TwoMu 2.48 10
10

× Pa=

Bulk Modulus: K
E

3 1 2 ν⋅−( )⋅
:= K 2.0667 10

10
× Pa=

Creep Constant:

Universal Gas Constant:
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A0 3 C⋅:= A0 2.3383 10
6

× Pa=

A1 3 3 a⋅:= A1 2.3383=

A2 0.0:= (SAND97-0796, Table 2, p.B-10)

Waste Constitutive Model:

Shear Modulus: μ 333 MPa⋅:= (SAND97-0796, Table 7, p.18)

TWO MU: TwoMu 2 μ⋅:= TwoMu 6.66 10
8

× Pa=

Bulk Modulus: K 222MPa:= K 2.22 10
8

× Pa=

SANTOS Input Constant: A0 1.0MPa:= A0 1 10
6

× Pa=

A1 3.0:= A1 3=

A2 0.0:= (SAND97-0796, Table 7, p.18, B-9)

Anhydrite Constitutive Model:

Shear Modulus: μ 27815MPa⋅:= (SAND97-0796, Table 2.2, p.A-98)

Young's Modulus: E 75100MPa⋅:= (SAND97-0796, Table 2.2, p.A-98)

Poisson's ratio: ν 0.35:= (SAND97-0796, Table 2.2, p.A-98)

TWO MU: TwoMu 2 μ⋅:= TwoMu 5.563 10
10

× Pa=

Bulk Modulus: K
E

3 1 2 ν⋅−( )⋅
:= K 8.3444 10

10
× Pa=

Elastic Constant: C 1.35 MPa⋅:= (SAND97-0796, Table 1, p.B-9)

Drucker-Prager Constant: a 0.45:= (SAND97-0796, Table 1, p.B-9)

SANTOS Input Constant:
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A-4 Modified Width and Length of the Waste 

L 87.85m=
Modified length of the disposal room available

for storing waste:

L L0 2 D⋅−:=

Modified width of the waste: W 7.35m=

W W0 2D−:=

D 0.625m=
Amount of space that must be eliminated 

between the drums:

D Find D( ):=

W0 2 D⋅−( ) L0 2 D⋅−( )⋅ H0⋅ 1728 m
3

⋅

Given

D 1 m⋅:=Guess

H0 2.676 m⋅:=Height of the three stacked waste containers:

L0 89.1 m⋅:=
Nominal length of the disposal room available

for storing waste:

W0 8.6 m⋅:=
Norminal uncompressed width of the stored

waste in the disposal room:
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A-5 Maximum and Minimum Gas Generation Factor 

fmax 0.99=fmax

mmax

Nd

⎛
⎜
⎝

⎞
⎟
⎠

pt

:=Maximum gas generation factor:

fmin 0.07=
fmin

mmin

Nd

⎛
⎜
⎝

⎞
⎟
⎠

pt

:=Minimum gas generation factor:

Nd 844060drum⋅:=Number of durms in WIPP:

mmax 1337650000mole⋅:=

mmin 92032300mole⋅:=Total moles of gas produced:

from TBM analysis results for the disturbed scenario, S3

pt 1600
mole

drum
=pt pc pm+:=Total gas production potential:

pm 550
mole

drum
⋅:=Gas production potential from microbial activity:

pc 1050
mole

drum
⋅:=Gas produdtion potential from anoxic corrosion:
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APPENDIX B: ALGEBRA FILE TO CALCULATE THE DRZ REGION 
AND THE SHEAR FAILURE REGION 

 

SAVE NODAL 

$ 

$ CONVERT STRESSES FROM PASCALS (Pa) TO MEGA-PASCALS (MPa) 

$ 

SIGXX = SIGXX/1.0E+06 

SIGYY = SIGYY/1.0E+06 

SIGZZ = SIGZZ/1.0E+06 

TAUXY = TAUXY/1.0E+06 

VONMISES = VONMISES/1.0E+06 

$ 

$ Compute Maximum and Minimum Principal Stresses  

$ 

SMAX = PMAX2(SIGXX,SIGYY,TAUXY) 

SMIN = PMIN2(SIGXX,SIGYY,TAUXY) 

$ 

$ Compute mean pressure and limit it to 1.e-06 

$ 

PRES = -( SIGXX + SIGYY + SIGZZ )/3.0 

PRE = ABS(PRES) - 1.E-6 

PRE2 = IFGZ(PRE,PRE,1.0E-6) 

$ 

$ compute damage potential in the halite 

$ 

BLOCKS 1 3 

DPOT = (VONMISES/sqrt(3.0))/(3.*ABS(PRE2)) 

MDPOT = ENVMAX(DPOT) 

$ 

$ compute drucker prager failure in the anhydirite 

$ 

BLOCKS 2 

PRE3 = IFEZ(PRE,1.0E-6,PRE) 

SF1 = 0.45*PRE3*3. + 1.35 

$ 

$ assume no tensile strength in the anhydrite 

$ 

SF2 = IFGZ(SMAX,0.,SF1) 

SF3 = IFLZ(SF2,0.,SF2) 

$ 

SF = ABS(SF3)/(VONMISES/sqrt(3.0)) 

MSF = ENVMIN(SF) 

$ 

$ Define time in terms of years 

$ 

TIME = TIME/3.1536E7 

$ 

$ Delete uneeded variables 

$ 

DELETE PRE, PRE2, PRE3, pres,SF1,SF2,SF3 

alltimes 

end 
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APPENDIX C: AWK SCRIPT TO CALCULATE THE POROSITY 
CHANGE IN THE ROOM WITH TIME 

 

# 

# This awk script computes the porosity change in the room an outputs 

# it as a function of time (Based upon SANTOS output) 

# 

BEGIN { 

  dens_ws = 1757. 

  dens_w  = 559.5 

  vol_room = 3644. 

  vol_waste = 1728. 

  mass_ws = dens_w*vol_waste 

  dens_room = mass_ws/vol_room 

  ratio = dens_room/dens_ws 

} 

{ 

  if ( $1 ~/[0-9]/ ) { 

    vol_ratio = 19.92/$2 

    poro = 1. - ratio*vol_ratio 

    print $1,poro 

  } 

} 
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APPENDIX D: FASTQ INPUT FILE 

 

TITLE 

 DISPOSAL ROOM MODEL - Modified by B.Y.Park (10/03/02) 

POINT    1     0.00    -54.19 

POINT    2    20.27    -54.19 

POINT    3     0.00     -8.63 

POINT    4    20.27     -8.63 

POINT    5     0.00     -8.63 

POINT    6    20.27     -8.63 

POINT    7     0.00     -7.77 

POINT    8    20.27     -7.77 

POINT    9     0.00     -3.96 

POINT   10     5.03     -3.96 

POINT   11     0.00     -3.96 

POINT   12     3.675    -3.96 

POINT   13     0.00     -1.28 

POINT   14     3.675    -1.28 

$POINT   15     5.03     -0.00 

$POINT   16     0.00     -0.00 

POINT   17     0.00      0.00 

POINT   18    20.27      0.00 

POINT   19     0.00      4.27 

POINT   20    20.27      4.27 

POINT   21     0.00     52.87 

POINT   22    20.27     52.87 

$POINT   23    20.27     -0.00 

POINT   24    20.27     -3.96 

POINT   25     5.03      0.00 

POINT   26     5.03     -7.77 

POINT   27     5.03      4.27 

POINT   28     5.03     -8.63 

POINT   29     0.0       2.10 

POINT   30     5.03      2.10 

POINT   31    20.27      2.10 

POINT   32     0.0       2.31 

POINT   33     5.03      2.31 

POINT   34    20.27      2.31 

LINE     1     STR    1    2    0    22   1.0 

LINE     2     STR    1    5    0    20   0.85 

LINE     3     STR    2    6    0    20   0.85 

$LINE     4     STR    5    6    0    15 

LINE     5     STR   28    6    0    15   1.1 

LINE     6     STR    5    7    0     4 

LINE     7     STR    6    8    0     4 

LINE     8     STR    7    9    0    12 

LINE     9     STR   26    8    0    15   1.1 

LINE    10     STR   24    8    0    12 

LINE    11     STR   10   24    0    15   1.1 

LINE    12     STR    9   10    0     7   0.8 

LINE    13     STR   11   12    0    10 

LINE    14     STR   12   14    0     7 

LINE    15     STR   13   14    0    10 

LINE    16     STR   11   13    0     7 

LINE    17     STR   10   25    0    12 

LINE    18     STR   24   18    0    12 

LINE    19     STR    8   18    0    12 

$LINE    20     STR   16   17    0     0 

$LINE    21     STR   16   15    0     7   0.8 

$LINE    22     STR   15   23    0    15   1.1 

$LINE    23     STR   18   23    0     0 
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LINE    24     STR   25   18    0    15   1.1 

LINE    25     STR   17   19    0     8 

LINE    26     STR   18   20    0     8 

LINE    27     STR   27   20    0    15   1.1 

$LINE    28     STR   25   20    0     8 

LINE    29     STR   19   21    0    20   1.15 

LINE    30     STR   20   22    0    20   1.15 

LINE    31     STR   21   22    0    22   1.0 

LINE    32     STR   17   25    0     7   0.8 

LINE    33     STR   19   27    0     7   0.8 

LINE    34     STR    7   26    0     7   0.8 

LINE    35     STR    5   28    0     7   0.8 

LINE    36     STR   17   29    0     4    

LINE    37     STR   18   31    0     4 

LINE    38     STR   29   30    0     7   0.8 

LINE    39     STR   30   31    0    15   1.1 

LINE    40     STR   29   32    0     1    

LINE    41     STR   31   34    0     1 

LINE    42     STR   32   33    0     7   0.8 

LINE    43     STR   33   34    0    15   1.1 

LINE    44     STR   32   19    0     4 

LINE    45     STR   34   20    0     4 

SIDE   100    11  12 

$SIDE   101    21  22 

SIDE   102    32  24 

SIDE   103    33  27 

SIDE   104    35   5 

SIDE   105    34   9 

SIDE   106    38  39 

SIDE   107    42  43 

$ NODEBC CARDS 

NODEBC   2    1 

NODEBC   1    2    6    8   16   36   40   44   29 

NODEBC   1    3    7   10   18   37   41   45   30 

$ SIDEBC CARDS 

SIDEBC  10   31 

SIDEBC  20    1   $ added 

SIDEBC 100   12    

SIDEBC 200   17 

SIDEBC 300   32 

SIDEBC 400   13 

SIDEBC 500   14 

SIDEBC 600   15 

SIDEBC 700   12   17   32 

$ REGION CARDS 

REGION   1    1   -1   -3  104   -2 

REGION   2    2  104   -7  105   -6 

REGION   3    1  105  -10  100   -8 

REGION   4    1  -11  -18  -24  -17 

$REGION   5    1  101  -23  102  -20 

REGION   6    3  102  -37  106  -36 

REGION   7    1  103  -30  -31  -29 

REGION   8    4  -13  -14  -15  -16 

REGION   9    2  106  -41  107  -40 

REGION  10    3  107  -45  103  -44 

SCHEME   P 

EXIT 
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APPENDIX E: SAMPLE SANTOS INPUT FILE FOR CLAY SEAM G 
ANALYSIS 

 
TITLE 
Structural Response of Disposal Rooms Raised 2.43 m (Gas Factor: f=0.1) 
PLANE STRAIN 
INITIAL STRESS = USER 
GRAVITY = 1 = 0. = -9.79 = 0. 
PLOT ELEMENT, STRESS, STRAIN, VONMISES, PRESSURE 
PLOT NODAL, DISPLACEMENT, RESIDUAL 
PLOT STATE, EQCS, EV 
RESIDUAL TOLERANCE = 0.5 
MAXIMUM ITERATIONS = 1000 
MAXIMUM TOLERANCE = 100. 
INTERMEDIATE PRINT = 100 
ELASTIC SOLUTION 
PREDICTOR SCALE FACTOR = 3 
AUTO STEP .015 2.592E6 NOREDUCE 1.E-5 
TIME STEP SCALE = 0.5 
HOURGLASS STIFFENING = .005 
STEP CONTROL 
500 3.1536e7 
2000 3.1536e9 
36000 3.1536e11 
END 
OUTPUT TIME 
1 3.1536e7 
1 3.1536e9 
200 3.1536e11 
END 
PLOT TIME 
10 3.1536e7 
100 3.1536e9 
120 3.1536e11 
END 
MATERIAL, 1, M-D CREEP MODEL, 2300. $ ARGILLACEOUS HALITE 
TWO MU = 24.8E9 
BULK MODULUS = 20.66E9 
A1 = 1.407E23 
Q1/R = 41.94 
N1 = 5.5 
B1 = 8.998E6 
A2 = 1.314E13 
Q2/R = 16.776 
N2 = 5.0 
B2 = 4.289E-2 
SIG0 = 20.57E6 
QLC = 5335. 
M = 3.0 
K0 = 2.47E6 
C = 2.759 
ALPHA = -14.96 
BETA = -7.738 
DELTLC = .58 
RN3 = 2. 
AMULT = .95 
END 
MATERIAL, 2, SOIL N FOAMS, 2300. $ ANHYDRITE 
TWO MU = 5.563E10 
BULK MODULUS = 8.3444E10 
A0 = 2.338e6 
A1 = 2.338 
A2 = 0. 
PRESSURE CUTOFF = 0.0 
FUNCTION ID = 0 
END 
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MATERIAL, 3, M-D CREEP MODEL, 2300. $ PURE HALITE 
TWO MU = 24.8E9 
BULK MODULUS = 20.66E9 
A1 = 8.386E22 
Q1/R = 41.94 
N1 = 5.5 
B1 = 6.086E6 
A2 = 9.672E12 
Q2/R = 16.776 
N2 = 5.0 
B2 = 3.034E-2 
SIG0 = 20.57E6 
QLC = 5335. 
M = 3.0 
K0 = 6.275E5 
C = 2.759 
ALPHA = -17.37 
BETA = -7.738 
DELTLC = .58 
RN3 = 2. 
AMULT = .95 
END 
MATERIAL, 4, SOIL N FOAMS, 752. 
TWO MU = 3.333E8 
BULK MODULUS = 2.223E8 
A0 = 1.0e6 
A1 = 3. 
A2 = 0. 
PRESSURE CUTOFF = 0. 
FUNCTION ID = 2 
END 
NO DISPLACEMENT X = 1 
NO DISPLACEMENT Y = 2 
PRESSURE, 10, 1, 13.57E6 
CONTACT SURFACE, 100, 400, 0., 1.E-3, 1.E40 
CONTACT SURFACE, 200, 500, 0., 1.E-3, 1.E4 
CONTACT SURFACE, 300, 600, 0., 1.E-3, 1.E4 
CONTACT SURFACE, 300, 200, 0., 1.E-3, 1.E4 
CONTACT SURFACE, 100, 200, 0., 1.E-3, 1.E4 
ADAPTIVE PRESSURE, 700, 1.e-6, -6.4 
FUNCTION,1 $ FUNCTION TO DEFINE PRESCRIBED PRESSURE 
0., 1. 
3.1536e11, 1. 
END 
FUNCTION,2 
0.0000, 0.0000 
0.5101, 1.5300E6 
0.6314, 2.0307E6 
0.7189, 2.5321E6 
0.7855, 3.0312E6 
0.8382, 3.5301E6 
0.8808, 4.0258E6 
0.9422, 4.9333E6 
1.1400, 12.000E6 
END 
FUNCTION = 3 
0. 0.5 
3.1536E11 1. 
END 
EXIT 
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APPENDIX F: SAMPLE USER SUBROUTINES 

F-1 Adaptive Pressure Boundary condition 

 

      SUBROUTINE FPRES( VOLUME,TIME,PGAS ) 

C .... 

C .... THE PRESSURE IS COMPUTED ON THE BASIS OF THE IDEAL GAS LAW, 

C .... PV = NRT. THE TOTAL NUMBER OF MOLES OF GAS, N (EN), PRESENT 

C .... AT ANY TIME IS DETERMINED ON THE BASIS OF A CONSTANT RATE OF GAS 

C .... GENERATION. R IS THE UNIVERSAL GAS CONSTANT AND THETA IS THE ROOM 

C .... TEMPERATURE, 300 K. V IS THE CURRENT VOLUME OF THE ROOM. THE VOLUME 

C .... MUST BE CORRECTED BY MULTIPLYING BY 2 OR 4 TO ACCOUNT FOR THE USE OF 

C .... HALF OR QUARTER-SYMMETRY MODELS. THE VOLUME MUST ALSO BE MULTIPLIED 

C .... BY A FACTOR TO ACCOUNT FOR 3D LENGTH. 

C .... 

C 

      INCLUDE 'precision.blk' 

C 

      R = 8.314 

      THETA = 300. 

C 

      IF( TIME .LT. 1.7325E10 )THEN 

         PVALUE = 0.0 

         RATE = 4.32E-4 

         TSTAR = 0.0 

      ELSE IF( TIME .LT. 3.3075E10 )THEN 

         PVALUE = 7.48E6 

         RATE = 2.16E-4 

         TSTAR = 1.7325E10 

      ELSE 

         PVALUE = 1.0886e7 

         RATE = 0.0 

         TSTAR = 0.0 

      END IF 

C 

C .... CORRECT VOLUME AT THIS TIME TO GET VOLUME OF VOIDS 

C 

      EN = PVALUE + RATE * ( TIME - TSTAR ) 

C      SCALE = 2. 

      SCALE = 0.1 

      SYMFAC = 2. 

      XLENG = 91.44 

C 

C .... THIS MODIFICATION REMOVES THE BACKFILL FROM VSOLID 

C 

C VSOLID FOR WASTE AND DRUMS ONLY 551.2 

      VSOLID = 551.2 

      VOLUME = SYMFAC * VOLUME * XLENG - VSOLID 

      IF( VOLUME .LE. 0.0 )VOLUME = 1. 

C 

      PGAS = SCALE * EN * R * THETA / VOLUME 

C 

      RETURN 

      END  
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F-2 Initial Stress State 

 
 

      SUBROUTINE INITST( SIG,COORD,LINK,DATMAT,KONMAT,SCREL ) 

C 

C ********************************************************************** 

C 

C   DESCRIPTION:  

C     THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS 

C 

C   FORMAL PARAMETERS:  

C     SIG      REAL        ELEMENT STRESS ARRAY WHICH MUST BE RETURNED 

C                          WITH THE REQUIRED STRESS VALUES 

C     COORD    REAL        GLOBAL NODAL COORDINATE ARRAY 

C     LINK     INTEGER     CONNECTIVITY ARRAY 

C     DATMAT   REAL        MATERIAL PROPERTIES ARRAY 

C     KONMAT   INTEGER     MATERIAL PROPERTIES INTEGER ARRAY 

C 

C   CALLED BY: INIT 

C 

C ********************************************************************** 

C 

      INCLUDE 'precision.blk' 

      INCLUDE 'params.blk' 

      INCLUDE 'psize.blk' 

      INCLUDE 'contrl.blk' 

      INCLUDE 'bsize.blk' 

      INCLUDE 'timer.blk' 

C 

      DIMENSION LINK(NELNS,NUMEL),KONMAT(10,NEMBLK),COORD(NNOD,NSPC), 

     *          SIG(NSYMM,NUMEL),DATMAT(MCONS,*),SCREL(NEBLK,*) 

C      

      DO 1000 I = 1,NEMBLK 

         MATID = KONMAT(1,I) 

         MKIND = KONMAT(2,I) 

         ISTRT = KONMAT(3,I) 

         IEND = KONMAT(4,I) 

            DO 500 J = ISTRT,IEND 

               II = LINK( 1,J ) 

               JJ = LINK( 2,J ) 

               KK = LINK( 3,J ) 

               LL = LINK( 4,J ) 

               ZAVG = 0.25 * ( COORD(II,2) + COORD(JJ,2) + COORD(KK,2) + 

     *              COORD(LL,2) ) 

               STRESS = - 2300. * 9.79 * ( 655. - ZAVG )                

               IF( MATID .EQ. 4 )THEN 

                  STRESS = 0. 

               END IF 

               SIG(1,J) = STRESS 

               SIG(2,J) = STRESS 

               SIG(3,J) = STRESS 

               SIG(4,J) = 0.0 

                

  500       CONTINUE 

 1000 CONTINUE 

      RETURN 

      END       
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