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Abstract. Bayesian belief nets (BNs) are often used for classification tasks—typically to return the most likely
class label for each specified instance. Many BN-learners, however, attempt to find the BN that maximizes a
different objective function—viz., likelihood, rather than classification accuracy—typically by first learning an
appropriate graphical structure, then finding the parameters for that structure that maximize the likelihood of the
data. As these parameters may not maximize the classification accuracy, “discriminative parameter learners” follow
the alternative approach of seeking the parameters that maximize conditional likelihood (CL), over the distribution
of instances the BN will have to classify. This paper first formally specifies this task, shows how it extends standard
logistic regression, and analyzes its inherent sample and computational complexity. We then present a general
algorithm for this task, ELR, that applies to arbitrary BN structures and that works effectively even when given
incomplete training data. Unfortunately, ELR is not guaranteed to find the parameters that optimize conditional
likelihood; moreover, even the optimal-CL parameters need not have minimal classification error. This paper
therefore presents empirical evidence that ELR produces effective classifiers, often superior to the ones produced
by the standard “generative” algorithms, especially in common situations where the given BN-structure is incorrect.
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1. Introduction

Many tasks—including fault diagnosis, pattern recognition and forecasting—can be viewed
as classification, as each requires assigning the class (“label”) to a given instance, which
is specified by a set of attributes. An increasing number of projects are using “(Bayesian)
belief nets” (B N ) to represent the underlying distribution, and hence the stochastic mapping
from evidence to response.

When this distribution is not known a priori, we can try to learn the model. Our goal is an
accurate BN—i.e., one that returns the correct answer as often as possible. While a perfect
model of the distribution will perform optimally for any possible query, learners with limited
training data are unlikely to produce such a model; moreover, optimality may be impossible
for learners constrained to a restricted range of possible distributions that excludes the
correct one (e.g., when only considering parameterizations of a given B N -structure).

Here, it makes sense to find the parameters that do well with respect to the queries posed.
This “discriminative learning” task differs from the “generative learning” that is used to
learn an overall model of the distribution (Ripley, 1996). Following standard practice, our
discriminative learner will seek the parameters that maximize the log conditional likelihood
(LCL) over the data, rather than simple likehood—that is, given the data S = {〈ci , ei 〉} (each
class label C =ci associated with evidence E=ei ), a discriminative learner will try to find
parameters � that maximize

L̂CL
(S)

(�) = 1

|S|
∑

〈ci ,ei 〉∈S

log P�(ci | ei ) (1)

rather than the ones that maximize
∑

〈ci ,ei 〉∈S log P�(ci , ei ) (Ripley, 1996).
Optimizing the LCL of the root node (given the other attributes) of a naı̈ve-bayes structure

can be formulated as a standard logistic regression problem (McCullagh & Nelder, 1989;
Jordan, 1995). General belief nets extend Naı̈ve-bayes-structures by permitting additional
dependencies among the attributes. This paper provides a general discriminative learning
tool, ELR, that can learn the parameters for an arbitrary structure, completing the analogy

Naı̈ve-bayes : General Belief Net :: Logistic Regression : ELR . (2)

Moreover, while most algorithms for learning logistic regression functions require complete
training data, the ELR algorithm can accept incomplete data. We also present empirical
evidence, from a large number of datasets, to demonstrate that ELR works effectively.

Section 2 provides the foundations, overviewing belief nets then defining our task: dis-
criminatively learning the parameters for a fixed belief net structure, G, that maximize
LCL. Section 3 formally analyses this task, providing both sample and computational com-
plexity, and noting how these results compare with corresponding results for generative
learning. Seeing that our task is NP-hard in general, Section 4 presents a gradient-descent
discriminative parameter learning algorithm for general BNs, ELR. Section 5 reports em-
pirical results that demonstrate that our ELR produces a classifier that is often superior to
ones produced by standard learning algorithms (which maximize likelihood), over a vari-
ety of situations, involving both complete and incomplete data. Section 6 provides a brief
survey of the relevant literature. The Electronic Supplementary Material (ESM) attachment
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(http://www.cs.ualberta.ca/∼greiner/ELR) contains auxiliary material, including proofs of
some of the claims appearing in this text, as well as more information about the experi-
ments shown in Section 5, and descriptions of yet other empirical studies. Below we will
let “ESM(x) refer to Appendix x of this auxiliary material.

2. Framework

We assume there is a stationary underlying distribution P(·) over N (discrete) random
variables V = {V1, . . . , Vn}. For example, perhaps V1 is the “Cancer” random variable,
whose value ranges over {true, false}; V2 is “Gender” ∈ {male, female} , V3 is “Age”
∈ {0, . . . , 100}, etc. We refer to this joint distribution as the “underlying distribution” or
the “event distribution”.

We can encode this which we encode as a “(Bayesian) belief net” (BN)—a directed acyclic
graph B = 〈V, A, �〉, whose nodes V represent variables, and whose arcs A represent
dependencies. Each node Di ∈ V also includes a conditional-probability-table (CPtable)
θi ∈ � that specifies how Di ’s values depend (stochastically) on the values of its immediate
parents. In particular, given a node D ∈ V with immediate parents F ⊂ V , the parameter
θd|f represents the network’s term for P(D =d | F= f) (Pearl, 1988).

The user interacts with the belief net by asking queries, each of the form “What is P(C =
c | E = e)?”—e.g., What is P(Cancer = true | Gender = male, Smoke = true)?—
where C ∈ V is a single “query variable”, E ⊂ V is the subset of “evidence variables”, and
c (resp., e) is a legal assignment to C (resp., E). This paper focuses on the case where all
queries involve the same variable; e.g., all queries ask about Cancer. Moreover, we will
follow standard practice by assuming the distribution of conditioning events matches the
underlying distribution. This means there is a single distribution from which we can draw
labeled instances, which each correspond to a “labeled query”.1 Note this corresponds to
the data sample used by standard learning algorithms.

Given any unlabeled instance {Ei = ei }, the belief net2 � will produce a distribu-
tion over the values of the query variable; perhaps P�( C = true | E = e ) = 0.3 and
P�( C = false | E = e ) = 0.7. In general, the associated H� classifier system will
then return the value H�(e) = argmaxc{P�( C = c | E = e )} with the largest posterior
probability—here return H�(E = e) = false as P�( Cancer = false | E = e ) >

P�( Cancer = true | E = e ).
A good belief net classifier is one that produces the appropriate answers to these unlabeled

queries. We will use “classification error” (aka “0/1” loss) to evaluate the resulting �-based
classifier H�

err(�) =
∑

〈e,c〉
P(e , c) × I(H�(e) �= c) (3)

where I(a �= b) = 1 if a �= b, and = 0 otherwise.
Our goal is a belief net �∗ that minimizes this score, with respect to the true distribution

P(·). While we do not know this distribution a priori, we can use a sample drawn from this
distribution, to help determine which belief net is optimal. This paper focuses on the task
of learning the optimal CPtable � for a given BN-structure G = 〈V, A〉.
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Conditional likelihood. In earlier work (Zhou, 2002, Sections 3.1.3 and 3.2.2), we com-
pared learners that optimized err(�) versus ones that optimized the “log conditional likeli-
hood” of a belief net �

LCLP (�) =
∑

〈e,c〉
P(e , c) × log(P�( c | e )) (4)

(as approximated by Eq. (1)), and found no significant difference in classification perfor-
mance; this is consistent with (McCullagh & Nelder, 1989; Friedman, Geiger, & Goldszmidt,
1997; Binder et al., 1997). Our work therefore focuses on learners that attempt to maximize
LCLP (�).

While Eq. (1)’s L̂CL
(S)

(�) formula closely resembles the (empirical) “log likelihood”
function

L̂L
(S)

(�) = 1

|S|
∑

〈e,c〉 ∈ S

log(P�(c, e)) (5)

used by many BN-learning algorithms, there are some critical differences. Of course,

L̂L
(S)

(�) = 1

|S|

[
∑

〈c,e〉 ∈ S

log(P�( c | e )) +
∑

〈c,e〉 ∈ S

log(P�(e))

]

,

where the first term resembles our L̂CL(·) score, which related to how well our network will
answer the relevant queries, while the second term is irrelevant to our task (Friedman, Geiger,
& Goldszmidt, 1997). This means a BN �α that does poorly wrt the first “L̂CL(·)-like” term
may be preferred to a �β that does better—i.e., it is possible that L̂L(�α) > L̂L(�β), while
L̂CL(�α) < L̂CL(�β). (Section 5.3 provides other arguments explaining why our L̂CL(·)-
based approach may work better than the L̂L(·)-based approaches; and Section 6 surveys
other relevant literature.)

3. Theoretical analysis

How many “labeled instances” are enough—i.e., given any values ε, δ > 0, how many
labeled instances are needed to insure that, with probability at least 1 − δ, an algorithm can
produce a classifier that is within ε of optimal? While we believe there are comprehensive
general bounds, our specific results require the relatively benign technical restriction that
all CPtable entries must be bounded away from 0. That is, for any γ > 0, let

BN��γ G = {� ∈ [0, 1]K | ∀θd|f ∈ �, θd|f ≥ γ } (6)

be the subset of parameters (appropriate for the K -parameter belief net structure G) whose
CPtable values are all at least γ .3 We now restrict our attention to these parameters and in
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particular, let

�∗
G,��γ = argmax

{
LCLP(�) | � ∈ BN��γ (G)

}
(7)

be a parameter setting with optimal score among BN��γ (G) with respect to the true distri-
bution P(·).

Theorem 1 (Appendix A). Let G be any belief net structure with K CPtable entries
� = {θdi |fi }i=1..K , and let �̂ ∈ BN��γ (G) be the BN in BN��γ (G) that has maximum
empirical log conditional likelihood score (Eq. (1)) with respect to a sample of

18

(
N ln γ

ε

)2[

ln
2

δ
+ K ln

6 K

γ ε

]

= O

(
N 2 K

ε2
ln

(
K

εδ

)

ln3

(
1

γ

) )

. (8)

labeled queries drawn from P(·). Then, with probability at least 1 − δ, �̂ will be no more
than ε worse than �∗

G,��γ —i.e.,

P(LCLP (�̂) ≤ LCLP (�∗
G,��γ ) − ε) ≤ δ.

A virtually identical proof shows that this same result holds when dealing with another
approximation to the 0/1 error, err(�), viz.,

MSE(�) =
∑

〈e,c〉
P(e , c) × [P�(c | e) − P(c | e)]2 (9)

rather than LCL(·).
For comparison, Dasgupta (1997, Section 5) proves that

O

(
N 2 K

ε2
ln

(
K

ε δ

)

ln3(N ) ln2

(
1

ε

))

(10)

complete tuples4 are sufficient to learn the parameters to a fixed structure that are with ε

of the optimal likelihood (Eq. (5)). While comparing upper bounds is only suggestive, it is
interesting to note that, ignoring the ln�(·) terms for � > 1, these bounds are asymptotically
identical.

One asymmetry is that only our Eq. (8) bound includes the γ term, which corresponds
to the smallest CPtable entry allowed. While Dasgupta (1997) (following Abe, Takeuchi,
& Warmuth, 1991) can avoid this term by “tilting” the empirical distribution, this trick
does not apply in our discriminative task: Our task inherently involves computing condi-
tional likelihood, which requires dividing by some CPtable values, which is problematic
when these values are near 0. This observation also means our proof is not an immediate
application of the standard PAC-learning approaches. Of course, our sample complexity
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remains polynomial in the size (N , K ) of the belief net even if this γ is exponentially small,
γ = O(1/2N ).

Note finally that the parameters that optimize (or nearly optimize) likelihood will not
necessarily optimize our objective of conditional likelihood; this means Eq. (10) describes
the convergence to parameters that are typically inferior to the ones associated with Eq. (1),
especially when the structure is wrong; see Ng and Jordan (2001).

The second question is computational: How hard is it to find these best parameters values,
given this sufficiently large sample. Here, the news is mixed.

On the positive side, Roos et al. (2005) show this task corresponds to a convex opti-
mization problem when the data is complete and the structure G satisfies certain specified
properties; this implies a polynomial algorithm can find the values of the CPtables of
G whose (empirical) conditional likelihood (Eq. (1)) is within ε of optimal (Nesterov &
Nemirovskii, 1994; Boyd & Vandenberghe, 2004). They show that these properties hold for
Naı̈ve-bayes and TAN structures (see Section 5).

Unfortunately. . .

Theorem 2. It is NP-hard to find the values for the CPtables of a fixed BN-structure
that produce the largest (empirical) conditional likelihood (Eq. (1)) for a given incomplete
sample.5

We do not know the complexity of this task for arbitrary structures, given complete data.

4. ELR learning algorithm

Given the intractability of computing the optimal CPtable entries in general, we defined a
simple gradient-ascent algorithm, ELR, that attempts to improve the empirical score L̂CL(�)
by changing the values of each CPtable entry θd|f. (Of course, this will only find, at best,
a local optimum.) To incorporate the constraints θd|f ≥ 0 and

∑

d θd|f = 1, we used the
different set of parameters, “βd|f”, satisfying

θd|f = eβd|f
∑

d ′ eβd′ |f
. (11)

As the βi s sweep over the reals, the corresponding θdi |f’s will satisfy the appropriate con-
straints. (In the naı̈ve-bayes case, this corresponds to what many logistic regression al-
gorithms would do, albeit with different parameters (Jordan, 1995): Find α, χ that opti-
mize Pα,χ (C = c | E = e) = eαc+χc·e/

∑

j eα j +χj·e.6 Recall that our goal is a more general
algorithm—one that can deal with arbitrary structures; see Eq. (2).

Like all such algorithms, ELR is basically

Initialize β (0)

For k = 1..m
β (k+1) := β (k) + α(k) × d(k)

(12)
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where β(k) represents the set of parameters at iteration k. In a simple gradient ascent ap-
proach, we would set d(k) to be the total derivative with respect to the given set of labeled

queries, ∇ L̂C L = 〈 ∂L̂CL
(S)

(�)
∂βd|f

〉d,f, where each element of the vector is the sum of the indi-
vidual derivatives from each labeled training case 〈e; c〉:

∂ L̂CL
(S)

(�)

∂ βd|f
=

∑

〈e,c〉∈S

∂ L̂CL
(〈e,c〉)

(�)

∂ βd|f
.

Proposition 3 (Greiner, Grove, & Schuurmans, 1997; Darwiche, 2000; ESM(A)). For
any labeled training instance 〈e, c〉 and each “softmax” parameter βd|f,

∂ L̂CL
(〈e,c〉)

(�)〉
∂βd|f

= [P�(d, f | e, c) − P�(d, f | e)] − θd|f [P�(f | c, e) − P�(f | e)] .

Notice this expression is well-defined for any set of evidence variables E—which can be
all “non-query” variables (corresponding to a complete data tuple), or any subset, including
the empty E = {}.

To work effectively, ELR incorporates four instantiations/modifications to the basic gra-
dient ascent idea, dealing with

1. the initial values β(0) (“plug-in parameters”),
2. the direction of the modification d(k) (conjugate gradient),
3. the magnitude of the change α(k) (line search) and
4. the stopping criteria m (“cross tuning”).

Minka (2001) has shown that the middle two ideas, conjugate gradient and line-search
(Press et al., 2002), are effective for the standard logistic regression task.

Begin with plug-in parameters. We must first initialize the parameters, β (0). One com-
mon approach is to set β(0) to small, randomly selected, values; another is to begin with the
values specified by the generative approach—i.e., using frequency estimates (OFE; Eq. (13))
in the complete data case, and a simple variant otherwise (see Section 5.1.3). Our empir-
ical evidence shows that this second approach works better, especially for small samples.
These easy-to-compute generative starting values are often used to initialize parameters for
discriminative tasks, and called “plug-in parameters” (Ripley, 1996).

Conjugate gradient. Standard gradient ascent algorithms may require a great many it-
erations, especially for functions that have long, narrow valley structures. The conjugate
gradient method addresses this problem by descending along conjugate directions, rather
than simply the local gradient. As this means that the directions that have already been
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optimized, stay optimized, this method often requires far fewer steps uphill to reach the
local optimum (Hagan, Demuth, & Beale, 1996).

In particular, ELR uses the Polak-Rebiere formula to update its search direction. The
initial search direction is given by:

d(0) := ∇ L̂C L (0)

On subsequent iterations,

d(k) := ∇ L̂C L (k) −
(∇ L̂C L (k) − ∇ L̂C L (k−1)

) · ∇ L̂C L (k)

∇ L̂C L (k−1) · ∇ L̂C L (k−1)
d(k−1)

where the “·” is the vector dot-product. Hence, the current update direction is formed by
“subtracting off” the previous direction from the current derivative.

Line search. ELR will ascend in the d(k) direction; the next challenge is deciding how far
to move—i.e., in computing the α(k) ∈ �+ within (12).

The good news is, as β = β (k) and d = d(k) are fixed, this is a one-dimensional search: find

the α∗ that maximizes f (α) = L̂CL
(S)

(β + α×d). ELR therefore uses a standard technique,
Brent’s iterative line search procedure (a hybrid combination of the linear Golden Section
search (Hagan, Demuth, & Beale, 1996) and a quadratic interpolation), which has proven to
be very effective at finding the optimal value for α(k) (Bishop, 1998). In essense, this method
first finds three αi values, and computes the associated function values 〈〈αi , f (αi 〉)〉i=1,2,3.
It then assumes the f (·) function is (locally) quadratic, and so fits this trio of points to a
second degree polynomial. It then finds the α∗ value that minimizes this quadratic, replaces
one of the three original αi values with this 〈α∗, f (α∗)〉 pair, and iterates using the new trio
of points. See Bishop (1998) for details.

Cross tuning (stopping time). The final issue is deciding when to stop; i.e., determining
the value of m within (12). A naı̈ve algorithm would just compute the training-set error
(Eq. (3)) at each iteration, and stop when that error measure appears at a local optimum—
i.e., when the error appears to be getting larger. The graph in Figure 1 shows both training-set
and test-set error on a particular dataset at each iteration. If we used this simple approach,
we would stop on the third iteration; the generalization error shows that these parameters
are very bad—in fact, they seem almost the worst values!

To avoid this, we use a variant of cross validation, which we call “cross tuning”, to
estimate the optimal number of iterations. Here, we divide the training data into � = 5
partitions, then for each fold, run the gradient descent for remaining 4/5 of the data, but
evaluating the quality of the result (on each iteration) on the fold. (This produces a graph
like the “Generalization Error” line in Figure 1.) We then determine, for each fold, when
we should have stopped—here, it would be on k = 5, as that is the global optimum for this
fold. We then set m to be the median values over these � folds. When using all of the data
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Figure 1. Comparing Training-Set Error with Test-Set Error, as function of Iteration.

to produce the final {βd|f} values, we iterate exactly m times. ESM(B) presents empirical
evidence that cross-tuning is important, especially for complex models.

5. Empirical studies

The ELR algorithm takes, as arguments, a BN-structure G = 〈V, A〉 and a dataset of labeled
queries (aka instances) S = {〈ei , ci 〉}i , and returns a value for each CPtable parameter θd|f.
To explore its effectiveness, we compared the err(·) performance of the resulting �ELR

parameters against the results of other algorithms that similarly learn CPtable values for a
given structure.

We say a data sample is “complete” if each instance is complete (see Note 4); otherwise
it is incomplete. When the data is complete, we compare ELR to the standard “observed
frequency estimate” (OFE) approach, which is known to produce the parameters that maxi-
mize likelihood (Eq. (5)) for a given structure (Cooper & Herskovits, 1992). For example,
if 75 of the 100 C = 1 instances have X3 = 0, then OFE sets

θX3=0|C=1 = #(X3 = 0, C = 1)

#(C = 1)
= 75

100
(13)

(Some versions use a Laplacian correction to avoid the problems caused by 0 probability
events.) When the data is incomplete, we compare ELR to the standard Expectation Max-
imization algorithm EM (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995; Heckerman,
1998) and to APN (Binder et al., 1997), which ascends to parameter values whose likelihood
is locally optimal.7

Traditional wisdom holds that discriminative learning (ELR) is most relevant (i.e., better
than generative learning: OFE, APN, EM) when this underlying model G = 〈V, A〉 is “wrong”,
that is, not an I-map of the true distribution T —which here means the graph structure does
not include some essential arcs (Pearl, 1988). The situation, which we denote “G < T ”,
is fairly common as many learners consider only structures as simple as naı̈ve-bayes, or
the class of TAN structures (defined below), which are typically much simpler than T .8
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Section 5.1 deals with this situation, considering both the complete and incomplete data
cases. Section 5.2 then considers another standard situation: where we employ a structure-
learning algorithm to produce a structure that is similar to the truth; i.e., where G ≈ T .
Here, we use the POWERCONSTRUCTOR system (Cheng et al., 2002; Cheng & Greiner,
1999) for the first step (to learn the structure), then compare the relative effectiveness of
algorithms for finding parameters for this structure. Finally, Section 5.3 summarizes all of
these empirical results.

Notation. The notation “NB+ ELR” will refer to the NB structure, whose parameters are
learned using ELR; in general, we will use x + y to refer to the system produced when the
y algorithm is used to produce the parameter for the x structure. Below we will compare
various pairs of learners, in each case over a common dataset; we will therefore use a one-
sided paired t-test (Mitchell, 1997). When this result is significant at the ρ < 0.05 level,
we will write α ⇐(p<ρ) β—e.g., we will soon see NB+ ELR⇐(p<0.005) NB+ OFE. For values
larger than 0.05, we will use the notation α ←(p<ρ) β. (That is, we regard p < 0.05 as the
cut-off for statistical significance.) Note the arrow points to the learner that appears to be
better.9

While our main emphasis is comparing x+ ELR to x+ OFE (and to x+ APN and x+ EM)
for various structures x , where relevant we will also compare across structure classes; e.g.,
comparing x+ ELR to z+ ELR for different structures x and z.

5.1. Model is simpler than the truth (G < T )

Section 5.1.1 (resp., Section 5.1.2) compares algorithms for learning the parameters for a
naı̈ve-bayes model (resp., a TAN model) given complete data; Section 5.1.3 then considers
learning these models given incomplete data.10

5.1.1. Naı̈ve-bayes—Complete, real world data. Our first experiments deal with the sim-
plest situation: learning the Naı̈ve-bayes parameters from complete data. Recall that the
Naı̈ve-bayes structure requires that the attributes are independent given the class label; see
Figure 2(a).

We compared the relative effectiveness of ELR with various other classifiers, over the
same 25 datasets that Friedman, Geiger, & Goldszmidt (1997) used for their comparisons:
23 from UCIrvine repository (Blake & Merz, 2000), plus “MOFN-3-7-10” and “CORRAL”,

Figure 2. (a) Naı̈ve-bayes structure. (b) TAN structure (Friedman, Geiger, & Goldszmidt, 1997, Figure 3).
(c) Arbitrary GBN structure. (Note: all figures are numbered (a), (b), . . . from left to right.)
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which were developed by Kohavi and John (1997) to study feature selection; see ESM(C;
Table II) which also specifies how we computed our accuracy values—based on 5-fold cross
validation for small datasets, and the holdout method for large datasets (Kohavi, 1995). To
deal with continuous variables, we implemented supervised entropy discretization (Fayyad
and Irani, 1993). ESM(C; Table III) succinctly summarizes the results.

We use the CHESS dataset (36 binary or ternary attributes) to illustrate the basic behaviour
of the algorithms. Figure 3(a) shows the performance, on this dataset, of our NB+ ELR
(a.k.a. “Naı̈ve-bayes structure + ELR instantiation”) system, versus the “standard”NB+ OFE,
which uses OFE to instantiate the parameters. We see that ELR is consistently more accurate
than OFE, for any size training sample. We also see how quickly ELR converges to the best
performance.

Figure 4(a) provides a more comprehensive comparison, across all 25 datasets. (Each
point below the x = y line is a dataset where NB+ ELRwas better than the other approach—
here NB+ OFE. The lines also express the 1 standard-deviation error bars in each
dimension.11) As suggested by this plot, NB+ ELR is significantly better than NB+ OFE
at the p < 0.005 level.
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Figure 3. CHESS domain: (a) ELR vs OFE, complete data, structure is “incorrect” (naı̈ve-bayes); (b) ELR vs
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Figure 5. Complete data: Comparing TAN+ ELR vs (a) NB+ ELR and (b) TAN+ OFE.

5.1.2. TAN—Complete, real world data. We next considered TAN (“tree augmented naı̈ve-
bayes”) structures (Friedman, Geiger, & Goldszmidt, 1997), which include a link from the
classification node down to each attribute and, if we ignore those class-to-attribute links, the
remaining links, connecting attributes to each other, form a tree; see Figure 2(b). (Hence
this representation allows each attribute to have at most one “attribute parent”, and so
this class of structures strictly generalize Naı̈ve-bayes.) Friedman, Geiger, and Goldszmidt
(1997) provide an efficient algorithm for learning such TAN structures given complete data,
based on Chow and Liu (1968): first compute the mutual information between each pair of
attributes, conditioned on the class variable, then find the minimum-weighted spanning tree
within this complete graph of the attributes. (Each mutual information quantity is based on
the empirical sample.) They prove that the resulting structure maximizes the likelihood of
the data, over all possible TAN structures—n.b., this is optimizing a generative measure.

Figure 4(b) compares NB+ ELR to TAN+ OFE. We see that ELR, even when handicapped
with the simple NB structure, performs about as well as OFE on TAN structures. Of course,
the limitations of the NB structure may explain the poor performance of NB+ ELR on some
data. For example, in the CORRAL dataset, as the class is a function of four interrelated
attributes, one must connect these attributes to predict the class. As Naı̈ve-bayes permits no
such connection, Naı̈ve-bayes-based classifiers performed poorly on this data. Of course, as
TAN allows more expressive structures, it has a significant advantage here. It is interesting
to note that our NB+ ELR is still comparable to TAN+ OFE, in general.

Would we do yet better by using ELR to instantiate TAN structures? While Figure 5(a)
suggests that TAN+ ELR is slightly better than NB+ ELR, this is not significant. However,
Figure 5(b) shows that TAN+ ELR does consistently better than TAN+ OFE—at a p < 0.025
level. We found that TAN+ ELR did perfectly on the the CORRAL dataset, which NB+ ELR
found problematic.

5.1.3. NB, TAN—Incomplete, real world data. All of the above studies used complete
data. We next explored how well ELR could instantiate the Naı̈ve-bayes structure, using
incomplete data.

Here, we used the datasets investigated above, but modified by randomly removing the
value of each attribute, within each instance, with probability 0.25. (Hence, this data is
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Figure 6. Incomplete data: Comparing NB+ ELR vs (a) NB+ APN and (b) NB+ EM.

“missing completely at random”, MCAR (Little & Rubin, 1987).) We then compared ELR
to the standard “missing-data” learning algorithms, APN and EM. In each case—for ELR, APN
and EM—we initialize the parameters using the obvious variant of OFE that considers, for
βd|f, only the records that include values for the relevant node and all of its parents {D}∪F.

Here, we first learned the parameters for the Naı̈ve-bayes structure; Figure 3(b) shows
the learning curve for the CHESS domain, comparing ELR to APN and EM. We see that ELR
does better for essentially every sample size. We also compared these algorithms over all
of the 25 datasets; see Figures 6(a) and 6(b) for ELR vs APN and ELR vs EM, respectively. As
shown, ELR does consistently better—in each case, at the p < 0.025 level.

We next tried to learn the parameters for a TAN structure. Recall the standard TAN-
learning algorithm uses the mutual information between each pair of attributes, conditioned
on the class variable. This is straightforward to compute when given complete information.
Here, given incomplete data, we approximate mutual information between attributes Ai

and A j by simply ignoring the records that do not have values for both of these attributes.
Figures 7(a) and 7(b) compare TAN+ ELR to TAN+ APN and to TAN+ EM. We see that these
systems are roughly equivalent: while TAN+ ELR appears slightly better than TAN+ EM, this
is not significant (only at p < 0.25); similarly there is no significant difference between
TAN+ ELR and TAN+ APN. Finally, we compared NB+ ELR to TAN+ ELR (Figure 7(c)), but
found no significant difference here either.
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ESM(C; Table IV) presents all of our empirical results related to missing data. We also
compared these parameter learners on 20 other UCIrvine datasets that are already missing
datapoints. Our results here were consistent: NB+ ELRwas significantly better than NB+ EM
andNB+ APN–NB+ ELR⇐(p<0.0056) NB+ EM,NB+ ELR⇐(p<0.026) NB+ APN—but there was
no statistical separation difference between TAN+ ELR and either TAN+ EM or TAN+ APN—
TAN+ ELR←(p<0.083) TAN+ EM and TAN+ ELR←(p<0.078) TAN+ APN. We provide further
details in ESM(D).

5.2. Model approximates the truth (G ≈ T )

The previous section considered learners that were constrained to consider only some limited
class of structures, such as NB or TAN. Other learners are allowed to first learn an arbitrary
BN structure—seeking one that matches the underlying distribution—before learning the
parameters of that structure, using ELR or OFE, etc. There are a number of algorithms
for learning these BN structures, each of which will typically produce a structure that
is close to correct. This paper considers the POWERCONSTRUCTOR system (Cheng et al.,
2002; Cheng & Greiner, 1999), which uses mutual information tests to construct BN-
structures from complete tuples. This algorithm is guaranteed to converge to the correct
belief net structure, given enough data (and some other relatively benign assumptions). We
will refer to the resulting POWERCONSTRUCTOR-produced structure as a “General Belief
Net”, or GBN; see Figure 2(c). This section explores the effectiveness of beginning with such
learned structures.

For each of the 25 datasets, we first used POWERCONSTRUCTOR to produce a structure
for the given dataset, given all available (non–hold-out) data; we then asked ELR (resp.,
OFE) to find best parameters for this (presumably near optimal) structure using the same
non-hold-out data, and observed how well the resulting system performs on the held-out
data.

Section 5.2.1 compares GBN+ ELR to GBN+ OFE; Section 5.2.2 compares GBN+ ELR to
simpler models instantiated using ELR; and Section 5.2.3 compares the OFE-instantiation of
GBN to ELR-instantiations of simpler models. Section 5.2.4 investigates different algorithms
for learning parameters (for these GBN structures) from incomplete data.

5.2.1. GBN+ ELR vs GBN+ OFE. Figure 8(a) shows that GBN+ ELR is only insignificantly
better than GBN+ OFE: GBN+ ELR←(p<0.2) GBN+ OFE. Hence, when considering structures
that match the underlying distribution, there appears to be little difference between OFE and
ELR.

5.2.2. GBN+ ELR vs NB+ ELR, TAN+ ELR. The main purpose of our studies was to see
how x+ ELR compares to x+ OFE (and to x+ EM/OFE), for various classes of commonly-
used structures x . As a side issue, we also considered some cross-structure comparisons.
In particular, given that POWERCONSTRUCTOR had no prior constraints on the structures
it can produce, it has the potential of producing classifiers superior to the ones pro-
duced by the constrained NB or TAN systems. However, when we compared GBN+ ELR
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Figure 8. Comparing GBN+ ELR vs (a) GBN+ OFE;(b) NB+ ELR and (c) TAN+ ELR.

to NB+ ELR (Figure 8(b)), and to TAN+ ELR (Figure 8(c)), we found that the simpler struc-
tures actually produced better classifiers than GBN did—NB+ ELR⇐(p<0.01) GBN+ ELR and
TAN+ ELR⇐(p<0.008) GBN+ ELR.

There are several possible reasons for this. First, the optimization task for GBN (unlike the
ones for NB and TAN) is not convex, meaning it could have local, non-global maxima (Roos
et al., 2005). The fact that GBN+ ELR appears comparable to GBN+ OFE suggests that this
is not a major issue.

Another possibility is that the GBN structure might not be good for the classification task:
POWERCONSTRUCTOR is seeking a good model of the underlying distribution, but might
fail. (Recall its guarantee is asymptotic, and we have only a finite sample). Moreover, even
if it obtained a good approximation to the underlying distribution, this might not produce
a good classifier; see the arguments presented in Section 2.12 (Of course, as our goal is
to compare x + ELR to x + OFE over commonly used classes x , it does not really matter
whether POWERCONSTRUCTOR provided a good structure x or not.)

5.2.3. GBN+ OFE vs NB+ ELR, TAN+ ELR. One approach to learning a good belief net
(classifier) is to first find a good structure, then instantiate this structure using the trivial OFE
algorithm. The first step can be hard—e.g., NP-hard if seeking the structure that maximizes
the BIC score (Chickering, Geiger, & Heckerman, 1994).13 Another approach, suggested
by our analysis, is to use a simple structure, such as NB or TAN, but then spend resources
finding the best parameters, using ELR.

We therefore compared GBN+ OFE to NB+ ELR (Figure 9) and found NB+ ELR to be sig-
nificantly better: NB+ ELR⇐(p<0.03) GBN+ OFE. Moreover, TAN+ ELR is yet stronger: TAN
+ ELR⇐(p<0.008) GBN+ OFE.

Table 1 presents a succinct summary of the results on the UCI data, over all 25 datasets.
(Note this repeats many of the results from the previous sections.) The rows and columns
are ordered based on our expectation that most of the entries would be ⇑ ’s or ↑ ’s—i.e.,
the learners are arranged in the order of (anticipated) decreasing performance. We see some
exceptions, but only when we cross structure classes; see above discussion.

5.2.4. GBN+x vs other classifiers, with incomplete data. This section investigates the
effectiveness of learning the parameters for GBN structures, from incomplete training data.
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Table 1. Comparison of Different Parameter Learners—Complete (UCI) Data; all 25 datasets.

GBN+ ELR GBN+ OFE TAN+ ELR TAN+ OFE NB+ ELR

GBN+ OFE ↑ (0.2)

TAN+ ELR ⇐ (0.008) ⇐ (0.008)

TAN+ OFE ⇐ (0.04) ⇐ (0.02) ↑ (0.12)

NB+ ELR ⇐ (0.01) ⇐ (0.03) ↑ (0.2) ↑ (0.45)

NB+ OFE ↑ (0.36) ↑ (0.46) ⇑ (0.006) ⇑ (0.002) ⇑ (0.005)

Note: Each 〈i, j〉 entry consists of both an arrow that points to the superior learner (using a double
arrow ⇑ or ⇐ if this is significant, and a single arrow ↑ or ← otherwise); and the associated p-value
in parentheses.
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Figure 9. Comparing (a) GBN+ OFE vs NB+ ELR and (b) GBN+ OFE vs TAN+ ELR

As POWERCONSTRUCTOR is designed for complete data, we actually built each of the
structures using complete data. We did this once, using all of the available data.14

To produce the data used for learning and evaluating the parameters, we then removed
the values of each evidence attribute for each tuple, with probability 0.25—so again we are
dealing with MCAR data (Little & Rubin, 1987).

The overall results appear in Table 2, where again we expected the majority of the entries to
be ⇑ ’s or ↑ ’s. Most importantly, for each class x , we see that x +ELR is never significantly
worse than either x + APN or x + EM, and sometimes it is significantly better. The fact
that both TAN + y and NB+ ELR appear uniformly better than GBN + y, is consistent with
the case for complete data; see Section 5.2.2.

5.3. Discussion

This section has presented a number of empirical results, all in the context of producing a
good belief-net based classifiers for a fixed structure. The main take-home messages are. . .

• The discriminative learner ELR system works effectively in essentially every standard
situation: Given complete data, it is at least as good as, and often superior to, OFE (Table 1)
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Table 2. Comparison of Parameter Learners—InComplete (UCI) Data; all 25 datasets.

GBN
ELR

GBN
APN

GBN
EM

TAN
ELR

TAN
APN

TAN
EM

NB
ELR

NB
APN

GBN
APN ⇑ (0.05)
GBN
EM ↑ (0.09) ↑ (0.25)
TAN
ELR ⇐ (0.02) ⇐ (0.007) ⇐ (0.012)
TAN
APN ⇐ (0.01) ⇐ (0.005) ⇐ (0.009) ↑ (0.32)
TAN
EM ⇐ (0.02) ⇐ (0.006) ⇐ (0.01) ↑ (0.25) ↑ (0.5)
NB
ELR ⇐ (0.02) ⇐ (0.01) ⇐ (0.02) ↑ (0.4) ↑ (0.32) ↑ (0.3)
NB
APN ↑ (0.08) ↑ (0.06) ⇑ (0.04) ↑ (0.07) ↑ (0.06) ⇑ (0.04) ⇑ (0.025)
NB
EM ↑ (0.06) ⇑ (0.05) ⇑ (0.04) ↑ (0.055) ⇑ (0.05) ⇑ (0.035) ⇑ (0.02) ↑ (0.2)

and given incomplete data, it is at least as good as, and often superior to, APN and EM
(Table 2).15

• While we typically found more expressive models produced better classifiers (i.e., for
each parameter-learner z, GBN + z was better than TAN + z, and TAN + z was better
than NB + z), this was not universal; see discussion in Section 5.2.2.

Why ELR works well. We found that ELR worked effectively in many situations, and it
was especially advantageous (i.e., typically better than the alternative ways to instantiate
parameters) when the BN-structure was incorrect—i.e., when it is not an I -map of the
underlying distribution by incorrectly claiming that two dependent variables are independent
(Pearl, 1988). This is a very common situation, as many BN-learners will produce incorrect
structures, either because they are conservative in adding new arcs (to avoid overfitting the
data (Heckerman, 1998; Van Allen & Greiner, 2000)), or because they are considering only
a restricted class of structures (e.g., Naı̈ve-bayes (Duda & Hart, 1973), poly-tree (Chow
& Liu, 1968; Pearl, 1988), TAN (Friedman, Geiger, & Goldszmidt, 1997), etc.) that is not
guaranteed to contain the correct structure.

To understand why a bad structure is problematic for OFE, note that when OFE is seeking
the parameter θd|f, it is constrained to match the local empirical distribution, correspond-
ing to #(D = d, F= f)/#(F= f). Hence, if the given structure G is incorrect, the resulting
instantiated belief net need not be a good model of the true tuple distribution, and so may
return incorrect values for the queries. By contrast, the ELR algorithm is not as constrained
by the specific structure, and so may be able to produce parameters that yield fairly accu-
rate answers, even if the structure is sub-optimal. (See the standard comparison between
discriminative versus generative training, overviewed in Section 6.)
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Other learners. We also compared ELR to various other learning algorithms, including
SVMs, over these datasets. We found that ELR appeared comparable with several other
standard learning algorithms, and superior to some. See ESM(E) for details, which also
repeats the results from Friedman, Geiger, & Goldszmidt (1997) and Grossman & Domingos
(2004). That webpage also provides other information about the experiments, including
timing information.

6. Related results

There are a number of other results related to learning belief nets. Much of this work
focuses on learning the best structure, either for a general belief net, or within the context
of some specific class of structures (e.g., TAN-structures, or selective Naı̈ve-bayes); see
(Heckerman, 1998; Buntine, 1996) for extensive tutorials. By contrast, this paper suggests
a way to learn the parameters for a given structure.

While most of those structure-learning systems also learn the parameters, essentially all
use the OFE algorithm (Eq. (13)). This is well motivated in the generative situation, as these
parameter values do optimize the likelihood of the data (Cooper & Herskovits, 1992).

As noted earlier, however, our goal is different: as we are seeking the optimal classi-
fier—i.e., discriminative learning. There have been many other systems that also consid-
ered discriminative learning of belief nets (Kontkanen et al., 1999; Jaakkola, Meila, &
Jebara, 2000; Friedman, Geiger, & Goldszmidt, 1997; Cheng & Greiner, 1999; Grossman
& Domingos, 2004). Those research projects, like their generative counterparts, focused on
learning structures; and usually used OFE to instantiate the resulting parameters.

As we saw above, when the model is wrong, the OFE-based parameters can produce
inferior classifiers. Many researchers have employed tricks to improve the parameters; e.g.,
tractable Bayesian model averaging of TAN (Cerquides & de Mántaras, 2003), and exact
model averaging of naı̈ve-bayes (Dash & Cooper, 2002). Our approach is different, as we
explicitly seek the parameters of the BN model that maximize conditional likelihood.

Our results also relate closely to the work on discriminant learning of Hidden Markov
Models (HMMs) (Schlüter et al., 1997; Chou, Juang, & Lee, 1992). In particular, much of
that work uses “Generalized Probabilistic Descent”, which resembles our ELR system by
descending along the derivative of the parameters, to maximize the conditional likelihood
of the hypothesis (which typically correspond to specific words) given the observations—
which they call “Maximimum Mutual Information” criterion. We differ by considering
arbitrary structures, and evaluating based on classification error.

Edwards and Lauritzen (2001) proposed the TM algorithm for maximizing conditional
likelihood function, when the corresponding (unconditional) likelihood function is more
easily maximized. They have found the algorithm is a useful tool in complex CG-regression
models, which are the building blocks for graphical chain models, as well as in other
situations (Sundberg, 2002). Their TM algorithm is similar to the EM algorithm as it also
alternates between maximization of a function related to the true likelihood function, but
differs by being applied to the complete data case and by augmenting the parameters rather
than the data.
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This issue relates directly to the large literature on discriminative learning in general; see
(Cox & Snell, 1989; Jordan, 1995; Ripley, 1996). One standard model is Linear Discrim-
inant Analysis (LDA), which typically assumes P(E | C = c) is multivariate normal—i.e.,
P(E | C = c) ∼ N (µc, �) where each µc mean can depend on the class C = c, but the
covariance matrix � is the same for all classes. The LDA system then estimates the relevant
{µc, �, P̂(C = c)} parameters from a body of data, seeking the ones that maximize the
likelihood of the data relevant to those parameters. Given these parameters, we can then
use Bayes Rule to compute the conditional distribution of P(C | E=e′) given new evidence
E=e′.

We can view LDA (like OFE/APN/EM) as being generative (aka “causal” or “class- condi-
tional” (Jordan, 1995), or “sampling” (Dawid, 1976)), as it is attempting to fit parameters
for the entire joint distribution, while our ELR is discriminative (aka “diagnostic”, “predic-
tive” (Jordan, 1995)), as it focuses only on the conditional probabilities.

Our results echo the common wisdom obtained by the previous analyses of discriminative
systems. In particular, (1) accuracy: discriminative training typically produces more accurate
classifiers than generative training; (2) robustness: typically discriminative systems are more
robust against incorrect models than generative ones; (3) efficiency: generative can be more
efficient than discriminative (compare the efficient OFE with the iterative ELR).

The work reported in this paper has significant differences from most of those earlier
analyses. First, we are dealing with a different underlying model, based on discrete variables
(rather than continuous, say normally distributed, ones), in the context of a specified belief
net structure, which corresponds to a given set of independency claims. We also describe
the inherent computational complexity of this task, produce algorithms specific to our task,
and provide empirical studies to demonstrate that our algorithm works effectively, given
either complete or incomplete training data.

Our companion paper (Greiner, Grove, & Schuurmans, 1997) also considers learning
the parameters of a given structure towards optimizing performance on a distribution of
queries. Our results here differ, as we are considering a different learning model: That
earlier work tries to minimize the squared-error score, a variant of Eq. (9) that is based
on two different types of samples — one over tuples, to estimate P(C | E), and the other
over queries, to estimate the probability of seeing each “What is P(C | E=e)?” query. By
contrast, the current paper tries to minimize classification error (Eq. (3)) by seeking the
optimal “conditional likelihood” score (Eq. (4)), wrt a single sample of labeled instances.
Moreover, our current paper includes new theoretical results, a different algorithm, and
completely new empirical data.

7. Conclusions

Future work. Section 3 notes that, in some situations (a specified class of structures,
when given complete data), interior point methods can find the parameters that optimize
conditional likelihood, in polynomial time. Of course, it is not clear whether these LCL(·)-
optimal parameters will optimize error (Eq. (3)), nor that the algorithm will necessarily be
more efficient than ELR. We therefore plan to investigate these methods.
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Table 3. Summary of known complexity results.

Complete data Incomplete data

Likelihood in P: (OFE) Unknown (EM, APN)

Conditional in P for simple structures N P-hard (Theorem 2)
Likelihood Unknown in general

This paper explores the challenges of finding in the CPtables of a given BN-structure.
While this is an important subtask, a general learner should be able to learn that structure as
well—perhaps using conditional likelihood as the selection criterion; see Kontkanen et al.
(1999) and Jaakkola, Meila, & Jebara (2000). We plan to investigate ways to synthesize
these approaches; see Grossman and Domingos (2004).

There are now several other classes of graphical models, such as Conditional Random
Fields (Lafferty, McCallum, & Pereira, 2001), that may be better adapted to optimizing
conditional likelihood. (E.g., as they use undirected arcs, they require only a single nor-
malizing division, rather than one per CPtable row.) While this paper has focused on Belief
Nets (as it is typically easier to acquire meaningful structures here, both because they allow
users to express their prior knowledge, and because there are a number of algorithms for
learning belief net structures), we plan to investigate these other models as well.

Contributions. This paper overviews the task of discriminative learning of belief net
parameters for general BN-structures. We first describe this task, and discuss how it extends
that standard logistic regression process by applying to arbitrary structures, not just Naı̈ve-
bayes—see Eq. (2). Our formal analyses show that, in general, discriminative learners
can converge to a classifier optimizing conditional likelihood at essentially the same O(·)
sample rate (ignoring polylog terms) as a generative classifier that is optimizing likelihood.16

Moreover, it is well-known that discriminative learning can converge to a classifier superior
to one learned generatively (Ng & Jordan, 2001). We also found that the computational
complexities of these two tasks also appear fairly comparable; see Table 3. (This is just the
cost of finding good parameters, for a given structure. As this structure is not as critical in
our discriminative case, we anticipate further savings in the overall task of learning both
structure and parameters.)

We next present an algorithm ELR for our task, and show that ELRworks effectively over a
variety of situations: when dealing with structures that range from trivial (NB), through less-
trivial (TAN), to complex (ones learned by POWERCONSTRUCTOR). We also show that ELR
works well when given incomplete training data. In particular, in essentially every standard
situation, we see that ELR is at least as good, and often better, than the other contenders,
which seek a good generative methods.

The idea of discriminative learning, especially in the context of belief nets, is only
beginning to make in-roads into the general AI community. We hope this paper will help
further introduce these ideas to this community, and demonstrate that these algorithms
should be used here, as they can work very effectively.
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Appendix A: Proof

Proof of Theorem 1: As the set BN��γ (G) is uncountably infinite, we cannot simply
apply the standard techniques for PAC-learning a finite hypothesis set. We can, however,
partition this uncountable space into a finite number L = L(K , γ, ε) of sets, such that any
two BNs within a partition have similar conditional log-likelihood scores. We can then,
in essense, simultaneously estimate the scores of all members of BN��γ (G) if we collect
enough instances to estimate the score for one representative of each partition.

Now for the details: Let�(1) = {θ (1)
di |fi

}i and�(2) = {θ (2)
di |fi

}i , be two CPtables inBN��γ (G).
We prove below that

if ∀i
∣
∣θ
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− θ
(2)
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Now partition the BN��γ (G) space into L = ( 6 K
γ ε

)K disjoint sets, where any two BNs
from any partition will have similar CPtable values, then define the set R = {�i }i to contain
one representative from each partition. We prove below that a sample S of size

M

(
ε

6
,

δ

L

)

= 2

(
3N log γ

ε

)2

ln
2L

δ
(15)

is sufficient to estimate each of these single representatives to within ε/6 of correct, with
probability of error at most δ/L; i.e., such that, for each i ,

P

[
∣
∣L̂CL

(S)
(�i ) − LCL(�i )

∣
∣ >

ε

6

]

<
δ

L
.

As there are L representatives, the probability that any of the representative’s scores are
mis-estimated by more than ε/6 is at most L δ

L = δ.
This allows us to estimate the scores on any � ∈ BN��γ (G) to within ε/2: For any

� ∈ BN��γ (G), let �′ ∈ R be the representative in �s partition. Observe

|L̂CL(�) − LCL(�)|
≤ |L̂CL(�) − L̂CL(�′)| + |L̂CL(�′) − LCL(�′)| + |LCL(�′) − LCL(�)|
≤ ε/6 + ε/6 + ε/6
= ε/2 .
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which implies that our estimates of the scores of both �̂ and �∗ are within ε/2, and so

LCL(�̂) − LCL(�∗)

≤ |LCL(�̂) − L̂CL(�̂)| + L̂CL(�̂) − L̂CL(�∗) + |L̂CL(�∗) − LCL(�∗)|
≤ ε/2 + 0 + ε/2

To complete the proof, we need only prove Eqs. (14) and (15). For Eq. (1): Consider the
sequence of BNs �0, �1, . . . , �K where the first i of �i ’s CPtables come from �(1), and
the remaining from �(2) — i.e.,

� + i = {
θ

(1)
d1|f1

, . . . , θ
(1)
di |fi

, θ
(2)
di+1|fi+1

, . . . , θ
(2)
dK |fK

}
.

Now observe

∣
∣ ln

(
P�(1) (c | e)

) − ln
(
P�(2) (c | e)

)∣
∣ ≤

K∑

i=1

∣
∣ ln(P�i (c | e)) − ln

(
P�i−1 (c | e)

)∣
∣,

where each | ln(P�i (c | e)) − ln(P�i−1 (c | e))| is based on changing a single CPtable entry.
We therefore need only show | ln(P�i (c | e)) − ln(P�i−1 (c | e))| ≤ ε

6 K . For any value of
z = θdi |fi , let f (z) = ln(P�[z](c | e)), where �[z] be the BN whose first i −1 CPtable entries
come from �(1), whose final K − i − 1 entries come from �(2), and whose i th CPtable
entries is z; hence f (θ (1)

di |fi
) = ln(P�i (c | e)), and f (θ (2)

di |fi
) = ln(P�i+1 (c | e)). As this function

is continuous, we know that

f (a) − f (b) = ∂ f (z)

∂z

∣
∣
∣
∣
z′

[b − a]

for some z′ ∈ [a, b]. As f (z) = ln(P�[z](c, e)) − ln(P�[z](e)), we see that

∂ f (z)

∂z
= 1

P�[z](c, e)
P�[z](c, e | di , fi ) × P�[z](fi )

− 1

P�[z](e)
P�[z](e | di , fi ) × P�[z](fi )

= 1

z

[
P�[z](di , fi | c, e) − P�[z](di , fi | e)

]

which means that | ∂ f (z)
∂z | ≤ 1/z ≤ 1/γ . (The second inequality follows from the assumption

that we are only considering � ∈ BN��γ (G).) Hence,

∣
∣ ln

(
P�i+1 (c | e)

) − ln
(
P�i (c | e)

)∣
∣ = ∣

∣ f
(
θ

(2)
di |fi

) − f
(
θ

(1)
di |fi

)∣
∣

≤ 1

γ
× ∣

∣θ
(2)
di |fi

− θ
(1)
di |fi

∣
∣ ≤ 1

γ
× γ ε

6 K
= ε

6 K
.
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To prove Eq. (15): Observe first that the probability of any event must be at least the
product of N CPtable entries, and hence P�(c) ≥ γ N for any c and any � ∈ BN��γ (G).
This means the value of − ln(P�(c | e)), and hence LCLχ (�) for any distribution χ , is
between 0 and −N ln γ .

As the queries q = P( c , e ) are drawn at random from a stationary distribution, we can
view the quantity ln P�(q) as an iid random value, whose range is [0, −N ln γ ] and whose
expected value is LCL(�). Hoeffding’s Inequality bounds the probability that the empirical
average score after |S| = M iid examples (here L̂CL(�)) will be far away from the true
mean LCL(�):

P

(

|L̂CL(�) − LCL(�)| >
ε

6

)

< 2 exp

[

−2M

((
ε

6

)/

N ln γ

)2
]

. (16)

This is under δ/L using the M from Eq. (15).
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Notes

1. See Greiner, Grove, and Schuurmans (1997) for an alternative position, and the challenges this requires
solving.

2. As we assume the structure G = 〈V, A〉 of the belief net B = 〈V, A, �〉 is fixed, we will identify a belief
net with its parameters �.

3. This θd|f ≥ γ constraint is trivially satisfied by any parameter learner that uses Laplacian correction, or that
produces the posterior distribution from uniform Dirichlet priors: These system can use γ = 1/(m +2) where
m is the number of training instances (Heckerman, 1998).

4. We say a tuple is “complete” if it specifies a value for every attribute; hence “E1 = e1, . . . , En = en” is
complete (where {E1, . . . , En} is the full set of evidence variables) but “E2 = e2, E7 = e7” is not.

5. Proof sketch: Reduce from 3SAT, using the structure from Cooper (1990), with queries that “specify” each
clause, and one that requires that the conjunction of clauses has probability 1. Then the log conditional
likelihood score is 0 iff there is a satisfying assignment to the 3SAT formula. Details are in ESM(A).

6. While the obvious tabular representation of the CPtables involves more parameters than appear in this logistic
regression model, these extra BN-parameters are redundant.

7. While the original APNθ (Binder et al., 1997) climbed in the space of parameters � = {θi }, we instead used a
modified APNβ system that uses the β = {βi } values (Eq. (11)), as we found it produced better classifiers.

8. The G < T notation does not mean the arcs of G are a subset of T ’s, as G may also include arcs that are not
in T .

9. This analysis makes the standard assumptions that the error are identical and independent, and each normally
distributed; see Nadeau and Bengio (2003).

10. ESM(F) uses a simple controlled study, on artificial data, to further investigate how ELR and OFE deal with
increasingly more erroneous structures.
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11. When using 5-fold cross-validation, we computed the standard deviation using the 5 computed accuracy
values. When dealing with a single split of the data, we used the standard binomial formula,

√
p × (1 − p)/n,

where p is the accuracy and n is the size of the test set.
12. As another illustration, imagine the class node C depended on the variables, {Ei }. POWERCONSTRUCTOR

would be happy returning a structure that appeared to match the distribution, even if that structure separated
C from many of these relevant Ei ’s. This cannot happen with either NB or TAN, as these structure connect
every variable to C .

13. This BIC is a generative measure. We suspect finding the best “discriminative structure” would be as difficult.
See also the iterative methods used in Grossman and Domingos (2004) for this task.

14. As our goal was only to compare the effectiveness of the parameter-learners on reasonable structures, the
source of these structures is irrelevant, and in particular, it does not matter that the structure was generated
from all the data.

15. ESM(G) discusses another situation, where the model is more complex than the truth. It presents empirical
data that the generative models often work better in this uncommon situation, and explains why.

16. This differs from the Ng and Jordan (2001) result, which compared only the simplest form, Naı̈ve-bayes
versus logistic regression, and dealt with error itself.
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