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ABSTRACT

Motivation: In the study of the structural flexibility of proteins,

crystallographic Debye-Waller factors are the most important

experimental information used in the calibration and validation of

computational models, such as the very successful elastic network

models (ENMs). However, these models are applied to single protein

molecules, whereas the experiments are performed on crystals.

Moreover, the energy scale in standard ENMs is undefined and must

be obtained by fitting to the same data that the ENM is trying to

predict, reducing the predictive power of the model.

Results: We develop an elastic network model for the whole protein

crystal in order to study the influence of crystal packing and lattice

vibrations on the thermal fluctuations of the atom positions. We use

experimental values for the compressibility of the crystal to establish

the energy scale of our model. We predict the elastic constants of

the crystal and compare with experimental data. Our main findings

are (1) crystal packing modifies the atomic fluctuations considerably

and (2) thermal fluctuations are not the dominant contribution to

crystallographic Debye-Waller factors.

Availability: The programs developed for this work are available as

supplementary material at Bioinformatics Online.

Contact: hinsen@cnrs-orleans.fr

Supplementary information: (1) A full derivation of the normal mode

equations in a crystal and in a continuous medium. (2) A movie

illustrating the lattice vibrations. Both supplements are available at

Bioinformatics Online.

1 INTRODUCTION

Protein X-ray crystallography provides not only three-
dimensional structures of proteins, but also information

about their flexibility in the form of Debye-Waller factors
(DWFs). The DWF not only describes the spread of the
electron density of an atom due to thermal motion and crystal

disorder, but also contains contributions that are due to
experimental artefact. For most protein structures in the

Protein Data Bank (Berman et al., 2000), the DWFs have
been assumed to be isotropic in the refinement process, leading

to a single number per atom known as the B factor. More
recent structures, in particular high-resolution structures, have
been refined using anisotropic DWFs, which are described by a

symmetric tensor per atom, whose six independent elements
are called anisotropic displacement parameters (ADPs).

It is important to understand that B factors and ADPs are

not experimentally observable quantities, but parameters in a

theoretical model that is fitted to the experimental diffraction

intensities. The refinement procedure typically involves

restraints on the DWFs, whose impact can be detected in the

fitted ADPs (Kondrashov et al., 2007). Some structures were

refined using a theoretical model for collective motions from

which the ADPs were derived, resulting in a much smaller

number of independent fit parameters. The most popular model

for collective motions is the TLS model (Schomaker and

Trueblood, 1968; Winn et al., 2001) that describes the protein

as an assembly of rigid subunits. Another approach is the use of

low-frequency normal mode coordinates to describe the large-

amplitude motions of the protein (Diamond, 1990; Kidera and

Go, 1990; Poon et al., 2007).
The interpretation of DWFs requires theoretical models as

well, because the individual atomic position fluctuations are of

little biological interest. It is well known that the largest contri-

butions to thermal fluctuations in macromolecules come from

collective motions, which are conveniently described by the

normalmodes of harmonic potentialmodels or by principal com-

ponent analysis ofmolecular dynamics trajectories. Some aspects

of static crystal disorder, in particular the co-existence ofmultiple

conformers of the protein in the crystal, are alsowell described by

collective motions. Moreover, collective motions have been

demonstrated to be related to the biological function of the

protein in a large number of cases (Bahar and Rader, 2005; Ma,

2005). The main utility of crystallographic DWFs in the study

of protein flexibility lies thus in their use for calibrating and

verifying theoretical models for large-amplitude collective

motions.

A family of models for collective motions that has met with

considerable success is the elastic network model (ENM), which

has first been proposed by Tirion (1996) and then been applied

to the identification of collective motions by Hinsen (1998).

Since then, a large number of applications has demonstrated its

utility (Bahar and Rader, 2005). In its most commonly used

form, the ENM consists of point masses located at the positions

of the C� atoms of the protein and interacting through

harmonic springs. The potential energy takes the form

Uðr1; . . . ; rNÞ ¼
X

all pairs i; j

Uijðri � rjÞ ð1Þ
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with an harmonic pair potential

UijðrÞ ¼ k r
ð0Þ
ij

��� ���� �
rj j � r

ð0Þ
ij

��� ���� �2
; ð2Þ

where ri denotes the position of the ith C� atom and r
ð0Þ
ij is the

pair distance vector ri�rj in the given configuration, which

becomes by construction the minimum of the potential energy.

The function k(r) represents the force constant of the springs as

a function of the pair distance at equilibrium. Various

functional forms have been used: a Gaussian (Hinsen, 1998),

a function fitted to an atomic-level force field (Hinsen et al.,

2000), and a step function (Atilgan et al., 2001). In all these

cases, the potential is only determined up to a global scale

factor, which is usually obtained by fitting to experimental

DWFs. Many studies have compared the isotropic B factors

predicted by ENMs to experimental values, usually finding

reasonable but not excellent agreement, and two recent studies

have extended the comparison to anisotropic displacement

parameters (Eyal et al., 2007; Kondrashov et al., 2007). There

have also been validation approaches using molecular dynamics

trajectories (Rueda et al., 2007) and NMR structures (Yang

et al., 2007).

2 APPROACH

Until now, ENMs have always been applied to single proteins,

modelling the biological reality of proteins in solution.

However, this environment is very different from the one of a

protein crystal. A crystal is a large assembly of densely packed

proteins, meaning that each molecule is in close contact with

several other molecules. These contacts considerably reduce the

configuration space accessible to each protein, thus modifying

its flexibility. Moreover, the crystal as a whole exhibits collec-

tive motions that contribute to the thermal fluctuations.
We apply an ENM to a protein crystal (the tetragonal crystal

form of lysozyme) in order to study the influence of crystal

contacts and of lattice dynamics on the atomic fluctuations

in proteins. We also consider the large wavelength limit of the

lattice modes in which the protein crystal can be described as

an elastic material. We derive the elastic constants of the

crystal and compare to recent experimental measurements

(Fourme et al., 2001; Koizumi et al., 2006; Speziale et al., 2003).

This comparison allows us to establish an absolute energy

scale for the ENM using experimental data independent from

the DWFs themselves, and thus to predict the thermal

contribution to atomic fluctuations in proteins on an absolute

scale as well.

3 METHODS

3.1 Elastic network model

We use the ENM proposed by Hinsen et al. (2000), which has the form

given by Eqs. (1) and (2) with

kðrÞ ¼
8:6 � 105 kJ

mol nm3 � r� 2:39 � 105 kJ
mol nm2 for r5 0:4 nm

128 kJ nm4=mol
r6

for r � 0:4 nm:

(
ð3Þ

The form for r50.4 applies to nearest neighbours along the peptide

chain, taking into account the rigidity of the peptide plane that links the

two C� atoms. This choice for k(r) was found to best reproduce the

normal modes of the all-atom Amber 94 force field (Cornell et al.,

1995). We apply a cut-off radius of 2.5 nm, at which the potential is

negligibly small. The absolute force constant values correspond to a

local energy minimum in the Amber 94 force field. For applications of

ENMs to large-amplitude motions, the interactions are generally scaled

by a global factor that is determined by fitting to experimental data.

For the calculations on protein crystals, we apply the ENM to the

unit cell of the crystal, constructed from the lattice parameters and

crystallographic symmetry operations contained in the PDB file. We

implement periodic boundary conditions using the minimum-image

convention, in the same way as is habitually done in molecular

dynamics simulations. The atomic fluctuations are calculated from the

normal modes of the ENM, excluding the modes describing the global

motions of the system (for a crystal, the three translational modes). All

calculations are performed using the Molecular Modelling Toolkit

(Hinsen, 2000).

3.2 Normal modes of a crystal

The calculation of the normal modes of a crystal is treated in most

textbooks on crystal theory (Born and Huang, 1998). However,

these derivations do not include the calculation of the amplitudes of

thermal motion, which are important for our application. We give a

complete derivation in the supplementary material and summarize the

results here.

Given a crystal with lattice vectors a1, a2, a3, we denote the

equilibrium positions of the atoms by r
ðjÞ
k , where k¼ 1, . . .,N enumerates

the atoms in the unit cell and j ¼ (j1, j2, j3) with integer j1, j2,

j3 indicates a specific image of the unit cell. We consider finite-size

crystals that consist of nk copies along lattice vector ak, with periodic

boundary conditions at the surface; ultimately we will extrapolate

nk!1. We thus have 0� jk5nk for k¼ 1, 2, 3. Normal mode analysis

assumes small-amplitude vibrations of the atoms around their

equilibrium positions; we denote the displacement vectors by �rðjÞk .

A complete set of normal modes is given by standing-wave solutions

of the equations of motion, which have the form

�rð jÞi ðq; tÞ ¼ ui expðiq � r
ð jÞ
i Þ cosð!tÞ: ð4Þ

We will ultimately use the real and imaginary parts of �rðjÞk for the

physical displacements. For a finite crystal with periodic boundary

conditions, the wave vectors q must be of the form q¼ 2�

(q1b1þ q2b2þ q3b3), where b1, b2, b3 are the reciprocal lattice vectors

defined through ai � bj¼ �ij and the coefficients qk are integer quotients

lk/nk with �nk/25lk� nk/2. This yields a set of nc wave vectors, where

nc¼ n1 n2 n3 is the number of unit cells in the crystal. These wave vectors

lie on a uniform grid in reciprocal space.

For each wave vector q in this set, we obtain 3N normal mode sets

(u,!) from the equations

mi!
2ui ¼

X
l;m

KðijÞ;ðlmÞ � ul exp iq � ðr
ðmÞ

l � r
ðjÞ
i Þ

h i
; ð5Þ

where K is the Hessian matrix of the second derivatives of the potential

energy and mi is the mass of particle i. The three lowest-frequency

modes for each wave vector are called ‘acoustic modes’ and describe the

collective motions of the atoms in the unit cell relative to the other unit

cells. In the remaining 3N�3 modes, called ‘optical modes’, the atoms

of a unit cell move relative to each other. The acoustic modes for q¼ 0

have zero frequency and describe the translational degrees of freedom

of the crystal. The optical modes for q¼ 0 are the normal modes of a

single unit cell with periodic boundary conditions. The amplitudes of

the thermal fluctuations are obtained by requiring that the average

kinetic energy of each mode is kBT/2.
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3.3 Elastic medium approximation

In elasticity theory, the deformation of an elastic body is described by a

deformation field u(r). Its derivative, the (symmetric) strain tensor

eij ¼
1

2

@ui
@rj

þ
@uj
@ri

� �
;

determines the (symmetric) stress tensor �ij through Hooke’s law,

�ij ¼
X
kl

�ij;klekl; ð6Þ

where �ij, kl is a constant tensor that has 21 independent elements in its

most general form. This number is further reduced by symmetries

present in the elastic medium.

The derivation of the wave equations in an elastic medium can be

found in the literature and is reproduced in the supplementary material

together with a derivation of the amplitudes of thermal fluctuations.

Like the atomic-scale normal mode calculation, it is based on an ansatz

of standing wave solutions to the equations of motions for the

displacement field,

uðr; tÞ ¼ a exp iq � rð Þ cosð!tÞ; ð7Þ

which leads to the wave equations

�!2a ¼ M � a: ð8Þ

where M is a symmetric 3� 3 matrix that depends on the �ij, kl and on q

and � is the mass density of the material. There are three normal mode

sets (a,!) for every q.

3.4 Elastic medium limit of the atomic model

In the limit of large wavelengths, i.e. small q, the three acoustic modes

of the atomic-scale model correspond to the elastic waves described by

Eq. (8). The displacement field can be identified with a collective

motion coordinate of the unit cell, such as the center of mass. With that

choice, we can identify the matrix M from Eq. (8) with

MðqÞ ¼
N

V

X
�¼1;2;3

!2
�û� � û� ð9Þ

with

û� ¼

P
i miu

ð�Þ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i m
2
i u

ð�Þ
i

��� ���2
r ; ð10Þ

where u
ð�Þ
i for �¼ 1, 2, 3 are the three lowest-frequency modes obtained

from Equation (5), N is the number of atoms in the unit cell, and V is

the volume of the unit cell. Calculating M(q) for several small q vectors

makes it possible to obtain all elastic constants by comparing with the

solutions of Equation (8).

3.5 Compressibility of an elastic medium

An elastic medium subject to an isotropic pressure p is characterized by

the stress tensor �ij¼�p �ij. The displacement field induced by the

pressure is described by a strain tensor eij, which is determined by

Equation (6). The volume change due to this strain field is

Vþ�V

V
¼

X
i

eii; ð11Þ

the compressibility is then given by

� ¼ �
1

V

@V

@p
¼ �

1

p

X
i

eii: ð12Þ

An explicit derivation of � for a tetragonal crystal is given in the

supplementary material.

4 RESULTS AND DISCUSSION

We have chosen the tetragonal crystal form of hen egg-white

lysozyme as the subject for this study, because of the large

number of available data for this system. In particular, it is, at
the moment, the only protein crystal for which measurements

of the elastic constants are available (Koizumi et al., 2006;

Speziale et al., 2003). We used two different crystal structures

for our calculations: PDB code 1IEE (Sauter et al., 2001),
which is the highest-resolution structure available and contains

ADPs, and PDB code 2LYM (Kundrot and Richards, 1987),

for which the compressibility has been determined experimen-

tally. The first structure has been obtained at a temperature of
110K, the second one at ambient temperature. The two

structures thus permit an estimation of the relative contribu-

tions of thermal motion and crystal disorder to the crystal-

lographic DWFs. The RMS difference between the two

lysozyme structures is 0.33 Å. The 2LYM unit cell volume is
larger than the one of 1IEE by 7.6%, which can be explained by

the temperature difference (Kurinov and Harrison, 1995).
In order to clarify the impact of different crystal contacts on

the atomic fluctuations, we also look at the structure of the

triclinic form of lyzosyme (Walsh et al., 1998, PDB code

3LZT), obtained at a temperature of 120K. Its structure
remains close to that of tetragonal lysozyme (the RMS

difference from 1IEE is 0.79 Å, from 2LYM it is 0.72 Å).
Figure 1 compares the magnitude of the atomic fluctuations

of the C� atoms in the three structures 1IEE, 2LYM, and

3LZT. The atomic fluctuation magnitude5�R24 is related to

the crystallographic B factor by B¼ 8�2/35�R24. The figure
shows clearly that the atomic fluctuations are of very similar

magnitude in the two structures for the tetragonal form, in spite

of the significant temperature difference. Since the thermal

fluctuation contribution must decrease with temperature,
the contribution of static disorder must be higher in the

low-temperature crystal. This effect is considered to be a

0 10 20 30 40 50 60 70 80 90 100 110 120 130
residue number

0

0.5

1

1.5

<
∆R

2 >
 [

Å
2 ]

1IEE
2LYM
3LZT

Fig. 1. The magnitude of atomic fluctuations in two different structures

for tetragonal lysozyme. Structure 1IEE was recorded at 110K,

structure 2LYM at ambient temperature. The small difference between

the two sets of fluctuations indicates a significant contribution from

static disorder at least in structure 1IEE.
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consequence of shock freezing, which freezes dynamic disorder

(Kurinov and Harrison, 1995). Comparing 1IEE to 3LZT, we

see a more important difference, although the temperatures are

almost the same.

4.1 Influence of crystal packing

To study the influence of crystal packing on the atomic

fluctuations, we calculate them from (a) an ENM for a single

lysozyme molecule and (b) an ENM for the unit cell of the

crystal, using periodic boundary conditions. We first look at

triclinic lysozyme (PDB code 3LZT), because it has only one

lysozyme molecule in the unit cell. Any differences in the

atomic fluctuations are thus due to crystal contacts. The

comparison is shown in Figure 2. In the top graph, we see that

the magnitude of the atomic fluctuations is significantly altered

by the crystal contacts. In particular, we note that the residues

that exhibit the largest fluctuations in the single molecule

(residues 22, 48, 72, 103, 118, and their surroundings) have

much smaller fluctuations in the crystal. However, these are not

all residues that have crystal contacts themselves (the crystal

contacts, defined as residues whose C� atoms are at57 Å from

any C� atom in another chain, are indicated in the figure by

boxes on the x-axis). A closer look at the normal modes of the

ENM shows that the large fluctuations stem from the first three

non-zero modes that describe the domain motions in lysozyme.

These motions are hindered by the crystal contacts, leading to a

reduction of atomic fluctuations even in regions that are not

directly affected by crystal contacts themselves.

It should be noted that the magnitudes of all atomic

fluctuations are slightly smaller in the crystal than in the

single molecule. This is in fact to be expected, given that the

crystal contacts add interactions to those already present in the

single molecule. Any deformation of the protein thus entails

a higher energetic cost in the crystal, leading to a reduction of

all atomic fluctuations as long as the temperature remains

constant.

The anisotropy of the atomic fluctuations is defined as the

ratio of the smallest eigenvalue of the ADP tensor to the largest

one. A value of 1 thus indicates an isotropic distribution. The

bottom graph of Figure 2 shows the anisotropies for the single

molecule and the crystal ENM. The anisotropies are in general

very similar, deviating most for those residues that also show

the biggest changes in magnitude.

Figure 3 shows the same comparison for tetragonal lysozyme

(PDB code 1IEE). As for the triclinic crystal, the strong

attenuation of the peaks in the magnitude plot (residues 35, 62,

115, 128 and their surroundings) by the crystal contacts is the

most striking feature. Again we note that the residues that are

most affected do not necessarily have crystal contacts

themselves. An important difference between the two crystals

is that some of the atomic fluctuations are larger in the crystal

than in the single molecule, and that the fluctuations become

more isotropic. This is due to the fact that the unit cell of the

tetragonal crystal contains eight lysozyme molecules. The

motions of these molecules relative to each other contribute

to the atomic fluctuations.

4.2 Lattice vibrations and elastic constants

In the last section, we have looked at the atomic fluctuations

inside a unit cell of a protein crystal, taking into account

interactions with the neighbouring unit cells, but neglecting the

relative motions of molecules in different unit cells. These

motions are of a far more collective nature than the collective
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Fig. 2. The influence of crystal packing on the atomic fluctuations for

triclinic lysozyme (PDB code 3LZT). The boxes on the x-axis indicate

the residues that are in close contact with other molecules in the crystal.

Both the magnitude of the atomic fluctuations (top) and their

anisotropy (bottom) are modified by crystal contacts. In the absence

of experimental information that permits the establishment of an

absolute energy scale for the elastic network model, we have chosen

arbitrary units for the magnitudes, defined such that the average

magnitude in the crystal is 1.
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Fig. 3. The influence of crystal packing on the atomic fluctuations for

tetragonal lysozyme (PDB code 1IEE). The boxes on the x-axis indicate

the residues that are in close contact with other molecules in the crystal.

Both the magnitude of the atomic fluctuations (top) and their

anisotropy (bottom) are modified by crystal contacts. For this crystal,

the absolute energy scale (and thus the scale for the fluctuations) has

been derived from the experimental compressibility, as explained in

Section 4.2.
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modes of a protein; their amplitudes of thermal motion are thus

very large, and they can be expected to contribute substantially

to the atomic fluctuations.
We have calculated the atomic fluctuations for tetragonal

lysozyme (PDB code 1IEE) for several crystal sizes using the

procedure described in Section 3.2. The optical modes depend

very little on q, both the frequencies and the motion patterns

are very similar to the normalmodes of the unit cell (see Section 3

of the supplementary material). It is the acoustic modes that

add qualitatively new features to the dynamics of the protein

crystal. A movie showing acoustic modes in tetragonal lysozyme

crystals is provided as supplementary material.

Figure 4 shows the vibrational frequencies of the acoustic

modes of a 1IEE crystal as a function of the length of the wave

vectors q for four directions of q, both for the ENM and for a

continuum approximation (Sections 3.3 and 3.4). For each q

there are two frequencies, the lower one corresponding to the

two transverse modes, in which the particle displacements are

perpendicular to q. These two modes are degenerate due to the

symmetry of the crystal. The higher frequency corresponds to

the longitudinal mode, in which the particles move along the

direction of q. A longitudinal mode implies density fluctuations,

which in a solid have a higher energetic cost than the shear

deformations that characterize transverse modes. In the

continuum approximation, the frequency is a linear function

of |q| and depends only weakly on the direction of q. For small

wave vectors, corresponding to length scales of 200 Å and

higher, this is a very good approximation to the ENM

frequencies. For larger q (shorter length scales), the atomic-

scale structure of the crystal leads to marked deviations from the

continuum behaviour, in particular for the longitudinal modes.
The frequency scale in Figure 4 is directly related to the energy

scale of the ENM. In this work, we use the compressibility of the

2LYM crystal, obtained by comparing to the structure of the

same crystal at a pressure of 1000 atm (Kundrot and Richards,

1987, PDB code 3LYM). Its value of 0.105 GPa�1 is close to the

more recent value of 0.098 GPa�1 (Fourme et al., 2001). We use

the same compressibility value for the 1IEE crystal, neglecting a

probable temperature dependence. The scale factors that need to

be applied to the force constants of the ENM in Equation (3) are

2.99 for 1IEE and 3.89 for 2LYM, the difference being due to the

different size of the unit cell.
The use of an experimental reference value that is indepen-

dent of the atomic fluctuations allows us to make a quantitative

prediction of the contribution of thermal motions to the

experimentally observed DWFs. In fact, the fluctuation scale in

Figure 3 is also derived from the scale factor fitted to reproduce

the compressibility. In contrast, the fluctuations in Figure 2 are

given in arbitrary units, because no compressibility value is

available for the triclinic lysozyme crystal. We will discuss the

amplitudes of thermal motions later, after adding the contribu-

tions of lattice vibrations.

The elastic constants Cij obtained from the ENMs for 1IEE

and 2LYM are given in Table 1, together with experimental

values for tetragonal lysozyme obtained by measuring sound

velocities (Koizumi et al., 2006). While the agreement is not

perfect, we find the same order of magnitude in our models as in

the dehydrated crystal, which has a similar compressibility. The

simplicity of our model is certainly one reason for the

discrepancies, but there are other factors as well. For example,

the calculation of the crystal compressibility from high-pressure

structures is based on the assumption that no solvent enters or

leaves the crystal when it is put under pressure. This assumption

is likely to be wrong (Kundrot and Richards, 1988). Moreover,

the description of a protein crystal as an elastic medium obeying

Hooke’s law, which underlies both the experimental and the

computational determination of the elastic constants, is an

approximation whose validity is not yet known.

4.3 Contribution of lattice vibrations

to the atomic fluctuations

We have seen in the Section 3.2 that the normal modes of a

crystal can be grouped into optical modes and acoustic modes.

Table 1. The compressibility � and the elastic constants Cij for

tetragonal lysozyme

ENM

1IEE

ENM

2LYM

Dehydrated

crystal

Hydrated

crystal

� (GPa�1) 0.109 0.109 0.105 0.238

C11¼C22 (GPa) 16.38 16.20 12.44 5.52

C12 (GPa) 5.99 5.95 7.03 3.12

C13¼C23 (GPa) 5.87 5.69 8.36 3.71

C33 (GPa) 14.74 15.54 12.79 5.68

C44¼C55 (GPa) 5.76 5.84 2.97 1.32

C66 (GPa) 6.54 7.08 2.63 1.16

Calculated from elastic network models for structures 1IEE and 2LYM, and

obtained experimentally through sound velocity measurements. For the elastic

network models, the compressibility is the one obtained crystallographically; this

value was used to define the absolute energy scale of the model.
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Fig. 4. The vibrational frequency !/2� of the acoustic modes of the

1IEE crystal as a function of the wave vector length. Both the exact

normal modes of the elastic model (full lines) and the modes of a

continuum approximation (dashed lines) are shown. The high-

frequency branch corresponds to the longitudinal mode and the low-

frequency branch to the two degenerate transverse modes. Each graph

shows the modes for a specific direction of q indicated by the (q1, q2, q3)

values.
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The optical modes contain all of the motions that are of

biological interest. However, the acoustic modes are the lowest-

frequency and thus largest-amplitude motions in the crystal.

Their contribution to the atomic fluctuations can therefore not

be neglected.
Although the optical modes for different q are not exactly

identical, it turns out that their contributions to the atomic

fluctuations are very similar, to the point that on a plot showing

5�R2
opt4ðqÞ for various q the curves would be nearly

indistinguishable. The total contribution of all optical modes

to the atomic fluctuations is thus independent of the size of the

crystal and equal to the drawn-out curve in Figure 3.

The contribution of the acoustic modes to the atomic

fluctuations requires a more careful analysis because the

acoustic modes depend strongly on the size of the crystal. At

this time, it is not possible to calculate the lattice modes for

realistic crystal sizes (�1015 copies of the unit cell). However,

given the atomic fluctuations for several small crystal sizes, it is

possible to extrapolate to infinite crystal size. A description of

this extrapolation is provided in the supplementary material.
Figure 5 shows the magnitude of the acoustic mode

contribution to the atomic fluctuations for different sizes of a

1IEE crystal, as well as the extrapolation to infinite crystal size.

It is much more homogeneous than the contribution of the

optical modes (Fig. 3), and also more isotropic. The magnitude

of the acoustic contribution is smaller, its average over all

residues represents 14% of the average of the optical

contribution.

4.4 Comparison to crystallographic

Debye-Waller factors

Figure 6 shows the crystallographic isotropic DWFs in

comparison to the thermal fluctuation amplitude predicted by

the ENM for protein crystals, taking both optical and acoustic

modes into account. It is evident that the theoretical amplitudes

are much smaller: their average over all residues makes up for

4.3% (1IEE) or 7.2% (2LYM) of the average B factor.

Considering that the 2LYM structure was obtained at a

higher temperature, it should be expected that thermal

fluctuations represent a higher percentage than for 1IEE. The

difference between the two percentages should probably be

higher, considering that the 1IEE crystal at 110K is likely to

have a lower compressibility, leading to a larger energy scale

factor and a smaller thermal fluctuation amplitude.
Although our results indicate that thermal fluctuations are

only a minor contribution to the experimentallly observed

DWFs, a large number of studies have shown that ENMs are

successful at predicting the magnitude and also the shape of

crystallographic DWFs if the global energy scale factor is

suitably adjusted. This suggests that static crystal disorder, the

main non-thermal contribution to DWFs, is also well described

by these models. We have therefore added a third curve to

Figure 6, representing a fit of our ENM results to the

experimental data. The model that we have fitted is

Bexp¼ sopticalBopticalþ sacousticBacoustic, i.e. we use different

scale factors for the contributions of optical and acoustic

modes. The idea behind this model is that optical and acoustic

modes could describe different kinds of crystal disorder. The fit

parameters for 1IEE are soptical¼ 11.0 and sacoustic¼ 115, the

values for 2LYM are soptical¼ 13.9 and sacoustic¼ 13.5. We thus

find that the acoustic contribution seems much more important

for 1IEE than for 2LYM.
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Fig. 6. A comparison between the crystallographic isotropic DWFs and

the predictions of the elastic network model for protein crystals for

1IEE (top) and 2LYM (bottom).
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the acoustic mode contribution.
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5 CONCLUSION

Our first main conclusion is that the influence of crystal

packing on the atomic fluctuations in a protein is very impor-

tant. Its physical cause is easy to understand. Moreover, taking

into account crystal contacts hardly increases the complexity of

the model. We therefore consider that all ENM calculations

performed with the aim of comparing to crystallographic data

should use periodic boundary conditions in order to model the

crystal environment. Kundu et al. (2002) reach a similar

conclusion for the Gaussian Network Model.
There remains the question of how the interactions between

the molecules in the crystal should be included in the model.

In this work, we have applied an ENM designed for single

proteins without modification to a protein crystal. This assumes

that the average residue–residue interactions across crystal

contacts are of the same strength as those that stabilize protein

folds and multimeric proteins. That may not be the case, as

there is no evolutionary pressure on proteins to stabilize the

unnatural crystal state.
Another aspect of protein crystal dynamics that requires

further studies is the role of the solvent. In ENM studies on

single proteins, solvent is usually ignored because it has no

impact on the free energy of the protein as long as only small

fluctuations are considered. In crystals, however, the solvent is

partially trapped. Fast compression, as in the propagation of

sound waves, involves compression of the solvent as well. Slower

deformations of the crystal, such as the ones it undergoes in high-

pressure studies, can lead to an increase or decrease of the

solvent content of the crystal. It may be necessary to account for

such effects in future protein crystal models.
For our study, the most direct impact of the solvent-related

uncertainties comes from the experimental compressibilities

which we have chosen as the reference data for establishing

the absolute energy scale of our ENM. The published values

for the compressibility of a tetragonal lysozyme crystal at

room temperature vary from 0.098 (Fourme et al., 2001) to

0.238 GPa�1 (Koizumi et al., 2006, extrapolated data), i.e. by a

factor of 2.4. The atomic fluctuations obtained from our ENM

are directly proportional to the compressibility used for

calibration. Choosing the highest published value would

increase our prediction of the thermal contribution to the

DWFs to 9.7% for 1IEE and 16.3% for 2LYM.
The question of the magnitude of the various contributions to

the DWFs (thermal motion, static disorder, lattice defects,

experimental setup) is a particular important one, as it is

fundamental to the use of DWFs in understanding the structural

flexibility of proteins. Our results suggest that thermal motion is

a small contribution, in particular for low-temperature struc-

tures. molecular dynamics simulations (Burden and Oakley,

2007) also yield thermal fluctuations that are much smaller than

crystallographic DWFs. On the other hand, Kurinov and

Harrison (1995) estimate by comparison with Mössbauer

spectroscopy that thermal fluctuations in tetragonal lysozyme

make up for 50% of the DWFs at 300K.

The validation of theoretical models for protein crystals relies

on the availability of experimental data on their mechanical

properties. At the moment, such data is scarce, limiting

the validation of our model to tetragonal lysozyme crystals.

We hope that this study will stimulate more experimental work

in this field.

Finally, the success of ENMs in explaining the patterns of

crystallographic B factors, in spite of the importance of

contributions that are not related to thermal fluctuations,

suggests that all these models capture some aspects of static

disorder and lattice defects. Improving our understanding of

these aspects is likely to lead to important advances in the

modelling of structural flexibility in proteins.
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