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Abstract—This paper presents a new self-powered wireless 

failure detection method that uses different signal 

transmission rates from piezoelectric energy harvesters. 

Reliable signal transmission from a wireless sensor network 

has been challenging due to the power supply issue, often 

covered by batteries that need regular replacement. 

Piezoelectric energy harvesting is an excellent option to 

power the sensors in a vibrational environment, but the 

power level is limited by input vibrational energy. In this 

paper, we introduce a new failure detection strategy that 

uses multifunctional piezoelectric material for vibration 

sensing and energy harvesting. That is, when the vibration 

is stronger and the material strain is higher, piezoelectric 

material produces higher voltage and power. Different 

power level from multiple piezoelectric sensors is used for 

sensing structural failure. We design a simple power 

management circuit that saves power proportional to the 

piezoelectric voltage so that the piezoelectric patch with 

higher strain can transmit more frequent wireless signals 

(higher transmission rate). To store the piezoelectric power, 

the circuit is composed of a full-bridge rectifier, a Single 

Pole Double Throw (SPDT) switch, a comparator with 

hysteresis, and a wireless transmitter (Zigbee). The failure 

detection performance is investigated in a case study that 

monitors screw joint failure in a vibrating plate. Reliability-

based design optimization is conducted to determine the 

piezoelectric sensor network in terms of the number and 

sizes of multiple piezoelectric (PZT) patches. The test 

results show that the proposed system successfully powers 

the wireless transmitter using the ultra-low scale of power 

from the PZT sensors (microwatt) and detect the different 

combination of screw joint failure in the vibrating plate.  

 
Index Terms— Piezoelectric sensor, wireless transmitter, 

transmission rate, reliability-based design optimization 

I. INTRODUCTION 

A low cost but reliable monitoring system is necessary 

to ensure safe and functional mechanical structures. 

Usually, this sensing technology requires a large number of 

distributed sensors to perform the required monitoring process. 

Moreover, various uncertainty from structure properties, 

external loading, and environmental condition changes 

adversely affects the reliability of SHM sensors. One important 

aspect of smart sensing is to overcome these shortcomings 

(cost, reliability) by determining the optimum number and 

placement of the sensors on the structure. Piezoelectric 

materials (e.g. PZT) have attracted considerable attention for 

structural health monitoring (SHM) techniques [1-3]. Several 

studies have proposed different methodologies for determining 

the optimal location of PZT sensors. A thorough review of 

optimization criteria for placement of PZT sensors for structure 

monitoring is reported by Gupta et al. [4] and Singhal et al. [5] 

that introduce methods of maximizing different objectives such 

as modal forces, deflection of the host structure, dissipated 

energy, degree of controllability, and degree of observability. 

Lee et al. [6] searched for optimal sensor locations by 

maximizing the dissipation energy from the feedback control 

system using a quasi-Newtonian algorithm. Cha et al. [7] 

proposed a multi-objective genetic algorithm (MOGA) for 

optimal sensor placement (OSP). This method is an integration 

of an implicit redundant representation of the genetic algorithm 

with the Pareto evolutionary algorithm. It was shown that the 

proposed algorithm is effective to develop optimal Pareto front 

curves for optimal placement of sensors. Chhabra et al. [8] 

considered the optimal placement of PZT sensors on thin plates 

by using a modified control matrix and singular value 

decomposition (MCSVD) approach. Only a few studies have 

been focused on incorporating the uncertainties associated with 

structures into the numerical simulation for OSP problems. 

Guratzsch and Mahadevan [9] developed a probabilistic finite 

element analysis model to obtain sensor output for all possible 

locations. Castro-Triguero et al. [10] examined the effect of 

parametric uncertainties on the OSP for modal analysis of a 

truss bridge. Based on their conclusion the parametric 

uncertainties have a significant influence on the optimal sensor 

location. Vincenzi and Simonini [11] considered the effect of 

both parametric and model uncertainties for OSP where they 

applied Information Entropy theory to find the optimum 

solution based on the covariance matrix of prediction error. 

Wang et al. [12] introduced a new probabilistic technique for 

OSP by detectability measure. Detectability means the ability 

of a sensor network that distinguishes different health 

condition, formulated using Mahalanobis Distance (MD). A 

practical solution is demonstrated to overcome the 

computational burdens via surrogate modeling that 

approximates the stochastic performance of the system.  

Powering a wireless SHM sensor node is another challenging 

issue when a sensor needs to operate in real-time with 

substantial power and is remotely placed where no wired power 

is available, especially in outdoor environment. In general, a 

modern wireless sensor requires power up to hundreds of 

milliwatt that last just a few days by a compact battery. For 

instance, the batteries in an accelerometer monitoring a train 

pantograph only lasted 20 days [13]. Chebrolu et al. [14] could 
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extend the battery life to 1.5 years for 4 AA batteries but serious 

activation management (wake up and sleep) is required. 

Extended battery life reduces the number of replacement, but it 

is still necessary to replace batteries that is not always possible 

in many remote applications. Energy harvesting (EH) is an 

excellent alternative powering solution and various studies have 

considered piezoelectric energy harvesting (PEH) for wireless 

sensor network systems [15-18]. But its power generation 

heavily depends on available vibration energy around it [19-

21]. Esu et al. [21] mentioned the possible use of vibration-

based PEH for powering the wind turbine monitoring system. 

Overall, various PEH applications have been demonstrated 

from multiple studies, but its power generation is limited up to 

sub milliwatt level [22]. In practice, power generation by PEH 

is limited further when vibration energy is not always available 

and it may cause inconsistent transmission duty cycle (or signal 

transmission frequency) and unreliable monitoring 

performance.  

A more advanced idea of combining the sensing and energy 

harvesting functionality has been proposed by multiple 

researchers recently. Lim et al. [23] suggested the use of 

piezoelectric energy harvesters for wind turbine blade 

monitoring. Based on the fact that changes in structural strain 

and energy harvesting performance associated with blade 

damage result in different timing of the RF pulses, they 

proposed the monitoring algorithm that uses the timing of 

binary pulses from the RF transmitters. The application of this 

study is limited because it required multiple (or triple in the 

wind turbine blade application) redundancies as a reference 

signal. Chew et al. [24] implemented a time-multiplexing 

operation for alternating dynamic strain sensing and energy 

harvesting functions at different time slots associated with 

different energy levels. They used the micro-fiber composite 

(MFC) as a strain sensor and an energy harvester. However, this 

concept does not provide a continuous monitoring solution 

because of function switch between harvester and sensor – 

when MFC is used as a harvester, it cannot send signals.  

This study presents a new self-powered wireless failure 

detection method using different power levels from multiple 

piezoelectric energy harvesters. We utilize a simple but clear 

fact that piezoelectric material produces a higher voltage when 

the vibration is stronger and the material strain is higher [23]. 

When the piezoelectric material is integrated with a proposed 

power management circuit and a wireless transmitter, one can 

detect the vibration level by the wireless transmission rate. This 

is an indirect measurement strategy where low energy 

harvesting is still meaningful as an indicator of small vibration. 

This study is the first experimental research to use 

multifunctional piezoelectric material for sensor “network” 
design to detect multiple failure modes. In this study, we 

performed an optimization study to determine a layout of 

piezoelectric patches that can detect structural failure with 

minimum use of material, and experimentally verified the 

sensing performance. The rest of the paper is organized as 

follows: Section II presents the concept of the proposed self-

powered failure monitoring system. Section III introduces the 

detectability measure and Section VI explains the simulation 

model and the design process of the PZT patch sensor network. 

Section V presents the proposed circuit design for power 

management and wireless transmission with low power 

consumption. Section VI presents system integration and 

demonstrates the experimental study to verify the advantage of 

the proposed system.  

II. CONCEPTUAL DESIGN OF SELF-POWERED MONITORING 

SYSTEM 

The proposed self-powered failure detection system is 

targeted to monitor mechanical joint failure in a vibrating 

engineering structure. A rivet joint is one of the popular 

methods to assemble skin (or plate) structures in many 

engineering applications such as aerospace structures, civil 

infrastructures, and vehicles. SHM for such joints is highly 

required because varied environmental conditions (humidity, 

temperature) as well as operational conditions (pressure, speed, 

and loading condition) causes their structural damages (e.g., 

loosening, detachment). Conventionally, one can deploy 

multiple vibration sensors to each of the rivet joints to monitor 

them as shown in Fig. 1. This setup has several disadvantages. 

First, it requires a substantial number of sensors as many as the 

number of joints to monitor. Second, vibration data needs to be 

transmitted with a high transmission rate (several tens of 

seconds) and high sampling frequency, which results in higher 

power consumption of wireless transmitters. Third, the wireless 

sensor node needs a separate power supply either from battery 

or energy harvester and it makes the overall layout of a wireless 

sensor node very complex. Herein, we propose a new failure 

detection strategy that utilizes the multifunctional characteristic 

of PZT material regarding vibration sensing and energy 

harvesting. That is, PZT material generates power proportional 

to the vibration level, and one can indirectly measure the 

vibration level by the generated power. Minimum use of the 

sensor material (e.g., number, size) is desired to save the sensor 

material and maintenance cost. Design optimization can be used 

to design the PZT sensor network to reduce the PZT sensor 

material while it maintains satisfactory failure detection 

performance (top in Fig. 1). In this paper, reliability-based 

Fig. 1.  Concept of proposed self-powered wireless failure detection system. 
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design optimization (RBDO) is conducted to consider the 

uncertainty of the system (e.g., structure properties, external 

loading, and environmental condition changes) in the design 

process. The design result is prototyped with a new concept of 

power management circuit (PMC) that consumes minimum 

power for operation of the wireless transmitter. The PZT 

materials are used to generate the power for the operation of the 

wireless transmitter and the power management circuit (PMC). 

When the PZT material charges a predetermined energy in the 

PMC capacitor, it powers the transmitter to wirelessly transmit 

the signal for several milliseconds. If some rivet joints are 

damaged, the plate vibration pattern becomes different and this 

changes the power and the wireless transmission rates from the 

multiple PZT materials. From the change of wireless signal 

transmission rates, one can detect which joint(s) is failed.  

III. QUANTIFICATION OF PROBABILISTIC DETECTABILITY 

We first need to define a set of health conditions (HCs). Each 

HC indicates different failure modes and it can be classified 

based on the training data on historical operation/failure. The 

correct detection rate of each health condition is one of the 

criteria to appraise the probabilistic performance of the sensor 

network. The correct detection rate can be determined as a 

conditional probability that the sensor network detects the same 

HC in which the system is operating at [12, 25]. These detection 

rates will constitute the probability-of-detection (PoD) matrix, 

from which the detectability of each HC can be obtained for the 

sensor network. 

A. Probability-of-detection (PoD) matrix 

A PoD matrix defines the probability of the correct detection 

for each predefined HC. The general form of the PoD matrix 

can be shown as [12, 26]: 
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where NHC indicates the total number of classified HCs. Pij is 

the probability that the system is detected as HCj by the sensing 

system given that the system operates at HCi. In the statistical 

form Pij can be expressed as: 

 Pr( )ij j iDetected as HC Operated as HCP =  (2) 

Since any set of data from HCi will be classified into one of 

the predefined NHC health conditions, the summation of Pij for 

j=1 to NHC is equal to unity. In the PoD matrix, the diagonal 

terms (Pii) will be defined as the detectability (Di) that 

determines the probability of correct detection for each 

predefined HC, or 

 Pr( )i ii i iD P Detected as HC opereted as HC= =  (3) 

To design a reliable sensor network, the detectability 

measured for each HC needs to satisfy the detectability target. 

The following example explains the detectability 

measurements. One sensor is used to detect three different HCs. 

The first HC (HC1) indicates there is no damage and the sensor 

data follow a normal distribution as N (1, 0.82). The second HC 

(HC2) represents some minor damage in the structure and the 

sensor data follows N (4, 0.62). The third HC (HC3) corresponds 

to severe damage and the sensor data follows N (7, 1.42). Fig. 2 

exhibits the PDFs for different HC in this example. Two neutral 

points (X1-2 and X2-3) can be located where the normalized 

distances from different distributions are the same, or: 
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1 4
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− −
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Fig. 2.  Sensor output distribution or different HCs and detectability measure. 

To obtain the detectability value for each HC we need to 

classify the sensory data into one of the three HC categories. 

The classification can be done by evaluating the normalized 

distances between the testing data and sensor output 

distribution for each HC. That is, the testing data are classified 

into each HC of which the normalized distance is smallest. In 

this one sensor example, this classification can be interpreted as 

the integration of each PDF bounded by the neutral points as 

shown in Fig. 2 or: 
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In many engineering applications, a sensor network is 

composed of numerous sensors and HCs where the analytical 

evaluation of detectability is challenging. Therefore, more 

complex HC classification methods such as Mahalanobis 

Distance (MD) [27, 28], linear discriminant analysis [29], or 

support vector machine [30] is required. Among them, we used 

a detectability analysis approach using MD due to its capability 

for classification of a large amount of multivariate data 

especially when there is a concern of affinities between groups. 

The next section briefly explains MD hired for classification of 

the random sensory signals. 

B. Mahalanobis Distance (MD) classifier 

Mahalanobis Distance (MD) measures the distance between 

online data points and the distribution of the training data sets, 

and it represents the similarities between the testing data and 
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different training data sets – shorter distance represents greater 

similarities. That is, a testing data point can be categorized into 

a HC of which the MD is minimal. To compute MD, we first 

need to obtain the variance-covariance matrix Cx for the 

training data as: 

 1
( ) ( )

( 1)

T

x
n

=
−

C X-X X-X  (9) 

where X is the training data matrix containing n objects in the 

rows measured for p variables, and 𝐗 is the matrix of variable 

means. Consequently, MD can be calculated as: 

 1MD ( )C ( )T

i i x ix x x x
−= − −  (10) 

where xi is a testing data point to be classified and �̅� is the mean 

of the training data. MD classifier categorizes the testing data 

sets obtained by a sensing system into a predefined HC.  

Consider another example with two sensors and three 

predefined HCs. The training data for each sensor (TABLE I) 

consists of a normally distributed random data for different HCs 

(1,000 sensory data point for each HC). Six different testing 

data in the first two columns of TABLE II will be classified in 

one of the HCs, by evaluating MD in equation (10). The 

distribution of the training data for three different HC is shown 

in Fig. 3. At each HC, the MD is obtained for the testing data 

shown in TABLE II. As discussed before, the testing data is 

classified into a group with the least MD. For instance, to 

classify the first testing data [3.02 1.45], three different MD 

values are measured using equation (1) to evaluate similarity to 

each group of training data in TABLE I. Based on the MD 

values for HC1, HC2, and HC3 (3.13, 2.96, and 4.02), one can 

classify this testing data to HC2 because of the shortest MD. 

More details about the calculation of the MD and classification 

is explained in [26]. 

IV. SYSTEM MODELING AND OPTIMIZATION 

A. System modeling  

In this section, a reliability-based design optimization 

(RBDO) framework is explained for the piezoelectric patch 

design for a smart sensing network capable of failure diagnosis 

in skin structures. Fig. 4 depicts the configuration of the 

rectangular plate (40 cm  30 cm  1.15 mm) with the rivet 

joints indexed as J1~J8. A harmonic force F = 10 N with a 

frequency of 17 Hz is applied at the center of the plate. The 

design problem is formulated to use the minimum PZT material 

(shown by green squares in Fig. 4) that satisfies the failure 

detection performance (i.e. probability of detection for the rivet 

joint failure). Eight different joint failure modes (or health 

conditions, HCs) are defined to describe the combination of 

three joints’ damage (J4, J6, J7) as shown in TABLE III. The 

base structure (aluminum steel plate) has a relatively large scale 

(373 g) than the PZT patches attached to it (around 3g). 

Knowing there is a negligible change of the resonant frequency 

of the plate, we assumed the fixed vibration frequency 

throughout the optimization.  

A finite element analysis (FEA) model is developed using 

ANSYS and the sensor output voltages and powers are 

calculated depending on the size and location of the PZT 

patches. Each HC is represented by different boundary 

conditions – fixed boundary condition is used for a healthy rivet 

joint (no damage) whereas no boundary condition is applied for 

a damaged one. Two different examples of harmonic analysis 

are shown in Fig. 5 where the health conditions are different 

(HC0 and HC7) and all the other configurations are identical 

(harmonic force and the PZT patch design). It can be observed 

that two different HCs are distinguished by the different voltage 

levels of each PZT patches (especially the lower two patches in 

this figure).  

 
Fig. 4.  Configuration of the skin plate with the attached rivet joints. 

TABLE III 

DEMONSTRATION OF DIFFERENT HC CATEGORIES 

Health 

condition 
Damaged joint 

Health 

condition 
Damaged joint 

HC0 N/A HC4 J6, J7 

HC1 J6 HC5 J4, J6 

HC2 J7 HC6 J4, J7
 

HC3 J4 HC7 J4, J6, J7 

 

TABLE I 

TRAINING DATA FOR EACH HEALTH CONDITION 

Health condition Sensor A Sensor B 

HC1 N(1.1,0.62) N(1.5,0.42) 

HC2 N(1.7,0.52) N(2.4,0.72) 

HC3 N(3.2,1.22) N(5.1,0.92) 

 TABLE II 

TRAINING DATA FOR EACH HEALTH CONDITION 

 Testing data Mahalanobis Distance Classified 

HC  SA SB HC1 HC2 HC3 

T1 3.02 1.45 3.13 2.96 4.02 HC2 

T2 6.70 3.79 10.73 9.85 3.18 HC3 

T3 0.05 2.06 2.32 3.28 4.21 HC1 

T4 2.01 3.56 11.08 7.27 9.44 HC2 

T5 -1.45 -0.52 6.54 7.41 7.16 HC1 

T6 2.08 0.79 2.44 2.48 5.01 HC1 

 

 
Fig. 3.  Health condition classification using MD 
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B. Reliability-based design optimization formulation  

In this section, the sensor network design problem is 

formulated to find the location and size of the PZT patches that 

increase the distinction of the sensory data at each HC 

(detectability) while minimizing the use of PZT patches. Since 

there is uncertainty involved in the system such as loading 

condition and geometrical parameters, the sensory signal output 

is also uncertain. Reliability-based design optimization is 

conducted to consider the uncertainty of the system in the 

sensor network design process. RBDO is a methodology used 

in engineering design to find the best compromise between cost 

function and probabilistic constraints [31-32]. In this paper, the 

RBDO problem is formulated to minimize the total area of the 

sensor patches that satisfy the detectability target for each HC, 

or: 

 1

: ( ; )x, θ d
x x x

d d d

N

j

j

i T

L U

L U

Minimize A

subject to D D

=



 

 


  (11) 

Aj in the objective function represents the area for jth PZT 

square patch and N is the number of sensor patches that could 

vary from 1 to 4. Unlike usual energy harvester design 

problems, the power is not a performance measure to be 

maximized. Instead, the formulation considers the detectability 

that results in the difference of the harvested power from each 

piezoelectric patch. This formulation considers three random 

parameters () that include the overall length, width of the plate, 

and the amplitude of harmonic force applied to the center of the 

plate. The deterministic design variable set (d) comprises the 

side length of each squared PZT patch and its location – the X-

Y coordinates of the left-bottom corner. In total there are 3 

random parameters and 3N number of design variables as 

depicted in TABLE IV and TABLE V, respectively. 

The probabilistic detectability Di in Eq. (3) is quantified in the 

form of a probability-of-detection (PoD) matrix to satisfy the 

detectability target DT =99.5% [12]. The PoD matrix defines the 

probability of the correct detection for each predefined HC, and 

it indicates diagnostics ability of a failure detection system. A 

general form of PoD matrix is written as explained in Section II 

(equation (1)). The off-diagonal terms in the PoD indicate 

detection errors and the PoD = I (identity matrix) means the 

perfect failure detection.   

C. Sensor network design result 

The genetic algorithm (GA) is adopted to search for the 

minimum sizes and optimum locations of multiple sensors that 

satisfy the detectability target. Four different optimization 

studies have been conducted by changing the number of PZT 

 
Fig. 5.  Obtained simulated voltage (V) for different size and location of sensor 

patches (a) HC0, (b) HC7. 

TABLE IV 

RANDOM PARAMETERS FOR THE SENSOR NETWORK DESIGN 

Random 

parameter 
Description 

Distribution 

type Mean 
Standard 

deviation 

θ1 (cm) Length of plate Normal 40 0.4 

θ2 (cm) Width of plate Normal 30 0.3 

θ3 (cm) Force amplitude Normal 10 0.1 

 

 

 
Fig. 6.  RBDO iterative results (a) Detectability improvement; (b) Cost 

function reduction. 

TABLE V 

DETERMINISTIC DESIGN VARIABLES FOR THE SENSOR NETWORK DESIGN 

Variable 
Description Lower 

bound 

Upper 

bound 

Xj (cm) X coordinate of the jth sensor patch 0 34 

Yj (cm) Y coordinate of the jth sensor patch 0 24 

Sj (cm) Side length of the jth sensor patch 2 6 
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sensors from N=1 to 4. The optimum solution is obtained for 

three sensor patches after 23 generations. The detectability 

variation can be reviewed graphically in Fig. 6(a). Throughout 

this optimization, the total area of the sensor patches has 

reduced from 71.36 to 13.76 cm2 (Fig. 6(b)). The optimization 

history is presented in TABLE VI, and the optimal sensor 

locations are graphically shown in Fig. 7. The patch sizes are 

found as: 2.02 cm2, 2.42 cm2, and 2.02 cm2. One can find that the 

final iteration satisfies the detectability constraints are larger 

than its target value (DT =99.5%) for all of the eight health 

conditions. 

D. Experimental verification 

This section experimentally verifies the simulation-based 

optimization results in Section IV.C. The overall experimental 

setup for the design result is summarized in Fig. 8.  

The PZT material (PSI -5A4E, Piezo Systems, USA) is cut to 

the size as found in the optimization study and attached on the 

plate using conductive epoxy. The aluminum plate is painted to 

eliminate electrical interaction with the sensors. Screw joints 

are used due to their convenience on health condition change 

(by fastening/loosening). A tightly fastened screw indicates the 

healthy condition and a loosened one represents the failed joint. 

The plate is excited by the electrodynamic shaker (ET-126B, 

Labworks Inc) at the center. The function generator 

(AFG3022C, Tektronix) is used to generate the electrical 

waveform for the harmonic excitation (10 N harmonic force at 

17 Hz). The output voltage of each sensor is obtained using the 

oscilloscope (DS1054, RIGOL).  

The average output power of PZT sensors with 8 health 

conditions is compared between the simulation and experiment 

as shown in Fig. 9. The output power of three sensors is 

measured at optimal resistive loads: 470 kΩ for sensor 1 and 
sensor 3; and 330 kΩ for sensor 2. The test result shows that 

Sensor 2 (close to J7, see Fig. 7) produces power about two 

times large than simulation for HC5. This condition refers to the 

health condition where J4 and J6 are loosened (left-middle and 

left-bottom), and it possibly increases strain level around J7 

(center-bottom) and makes Sensor 2 response very sensitive to 

the condition of J7. However, we confirmed the overall 

agreement between the simulation and the experiment.  

V. SYSTEM INTEGRATION  

This section explains the details on power management circuit 

(PMC) design and system integration for self-powered wireless 

transmission.  

A. Overview on power management circuit  

This section presents the power management circuit (PMC) 

design as shown in Fig. 10, for a self-powered failure detection 

system. The components used in the proposed circuit are 

presented in TABLE VII. The proposed circuit consists of a 

full-bridge rectifier, a Single Pole Double Throw (SPDT) 

switch, a comparator with hysteresis, and a transmitter 

(Zigbee). A full-bridge rectifier converts the ac voltage to the 

dc voltage. The SPDT switch has low Rds-on and it efficiently 

TABLE VI 

ITERATIVE HISTORY OF RBDO FOR THE PLATE EXAMPLE (IN CM) 

 X1 Y1 S1 X2 Y2 S2 X3 Y3 S3 

1 23.2 20 2 19.6 7.2 5.6 0 16 6 

2 23.2 19.6 2.4 19.6 6.8 5.2 0 16 6 

3 6 0.8 2.8 16.4 0.8 5.2 4.8 10.4 5.6 

4 7.6 13.6 4.4 14.8 0.4 5.2 18 10.4 3.6 

5 4 10.8 5.6 15.6 0 3.6 16.8 10 3.2 

6 18.8 18.8 4 17.2 0.8 4.8 0 14.8 3.6 

7 19.6 18.8 4 17.6 0.8 4.4 0 15.6 3.6 

8 20 19.2 4 17.2 0.8 4.4 0 15.2 3.2 

9 20 19.2 3.6 17.6 0.8 4.4 0 15.6 3.2 

10 20 18.8 3.6 18 0.4 4 0 15.6 3.2 

11 20 19.2 3.2 17.6 0.8 4.4 0 15.6 2.8 

12 19.6 14.8 3.6 16.8 0.4 4 0 15.6 2.8 

13 20 19.2 2.8 17.6 0.8 4.4 0 16 2.8 

14 20 19.2 2.4 17.6 0.8 4.4 0 15.6 2.8 

15 20.4 19.2 2.8 17.6 0.4 4 0 15.6 2.8 

16 20.4 17.2 2 17.2 0.8 4 0 16 2.8 

17 20.4 19.2 2.8 17.2 0.4 3.6 0 15.6 2.4 

18 20.4 19.2 2.4 17.6 0.4 3.6 0 16 2 

19 20.4 20 2 16 0.4 3.2 0 15.6 2.8 

20 20.4 19.2 2.4 17.2 2.4 3.2 0 15.6 2 

21 20.8 19.2 2 17.2 2.8 3.2 0 15.6 2 

22 20.8 19.2 2 17.2 2.4 2.8 0 15.6 2 

23 20.8 18.8 2 16.8 4 2.4 0 15.6 2 

 
 

Fig. 8.  Experimental setup for verification. 

TABLE VII 

DETERMINISTIC DESIGN VARIABLES FOR THE SENSOR NETWORK DESIGN 

Component Part number  Note 

Rectifier BAS3007 VF=0.35V at 100 mA 

SPDT switch U1 TS5A3160 Rds-on=1 

Comparator U2 LTC1540 Iq= 0.3 μA 

Transmitter U3 XBEE S2C Vsupply = 2.1-3.6V 

 

 
Fig. 7.  Optimum location of the sensor patches. 

J2 

 
J7 

J1                                                                                J3 

 

 

J4                                                                                 J5 

 

 

J6                                                                                J8 
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switches small scale of power supply (micro- to milli-watt) with 

low operating voltage (> 1.5 V) [33-34]. The comparator with 

hysteresis is used to control the SPDT switch. Zigbee 

communication module is selected for wireless transmission 

due to its lower power consumption than Wifi and CDMA and 

longer transmission range than Bluetooth. 

B. SPDT switch and comparator with hysteresis 

 In the proposed sensor node, a SPDT switch and comparator 

with hysteresis is proposed to accumulate the microwatt scale 

of power from the PZT and supply it to the wireless transmitter. 

The working principle is explained in Fig. 11. The SPDT switch 

turns off during the charging period of the capacitor (C1 in Fig. 

10). When the capacitor voltage (Vcc in Fig. 10) reaches to the 

upper level of threshold voltage (“Turn on” in Fig. 11), the 

comparator sends the HIGH signal (Power supply “On” in Fig. 

11) to turn on the SPDT switch and then the stored energy in 

C1 is transferred to wireless transmitter U3 (“Data 
Transmission” in Fig. 11). While the SPDT switch turns on, C1 

is discharged and Vcc decreases. When Vcc reaches to the low 

level of threshold voltage (“Turn off” in Fig. 11), the 

comparator sends LOW to SPDT switch to turn off. This 

process is repeated the entire cycle for powering the wireless 

transmitter using low power from the PZT patch. When the 

power level from the PZT is changed due to the change of health 

condition, the transmission rate changes accordingly as shown 

in Fig. 11. 

C. RC circuit for reliable wireless signal transmission 

This section presents the RC circuit for transmitting the digital 

signal. The digital input to the transmitter is sourced from the 

supply voltage (Vsupply) through the RC circuit (Fig. 10). The 

RC circuit is required to successfully transmit the HIGH and 

LOW signals from a transmitter to a receiver in every cycle.  

Fig. 12 explains the problem when there is no RC circuit (Fig. 

12(a), (b)) and how the RC circuit resolves it (Fig. 12(c), (d)). 

In both cases, when the transmitter has the supply voltage and 

the digital input at HIGH (=1) as shown in Fig. 12(a), (c), the 

Zigbee receiver generates the corresponding digital signal 

(HIGH=1) after start-up time (Fig. 12(b), (d)). This digital 

output should go LOW when the digital input in the transmitter 

 
Fig. 9.  Comparison results of health condition between simulation and test (a) 

sensor 1, (b) sensor 2, (c) sensor 3. 

 
Fig. 11.  Working principle of SPDT switch and comparator with hysteresis. 

Fig. 12.  Supply voltage and digital signal of (a) transmitter without RC circuit, 

(b) receiver without RC circuit, supply voltage and digital signal of (c) 

transmitter with RC circuit, (d) receiver with RC circuit. 

 
Fig. 10.  Proposed circuit and wireless transmitter. 
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goes LOW (=0). If there is no RC circuit, however, the supply 

voltage and the digital input go LOW simultaneously and there 

is no lead time for the receiver to detect the digital input change 

from HIGH to LOW. To solve this problem, the transmitter 

needs to stay turned on (supply voltage = HIGH) even after the 

digital input goes LOW (below the threshold) as shown in Fig 

10(c). Then the change of digital input is successfully 

transmitted to the receiver. The output voltage of the RC circuit 

is reduced based on the RC time constant (τ=RC=R5C2 in Fig. 

10).  

Fig. 13(a) shows the test results with the supply voltage, the 

RC circuit output that is the digital input to the transmitter, and 

the digital output of the receiver. When the supply voltage (blue 

line) turns on, the digital input to the transmitter (orange line) 

rises rapidly and decreases gradually to reach LOW (threshold 

voltage = 0.9V) before the supply voltage goes LOW. The 

digital output in the receiver (green line) turns on after start-up 

time and goes LOW (0) when the digital input to the 

transmitter becomes LOW. This test result shows that the 

digital input signal with the RC circuit is successfully 

transmitted to the receiver.   

Each transmission time duration needs to be minimized to 

reduce the power consumption of the transmitter and increase 

the resolution of detection. We performed the parameter study 

on RC values to minimize the transmission time as shown in 

Fig. 13. As measured in Fig. 13, the capacitance discharges 

more rapidly when the RC time constant (τ=RC) is reduced. 
For example, digital signal transmission takes 155 ms when 

R=90 k and C=2.2 F (Fig. 13(a)), and it reduces down to 

114 ms when R=70 k and C=2.2 F (Fig. 13(b)). When R is 

further reduced (60 k), the receiver cannot detect the change 

of the digital signal because the digital input becomes LOW 

(0) before the start-up is finished. This paper selects the case 

in Fig. 13(b) with R(=R5)=70 k, C(=C2)=2.2 F, 

transmission time = 114 ms, and ON time of the receiver = 21 

ms. 

D. Selection of charging capacitor  

The charging capacitor C1 (see Fig. 10) is selected to supply 

sufficient power to the wireless transmitter, based on the 

dissipated energy Ed as Eq. (12).  

 2 2

1 2 1 _1 1 _ 20.5 0.5d CC CCE E E CV CV= − = −   (12) 

where E1 and E2 are the stored energy in the capacitor before 

and after discharge, and VCC_1 and VCC_2  are the capacitor 

voltage before and after discharge, respectively. The dissipated 

energy in the capacitor Ed should be higher than the required 

energy per transmission (3.93 mJ) based on the average supply 

 
Fig. 13.  Test results with supply voltage, digital input of transmitter, and digital 

output of receiver with the different RC values. 

 
Fig. 14.  The output voltage of capacitor C1, supply voltage of transmitter, 

supply current, and digital output of receiver. 
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current (15 mA) and voltage of transmitter (2.3 V).  

Given the difference between VCC_1 and VCC_2 (0.4 V) limited 

by the comparator specification [35], VCC_2 and is set to 2.2 V 

(minimum operation voltage of wireless transmitter) and VCC_1 

is set to 2.6 V to minimize the power consumption of wireless 

transmitter. The capacitance value is set as C1 = 4.7 mF that 

supplies the power (4.20 mJ per transmission) larger than 3.93 

mJ. Fig. 14 show the experimental study on the output voltage 

of capacitor C1 (orange), the supply voltage of transmitter 

(blue), the supply current (red), and the digital output of the 

receiver (green line). When capacitor C1 discharges energy by 

the voltage drop from 2.6 V to 2.2 V, this energy successfully 

transmits the signal for 144 ms and the receiver also generates 

the digital output signal.  

VI. SYSTEM FEASIBILITY TEST ON JOINT FAILURE DETECTION 

The proposed self-powered failure monitoring system is 

tested for evaluating the detectability of the system as shown in 

Fig. 15. Each PZT sensor is connected to the proposed circuit 

and the wireless transmitter to detect the failure of the joints. 

Wireless transmission is tested with a relatively long distance 

(30 m) and the average transmission rate (number of 

transmissions per minute) is obtained by taking an average of 

three (3) transmission intervals.   

TABLEs VIII to X and Fig. 16 shows the transmission rate 

from each sensor node at different health conditions. For 

example, if the transmission rate (number of transmissions per 

minute) of sensor 1, 2, and 3 are close to (0.5, 8.8, 0.9), it 

corresponds to health condition HC5 (Joint 4 and 6 are failed). 

More systematically, HC can be identified using the 

Mahalanobis distance (MD) to each health condition data 

(equation (10)) and the health condition can be identified by the 

minimum MD. When the transmission rate is (0.5, 8.8, 0.9), the 

MD to HC5 is measured as 2.718 which is minimum among 

others. The next smallest MD is to HC4 (112.816), followed by 

very large MDs for the other HCs. So, this transmission rate 

corresponds to HC5. 

From the numerical data in the tables, one can find that the 

transmission rate is very consistent from three trials. Besides, 

the proportional relationship between voltage, power, and 

transmission rate is found from all of the health conditions. The 

sensor network design by RBDO makes it possible to have 

clearly distinguished transmission rates even with the 

uncertainty. In most cases, the transmission rate from sensor 2 

is higher than sensor 1 and sensor 3 due to its higher average 

output power than the other sensors as reviewed in Fig. 9. To 

summarize, the proposed self-powered failure detection method 

can detect multiple joint failure modes (or health conditions) by 

different transmission rates from multiple wireless sensor nodes 

TABLE VIII 

VOLTAGE, POWER, AND TRANSMISSION RATE OF SENSOR 1 AT DIFFERENT 

HEALTH CONDITIONS 

Health 

condition 

RMS 

Voltage 

(V) 

Average 

Power 

(µW) 

Transmission rate  

(number of trans / min) 

Trial 

1 

Trial 

2 

Trial 

3 

Avera

ge 

HC0 6.22 82.32 0.433 0.434 0.433 0.433 

HC1 6.83 99.25 0.573 0.576 0.575 0.574 

HC2 4.48 42.70 0.289 0.284 0.277 0.283 

HC3 6.66 94.37 0.465 0.467 0.456 0.462 

HC4 4.41 41.38 0.362 0.367 0.364 0.364 

HC5 5.58 66.25 0.488 0.497 0.495 0.493 

HC6 6.75 96.94 0.569 0.570 0.563 0.567 

HC7 8.58 156.63 1.087 1.091 1.038 1.071 

 
TABLE IX 

VOLTAGE, POWER, AND TRANSMISSION RATE OF SENSOR 2 AT DIFFERENT 

HEALTH CONDITIONS 

Health 

condition 

RMS 

Voltage 

(V) 

Average 

Power 

(µW) 

Transmission rate  

(number of trans / min) 

Trial 

1 

Trial 

2 

Trial 

3 

Avera

ge 

HC0 9.69 280.45 1.210  1.217  1.222  1.216 

HC1 11.1 373.36 1.399  1.399  1.376  1.391  

HC2 13.2 528.00 1.753  1.741  1.726  1.740  

HC3 11.8 421.93 1.480  1.491  1.529  1.500  

HC4 18.4 1025.9 3.049  3.061  3.057  3.056  

HC5 36.2 3971.0 8.535  9.288  8.746  8.856  

HC6 11.1 373.36 1.336  1.333  1.337  1.335  

HC7 14.9 672.75 2.336  2.333  2.356  2.342  

 
TABLE X 

VOLTAGE, POWER, AND TRANSMISSION RATE OF SENSOR 3 AT DIFFERENT 

HEALTH CONDITIONS 

Health 

condition 

RMS 

Voltage 

(V) 

Average 

Power 

(µW) 

Transmission rate  

(number of trans / min) 

Trial 

1 

Trial 

2 

Trial 

3 

Avera

ge 

HC0 3.13 20.84 0.060  0.061  0.061  0.061  

HC1 3.43 25.03 0.086  0.084  0.086  0.085  

HC2 4.40 41.19 0.211  0.210  0.211  0.211  

HC3 4.17 36.99 0.122  0.120  0.120  0.121  

HC4 6.66 94.37 0.458  0.436  0.429  0.441  

HC5 6.80 98.38 0.867  0.871  0.874  0.870  

HC6 3.84 31.37 0.119  0.120  0.120  0.119  

HC7 5.73 69.85 0.916  0.904  0.923  0.914  

 

 
Fig. 15.  (a) Test setup with proposed circuit and wireless transmitter (b) 

proposed circuit and wireless transmitter. 
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using extremely low power.  

VII. CONCLUSION 

This paper presents a self-powered wireless failure detection 

method that monitors the joint status using wireless 

transmission rates from multiple harvesters. The proposed 

detection method uses the energy harvesting function of PZT 

material, and the power management circuit (PMC) is designed 

to supply power to the wireless transmitter. First, we performed 

a reliability-based design optimization of wireless sensor 

network that determines the size and location of multiple PZT 

patches for joint failure detection using the detectability 

measure. Second, we designed the power management circuit – 

consisting of a full-bridge rectifier, a Single Pole Double Throw 

(SPDT) switch, a comparator with hysteresis – that acquires 

microwatt scale power from each PZT and supplies it 

continuously to the Zigbee wireless transmitter. Experimental 

results show that all of the health conditions are well 

distinguished with the different transmission rates. 

The advantages of the proposed sensor node are: (1) a simple 

layout composed of PZT sensor, wireless transmitter, and PMC; 

(2) dramatically reduced power consumption of wireless 

transmitter due to milliseconds of transmission time and 

extremely low sampling frequency; and (3) extended number of 

charge/discharge cycles (e.g. 1 million ~) using a small capacity 

of the capacitor (1~10 mF). We envision the proposed sensor 

node can be implemented as a part of the skin structure so that 

it can autonomously detect its structural defects. The future 

study includes a realistic engineering monitoring such as a 

railroad system (e.g. bogie) under steady velocity. 

Understanding the limitation of the current study to detect a 

discrete combination of known failure modes under fixed 

frequency vibration, the method needs an update to detect 

unknown failure modes and consider random vibration loading.  
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