

Subscriber access provided by b-on / UNIV OF AVEIRO

Ecotoxicology and Human Environmental Health

Structural features and pro-inflammatory effects of watersoluble organic matter in inhalable fine urban air particles

Antoine Simões Almeida, Rita Ferreira, Artur M. S. Silva, Armando C. Duarte, Bruno Neves, and Regina M.B.O. Duarte

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.9b04596 • Publication Date (Web): 11 Nov 2019 Downloaded from pubs.acs.org on November 11, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

- Structural features and pro-inflammatory effects of
 water-soluble organic matter in inhalable fine urban
 air particles
- 4 Antoine S. Almeida,¹ Rita M. P. Ferreira,² Artur M. S. Silva,² Armando C. Duarte,¹ Bruno
- 5 M. Neves,^{3,§} Regina M. B. O. Duarte ^{1,§,*}
- 6 ¹ Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- 7 ² Department of Chemistry & QOPNA and LAQV-REQUIMTE, University of Aveiro, 3810-
- 8 193 Aveiro, Portugal
- 9 ³ Department of Medical Sciences and Institute of Biomedicine iBiMED, University of
- 10 Aveiro, 3810-193 Aveiro, Portugal
- 11
- 12 § supervised this study equally as senior authors
- 13

14 ABSTRACT

15	The impact of inhalable fine particulate matter ($PM_{2.5}$, aerodynamic diameter < 2.5 µm) on public
16	health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies
17	carried out with whole air particles, being the contribution of their different fractions largely
18	unknown. Herein, a set of urban $PM_{2.5}$ samples were collected during day and nighttime periods
19	in Autumn and Spring, aiming to address the seasonal and day-night variability of water-soluble
20	organic matter (WSOM) composition. In vitro analysis of oxidative and pro-inflammatory
21	potential of WSOM samples was carried out in both acute (24 h) and chronic (3 weeks) exposure
22	setups using Raw264.7 macrophages as cell model. Findings revealed that the structural
23	composition of WSOM samples differs between seasons and in a day-night cycle. Cells
24	exposure resulted in an increase in the transcription of the cytoprotective <i>Hmox1</i> and pro-
25	inflammatory genes <i>II1b</i> and <i>Nos2</i> , leading to a moderate pro-inflammatory status. These
26	macrophages showed an impaired capacity to subsequently respond to a strong pro-
27	inflammatory stimulus such as bacterial lipopolysaccharide, which may implicate a
28	compromised capacity to manage harmful pathogens. Further investigation on aerosol
29	WSOM could help to constrain the mechanisms of WSOM-induced respiratory diseases
30	and contribute to PM _{2.5} regulations.

- 31
- 32
- 33

34 INTRODUCTION

35	Inhalable fine atmospheric particulate matter ($PM_{2.5}$, aerodynamic diameter < 2.5 μ m) is
36	of serious concerns in terms of health effects, including cardiovascular diseases, ^{1,2} airway
37	damages and lung carcinogenesis,2-4 and adverse neurodevelopmental effects.5-7
38	Oxidative stress, genotoxicity, and inflammation have been suggested to be the central
39	mechanisms by which PM _{2.5} may impair the normal cellular physiological/biochemical
40	processes, resulting in tissues damages and, therefore, facilitating the incidence and
41	development of those adverse health outcomes. ² Lung cells, such as epithelial cells and
42	alveolar macrophages, are the primary targets of $PM_{2.5}$ -induced oxidative damage and
43	pro-inflammatory effects. ^{8–10} In the past, these effects have been linked to $PM_{2.5}$ mass
44	concentration; 9,11 however, evidences indicate that $PM_{2.5}$ chemical composition play an
45	important role in the interaction between fine particles and lung cells membrane. ^{10,12–17}
46	$PM_{2.5}$ is a complex mixture of inorganic and carbonaceous constituents, whose
47	composition depends on the emission sources (natural and/or anthropogenic), formation
48	process (<i>i.e.</i> , secondary origin), atmospheric processing, and weather conditions. A small
49	set of chemical species have been linked to the oxidative potential and inflammatory

50	impact of ambient PM _{2.5} . These include water-soluble metals (<i>e.g.</i> , Fe, Ni, Cu, Cr, Mn,
51	Zn, V, and Pb), ^{10,12,17,18} water-soluble ions (<i>e.g.</i> , SO ₄ ²⁻ , NO ₃ ⁻), ¹⁰ solvent-extractable
52	organic components, such as polycyclic aromatic hydrocarbons (PAHs) and PAH nitro-
53	derivatives, polychlorinated biphenyls, organochlorine pesticides, and polybrominated
54	diphenyl ethers, ^{16,18,19} and wood smoke tracers (<i>e.g.</i> , levoglucosan and galactosan). ^{19,20}
55	Although not receiving much attention by the air pollution health research community,
56	water-soluble organic matter (WSOM) of ambient PM2.5 have been recently also
57	recognized as capable of mediating reactive oxygen species (ROS) generation. ^{17,21–26} In
58	Northern Hemisphere midlatitudes, this organic aerosol component represent 10 to 80%
59	of the total particulate organics, ²⁷⁻³⁰ whereas lower percentage values (up to 13%) have
60	been reported for Southern Hemisphere locations. ³¹ Based on highly informative off-line
61	analytical techniques, such as multidimensional nuclear magnetic resonance (NMR)
62	spectroscopy and high-resolution mass spectrometry, it has been shown that aerosol
63	WSOM consists of a highly diverse suite of oxygenated compounds, including
64	dicarboxylic acids, keto-carboxylic acids, aliphatic aldehydes and alcohols, saccharides,
65	saccharide anhydrides, aromatic acids, phenols, but also amines, amino acids, organic

66	nitrates, and organic sulfates. ^{31–40} Although being a major fraction of organic aerosols,
67	the way by which the aerosol WSOM is redox-active or exert inflammation remains
68	unresolved. It contributes greatly to this situation the inherent complexity of aerosol
69	WSOM, with different chemical structures and associated physical properties. The use of
70	chemical assays, such as dithiothreitol (DTT), has suggested important contributions of
71	specific aerosol WSOM fractions, namely of isolated hydrophobic fractions (the so-called
72	"humic-like substances" operational concept),21,22,25 on the oxidative potential of ambient
73	$PM_{2.5}$. However, no evidence exists on which structural components of aerosol WSOM
74	actually induce oxidative stress and inflammation. An enhanced knowledge of the relative
75	contribution of WSOM substructures to the oxidative and pro-inflammatory potential of
76	this organic aerosol fraction would be useful to understand the net impacts of air
77	particulate organic matter on human health.
78	Within this context, this study aims to establish a relationship between the oxidative and
79	pro-inflammatory potential of aerosol WSOM and their atmospheric concentrations and
80	structural characteristics. A set of $PM_{2.5}$ samples were collected at an urban location,
81	during day and nighttime periods, in Autumn and Spring seasons. With this $PM_{2.5}$

82	sampling scheme, it was intended to apportion the seasonal and day-night variability of
83	WSOM structures to their oxidative and pro-inflammatory potential. The compositional
84	features of aerosol WSOM samples were exploited by liquid-state one-dimensional (1D)
85	and two-dimensional (2D) NMR spectroscopy. The effects of aerosol WSOM on nitric
86	oxide (NO) production, ROS cellular levels, transcription of the inflammatory genes <i>II1b</i>
87	and Nos2, as well as activation of associated signalling pathway NF- κ B were assessed
88	in Raw264.7 macrophages. The effect on the transcription levels of Hmox1, a central
89	player in detoxification of electrophilic and oxidative stresses, was also evaluated. The
90	biological assays were carried out considering the effect of both acute (24 h) and chronic
91	(3 weeks) exposures to aerosol WSOM, with the latter at maximal theoretical WSOM
92	doses (<i>i.e.</i> , considering the average human air intake per hour, and the atmospheric
93	water-soluble organic carbon concentrations in day-night cycles). Investigating the
94	potential impact of aerosol WSOM composition on human health is essential, particularly
95	when experiencing serious pollution conditions. This study set the basis for further
96	understanding of the mechanisms of fine aerosol WSOM-induced respiratory diseases
97	and may contribute to the development of targeted PM _{2.5} regulations.

99

100 MATERIALS AND METHODS

101 Aerosol sampling and extraction of WSOM samples

102 The PM₂₅ samples were collected on a rooftop (*c.a.* 20 m above the ground) at the 103 campus of University of Aveiro (40°38'N, 8°39'W), which is located about 10 km from the 104 Atlantic coast on the outskirts of the city of Aveiro. The sampling site is impacted by both 105 marine air masses travelling from the Atlantic Ocean and anthropogenic emissions from vehicular transport, residential, and industrial sources.^{30,32,41} Episodes of increased PM_{2.5} 106 107 and WSOM concentrations are common in this area during colder periods and they can 108 last several days,^{29,30,41} allowing the collection of enough amount of aerosol WSOM within relatively short periods of time. The PM2.5 samples were collected from 14 to 29 109 110 November 2016 (Autumn) and 27 March to 04 April 2016 (Spring), during the weekdays 111 (*i.e.*, from Monday to Friday) in two distinct time periods: (i) daytime: 9:40 a.m. to 5:30 112 p.m. (Autumn)/6:30 p.m. (Spring), and (ii) overnight: 5:40 p.m. (Autumn)/6:40 p.m. 113 (Spring) to 9:30 a.m. The PM_{2.5} samples were collected on pre-fired quartz-fiber filters

114	(20.3×25.4 cm; Whatman QM-A) with an airflow rate of 1.13 m ³ min ⁻¹ . Additional details
115	on aerosol sampling procedure are available in Section S1, in Supporting Information (SI).
116	After sampling, the filter samples were folded in two, wrapped in aluminum foil and
117	immediately transported to the laboratory, where they were weighted and stored frozen
118	until further analysis. The meteorological data recorded during $PM_{2.5}$ collection is
119	available in Table S1 (SI). The determination of organic carbon (OC) and elemental
120	carbon (EC) in each $PM_{2.5}$ sample was performed by means of a Lab OC-EC Aerosol
121	Analyzer (Sunset Laboratory Inc.) following a thermo-optical method, described in section
122	S2 (SI).
123	An area of 315 cm ² of each quartz filter was extracted with 150 mL of ultra-pure water
124	(18.2 M Ω cm, filter area to water volume ratio of 2.1 cm ² mL ⁻¹) by mechanical stirring for
125	5 min followed by ultrasonic bath for 15 min. Each final aqueous slurry was filtered through
126	a hydrophilic polyvinylidene fluoride membrane filter (Durapore®, Millipore, Ireland) of
127	$0.22\ \mu\text{m}$ pore size. At the end of this filtration step, the slurry residue was washed twice
128	with 20 mL of ultrapure water in order to remove any water-soluble organic carbon
129	(WSOC) still loosely bound to the filter residues. The dissolved organic carbon content of

130	each aqueous extract was measured by means of a Skalar (Breda, Netherlands) San++
131	Automated Wet Chemistry Analyzer, based on a UV-persulfate oxidation method.42
132	After the WSOC extraction, and to obtain sufficient amount of WSOM samples for both
133	NMR and biological assay studies, the aqueous aerosol extracts from each sampling
134	period within each season were batched together, on a total of four pooled WSOM
135	samples representative of day and nighttime conditions in Autumn and Spring seasons.
136	Each pooled WSOM sample was further divided into two aliquots of similar volume: one
137	aimed to NMR analysis and the other to biological assay studies. The aliquots were
138	freeze-dried, and the obtained residues (designated as "whole aerosol WSOM sample")
139	were kept in a desiccator over silica gel until further analysis. Additional details on aerosol
140	WSOM samples processing are available in Figure S1, section S3 (SI).
141	
142	Liquid-state 1D and 2D NMR spectroscopy
143	All NMR spectra were acquired using a Bruker Avance-500 spectrometer operating at
144	500.13 and 125.77 MHz for ¹ H and ¹³ C, respectively, and equipped with a liquid nitrogen
145	cooling CryoProbe Prodigy™. All 1D and 2D spectra were run at 295.1 K, and additional

146	details on NMR data acquisition can be found in Section S4, in SI. The dried WSOM
147	samples (7 to 3 mg) were dissolved in deuterated methanol (MeOH- d_4 , ~1 mL) and
148	transferred to 5 mm NMR tubes. The identification of functional groups in the NMR spectra
149	was based on their chemical shift relative to solvent (MeOH- d_4) peak set at δ_H 3.31 ppm
150	and δ_C 49.0 ppm. The interpretation of the spectral regions and structural assignments
151	were based on the NMR chemical shift data described in the literature for standard
152	organic compounds and for natural organic matter from different environmental
153	matrices,28,32,34,43,44 as well as on data generated by NMR simulators software's and
154	databases (namely, Perkin Elmer ChemBioDraw® Ultra 14.0 and nmrdb.org).45
155	
156	Cell culture and treatments
157	Raw 264.7, a mouse leukaemic monocyte macrophage cell line from American Type
158	Culture Collection (ATCC number: TIB-71), was cultured in Dulbecco's Modified Eagle
159	Media (DMEM) supplemented with 10% non-inactivated fetal bovine serum, 100 U mL ⁻¹
160	of penicillin, and 100 μg mL $^{-1}$ streptomycin at 37 $^\circ C$ in a humidified atmosphere of 95% air
161	and 5% CO ₂ . For acute exposure experiments (4 to 24 h) cells were plated, let stabilize

162	overnight and then treated with indicated WSOC concentrations. In prolonged exposure
163	experiments the cells were treated for 21 days, twice a day, with maximal theoretical
164	inhaled doses of WSOC calculated from an mean inspired air volume of 8.64 m ³ per day:
165	for Autumn season experiments, the cells were treated in the morning with 7.8 μg of
166	daytime WSOC extract, and at the evening with 16.2 μg of nighttime extract; in Spring
167	season experiments, the cells were treated in the morning with 5.6 μg of daytime WSOC
168	extract and at the evening with 6.1 μg of nighttime extract. The cell treatments in the
169	morning and evening were timed to mimic the schedule of $PM_{2.5}$ samples collection,
170	whereas the cell medium was completely replaced every 2 days.
170 171	whereas the cell medium was completely replaced every 2 days.
170 171 172	whereas the cell medium was completely replaced every 2 days. Nitric oxide (NO) production and <i>in vitro</i> antioxidant activity
170 171 172 173	whereas the cell medium was completely replaced every 2 days. Nitric oxide (NO) production and <i>in vitro</i> antioxidant activity The production of NO was measured by the accumulation of nitrite in the culture
170 171 172 173 174	whereas the cell medium was completely replaced every 2 days. Nitric oxide (NO) production and <i>in vitro</i> antioxidant activity The production of NO was measured by the accumulation of nitrite in the culture supernatants, using a colorimetric reaction with the Griess reagent as previously
170 171 172 173 174 175	whereas the cell medium was completely replaced every 2 days. Nitric oxide (NO) production and <i>in vitro</i> antioxidant activity The production of NO was measured by the accumulation of nitrite in the culture supernatants, using a colorimetric reaction with the Griess reagent as previously described. ⁴⁶ In some of the experiments, it was assessed whether exposure to WSOM
170 171 172 173 174 175 176	whereas the cell medium was completely replaced every 2 days. Nitric oxide (NO) production and <i>in vitro</i> antioxidant activity The production of NO was measured by the accumulation of nitrite in the culture supernatants, using a colorimetric reaction with the Griess reagent as previously described. ⁴⁶ In some of the experiments, it was assessed whether exposure to WSOM extracts affects the capacity of macrophages to respond to the strong pro-inflammatory

178	WSOM extracts and then 1 μ g mL ⁻¹ LPS was added following an incubation period of 24
179	h. In prolonged exposure experiments cells were treated for 21 days with WSOM extracts
180	and then stimulated for additional 24h with 1 μ g mL ⁻¹ LPS. The effect of WSOM extracts
181	on the modulation of LPS-induced cellular oxidative stress was also addressed. Briefly,
182	Raw cells were plated at 0.05×10^{6} per well in a µ-Chamber slide (IBIDI GmbH,
183	Germany), allowed to stabilize overnight and then stimulated with 1 μ g mL ⁻¹ LPS during
184	24 h. The WSOM extracts were added 1 h prior to LPS stimulation. At the end of
185	incubation period, cells were washed three times and then loaded with 5 μM $H_2 DCFDA$
186	and 0.5 μ g mL ⁻¹ Hoechst in Hank's Balanced Salt Solution (HBSS) for 30 min at 37 °C in
187	the dark. Cells were washed three times with HBSS and analyzed with an Axio Observer
188	Z1 fluorescent microscope (Zeiss Group, Oberkochen, Germany) at 63X magnification.
189	
190	Analysis of gene expression by q-PCR

After cell treatment for the indicated times, total RNA was isolated with TRIzol reagent according to the manufacturer's instructions. For analysis of mRNA levels of selected genes, 1 µg of total RNA was reverse-transcribed using the iScript Select cDNA Synthesis

194	Kit and then real-time quantitative PCR (qPCR) reactions were performed using SYBR
195	Green on a Bio-Rad CFX Connect device. The results were normalized using Hprt1 as
196	reference gene and presented as fold change relatively to untreated cells. Primer
197	sequences were designed using Beacon Designer software version 8 (Premier Biosoft
198	International, Palo Alto, CA, USA) and thoroughly tested.
199	
200	Statistical analysis
201	Since aerosol WSOM samples were pooled and analyzed together, it should be
202	mentioned that the cellular responses and PCR data were obtained for each pooled
203	WSOM sample. However, at least three independent biological experiments were carried
204	out for each sample. Results are presented as mean \pm the standard deviation (SD) of the
205	indicated number of experiments. Comparisons between two groups were made by the
206	two-sided unpaired Student's <i>t</i> test and multiple group comparisons by One-Way ANOVA
207	analysis, with a Dunnett's Multiple Comparison post-test. Statistical analysis was
208	performed using GraphPad Prism, version 6 (GraphPad Software, San Diego, CA, USA).
209	Significance levels are as follows: * <i>p</i> <0.05, ** <i>p</i> <0.01, *** <i>p</i> <0.001, **** <i>p</i> <0.0001.

211

212 RESULTS AND DISCUSSION

213 Water-solubility of fine urban organic aerosols

The ambient concentrations of PM_{2.5}, OC, EC, and WSOC follow the same seasonal 214 215 trend, with the highest levels being found during Autumn (Table 1, and Figures S2 to S5 216 in SI). This seasonal trend has been quite well documented in this and other 217 regions,^{28,30,33,37} although an opposite trend has been observed in North America.^{47,48} In 218 Autumn, the median PM_{2.5} concentration increased 1.5 fold during nighttime compared 219 with daytime, which is likely due to a lower mixing height and more stable atmospheric 220 conditions during the nighttime as well as increased emissions from residential heating 221 sources. These events could also explain the 3.3 and 3.6 fold increase in OC and WSOC 222 concentrations, respectively, during nighttime. In Spring, the diurnal variations of the 223 median OC and WSOC concentrations were evident, but the median concentration values 224 of these carbonaceous fractions only increased 1.3 and 1.5 fold, respectively, during 225 nighttime, whereas no major difference was observed for the PM_{2.5} levels. Interestingly,

226	the OC-day/OC-night, EC-day/EC-night, and WSOM-day/WSOM-night ratios increased
227	from a range of 0.34 – 0.71, 0.14 – 0.72, and 0.40 – 0.65, respectively, between the 27^{th}
228	and 29 th of March, to $1.2 - 2.7$, $0.8 - 1.8$, and $1.1 - 2.1$, respectively, between 30 th of
229	March and 6 th of April (Figures S3 to S5, SI). This increase could be explained by a
230	decrease in the OC, EC and WSOC concentrations during nighttime in the second half of
231	the sampling period. During this period, the median values of temperature and maximum
232	wind velocity raised from 13 to 15°C and 2.7 to 4.0 m s ⁻¹ , respectively, leading to a more
233	turbulent atmosphere and less emissions from anthropogenic activities related to house
234	heating and, therefore, to a decrease in the nighttime OC, EC and WSOC concentrations.
235	Furthermore, it is also likely that an additional OC source was present in daytime Spring
236	samples, which cannot be explained solely by changes in primary emissions in view of
237	the decrease of EC concentrations compared with Autumn. Considering that photo-
238	oxidative capacity of atmosphere might be enhanced in Spring, ^{28,29} in situ production of
239	secondary OC or chemical aging of insoluble primary organics could likely contribute to
240	this additional OC. This enhanced photochemical activity can also explain the higher
241	WSOC/OC ratios of Spring samples compared to those of Autumn samples.

244 Day-night variability of aerosol WSOM features

245	Figure 1(A) shows the ¹ H NMR spectra of pooled aerosol WSOM samples representative
246	of day and nighttime conditions in Autumn and Spring seasons. These ¹ H NMR spectra
247	exhibit a remarkable similarity to those of other urban aerosol WSOM samples, ^{28,30-32}
248	comprising a complex overlapping profile with broad bands superimposed by a relatively
249	small number of sharp peaks. For a further understanding of these spectral profiles, a
250	quantitative integration of the four main regions assigned to different types of non-
251	exchangeable organic hydrogen [Figure 1(A)] was performed in order to assess the
252	abundance of each functionality in WSOM samples. As depicted in Figure 1(B), and
253	regardless of the sampling period, the saturated aliphatic protons (H–C) are typically the
254	most important component, followed by unsaturated (H–C–C=) and oxygenated (H–C–O)
255	aliphatic protons, and a less contribution from aromatic protons (Ar-H). Comparison
256	between daytime and nighttime WSOM samples are expected to vary somewhat within
257	both seasons, due to the distinctly different emission sources and atmospheric oxidation

258	conditions. However, in Spring, very little day-night variability was observed for the NMR
259	structural signatures identified in the WSOM samples. On the other hand, in Autumn, the
260	aliphatic H–C structures exhibit a distinct maximum (45%) for day aerosol WSOM and a
261	minimum (34%) for the night sample. Additional differences between day and night
262	WSOM samples in Autumn are found in the spectral regions associated with protons
263	bound to oxygenated aliphatic (H-C-O) and aromatic (Ar-H) structures, whose
264	contributions are higher for WSOM collected overnight (29% and 11%, respectively) than
265	in WSOM collected in daytime (19% and 6.8%, respectively). The occurrence of strong
266	H-C-O and aromatic signatures overnight in Autumn may be associated with the
267	contribution of fresh biomass burning emissions for house heating under low air
268	temperature conditions. ^{28,30,31} Moreover, the presence of an intense sharp resonance at
269	δ ¹ H 5.3 ppm [Figure 1(A)] attributed to protons bound to anomeric carbons [O–C(H)–O],
270	such as those of anhydrosugars (e.g., levoglucosan and mannosan), which are known
271	molecular markers of wood burning emissions, ^{30,32} further confirms the presence of
272	smoke particles during this period.

<FIGURE 1 here>

ACS Paragon Plus Environment

274	The compositional day-night variability of aerosol WSOM samples within the two seasonal
275	periods were further ascertain using 2D NMR spectroscopy (Figures S6 to S8, in SI). The
276	¹ H- ¹³ C HSQC NMR spectra of all WSOM samples reveal several important ¹ H- ¹³ C
277	correlations in three major regions of chemical environments (Figures S6 and S7), but
278	with very different relative intensities: aliphatic (δ_H 0.4–3.6 ppm/ δ_C 10–45 ppm,
279	represented by H–C and H–C–C=), $\textit{O}-alkyl (\delta_{H} 3.6–6.0 ppm/\delta_{C} 50–107 ppm, including$
280	anomeric carbons), and aromatic (δ_H 6.5–8.5 ppm/
281	δ_{C} 107–160 ppm) regions. The structural assignments of the 2D NMR cross peaks within
282	these three chemical shift areas were further carried out based on spectral data from
283	previous 2D NMR studies of aerosol WSOM samples.30,32,34,49 The main structural
284	findings are shown in the expanded aliphatic, <i>O</i> -alkyl, and aromatic regions of the ¹ H- ¹³ C
285	HSQC NMR spectra in Figures S9 to S20 in SI. Overall, 15 polyfunctional aliphatic and
286	aromatic substructures were identified in this study as being common to all aerosol
287	WSOM samples, whereas 4 aromatic substructures were typical of aerosol WSOM
288	sample collected overnight in Autumn (Figure S21, in SI). The presence of these 4 typical
289	aromatic substructures [structures (18) to (21) in Figure S21] in overnight Autumn WSOM

290	sample confirm the notable influence of biomass burning emissions into the aerosol
291	WSOM characteristics during this period. ^{30,32} Five carbohydrate-like structures [structures
292	(11) to (15), in Figure S21] were consistently found in all aerosol WSOM samples, but
293	particularly more prominent in samples collected overnight in Autumn. Except for
294	trehalose [structure (13) in Figure S21], usually referred as a tracer for the resuspension
295	of surface soil and unpaved road dust, ⁵⁰ the presence of the anhydrosugars levoglucosan
296	and mannosan [structures (11) and (12), respectively, Figure S21] and disaccharides
297	maltose and sucrose [structures (14) and (15), respectively, Figure S21] further confirm
298	that biomass burning is an important contributor to aerosol WSOM collected overnight in
299	Autumn. ^{30,32} The presence in all WSOM samples of NMR fingerprints assigned to DMA ⁺ ,
300	DEA ⁺ and MSA [structures (7) to (9) in Figure S21], and terephthalic acid [structure (16)
301	in Figure S21] also pinpoint to the contribution of, respectively, marine organic aerosols ³⁰
302	and oxidized aromatic hydrocarbons from urban traffic emissions ^{30,32} to aerosol WSOM
303	samples. Despite relatively uniform seasonal distribution of aliphatic structures among all
304	aerosol WSOM samples, there are actually important differences in the aromatic and ${\cal O}$ -
305	alkyl composition of nighttime aerosol WSOM samples in Autumn [summarized in Figure

306	1(C)]. These differences in WSOM chemical composition are expected to exert dissimilar
307	contribution on the oxidative and pro-inflammatory effects of air organic particles.
308	Cytotoxicity of aerosol WSOM and impact on macrophages ROS and NO production
309	Understanding the interaction between airway cellular populations and atmospheric air
310	particles, as well as the mechanisms through which their constituents cause inflammation
311	and cellular redox imbalances is of major importance. Therefore, the cytotoxicity of
312	aerosol WSOM over macrophages was firstly assessed in the WSOC concentration range
313	of 1 to 100 μg mL ⁻¹ , allowing to conclude that none caused a significant decrease in cell
314	viability (Section S7, Figure S22). Treatments with LPS or LPS + WSOM are also devoid
315	of significant impact on macrophages viability (Section S7, Figure S23). As NO is a key
316	molecule in inflammation and to the macrophage capacity to destroy invading pathogens,
317	the ability of WSOM to induce NO production and to modulate the LPS-induced
318	production in these cells was also analyzed. As shown in Figure S24(A), Section S8, day
319	and night WSOM Autumn samples at higher concentrations slightly induce NO
320	production. This is in agreement with previous reports showing small increases in NO
321	release by macrophages treated with particle or water-soluble fraction of $PM_{2.5}$. ^{51,52}

322	Furthermore, it can be perceived a different trend between the two WSOM samples: while
323	the day Autumn WSOM extract causes a concentration dependent increase in NO
324	production, the night extract has an opposite behavior. We hypothesize that the night
325	Autumn WSOM may contain organic compounds that induce NO, but also other
326	constituents that counteract this effect. Regarding the effects of Spring WSOM samples,
327	only day samples significantly induce NO release [Figure S24(A)]. Discrepancies between
328	the biological effects of $PM_{2.5}$ and its WSOM fraction collected during day or night are still
329	poorly documented, but the impact of seasonal variations in $PM_{2.5}$ chemical composition
330	(e.g. inorganic ions, elements and PAHs) and cytotoxicity has been extensively
331	covered. ^{53–55}
332	Interestingly, the effects of WSOM samples on the LPS-induced NO production was
333	significantly inhibited by all the samples at the concentration of 75 $\mu g~mL^{\text{-1}}$ [Figure
334	S24(B)]. This effect was not due to a direct NO scavenging activity (Figure S25), but
335	instead it may be the result of a modulation of inducible nitric oxide synthase (iNOS)
336	activity or gene transcription. Additionally, WSOM samples per se do not induced
337	oxidative stress, and surprisingly were able to markedly inhibit the LPS-triggered ROS

338	production in treated macrophages (Figure 2). These results differ from several reports
339	where atmospheric particulate matter (PM) were shown to exert pro-oxidative effects. ^{17,56–}
340	⁵⁸ These discrepancies may be explained by the differences in the material actually used
341	since most of the available studies employ the whole air PM, or instead it could be due to
342	considerable differences in the chemical composition of WSOM samples. The pro-
343	oxidative characteristics of PM can be therefore mainly attributed to direct physical
344	interactions with the particles themselves, or to their content in elements such as Cu, Cr,
345	Pb, Co, Ni, or even WSOC. ^{17,58} It should be mentioned that the concentration of water-
346	soluble elements and metals in the aqueous $PM_{2.5}$ extracts here studied are lower than
347	those identified in the literature as exerting biological effects (Section S9, Table S2), thus
348	supporting the assumption that the effects observed in this work are mainly due to an
349	exposure to aerosol WSOM.
350	<figure 2="" here=""></figure>
351	The inhibitory effect on the capacity of macrophages to produce ROS reported in this
352	study is paradoxical: it may be beneficial given that it limits an inflammatory reaction;

353 however, it can compromise the efficacy of macrophages to destroy harmful

354 microorganisms during an infection by limiting the oxidative burst.

355

356

357 Effects of aerosol WSOM on the modulation of macrophage inflammatory status 358 Based on the results obtained thus far, the potential anti-inflammatory activity of aerosol 359 WSOM samples was also explored. For this, the impact of WSOM samples on the 360 transcription Nos2 (pro-inflammatory Hmox1 of 111b. genes) and (anti-361 inflammatory/cytoprotective), or in the modulation of their LPS-induced transcription was 362 evaluated. As shown in Figure S26, Section S10, Autumn and Spring WSOM samples 363 present a similar profile, although with different magnitudes. Hmox1 transcription is 364 induced either by day or night samples in a dose dependent way. This observation agrees with previous reports where PAHs present in PM (fine and coarse) were shown to induce 365 366 *Hmox1* transcription.^{2,59,60} *Hmox* is a detoxifying enzyme that is expressed in response to oxidative and electrophilic stresses as the result of the activation of the Keap/Nrf2 367 signaling pathway.⁶¹ Therefore, the observed increases indicate that WSOM samples contain 368

electrophilic compounds, of which substructures (1) and (8) to (10) in Figure 1(C) might be
suitable candidates.
Regarding the modulation of <i>II1b</i> and <i>Nos2</i> transcription, once again Autumn and Spring
WSOM samples presented a similar profile, with moderate increases being induced
(Figure S26). These results are in agreement with previous studies where the exposure
to $PM_{2.5}$ was shown to increase the transcription of <i>II1b</i> and <i>Nos2</i> genes in the same cell
model, causing a moderate pro-inflammatory effect.60,62 In this study, when comparing
day and night WSOM samples, there are clear differences: while for day WSOM, the
increase in samples concentration is followed by an increase in the transcription of
referred genes, the opposite occurs for night samples (Figure S26). This explains the
lower production of NO in cells treated with higher concentrations of night WSOM
samples [Figure S24(A)]. Regarding the cells treated with LPS, although all the tested WSOM
samples have slight pro-inflammatory properties, they downregulate the LPS-induced
inflammatory state by increasing <i>Hmox1</i> and reducing <i>Il1b</i> and <i>Nos2</i> transcription (Figure 3).
Similar profiles were found when the levels of these proteins were analyzed by western blot
(Section S11, Figure S27). The increase in <i>Hmox1</i> transcription and respective protein expression
in addition to the intrinsic antioxidant characteristics of the WSOM samples support their strong
capacity to prevent LPS-induced oxidative stress. In turn, the decrease in the LPS-induced Nos2

387 transcription (Figures 3) resulted in a downregulation of the iNOS protein levels (Figure S27), 388 which can explain the observed decrease of LPS-induced NO production in cells pre-treated with 389 WSOM extracts. This capacity to limit LPS-induced inflammatory status was not due to 390 impairment of NF-kB nuclear translocation (Section S12, Figure S28). Given that MAPKs signaling pathways were also shown to modulate PM-induced inflammation,^{63,64} the effects of 391 392 WSOM extracts on the phosphorylation levels of p38, JNK and ERK (Section S13, Figure S29) 393 were also assessed. While ERK was not affected and JNK marginally activated, LPS-induced 394 activation of p38MAPK signaling cascade was downmodulated by exposure to extracts, 395 particularly to nighttime WSOM samples (Figure S29). This impairment of p38 MAPK activation 396 may be in part responsible for the observed decrease in LPS-triggered inflammatory status. 397 Additionally, contributing to this impaired capacity of macrophages to mount an adequate 398 inflammatory response, the extracts may be causing alterations in the cellular cytoskeleton, 399 impairing the traffic of secretory vesicles and the release of cytokines, in a process similar to the 400 one recently described by Longhin and collaborators.⁶⁵ 401 <FIGURE 3 here>

Given that all experiments were performed with relatively high WSOC concentrations
within an acute exposure setup, it was decided to analyze the effects of chronic exposure
by culturing cells during 3 weeks with maximal theoretical aerosol WSOM doses. For this,
the average human air intake per hour and the atmospheric WSOC concentrations during
day and nighttime conditions were taken into account for administrating maximal

407	theoretical WSOC quantities in day-night cycles. As demonstrated in Figure 4(A), cells
408	exposed to aerosol WSOM exhibit a slight increase in the transcription of Hmox1, II1b,
409	and Nos2 genes. When these cells chronically exposed to WSOM samples were then
410	treated with LPS, the Hmox1 and Nos2 slightly increased, but the mRNA levels of II1b
411	were significantly down modulated [Figure 4(B)]. While this small increase observed in
412	Nos2 transcription does not reach statistical significance it reveals an opposite tendency
413	to the one observed in acute experiments. We hypothesize that this may be mainly due
414	the highly different applied WSOC concentrations and to the presence in the extracts of
415	pro and anti-inflammatory compounds. In acute experiments the concentration of
416	compounds with anti-inflammatory properties may reach a level enough to impair LPS-
417	triggered signaling pathways, namely those regulating Nos2 transcription. In contrast, in
418	prolonged exposure experiments, the cells were continuously treated with very low
419	amounts of WSOM extracts and the compounds with pro-inflammatory properties may
420	prime cells rendering them more responsive to posterior LPS stimulation. Therefore,
421	prolonged exposure to even very small concentrations of water-soluble organic

422 compounds present in PM_{2.5}, can cause a decrease in the capacity of macrophages to

423 respond to a subsequent inflammatory stimulus.

424 <FIGURE 4 here>

425 In summary, the set of data provided by 1D and 2D NMR analysis indicates that the fine 426 aerosol WSOM samples hold similar functional groups; however, they differ in terms of 427 their relative distribution both between seasons and in a day-night cycle. This study also 428 highlights that the compositional features of aerosol WSOM samples correlates with their 429 ability to induce a moderate inflammatory status in macrophages, which at long-term may 430 compromise their capacity to mount an effective inflammatory response required to 431 manage harmful pathogens. Therefore, continuous and prolonged exposure to aerosol 432 water-soluble organic compounds could result in increased susceptibility to respiratory 433 infections. For a better understanding of the overall ability of fine aerosol WSOM to exert pro-inflammatory effects, further studies should be conducted involving a larger data set 434 435 of different WSOM samples, while effectively segregating the contributions from different WSOM constituents. 436

439 ASSOCIATED CONTENT

440	Supporting Information. Experimental procedure for PM _{2.5} sampling, meteorological
441	information collected during each sampling campaign, experimental details for OC and
442	EC analysis, average ambient concentrations of the main aerosol carbon fractions, 2D
443	NMR data acquisition and 2D NMR spectral assignments of the aerosol WSOM samples,
444	water-soluble elements and metals concentrations in $PM_{2.5}$ samples, impact of aerosol
445	WSOM samples on macrophages viability, NO production and scavenging activity,
446	modulation of macrophage inflammatory status, protein levels of iNOS, HMOX1, and IL-
447	1β , activation of pro-inflammatory NF- κ B signaling pathways, and modulation of MAPKs
448	signaling pathways. This material is available free of charge via the Internet at
449	http://pubs.acs.org.

450

451

453 AUTHOR INFORMATION

454 Corresponding Author

455 *E-mail: regina.duarte@ua.pt: Phone: +351 234 370 360.

456 Author Contributions

- 457 The manuscript was written through contributions of all authors and all authors have given
- 458 approval to its final version. § Bruno M. Neves and Regina M.B.O. Duarte supervised this study
- 459 equally as senior authors.
- 460 ORCID: Antoine S. Almeida: 0000-0002-4535-1213; Rita M.P. Ferreira: 0000-0002-6872-
- 461 4051; Artur M.S. Silva: 0000-0003-2861-8286; Armando C. Duarte: 0000-0002-4868-
- 462 4099; Bruno M. Neves: 0000-0001-7391-3124; Regina M.B.O. Duarte: 0000-0002-1825-
- 463 6528.
- 464
- 465 Notes
- 466 The authors declare no competing financial interest.
- 467
- 468 ACKNOWLEDGMENT

469	Thar	nks a	are	due	to	FCT/MCTES	for	the	financial	sup	port	to	CES	SAM	
470	(UID	/AMB/	/5001	17/201	9),	Organic	Chem	nistry	Resea	rch	Unit		(QOP	NA,	
471	UID/	JID/QUI/00062/2019), and iBiMED (UID/BIM/04501/2013 and UID/BIM/04501/2019), and													
472	Portuguese NMR network, through national funds. FCT/MCTES is also acknowledged for														
473	an Investigator FCT Contract (IF/00798/2015). The Authors would like to acknowledge														
474	Catarina Leitão for her assistance on the western blot experiments.														
475															
475															
476															
477	REFERENCES														
478	(1)	Mills	, N.∣	L.; Doi	nalds	on, K.; Hadok	e, P. V	V.; Bo	on, N. A.;	MacN	lee, W	/.; C	assee	e, F.	
479		R.; Sandström, T.; Blomberg, A.; Newby, D. E. Adverse Cardiovascular Effects o											s of		
480		Air P	ollut	ion. <i>N</i>	at. Cl	lin. Pract. Card	diovaso	c. Mea	2. 2009 , <i>6</i>	(1), 36	-44.				
481	(2)	Feng	g, S.;	Gao, I	D.; Lia	ao, F.; Zhou, F	.; Wan	g, X. T	he Health	Effect	ts of A	mbie	ent PM	12.5	
482		and I	Pote	ntial N	lecha	nisms. <i>Ecoto</i> ,	xicol. E	nviron	n. Saf. 201	6 , <i>128</i>	3, 67–7	74.			
483	(3)	Li, R	.; Zh	iou, R.	; Zha	ng, J. Functio	n of Pl	M2.5 ii	n the Path	nogene	esis of	Lur	ng Car	ncer	
484		and	Chro	nic Air	way	Inflammatory	Diseas	es. <i>Oi</i>	ncol. Lett.	2018,	<i>15</i> (5)), 75	06–75	514.	

485	(4)	Santibáñez-Andrade, M.; Quezada-Maldonado, E. M.; Osornio-Vargas, Á.;
486		Sánchez-Pérez, Y.; García-Cuellar, C. M. Air Pollution and Genomic Instability: The
487		Role of Particulate Matter in Lung Carcinogenesis. Environ. Pollut. 2017, 229, 412-
488		422.
489	(5)	Basagaña, X.; Esnaola, M.; Rivas, I.; Amato, F.; Alvarez-Pedrerol, M.; Forns, J.;
490		López-Vicente, M.; Pujol, J.; Nieuwenhuijsen, M.; Querol, X.; Sunyer, J.
491		Neurodevelopmental Deceleration by Urban Fine Particles from Different Emission
492		Sources : A Longitudinal Observational Study. Environ. Health Perspect. 2016, 124
493		(10), 1630–1636.
494	(6)	Calderón-Garcidueñas, L.; Kulesza, R. J.; Doty, R. L.; Angiulli, A. D.; Torres-
495		Jardón, R. Megacities Air Pollution Problems: Mexico City Metropolitan Area
496		Critical Issues on the Central Nervous System Pediatric Impact. Environ. Res.
497		2015 , <i>137</i> , 157–169.
498	(7)	Suades-González, E.; Gascon, M.; Guxens, M.; Sunyer, J. Air Pollution and
499		Neuropsychological Development: A Review of the Latest Evidence. <i>Endocrinology</i>

501	(8)	Gosset, P.; Aboukais, A.; Dagher, Z.; Shirali, P.; Ledoux, F.; Surpateanu, G.;
502		Garçon, G.; Courcot, D.; Puskaric, E. Pro-Inflammatory Effects of Dunkerque City
503		Air Pollution Particulate Matter 2.5 in Human Epithelial Lung Cells (L132) in Culture.
504		<i>J. Appl. Toxicol.</i> 2005 , <i>25</i> (2), 166–175.
505	(9)	Sun, Q.; Chen, L. C.; Briazova, T.; Laing, S.; Zhang, K.; Wang, G.; Wang, A.; Gow,
506		A.; Zhang, C.; Chen, A. F.; Rajagopalan, S.; Chen, L. C.; Sun, Q.; Zhang, K.
507		Airborne Particulate Matter Selectively Activates Endoplasmic Reticulum Stress
508		Response in the Lung and Liver Tissues. Am. J. Physiol. Physiol. 2010, 299 (4),
509		C736–C749.
510	(10)	Liu, Q.; Baumgartner, J.; Zhang, Y.; Liu, Y.; Sun, Y.; Zhang, M. Oxidative Potential
511		and Inflammatory Impacts of Source Apportioned Ambient Air Pollution in Beijing.
512		<i>Environ. Sci. Technol.</i> 2014 , <i>48</i> (21), 12920–12929.
513	(11)	Pope, C. A.; Dockery, D. W. Health Effects of Fine Particulate Air Pollution: Lines
514		That Connect. <i>J. Air Waste Manag. Assoc.</i> 2006 , <i>56</i> (6), 709–742.
515	(12)	Visentin, M.; Pagnoni, A.; Sarti, E.; Pietrogrande, M. C. Urban PM2.5 Oxidative
516		Potential: Importance of Chemical Species and Comparison of Two

517		Spectrophotometric Cell-Free Assays. Environ. Pollut. 2016, 219, 72–79.
518	(13)	Huang, Q.; Zhang, J.; Peng, S.; Tian, M.; Chen, J.; Shen, H. Effects of Water
519		Soluble PM2.5 Extracts Exposure on Human Lung Epithelial Cells (A549): A
520		Proteomic Study. J. Appl. Toxicol. 2014, 34 (6), 675–687.
521	(14)	Fang, T.; Verma, V.; T Bates, J.; Abrams, J.; Klein, M.; Strickland, J. M.; Sarnat, E.
522		S.; Chang, H. H.; Mulholland, A. J.; Tolbert, E. P.; Russel, G. A.; Weber, J. R.
523		Oxidative Potential of Ambient Water-Soluble PM2.5 in the Southeastern United
524		States: Contrasts in Sources and Health Associations between Ascorbic Acid (AA)
525		and Dithiothreitol (DTT) Assays. Atmos. Chem. Phys. 2016, 16 (6), 3865–3879.
526	(15)	Cassee, F. R.; Héroux, ME.; Gerlofs-Nijland, M. E.; Kelly, F. J. Particulate Matter
527		beyond Mass: Recent Health Evidence on the Role of Fractions, Chemical
528		Constituents and Sources of Emission. Inhal. Toxicol. 2013, 25 (14), 802-812.
529	(16)	MohseniBandpi, A.; Eslami, A.; Shahsavani, A.; Khodagholi, F.; Alinejad, A.
530		Physicochemical Characterization of Ambient PM2.5 in Tehran Air and Its Potential
531		Cytotoxicity in Human Lung Epithelial Cells (A549). Sci. Total Environ. 2017, 593,
532		182–190.

ACS Paragon Plus Environment

533	(17)	Saffari, A.; Daher, N.; Shafer, M. M.; Schauer, J. J.; Sioutas, C. Global Perspective
534		on the Oxidative Potential of Airborne Particulate Matter: A Synthesis of Research
535		Findings. <i>Environ. Sci. Technol.</i> 2014, 48 (13), 7576–7583.
536	(18)	Janssen, N. A. H.; Yang, A.; Strak, M.; Steenhof, M.; Hellack, B.; Gerlofs-Nijland,
537		M. E.; Kuhlbusch, T.; Kelly, F.; Harrison, R.; Brunekreef, B.; Hoek, G.; Cassee, F.
538		Oxidative Potential of Particulate Matter Collected at Sites with Different Source
539		Characteristics. Sci. Total Environ. 2014, 472, 572–581.
540	(19)	Risom, L.; Møller, P.; Loft, S. Oxidative Stress-Induced DNA Damage by Particulate
541		Air Pollution. <i>Mutat. Res. Mol. Mech. Mutagen.</i> 2005, <i>592</i> (1–2), 119–137.
542	(20)	Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.;
543		Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M. M.; Schauer,
544		J. J.; Sioutas, C. Increased Biomass Burning Due to the Economic Crisis in Greece
545		and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci.
546		<i>Technol.</i> 2013 , <i>47</i> (23), 13313–13320.
547	(21)	Lin, P.; Yu, J. Z. Generation of Reactive Oxygen Species Mediated by Humic-like
548		Substances in Atmospheric Aerosols. <i>Environ. Sci. Technol.</i> 2011, 45(24), 10362-

550	(22)	Verma, V	V.;	Rico-Martinez,	, R.; Kotra,	N.;	King, L.;	Liu, J	.; Snell,	Τ.	W.;	Weber,	R	J.
-----	------	----------	-----	----------------	--------------	-----	-----------	--------	-----------	----	-----	--------	---	----

- 551 Contribution of Water-Soluble and Insoluble Components and Their
- 552 Hydrophobic/Hydrophilic Subfractions to the Reactive Oxygen Species-Generating
- 553 Potential of Fine Ambient Aerosols. Environ. Sci. Technol. 2012, 46 (20), 11384–
- 554 11392.

555 (23) Samara, C. On the Redox Activity of Urban Aerosol Particles: Implications for Size

- 556 Distribution and Relationships with Organic Aerosol Components. *Atmosphere*
- 557 *(Basel).* **2017**, *8*(10).
- 558 (24) Saffari, A.; Daher, N.; Shafer, M. M.; Schauer, J. J.; Sioutas, C. Seasonal and
- 559 Spatial Variation in Reactive Oxygen Species Activity of Quasi-Ultrafine Particles
- 560 (PM0.25) in the Los Angeles Metropolitan Area and Its Association with Chemical
- 561 Composition. *Atmos. Environ.* **2013**, *79*, 566–575.
- 562 (25) Verma, V.; Fang, T.; Xu, L.; Peltier, R. E.; Russell, A. G.; Ng, N. L.; Weber, R. J.
- 563 Organic Aerosols Associated with the Generation of Reactive Oxygen Species
- 564 (ROS) by Water-Soluble PM2.5. *Environ. Sci. Technol.* **2015**, *49*(7), 4646–4656.

565	(26)	Dou, J.; Lin, P.; Kuang, B. Y.; Yu, J. Z. Reactive Oxygen Species Production
566		Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement
567		Effects by Pyridine, Imidazole, and Their Derivatives. Environ. Sci. Technol. 2015,
568		<i>49</i> (11), 6457–6465.
569	(27)	Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.;
570		Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; Dzepina, K.; Dunlea, E.;
571		Docherty, K.; DeCarlo, P. F.; Salcedo, D.; Onasch, T.; Jayne, J. T.; Miyoshi, T.;
572		Shimono, A.; Hatakeyama, S.; Takegawa, N.; Kondo, Y.; Schneider, J.; Drewnick,
573		F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Williams, P.; Bower, K.; Bahreini, R.;
574		Cottrell, L.; Griffin, R. J., Rautiainen, J.; Sun, J. Y.; Zhang, Y. M.; Worsnop, D. R.
575		Ubiquity and Dominance of Oxygenated Species in Organic Aerosols in
576		Anthropogenically-Influenced Northern Hemisphere Midlatitudes. Geophys. Res.
577		<i>Lett.</i> 2007 , <i>34</i> (13).
578	(28)	Lopes, S. P.; Matos, J. T. V.; Silva, A. M. S.; Duarte, A. C.; Duarte, R. M. B. O. 1 H
579		NMR Studies of Water- and Alkaline-Soluble Organic Matter from Fine Urban
580		Atmospheric Aerosols. Atmos. Environ. 2015, 119, 374–380.

ACS Paragon Plus Environment

581	(29)	Duarte, R. M. B. O.; Freire, S. M. S. C.; Duarte, A. C. Investigating the Water-
582		Soluble Organic Functionality of Urban Aerosols Using Two-Dimensional
583		Correlation of Solid-State 13C NMR and FTIR Spectral Data. Atmos. Environ. 2015,
584		<i>116</i> , 245–252.
585	(30)	Duarte, R. M. B. O.; Piñeiro-Iglesias, M.; López-Mahía, P.; Muniategui-Lorenzo, S.;
586		Moreda-Piñeiro, J.; Silva, A. M. S.; Duarte, A. C. Comparative Study of Atmospheric
587		Water-Soluble Organic Aerosols Composition in Contrasting Suburban
588		Environments in the Iberian Peninsula Coast. Sci. Total Environ. 2019, 648, 430-
589		441.
590	(31)	Duarte, R. M. B. O.; Matos, J. T. V.; Paula, A. S.; Lopes, S. P.; Pereira, G.;
591		Vasconcellos, P.; Gioda, A.; Carreira, R.; Silva, A. M. S.; Duarte, A. C.; Smichowski,
592		P.; Rojas, N.; Sanchez-Ccoyllo, O. Structural Signatures of Water-Soluble Organic
593		Aerosols in Contrasting Environments in South America and Western Europe.
594		Environ. Pollut. 2017, 227, 513–525.
595	(32)	Matos, J. T. V.; Duarte, R. M. B. O.; Lopes, S. P.; Silva, A. M. S.; Duarte, A. C.

597		Complexity and Seasonal Variability. Environ. Pollut. 2017, 231, 281–290.
598	(33)	Duarte, R. M. B. O.; Santos, E. B. H.; Pio, C. A.; Duarte, A. C. Comparison of
599		Structural Features of Water-Soluble Organic Matter from Atmospheric Aerosols
600		with Those of Aquatic Humic Substances. Atmos. Environ. 2007, 41, 8100-8113.
601	(34)	Duarte, R. M. B. O.; Silva, A. M. S.; Duarte, A. C. Two-Dimensional NMR Studies
602		of Water-Soluble Organic Matter in Atmospheric Aerosols. Environ. Sci. Technol.
603		2008 , <i>42</i> (22), 8224–8230.
604	(35)	Ng, N. L.; Canagaratna, M. R.; Zhang, Q.; Jimenez, J. L.; Tian, J.; Ulbrich, I. M.;
605		Kroll, J. H.; Docherty, K. S.; Chhabra, P. S.; Bahreini, R.; Murphy, S. M.; Seinfeld,
606		J. H.; Hildebrandt, L.; Donahue, N. M.; DeCarlo, P. F.; Lanz, V. A.; Prévôt, A. S. H.;
607		Dinar, E.; Rudich, Y.; Worsnop, D. R. Organic Aerosol Components Observed in
608		Northern Hemispheric Datasets from Aerosol Mass Spectrometry. Atmos. Chem.
609		<i>Phys.</i> 2010 , <i>10</i> (10), 4625–4641.
610	(36)	Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer,
611		B.; Rappenglück, B. Characterization of Urban Aerosol Using Aerosol Mass
612		Spectrometry and Proton Nuclear Magnetic Resonance Spectroscopy. Atmos.

- 613 *Environ.* **2012**, *54*, 511–518.
- 614 (37) Shakya, K. M.; Place, P. F.; Griffin, R. J.; Talbot, R. W. Carbonaceous Content and
- 615 Water-Soluble Organic Functionality of Atmospheric Aerosols at a Semi-Rural New
- 616 England Location. J. Geophys. Res. Atmos. 2012, 117(3), 1–13.
- 617 (38) Timonen, H.; Carbone, S.; Aurela, M.; Saarnio, K.; Saarikoski, S.; Ng, N. L.;
- 618 Canagaratna, M. R.; Kulmala, M.; Kerminen, V.-M.; Worsnop, D. R.; Hillamo, R.
- 619 Characteristics, Sources and Water-Solubility of Ambient Submicron Organic
- 620 Aerosol in Springtime in Helsinki, Finland. J. Aerosol Sci. 2013, 56, 61–77.
- 621 (39) Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.;
- 622 Kavouras, I. G. Functional Characterization of the Water-Soluble Organic Carbon
- 623 of Size-Fractionated Aerosol in the Southern Mississippi Valley. *Atmos. Chem.*
- 624 *Phys.* **2014**, *14* (12), 6075–6088.
- 625 (40) Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.;
- 626 Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.;
- 627 Stenstrom, K. E.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.;
- 628 Decesari, S. Primary and Secondary Biomass Burning Aerosols Determined by

629		Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy during the 2008
630		EUCAARI Campaign in the Po Valley (Italy). Atmos. Chem. Phys. 2014, 14 (10),
631		5089–5110.
632	(41)	Duarte, R. M. B. O.; Matos, J. T. V.; Paula, A. S.; Lopes, S. P.; Ribeiro, S.; Santos,
633		J. F.; Patinha, C.; da Silva, E. F.; Soares, R.; Duarte, A. C. Tracing of Aerosol
634		Sources in an Urban Environment Using Chemical, Sr Isotope, and Mineralogical
635		Characterization. Environ. Sci. Pollut. Res. 2017, 24 (12), 11006–11016.
636	(42)	Lopes, C.; Abreu, S.; Válega, M.; Duarte, R.; Pereira, M.; Duarte, A. The
637		Assembling and Application of an Automated Segmented Flow Analyzer for the
638		Determination of Dissolved Organic Carbon Based on UV-Persulphate Oxidation.
639		<i>Anal. Lett.</i> 2006 , <i>39</i> (9), 1979-1992.
640	(43)	Hertkorn, N.; Kettrup, A. Molecular Level Structural Analysis of Natural Organic
641		Matter and of Humic Substances by Multinuclear and Higher Dimensional NMR
642		Spectroscopy. In Use of Humic Substances to Remediate Polluted Environments:
643		From Theory to Practice; Perminova, I. V., Hatfield, K., Hertkorn, N., Eds.; Springer,
644		2005; pp 391–435.

- 645 (44) Simpson, A. J.; Burdon, J.; Graham, C. L.; Hayes, M. H. B.; Spencer, N.; Kingery,
- 646 W. L. Interpretation of Heteronuclear and Multidimensional NMR Spectroscopy of
- 647 Humic Substances. *Eur. J. Soil Sci.* **2001**, *52* (3), 495–509.
- 648 (45) Banfi, D.; Patiny, L. Www.Nmrdb.Org: Resurrecting and Processing NMR Spectra
- 649 On-Line. *Chim. Int. J. Chem.* **2008**, *62*(4), 280–281.
- 650 (46) Morais, E. S.; Silva, N. H. C. S.; Sintra, T. E.; Santos, S. A. O.; Neves, B. M.;
- Almeida, I. F.; Costa, P. C.; Correia-Sá, I.; Ventura, S. P. M.; Silvestre, A. J. D.;
- 652 Freire, M. G.; Freire, C. S. R Anti-Inflammatory and Antioxidant Nanostructured
- 653 Cellulose Membranes Loaded with Phenolic-Based Ionic Liquids for Cutaneous
- 654 Application. *Carbohydr. Polym.* **2019**, *206*, 187–197.
- 655 (47) Park, R. J.; Jacob, D. J.; Chin, M.; Martin, R. V. Sources of Carbonaceous Aerosols
- 656 over the United States and Implications for Natural Visibility. J. Geophys. Res.
- 657 **2003**, *108* (D12), 4355.
- 658 (48) Wozniak, A. S.; Bauer, J. E.; Dickhut, R. M. Characteristics of Water-Soluble
- 659 Organic Carbon Associated with Aerosol Particles in the Eastern United States.
- 660 *Atmos. Environ.* **2012**, *46*, 181–188.

661	(49)	Schmitt-Kopplin, P.; Gelencsér, A.; Dabek-Zlotorzynska, E.; Kiss, G.; Hertkorn, N.;
662		Harir, M.; Hong, Y.; Gebefügi, I. Analysis of the Unresolved Organic Fraction in
663		Atmospheric Aerosols with Ultrahigh-Resolution Mass Spectrometry and Nuclear
664		Magnetic Resonance Spectroscopy: Organosulfates As Photochemical Smog
665		Constituents †. <i>Anal. Chem.</i> 2010 , <i>82</i> (19), 8017–8026.
666	(50)	Simoneit, B. R. T.; Elias, V. O.; Kobayashi, M.; Kawamura, K.; Rushdi, A. I.;
667		Medeiros, P. M.; Rogge, W. F.; Didyk, B. M. Sugars - Dominant Water-Soluble
668		Organic Compounds in Soils and Characterization as Tracers in Atmospheric
669		Participate Matter. Environ. Sci. Technol. 2004, 38 (22), 5939–5949.
670	(51)	Jalava, P. I.; Salonen, R. O.; Pennanen, A. S.; Happo, M. S.; Penttinen, P.; Hälinen,
671		A. I.; Sillanpää, M.; Hillamo, R.; Hirvonen, MR. Effects of Solubility of Urban Air
672		Fine and Coarse Particles on Cytotoxic and Inflammatory Responses in RAW 264.7
673		Macrophage Cell Line. Toxicol. Appl. Pharmacol. 2008, 229 (2), 146–160.
674	(52)	Chauhan, V.; Breznan, D.; Goegan, P.; Nadeau, D.; Karthikeyan, S.; Brook, J. R.;
675		Vincent, R. Effects of Ambient Air Particles on Nitric Oxide Production in
676		Macrophage Cell Lines. Cell Biol. Toxicol. 2004, 20 (4), 221–239.

- 677 (53) Becker, S.; Dailey, L. A.; Soukup, J. M.; Grambow, S. C.; Devlin, R. B.; Huang,
- 678 Y.-C. T. Seasonal Variations in Air Pollution Particle-Induced Inflammatory
- 679 Mediator Release and Oxidative Stress. *Environ. Health Perspect.* **2005**, *113* (8),
- 680 1032–1038.
- 681 (54) Longhin, E.; Pezzolato, E.; Mantecca, P.; Holme, J. A.; Franzetti, A.; Camatini, M.;
- 682 Gualtieri, M. Season Linked Responses to Fine and Quasi-Ultrafine Milan PM in
- 683 Cultured Cells. *Toxicol. In Vitro* **2013**, *27*(2), 551–559.
- 684 (55) Perrone, M. G.; Gualtieri, M.; Ferrero, L.; Lo Porto, C.; Udisti, R.; Bolzacchini, E.;
- 685 Camatini, M. Seasonal Variations in Chemical Composition and in Vitro Biological
- 686 Effects of Fine PM from Milan. *Chemosphere* **2010**, *78* (11), 1368–1377.
- 687 (56) Jalava, P. I.; Aakko-Saksa, P.; Murtonen, T.; Happo, M. S.; Markkanen, A.; Yli-
- 688 Pirilä, P.; Hakulinen, P.; Hillamo, R.; Mäki-Paakkanen, J.; Salonen, R. O.;
- 589 Jokiniemi, J.; Hirvonen, M.-R. Toxicological Properties of Emission Particles from
- 690 Heavy Duty Engines Powered by Conventional and Bio-Based Diesel Fuels and
- 691 Compressed Natural Gas. *Part. Fibre Toxicol.* **2012**, *9*(1), 37.
- 692 (57) Uski, O.; Jalava, P. I.; Happo, M. S.; Torvela, T.; Leskinen, J.; Mäki-Paakkanen, J.;

693		Tissari, J.; Sippula, O.; Lamberg, H.; Jokiniemi, J.; Hirvonen, M. R. Effect of Fuel
694		Zinc Content on Toxicological Responses of Particulate Matter from Pellet
695		Combustion in Vitro. Sci. Total Environ. 2015, 511, 331–340.
696	(58)	Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, C.; Miller-Schulze, J.; Heo, J. B.;
697		Shafer, M. M.; Shelton, B. R.; Schauer, J. J.; Sioutas, C. Characterization, Sources
698		and Redox Activity of Fine and Coarse Particulate Matter in Milan, Italy. Atmos.
699		<i>Environ.</i> 2012 , <i>49</i> , 130–141.
700	(59)	Bachoual, R.; Boczkowski, J.; Goven, D.; Amara, N.; Tabet, L.; On, D.; Leçon-
701		Malas, V.; Aubier, M.; Lanone, S. Biological Effects of Particles from the Paris
702		Subway System. <i>Chem. Res. Toxicol.</i> 2007 , <i>20</i> (10), 1426–1433.
703	(60)	Bekki, K.; Ito, T.; Yoshida, Y.; He, C.; Arashidani, K.; He, M.; Sun, G.; Zeng, Y.;
704		Sone, H.; Kunugita, N.; Ichinose, T. PM 2.5 Collected in China Causes
705		Inflammatory and Oxidative Stress Responses in Macrophages through the
706		Multiple Pathways. Environ. Toxicol. Pharmacol. 2016, 45, 362–369.
707	(61)	Kobayashi, A.; Kang, MI.; Watai, Y.; Tong, K. I.; Shibata, T.; Uchida, K.;
708		Yamamoto, M. Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition

709		of Ubiquitination Activity of Keap1. <i>Mol. Cell. Biol.</i> 2006 , <i>26</i> (1), 221–229.
710	(62)	Jalava, P. I.; Happo, M. S.; Huttunen, K.; Sillanpää, M.; Hillamo, R.; Salonen, R.
711		O.; Hirvonen, MR. Chemical and Microbial Components of Urban Air PM Cause
712		Seasonal Variation of Toxicological Activity. Environ. Toxicol. Pharmacol. 2015, 40
713		(2), 375–387.
714	(63)	Wang, J.; Huang, J.; Wang, L.; Chen, C.; Yang, D.; Jin, M.; Bai, C.; Song, Y. Urban
715		Particulate Matter Triggers Lung Inflammation via the ROS-MAPK-NF-KB Signaling
716		Pathway. <i>J. Thorac. Dis.</i> 2017 , <i>9</i> (11), 4398–4412.
717	(64)	Xiao, X.; Wang, R.; Cao, L.; Shen, Z.; Cao, Y. The Role of MAPK Pathways in
718		Airborne Fine Particulate Matter-Induced Upregulation of Endothelin Receptors in
719		Rat Basilar Arteries. <i>Toxicol. Sci.</i> 2016, <i>149</i> (1), 213–226.
720	(65)	Longhin, E.; Holme, J. A.; Gualtieri, M.; Camatini, M.; Øvrevik, J. Milan Winter Fine
721		Particulate Matter (WPM2.5) Induces IL-6 and IL-8 Synthesis in Human Bronchial
722		BEAS-2B Cells, but Specifically Impairs IL-8 Release. Toxicol. Vitr. 2018, 52 (July),
723		365–373.

TOC Art

727

728

Figure 1. (A) Liquid-state ¹H NMR spectra of aerosol WSOM samples representative of day and nighttime conditions in Autumn and Spring seasons, (B) percentage distribution of ¹H NMR in each aerosol WSOM sample, and (C) aliphatic, carbohydrate and aromatic substructures identified in aerosol WSOM collected overnight in Autumn. See Figures S9 and S10 (in SI) for spectral assignments and identity of aromatic substituents (R³ and R⁴). Four spectral regions are identified in ¹H NMR spectra (A): H–C, H–C–C=, H–C–O, and Ar–H. NMR resonances assigned to dimethylammonium (DMA⁺), methanesulfonic acid (MSA), and

- 738 protons bound to anomeric carbons [O–C(H)–O] are also identified. Additional resonance
- signals: solvent (S) MeOH- d_4 , and tetramethylsilane (TMS) 0.03% (v/v).

741

Figure 2. Effect of aerosol WSOM samples on macrophage ROS production and modulation of LPS-induced oxidative stress. Cells were cultured in the indicated conditions and the ROS production was assessed with H₂DCFDA (green), a ROS-sensitive fluorescent probe. Hoechst (blue) was used to label the nuclei. Images representative of different fields were acquired at a magnification of 63x (scale bar = $20 \mu m$).

748

Figure 4. Impact of prolonged exposure to maximal theoretical doses of aerosol WSOM samples in the (A) gene transcription and (B) LPS-induced gene transcription of *Hmox1*, *111b*, and *Nos2*. Cells were exposed for 3 weeks to maximal theoretical quantities of WSOC extracts, followed by mRNA extraction and gene transcription assessment by q-PCR. Data is presented as mRNA fold change relatively to control or to LPS-treated cells and represent the mean \pm SD from at least 3 independent experiments. [****p<0.0001: Control (C) *vs* treatments; **%**p<0.01: LPS *vs* WSOM+LPS].

Table 1. Ambient concentrations (maximum – minimum; median) of urban PM_{2.5}, OC,

767 EC, WSOC, and WSOC/OC in each sampling p
--

Season	Sampling Period	ΡΜ _{2.5} (μg m ⁻³)	ОС (µg C m ⁻³)	EC (μg C m ⁻³)	WSOC (μg C m ⁻³)	WSOC/OC (%)
	Day	60 – 14; 32	14 – 1.6; 4.1	2.2 – 0.3; 1.3	5.6 – 0.2; 1.3	39 – 12; 34
Autumn	Night	75 – 10; 47	20 – 1.5; 14	5.0 – 0.3; 3.0	6.5 – 0.5; 4.7	34 – 29; 33
	Day	30 – 5.1; 21	6.2 – 0.75; 3.3	1.2 – 0.0; 0.4	2.7 – 0.43; 1.1	57 – 32; 42
Spring	Night	29 – 3.2; 22	6.3 – 1.3; 4.3	1.4 – 0.3; 0.9	2.6 – 0.54; 1.6	44 – 35; 41

TOC Art