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ABSTRACT: Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC)
behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently
predict TC intensity. Here, we present a prototype model which is trained solely on two inputs: Geo infrared imagery leading up to the
synoptic time of interest and intensity estimates up to 6 hours prior to that time. To estimate future TC structure, we compute cloud-top
temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12
hours by applying a DeepAutoregressive GenerativeModel (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational
intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a “nowcasting” convolutional neural
network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed
and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error
than the National Hurricane Center’s official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface
temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles
from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance.

SIGNIFICANCE STATEMENT: This work presents
a new method of short-term probabilistic forecasting for
tropical cyclone (TC) convective structure and intensity
using infrared geostationary satellite observations. Our
prototypemodel’s performance indicates that there is some
value in observed and simulated future cloud-top tempera-
ture radial profiles for short-term intensity forecasting. The
non-linear nature of machine learning tools can pose an in-
terpretation challenge, but structural forecasts produced by
our model can be directly evaluated and thus may offer
helpful guidance to forecasters regarding short-term TC
evolution. Since forecasters are time-limited in producing
each advisory package despite a growing wealth of satel-
lite observations, a tool that captures recent TC convective
evolution and potential future changes may support their
assessment of TC behavior in crafting their forecasts.

1. Introduction

Tropical cyclones (TCs) are powerful, organized sys-
tems that pose a major risk to coastal populations. Though
many statistical models provide forecast guidance on fu-
ture TC intensity change (e.g., the Statistical Hurricane
Intensity Prediction Scheme [SHIPS]; DeMaria and Ka-
plan 1999), direct measurement of most predictors such
as relative humidity or vertical wind shear used in such
models is impossible due to the development of TCs over
open ocean far from land-based observing networks (Gray
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1979). Many predictors must be inferred through a combi-
nation of remote observation and dynamicmodels of ocean
and atmospheric behavior.
Infrared (IR; 10.3-10.7𝜇m) imagery from geostation-

ary (Geo) satellites such as the Geostationary Operational
Environmental Satellites (GOES) provides one of the few
regular high-resolution observations of TC behavior over
the open ocean with a historical record spanning decades
(Knapp and Wilkins 2018; Janowiak et al. 2020). Further-
more, modern Geo IR platforms such as GOES-16 provide
observations at even greater spatial and temporal resolu-
tion (Schmit et al. 2017). Since cloud-top temperature is
related to cloud-top height, low IR temperatures tend to
indicate higher cloud tops and thus stronger convection,
and convective structures are known to be related to TC
intensity (Dvorak 1975; Olander and Velden 2007).
In light of this growing record of satellite observations,

a broad array of recent works have explored the wealth
of information contained in the spatio-temporal structure
of Geo IR imagery. The Dvorak technique and more re-
cent Advanced Dvorak Technique (ADT) have long related
Geo IR imagery to TC intensity (Dvorak 1975; Olander
and Velden 2007), and more recent work has leveraged
neural networks to improve the nowcasting accuracy of
the ADT (AI enhanced Dvorak Technique; Olander et al.
2021). Here, we define “nowcasting” as estimating the
current TC intensity based on intensity estimates up to 6 h
prior and IR features up to the current time (0 h). Spatial
analyses of IR imagery have been leveraged to improve
forecasts of TC eye formation, a process related to inten-
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sification (DeMaria 2015; Knaff and DeMaria 2017). The
deviation angle variance (DAV) technique, a measure of
convective organization in IR imagery, contains valuable
information for short-term (≤24 h) TC intensity guidance
(Hu et al. 2020). The shape and evolution of Geo IR ra-
dial profiles is known to relate to intensity and intensity
change respectively (Sanabia et al. 2014; McNeely et al.
2020). In this work, we utilize the evolution over time of
radial profiles (see Figure 1) to jointly forecast short-term
TC intensity and structure changes. We leverage deep
auto-regressive (AR) generative models to construct inter-
pretable and high-resolution structural probabilistic fore-
casts, which display entire functions rather than time series
of thresholded quantities, such as pixel counts beneath a
given temperature threshold.
Concurrent with the rise of high-resolution Geo IR im-

agery is the growing application of convolutional neural
networks (CNNs), powerful tools for performing predic-
tion tasks with images as input. Predicting TC intensity
from Geo IR data is an obvious candidate application; in-
deed, there are dozens of such works in the machine learn-
ing literature applying CNNs to this problem, including
Pradhan et al. (2017); Combinido et al. (2018); Lee et al.
(2019); Tian et al. (2020); Wang et al. (2020); and Zhang
et al. (2021). These models achieve reasonable forecast
accuracy via the traditional machine learning framework
with a CNN taking IR imagery as input to directly predict
intensity by, e.g., minimizing the average squared-error
loss on independent test data. Explainable AI approaches
may then use methods such as layer-wise relevance prop-
agation, saliency maps, and activation maps to better un-
derstand how the model produced its point estimate (Mc-
Govern et al. 2019; Ebert-Uphoff and Hilburn 2020). For
an example of explainable CNN-based TC intensity fore-
casting in the meteorological literature, see Griffin et al.
(2022).
Our proposed pipeline takes a different approach to

explainability—one which remains compatible with the
above tools for insight into the relationships leveraged by
CNNs. Our approach (i) utilizes a dimensionality-reducing
functional transformation of IR imagery prior to analysis,
and (ii) provides 12-hour ensemble forecasts of TC con-
vective structure in addition to TC intensity.
First, we extract scientifically-motivated functional fea-

tures, reducing the dimension of the problem (from 2-D
images over time to 1-D functions over time) in a directly
interpretable summary, rather than directly relying on the
CNN to extract salient features from (high-dimensional
and low-sample size) raw Geo IR imagery. These rich
summary functions are derived from the ORB suite: Orga-
nization (e.g., DAV as a function of radius), Radial struc-
ture (e.g., the radial profiles examined in this work), and
Bulk morphology (e.g., pixel counts as a function of a tem-
perature threshold). Temporal sequences of radial profiles
are highly relevant to both intensity and intensity change

(Sanabia et al. 2014; McNeely et al. 2020, 2022). Tempo-
ral changes in these sequences of profiles can be visualized
via Hovmöller diagrams, which are more readily digestible
by users than inferring temporal patterns from animations
of satellite imagery.
Second, we provide a probabilistic structural forecast, a

prediction of an ensemble of possible TC convective evo-
lution, rather than directly predicting future intensity from
past IR structure and TC intensity. Our novel approach
to intensity guidance via Geo IR imagery results in in-
terpretable intensity forecasts such as “our model predicts
short-term intensification due to the potential emergence
of an eye-eyewall structure in the next 12 hours”. Though
methods such as layer-wise relevance propagation can pro-
vide further insight into the CNN’s use of structural fore-
casts, the IR structural forecasts themselves are the core of
our proposed intensity guidance pipeline.
Figure 2 outlines Section 3 via a schematic diagram of

the structural forecasting to intensity forecasting pipeline.
There are three main subsections:

(a) Structural trajectories via ORB. First, we apply the
ORB framework (McNeely et al. 2019, 2020) to ob-
served IR imagery to create a “structural summary”
(Figure 1) of the spatio-temporal evolution of the
present and recent past TC structure.

(b) Structural forecasting with a deep autoregressive gen-
erative model. Next, we propagate the observed IR
structure up to 12 hours forward in time via a deep
pixel-autoregressivemodel, which stochastically sim-
ulates an ensemble of possible trajectories of IR radial
profiles.

(c) Forecasting TC intensity via convolutional neural net-
works. Finally, we input the observed structure, the
forecasted structure, and TC intensity up to 6 hours
prior to the current time into a nowcasting model to
estimate the current intensity; we choose CNNs be-
cause they are easy to train and commonly used for
image data. By filling in the missing 𝑡 + 6 hour and
𝑡 +12 hour structure, we can then extend the nowcast-
ing model from a nowcast for time 𝑡 (i.e., hour 0) to
a forecast at time 𝑡 + 6 hours and then to time 𝑡 + 12
hours.

Section 4 details the results of our prototype forecasting
pipeline. The final Geo IR-based TC intensity guidance
provides inherent measures of uncertainty and insight into
the potential TC structural changes that influence a given
forecast. The results in this work use proof-of-concept
structural forecasting and a pipeline that relies solely on
persistence predictors (i.e., prior intensity estimates) to-
gether with observed past and simulated future radial pro-
files; no environmental factors such as vertical wind shear
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Fig. 1. Evolution of TC IR Imagery as Structural Trajectories. The raw data at each time 𝑡 is a sequence of TC-centered cloud-top temperature
images from GOES. We quantify the image at time 𝑡 by its radial profile (𝑋𝑡 ). The sequence of consecutive radial profiles, sampled every 2 hours,
defines a structural trajectory or Hovmöller diagram (𝑆<𝑡 ).

or ocean heat content are included at this time. We demon-
strate that a purely autoregressive prototype achieves a use-
ful degree of forecasting accuracy.

2. Data

Our model relies on two data sources: sequences of Geo
IR imagery captured by GOES satellites and past TC inten-
sity. For training and verification (that is, model selection),
we use NOAA’s Hurricane Database 2 (HURDAT2; Land-
sea and Franklin 2013) because that database provides the
post-season best estimates of TC intensities. For fore-
casting, we rely on operational TC intensity estimates, the
CARQentries from theNaval Research Laboratory’sAuto-
mated Tropical Cyclone Forecast (ATCF) operational “A-
deck” files (Sampson and Schrader 2000) to assess model
performance under real-time conditions.
GOES IR imagery is available through NOAA’s Merged

IR (MERGIR) database (Janowiak et al. 2020) at 30-
minute×4-km resolution over the North Atlantic (NAL)
basin from 2000–2020. For each TC, we download ∼2,000
km×2,000 km “stamps” of IR imagery centered on the TC
location at a 30-minute temporal resolution. Figure 1 (left)
shows two such stamps after an 800-km radius mask is
applied. For this work, we sample the 30-minute data at
2-hour resolution because of periodic corruption of the
imagery in the MERGIR database (Liu 2021).
During training, we linearly interpolate TC location and

intensity from HURDAT2 to obtain locations and inten-
sities for non-synoptic times; however, model assessment
is restricted to synoptic times. We include TC lifetimes
between the first synoptic time at which intensity reaches
at least 35 kt and the last synoptic time at which intensity
is at least 35 kt; note that this can result in the inclusion of
TCs < 35 kt if the TC decays and then re-intensifies.
Finally, we rely on NHC’s official forecast verification

to assess our model’s performance. We also draw on
the SHIPS developmental database’s 200-850-hPa vertical

wind shear values calculated within a 200-800-km annulus
from the TC center as reference during model validation
due to the known impact of shear on TC convective struc-
ture (DeMaria 2018).

3. Methods

As outlined in Figure 2, we first construct a summary
of IR structural evolution (a; Section 3a). We then train a
stochastic autoregressive model, which is an explicit like-
lihood model (of structural trajectories) that we can use
to simulate probable IR structural evolution (b; Section
3b). Finally, we combine observed and forecasted structure
with operational intensity estimates up to and including the
current time to provide interpretable short-term intensity
guidance, based solely on Geo IR imagery and operational
intensity estimates (c; Section 3c).

a. Structural Trajectories via ORB

Operational forecasting of TC intensity is a human-in-
the-loop process and thus places a premium on guidance
interpretability. In this spirit, the ORB framework (Orga-
nization, Radial structure, Bulk morphology) summarizes
2-D imagery via continuous 1-D functions to enable static
visualization of spatio-temporal patterns in TC develop-
ment via Hovmöller diagrams (Hovmöller 1949). Our past
work focused on the rich quantification of spatial informa-
tion in Geo IR imagery (McNeely et al. 2019, 2020). More
recently, we demonstrated the value of temporal patterns
in ORB functions (McNeely et al. 2022), specifically the
radial profile.
The radial profile of brightness temperature 𝐵𝑇 (𝑟) =
1
2𝜋

∫ 2𝜋
0 𝑇𝑏 (𝑟, 𝜃)𝑑𝜃 captures the structure of cloud-top

brightness temperature (𝑇𝑏) as a function of radius 𝑟 from
the TC center and serves as an easily interpretable descrip-
tion of the depth and location of convection near the TC
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Fig. 2. TC Intensity Guidance via Structural Forecasting. Outline of the structural forecasting to intensity guidance pipeline. (a) ORB
functions are used to quantify the evolution of spatio-temporal convective structure, linking IR imagery to Structural Summaries. (b)We generate
structural forecasts by projecting the ORB functions into the future via a deep autoregressive model, thereby filling in the missing +6 hour and +12
hour structure. (c) A CNN nowcasting model then forecasts intensities at +6 to +12 hours from three sources of inputs: (i) observed structure, (ii)
forecasted structure, and (iii) operational intensity estimates up through the current time.

core (Sanabia et al. 2014; McNeely et al. 2020). The ra-
dial profiles are computed at 5-km resolution from 0-400
km (𝑑 = 80) (Figure 1, center); we denote the summary
of convective structure at each time 𝑡 by BT𝑡 . The struc-
tural trajectory is then defined as the 24-hour sequence of
present and 12 preceding radial profiles at a 2-hour reso-
lution:

S<𝑡 = (BT𝑡−24ℎ ,BT𝑡−22ℎ , . . . ,BT𝑡 ) (1)

We visualize such a trajectory with a Hovmöller diagram
(see Figure 1, right).
McNeely et al. (2022) demonstrated a relationship be-

tween TC intensity change and Hovmöller diagrams of
radial profiles. However, the radial profile, if averaged
over all angles, will disregard asymmetry within the origi-
nal 2-D images, which can degrade performance for cases
affected by strong vertical wind shear. In this work, we in-
stead compute a separate radial profile for each geographic
quadrant (NE,NW, SE, SW) to capture asymmetries via the
differences between quadrants. We use geographic quad-
rants instead of motion-relative or shear-relative quadrants
because the directions of motion and shear are unstable
when the magnitudes of those vectors are small.

b. Structural Forecasting via Deep Autoregressive Gener-
ative Model

The crucial step in our guidance framework is the propa-
gation of radial profiles into the near future. TheHovmöller
diagram captures the spatio-temporal evolution of the TC
over an extended period of time; that is, we can summa-
rize TC development by an easily-interpretable image. By

treating the structural trajectory as an image, where the
y-axis corresponds to the passage of time, forecasting ra-
dial profiles becomes equivalent to an image completion
problem. That is, we predict the missing pixels at the
bottom of an image (forecasted structure) given those at
the top (observed structure). Image completion is an ac-
tive research area in machine learning; here we focus on a
state-of-the-art model in the class of pixel-autoregressive
models (Van Oord et al. 2016).
Pixel-autoregressive models impose an ordering on

the pixels of an image, such as a raster-scan order-
ing (left-to-right, top-to-bottom). Let each pixel in a
four-quadrant radial profile trajectory be represented by
x𝑖 := (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4), where 𝑖 is the index in the raster
scan. The pixel-AR approach factors the joint distribution
of pixel values in the image as a product of conditionals,

𝑝(x1, ...,x𝑛) =
𝑛∏
𝑖=1

𝑝(x𝑖 |x𝑖−1, ...,x1), (2)

where the probability of each pixel value is conditioned
on all previous pixels in the raster scan. Then, to gen-
erate a new radial profile, one simulates repeatedly from
𝑝(x𝑖 |x𝑖−1, ...,x1); due to the raster-scan ordering, the dis-
tribution of a given pixel is not influenced by elements
further down the sequence, hence enforcing causality.
The challenge of how to estimate the conditional like-

lihoods 𝑝(x𝑖 |x𝑖−1, ...,x1) has given rise to many fla-
vors of pixel-autoregressive models, including PixelRNN
(Van Oord et al. 2016), PixelCNN (Van den Oord et al.
2016), PixelCNN++ (Salimans et al. 2017), and Pixel-
SNAIL (Chen et al. 2018). This work utilizes the last
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model, PixelSNAIL. There are two main ingredients in
the model: (i) causal convolution and (ii) self-attention.
Causal convolution utilizes the same convolutional feature
extraction outlined in Section c but masks each convo-
lution so that each element in the raster sequence only
receives information from previously generated sequences
(e.g., Figure 3). Purely convolutional models, however, are
restricted to small neighborhoods of pixels, leading to only
a finite receptive field (area of the source image involved
in a given convolution), and thus struggle with long-range
dependencies in the conditional 𝑝(x𝑖 |x𝑖−1, ...,x1). Pixel-
SNAIL, on the other hand, features a self-attention mech-
anism that leads to unbounded receptive fields with pin-
pointed access to information far away in the sequence; see
Chen et al. (2018) for details on the PixelSNAIL architec-
ture.
To ensure that cloud-top temperatures remain bounded,

we rescale the data to the range X ∈ (0,1)4 and work in the
logit-transformed space, Z = log(X/(1−X)); while values
of Z are unbounded, X remains bounded in (0,1)4 and are
then transformed back to the temperature range observed
in the training data. Wemodel the density 𝑝(z𝑖 |z𝑖−1, ...,z1)
as 4 independent mixtures of logistic distributions, one for
each quadrant. That is, for pixel 𝑖 in quadrant 𝑞,

𝑝(𝑧𝑖𝑞 |z𝑖−1, . . . ,z1) =
𝐾∑︁
𝑘=1

𝜋𝑞𝑘 𝑓 (𝑧𝑖𝑞;𝜇𝑞𝑘 , 𝑠𝑞𝑘 )

where 𝑓 (𝑧𝑖𝑞;𝜇𝑞𝑘 , 𝑠𝑞𝑘 ) =
𝑔𝑞𝑘 (𝑧)

𝑠𝑞𝑘 (1−𝑔𝑞𝑘 (𝑧))2
,

𝑔𝑞𝑘 (𝑧) =exp
(
− (𝑧− 𝜇𝑞𝑘 )/𝑠𝑞𝑘

)
,

and
𝐾∑︁
𝑘=1

𝜋𝑞𝑘 =1.

Thus, with four quadrants and 𝐾 mixture components, the
distribution 𝑝(z𝑖 |z𝑖−1, ...,z1) has 4(3𝐾 −1) parameters: a
mean 𝜇, a scale 𝑠, and a mixture coefficient 𝜋 for each
quadrant, with the constraint that the mixture coefficients
in each quadrant sum to one. With 𝐾 = 3 mixture com-
ponents, this results in 32 parameters total. Each draw
from the distribution is transformed back to the bounded
space via the relationship X = 1

1+exp (−Z) , then rescaled to
the range of values observed in the input radial profiles.
This autoregressive model enables stochastic simulation

of structural trajectories based on Geo IR persistence. For
a given synoptic time, we can simulate many trajectories
from the observed history and then feed each potential
trajectory through the nowcasting model to obtain the as-
sociated intensity guidance. Via multiple simulations per
forecast time, an ensemble forecast provides a measure
of uncertainty in both structural trajectories and intensi-
ties while also offering insight into cases where the model
over- or under-estimates intensity. For example, overesti-

Fig. 3. Masking in Pixel Autoregression. Illustration of raster-scan
ordering and the causal masking. Convolutions at index 𝑖 only have
access to pixel values in previous rows (earlier time points, color coded
by yellow), and pixel values in the same row but to the left of pixel 𝑥𝑖
(same time point, color coded by orange).

mates may be caused by too-low profile temperatures or
overestimated symmetry between quadrants.
The structural forecasting model is trained on TCs from

2000-2012, with 2013-2020 withheld for testing. We train
the model using input radial profiles calculated every 2
hours but test on synoptic times. Because AR models
are likelihood-based, we can directly calculate and mini-
mize the negative log-likelihood (NLL), a measure of the
model’s ability to generalize well on withheld data.

c. Nowcasting TC Intensity via Convolutional Neural Net-
works

Traditional linear models are attractive for reasons of
interpretability and good performance in low sample size
settings. However, linear models often struggle to capture
the complex, time-varying processes which drive TCs. It
is also unclear how to include the radial profile Hovmöller
diagrams as inputs to a linear model without sacrificing
interpretability. In this work, we instead consider a simple
convolutional neural network to map observed IR trajecto-
ries (S𝑡 ) to current intensities (𝑌𝑡 ). Because we treat time
as a spatial dimension in these diagrams and a structural
trajectory is represented as an image, a CNN will leverage
both spatial and temporal patterns in the data.
CNNs operate by two main elements: convolutional

layers and fully-connected layers. The convolutional lay-
ers first convolve each layer (here, each quadrant) with a
library of filters (i.e., matrices whose entries are learned
parameters); some of these filters may resemble familiar
matrices, such as gradient approximators (e.g., Sobel ma-
trices). After each convolutional layer, the image is pooled
to reduce the image size and increase the receptive field of
the next set of convolutions. In the final step, the results
of all convolutions are passed into a fully-connected layer
which approximates the relationship between the convolu-
tional feature map and the response.
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Persistence
Conv1

82 x 18 x 32 1 x 1 x 2048

convolutional + ReLU

max pooling

fully connected + ReLU

input

80 x 16 x 6
41 x 9 x 32

Conv2

43 x 11 x 64
21 x 5 x 64

Conv3

23 x 7 x 32
11 x 3 x 32

FC1

Imagery

1 x 2 x 16

1 x 1 x 33

FC2 Output

1 x 1 x 1

Fig. 4. Nowcasting Model Architecture. The convolutional neural network used for nowcasting consists of three convolution-max pool layer pairs
(Conv#), fully connected layers (FC#), and a concatenation with persistence features between regressions.

We augment the traditional CNN in two ways. First,
we add two layers which encode the radial and tempo-
ral location of pixels within the image; regular CNNs are
translation invariant, whereas patterns in TCs have dif-
ferent meaning depending on their location and time of
occurrence (corresponding to column versus row index,
respectively, in the Hovmöller diagram). Second, we aug-
ment the model output with relevant TC persistence fea-
tures (intensities and intensity changes up to 6 hours prior
to time 𝑡) before passing them to a second fully-connected
layer. The final model is then

𝑌𝑡 = 𝑓nwcst (S<𝑡 ,𝑌𝑡−30ℎ ,
𝑌𝑡−24ℎ , . . . ,𝑌𝑡−6ℎ ,Δ𝑌𝑡−30ℎ ,Δ𝑌𝑡−24ℎ , . . . ,𝑌𝑡−6ℎ) + 𝜖𝑡 ,

(3)

whereS<𝑡 is the 24-h structural trajectory up to current time
(see Equation 1); the𝑌 ’s are intensity data at 6-h resolution;
the Δ𝑌 ’s are intensity changes interpolated (ip) from 6-h
data to a 2-h resolution (e.g., Δ𝑌𝑡−30ℎ = 𝑌𝑡−30ℎ −𝑌 ip𝑡−32ℎ),
and 𝜖 is the prediction error.
Like the structural forecasting model, the nowcasting

model is trained on TCs from 2000-2012, here by mini-
mizing the mean squared error. The model is trained on
data with a 2-hour resolution (rather than synoptic times
alone) with intensities linearly interpolated to those times;
we do not include non-synoptic times in the test TCs (2013-
2020). The details of the CNN architecture are given in
Figure 4.

d. From Nowcasting to Forecasting

Section 3c defines a nowcasting model for estimating
intensity at time 𝑡 (i.e., hour 0) by training on post-season
(best-track or HURDAT2) intensities from -30 h to -6 h
and imagery from -30 h to 0 h. After we have trained and
validated the nowcasting model to estimate 0-h intensities,
we apply the CNN nowcasting model to TC intensity fore-
casting. To forecast intensity at time 𝑡 + 6 h, we need the

intensities at times ≤ 𝑡 (in this work, we use operational
intensities drawn from CARQ in the A-deck files when
generating TC intensity forecasts) and structural trajecto-
ries at times ≤ 𝑡 +6 h (observed at times ≤ 𝑡 and simulated
at times from 𝑡 +2 h to 𝑡 +6 h). Using the structural fore-
casting model in Section 3b, we simulate many possible
trajectories from times 𝑡 + 2 hr to 𝑡 + 6 hr. Each of these
possible future trajectories is then passed to the nowcast-
ing model to obtain a separate intensity forecast, giving an
ensemble of possible intensities.
Our proposed framework for intensity forecasts at +6 and

+12 h has two primary benefits: (i) by providing an addi-
tional structural forecast, we provide insight into potential
TC evolution predicted by the model, such as deepening
convection or the emergence of an eye; (ii) because the
structural forecast is stochastic, we can straightforwardly
assess the uncertainty in structural evolution over time and
the associated uncertainty in the intensity forecasts.

4. Model Results

We first demonstrate the performance of our proposed
model on specific cases (Hurricanes Jose [2017], Nicole
[2016], and Dorian [2019]) in Section a, discussing both
accuracy and the insight provided by structural forecasts at
6- and 12-hour lead times. We then assess the performance
of the model during 2013-2020 in the North Atlantic basin
at 6- and 12-hour lead times in Section b.

a. Case Studies

We examine Hurricane Jose (2017) due to the pres-
ence of high vertical wind shear which produces convec-
tive asymmetries not captured by the azimuthally-averaged
radial profiles (i.e., not quadrant-based) of McNeely et al.
(2022). Hurricane Nicole (2016) was selected due to un-
dergoing two rapid intensification and two rapidweakening
events. Finally, Hurricane Dorian (2019) was a powerful
TC with many in situ observations.
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Fig. 5. Case Studies: Comparison of the 6-hour (left) and 12-hour (right) intensity forecasts (gray) from the structural forecasting model versus
observed intensities (black). Vertical wind shear also shown (gold). The solid gray lines indicate the mean of 64 simulations at each time point.
Reported errors indicate the error of the average model prediction, not individual simulations. The model captures the behavior of Hurricanes Jose
[2017; center] and Dorian [2019; bottom] fairly well, but struggles with both rapid weakening events exhibited by Hurricane Nicole [2016; top] as
well as low-intensity maintenance periods in Hurricanes Nicole and Dorian.

(i) Intensities Figure 5 shows the 6-hour forecasts based
on 64 independently simulated structural trajectories per
synoptic time. Because the structural forecasts are cur-
rently based entirely on persistence—no environmental
fields, such as 200-850-hPa vertical wind shear, have been
included—we expect the guidance to be most useful in
the short term (6- to 12-hour time frame). The stead-
ier development of Hurricanes Jose and Dorian are well-
modeled, but the swift intensity changes exhibited by Hur-
ricane Nicole as well as the rapid intensification period of
Hurricane Dorian both prove challenging to capture.
Extending lead time to 12 hours increases the varia-

tion among individual simulations, but the average sim-
ulated intensity continues to roughly track the observed
intensities. The rapid intensity change events exhibited
by Hurricane Nicole are challenging to forecast with only
IR persistence. However, the model follows Hurricane
Jose’s evolution relatively well, indicating that the model
has value as-is at 12-hour lead times.

(ii) Diagnostics While the end goal of intensity guid-
ance models is ultimately prediction of TC intensity, our
structural forecasting pipeline adds valuable diagnostic in-
sight into structural factors contributing to its predictions.

Figure 6 demonstrates the three-step (12-hour lead time)
structural forecast for Hurricane Dorian valid for 18 UTC
27 August during a period in which it maintained 45-kt
intensity. The final 6 rows of each Hovmöller diagram are
simulated from the structural forecast model; in this figure,
we average the four quadrants for ease of visualization (see
Appendix A, Figure B10, in the supplementary materials
for Hurricane Dorian structural forecasts broken down by
quadrant). Cloud-top temperature magnitude tends to be
underestimated, but the expansion of cloud coverage during
this 12-h period is captured across most simulations.
Figure 7 demonstrates the 6-hour forecasting guidance

available at individual synoptic times. The average sim-
ulated profiles in each quadrant tend to track observed
profiles reasonably well, although they tend to predict too
flat a curve and too symmetric an eye. Figure 8 shows
the same information but for the 12-hour lead time. Here,
model biases tend to be amplified by longer lead times. We
note that the emergence of an eye is captured in trajectory
(B), even 12 hours out.
Similar figures for Hurricanes Jose and Nicole are pro-

vided in the supplemental material. In general, the struc-
tural forecast follows the observed profile, even at 12-hour
lead times. We did not perform any data augmentation dur-
ing training (e.g,. rotation) in order to preserve dominant
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Fig. 6. Observed and Simulated Trajectories, Hurricane Dorian [2019]: The observed structural trajectory is shown in the top left corner.
To the right, we see 10 individual simulations of radial profiles (averaged over all quadrants) at 12-hour lead times. All radial profiles above the
black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the arithmetic mean over 64
simulated trajectories.

geographic patterns (e.g., the prevalence of TC convection
sheared eastward and northeastward in the North Atlantic),
but it is possible that augmentation by rotating TCs would
improve simulation fidelity, as it has been shown to im-
prove accuracy in other TC intensity forecasting applica-
tions such as Griffin et al. (2022).

b. Model Verification

The same models are used to produce 16 simulated tra-
jectories with associated intensity guidance for each syn-
optic time from2013-2020 at the 6- and 12-hour lead times.
(We use 16 rather than 64 simulations when validating over
the entire 8-year period for computational reasons.) Inten-
sity predictions provided via averaging the 16 simulations
are validated against HURDAT2 best-track intensities, and
past TC intensity values provided as input to the model
come from operational estimates (CARQ) to emulate real-
time performance.
Table 1 (left) reports the performance of the simulated

trajectories versus forecast lead time in terms of root mean
variance (RMV),mean absolute deviation (MAD), and bias
averaged over all quadrants and radii. Let 𝐵𝑇𝑞𝑖 (𝑟) denote
the 𝑖th simulated profile in quadrant 𝑞 and 𝜏𝑞 (𝑟) denote the

true profile in quadrant 𝑞. Then,

RMV =

( 1
400 km

∫ 400

0

1
4𝑛

4∑︁
𝑞=1

𝑛∑︁
𝑖=1

(𝐵𝑇𝑞𝑖 (𝑟) − 𝜏𝑞 (𝑟))2𝑑𝑟
) 1
2
,

(4)

MAD =
1

400 km

∫ 400

0

1
4𝑛

4∑︁
𝑞=1

𝑛∑︁
𝑖=1

��𝐵𝑇𝑞𝑖 (𝑟) − 𝜏𝑞 (𝑟)��𝑑𝑟,
(5)

Bias =
1

400 km

∫ 400

0

1
4𝑛

4∑︁
𝑞=1

𝑛∑︁
𝑖=1

𝐵𝑇𝑞𝑖 (𝑟) − 𝜏𝑞 (𝑟)𝑑𝑟. (6)

The above are defined for simulations at a single simula-
tion time; to combine over multiple simulation times, we
average MAD and bias, and average RMV in quadrature.
The measures of noise (RMV and MAD) are large even
for the shortest forecast lead times; increasing the simula-
tion size beyond 16 will reduce the impact of this noise on
the average forecast. Bias, meanwhile, becomes steadily
more negative with time for our structural forecasts (top
left). This will lead to overestimates of intensity, as low IR
temperatures are generally associated with stronger TCs.
Persistence IR forecasts (bottom left) offer a less biased IR
forecast on average but higher overall errors in structure at
all lead times.
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Fig. 7. Hurricane Dorian [2019] 6-h Guidance: (Left) Distribution of forecasted intensities with observed (black) and average forecast (red)
intensities marked. The distribution of the 64 intensity forecasts in the ensemble is approximated by a histogram (bar plot) and by a kernel density
estimate (blue curve). (Right) Simulated profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated
profiles represented by dashed red curves.

Table 1 (right) reports verification statistics for intensity
guidance using the traditional definitions for root mean
squared error (RMSE), mean absolute error (MAE), and
bias. As expected, the negative bias in structural forecasts
manifests as a positive bias in intensity guidance.
Tables 2 and 3 assess the performance of our intensity

guidance via structural forecasting at 12-hour lead times
and compare it to the NHC’s official forecast verification
from 2013-2019 due to availability of verification data at
time of writing; note that this is a subset of the times re-
ported in Table 1, consisting of cases where both our struc-
tural forecasts and NHC official verification are available.
Overall, the RMSE of the structural forecast is about 1.1
kt larger than the NHC official forecast error as computed

by RMSE, and structural forecasts produce roughly twice
the bias (1.1 vs -0.6 kt). The structural forecast sees un-
changed MSE with increasing 200-850-hPa vertical wind
shear; the bias, however, increases with increasing wind
shear (Table 2). This trend is expected, as the model does
not include wind shear as a predictor but instead relies on
the positive correlation between shear and asymmetry in
IR imagery (as captured by radial profiles computed by
quadrant). The NHC official forecast error exhibits a simi-
lar, if less pronounced, trend in bias with increasing shear.
The direction of shear seems more important, with both
our model and the NHC official forecast performing most
poorly for NW shear (6% of cases) and best for SW shear
(9% of cases). The NE and SE cases dominate the over-
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Fig. 8. Hurricane Dorian [2019] 12-h Guidance: Model bias during intensification (center row) is more exaggerated at 12-hour lead times.
(Left) Distribution of forecasted intensities with observed (black) and average forecast (red) intensities marked. The distribution of the 64 intensity
forecasts in the ensemble is approximated by a histogram (bar plot) and by a kernel density estimate (blue curve). (Right) Simulated profiles by
quadrant with observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed red curves.

all model performance since they comprise the remaining
85% of the data set. The disparity between different shear
magnitudes and directions could be alleviated in a model
which utilizes environmental predictors.
Table 3 demonstrates similar error trends for both offi-

cial forecasts and our structural forecasts. Errors tend to
increase with TC intensity and with rate of intensification
or weakening. The structural model produces higher bias
for weaker TCs and lower bias for stronger TCs. Simi-
larly, the structural model tends to overestimate intensities
during weakening and underestimate them during intensi-
fication. The model errors are comparable to NHC official
forecast errors during periods of maintenance and intensi-
fication (although bias is higher); it is periods of weakening

which tend to be poorly modeled by the structural forecast.
We suspect that the inclusion of environmental information
could improve fidelity in weakening cases; see Section 6
on FutureWork Directions for a discussion of such avenues
for model improvement.
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Trajectory Verification
Model Lead time 2 h 4 h 6 h 8 h 10 h 12 h

Structural RMV 10.5C 14.7C 17.4C 22.2C 25.1C 26.9C
MAD 7.1C 10.5C 12.8C 15.6C 17.6C 19.0C
Bias -0.6C -2.2C -4.0C -6.3C -7.9C -9.3C

Persistence RMV 12.0C 16.2C 19.7C 22.7C 28.2C 31.7C
MAD 8.2C 11.1C 13.6C 15.8C 18.5C 20.5C
Bias -0.4C 0.6C 2.0C 3.5C 5.5C 6.8C

Intensity Verification
Lead time 6 h 12 h

RMSE 4.9kt 9.5kt
MAE 3.5kt 7.1kt
Bias 0.6kt 2.3kt

Table 1. Overall Model Verification at n = 16: (Left) Trajectory verification of structural forecasts, compared to IR persistence forecasts
where the radial profiles are fixed at their 0 h values. Simulation noise (root mean variance and mean absolute deviation) grows rapidly in the first 6
hours; bias increases in magnitude steadily. We note that persistence offers a less biased IR forecast on average, but higher overall errors in structure
at all lead times. (Right) Intensity verification vs HURDAT2 best-track intensities from 2013-2020 at each lead time.

Shear Magnitude
Structural NHC OFCL

Shear 12-h RMSE/MAE/Bias N

0-10kt 9.3/7.3/-0.7 kt 9.3/6.4/-1.1 kt 243
10-20kt 9.7/6.9/1.0 kt 8.1/5.7/-0.5 kt 509
20+kt 8.6/6.3/2.1 kt 7.5/5.1/-0.6 kt 439

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,191

Shear Direction
Structural NHC OFCL

Shear Direction 12-h RMSE/MAE/Bias N

SW 8.6/6.1/-0.1 kt 7.5/5.4/-1.1 kt 106
SE 9.1/6.9/0.3 kt 8.5/5.9/-0.5 kt 440
NE 9.3/6.6/2.2 kt 7.9/5.4/-0.6 kt 575
NW 10.6/8.2/-2.0 kt 8.9/6.1/-0.9 kt 70

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,191

Table 2. Intensity Guidance Verification Relative to Shear: Model verification binned by 200-850-hPa vertical wind shear, reported as
RMSE/MAE/Bias. (Left) The performance of the structural forecasting model does not change meaningfully relative to wind shear magnitude,
while the NHC official forecast performs better in higher shear environments. The structural forecast has comparable performance to the NHC
official forecasts in low-shear environments. (Right) The performance of the structural model does vary with shear direction. Both the NHC
forecasts and the structural model produce higher errors for NW shear (6% of cases).

TC Intensity
Structural NHC OFCL

Category 12-h RMSE/MAE/Bias N

Tropical Depression 5.5/4.4/3.0 kt 5.9/4.2/-3.1 kt 112
Tropical Storm 7.2/5.6/2.8 kt 6.4/4.4/-0.6 kt 567
Hurricane 10.3/7.7/0.6 kt 9.3/6.7/-0.6 kt 355
Major Hurricane 14.0/10.7/-5.5 kt 11.8/8.4/0.9 kt 157

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

Intensity Change
Structural NHC OFCL

Evolution 12-h RMSE/MAE/Bias N

Weakening 12.1/8.9/7.7 kt 7.8/5.4/2.9 kt 263
Maintenance 6.7/5.3/3.3 kt 6.1/4.3/-0.0 kt 497
Intensifying 9.8/7.3/-5.5 kt 10.2/7.2/-3.5 kt 431

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

Table 3. Intensity Guidance Verification by TC Intensity: Model verification split out by intensity and intensity change, reported as
RMSE/MAE/Bias. (Left) Both the structural and NHC official forecasts struggle more with intense storms, which are rarer. The structural forecast
has much stronger bias, which is expected due to the heavy influence of persistence features in the absence of environmental predictors. (Right)
Similarly, both forecasts perform best during maintenance periods (6-hour change ≤ 5 kt in magnitude), overestimate during weakening, and
underestimate during intensification. The bias is more pronounced in the structural forecast due to the absence of environmental predictors.



12

c. Variable Importance in Intensity Forecasts

Our model results show that structural forecasts result
in 6-hour and 12-hour intensity predictions of compara-
ble accuracy to NHC official forecasts. For insight into
how much our model relies on IR inputs and prior intensi-
ties when making predictions, we compute a saliency map
(also known as pixel attribution) for each input. There are
varied definitions for saliency, including occlusion-based
approaches such as SHAP explainability values (Lundberg
and Lee 2017), LIME values (Ribeiro et al. 2016), and
gradient-based approaches.
Figure 9 (center) shows a map of the SHAP importance

or contribution of each pixel of the IR observed and fore-
casted imagery on the 6-hour intensity forecast for Hur-
ricane Dorian [2019]. The bottom-left panel shows the
SHAP values for prior intensity and prior intensity change.
The bottom-right panel shows aggregated SHAP values for
each input channel. From this result and a similar analysis
with SHAP variable importance maps for Hurricane Jose
[2017] and Hurricane Nicole [2016] in Appendix A and
gradient-based saliency maps in Appendix B of Supple-
mentary Materials, we conclude that (i) IR imagery con-
tributes to the intensity forecasts to a degree comparable to
persistence features, (ii) forecasted infrared imagery from
our deep autoregressive generative model plays a more im-
portant role than observed past imagery in the TC intensity
forecasts, (iii) the current and past presence/absence of an
eye is generally the key feature of a storm, and (iv) the core
temperatures outside of the eye play a signifcant role for
intensity forecasting.

5. Discussion and Conclusion

This paper demonstrates a novel interpretable approach
to short-term TC intensity guidance trained solely on in-
tensity estimates up to 6 hours prior to the current time and
IR observations up to 0 h. We specifically leverage spatial
characteristics of TC convection as captured by radial IR
profiles. By forecasting an ensemble of +6 h and +12 h tra-
jectories of TC IR structure with radial profiles computed
over four geographic quadrants, we obtain reasonable esti-
mates of future +6 h and +12 h TC intensity while simulta-
neously capturing and enabling visualization of signals in
convective structure relevant to those future intensities. We
focus on interpretable, physically-based factors to facilitate
understanding of the model’s performance (e.g., upcoming
intensification corresponds with decreasing cloud-top tem-
peratures in the structural forecast). The approach outlined
here has the potential for further improvement by adopting
other network architectures for structural forecasts and by
including environmental predictors provided in real time
by SHIPS guidance. Though testing on years of cases takes
time, an individual forecast for a single TC can be obtained
in minutes on a single GPU, indicating the potential for the

eventual use of this model as part of the available TC guid-
ance suite in an operational setting.

6. Future Work Directions

a. Improving the Network Architecture for Structural Fore-
casts

The PixelSNAIL approach provides reasonable simu-
lations of TC IR structural evolution up to 12-hour lead
times. However, there exists a wealth of alternate deep
autoregressive generative models, each of which can be
designed and trained in innumerable ways. Likewise, deep
autoregressive models are not the only generative models
available. Simulation could be carried out via vector au-
toregression on a low-dimensional projection of profiles
(e.g., principal component analysis, Fourier bases, etc.),
generative adversarial networks (GANs; Creswell et al.
2018), or transformers (e.g., temporal fusion transformers
for multihorizon forecasting (Lim et al. 2021) and spa-
tiotemporal transformers (Grigsby et al. 2021)). The Pix-
elSNAIL architecture was chosen to demonstrate the value
and feasibility of structural forecasting for intensity guid-
ance.

b. Calibrating the Probability Distribution of Structural
Forecasts

Our structural forecasts are probabilistic in nature, tak-
ing the form of probability distributions over future struc-
tural trajectories S>𝑡 . In the current work, we apply a
standard machine learning approach of fitting a model by
minimizing a loss function (in this case the negative log
likelihood). A good probabilistic forecast, however, should
be conditionally calibrated. That is, the probability of a
particular event (in our case, specific radial profiles 6-12
hours into the future), given or “conditional on” a particular
history of evolution and other predictors, should match the
predicted probability of the same event. This is essentially
saying that draws from the forecasting model should be
indistinguishable from actual observations, if all relevant
conditions are the same. Dey et al. (2022) recently pro-
posed a new method for adjusting or “recalibrating” prob-
abilistic forecasts, so that they will have his property. In-
deed, one can potentially apply their procedure sequentially
to each autoregressive component 𝑝(𝑍𝑖𝑞 |Z𝑖−1, . . . ,Z1), for
pixel 𝑖 = 1, . . . , 𝑛, and quadrant 𝑞 = 1,2,3,4, so as to obtain a
conditionally calibrated density over structural trajectories
S>𝑡 given present and past observations; see Discussion in
Dey et al. (2022).

c. Inclusion of Environmental Variables

The PixelSNAIL model presented here is a purely au-
toregressive process; that is, it simulates future structural
features using only past IR imagery as an input. The inclu-
sion of environmental variables known to impact TCs such



13

Fig. 9. SHAP Variable Importance Map for 6-Hour Intensity Forecast: (Top) IR channels of CNN nowcasting model for Hurricane Dorian
[2019] with observed IR structure above the horizontal black lines and +6 h forecasted structure from deep auto-regressive generative model below
the horizontal lines. (Center) Pixel-wise SHAP variable importance of IR inputs on the 6-h intensity forecast. (Bottom Left) SHAP variable
importance of VMax (linearly interpolated operational intensity estimates) and Delta V (2-h rate of change of operational intensity estimates) on
the 6-h intensity forecast. (Bottom Right) Aggregated SHAP values over each channel, indicating IR features contributing to intensity forecasts to
a degree comparable to persistence features.

as vertical wind shear, atmosphericmoisture, or sea surface
temperature may improve the accuracy of the forward sim-
ulation of radial profiles, particularly of structural evolution
beyond 12 hours. Such factors can be added to the Pix-
elSNAIL architecture as additional input layers via values
provided by SHIPS which are not forecasted by the model.
These inputs would then serve as “guiderails” for simu-
lated structural evolution with potential to better capture
the effects of such factors on profile asymmetry. Despite
these limitations, our prototype model (which is derived
solely from prior and present TC intensity estimates and
Geo IR imagery alongside forecasted TC structure using
a very simple network architecture) provides reasonable
short-term structural and intensity forecasts comparable to

NHC forecasts at 6- and 12-h lead times. The inclusion of
environmental variables in the nowcasting model is likely
to improve its intensity forecasts, which would then be
compared to SHIPS forecasts as well as NHC official fore-
casts, the latter of which are crafted using SHIPS and other
guidance.
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Supplemental Material for “Structural Forecasting for Short-term Tropical Cyclone
Intensity Guidance"

APPENDIX A

Additional SHAP Variable Importance Maps for TC Intensity Forecasts

Fig. A1. SHAP Variable Importance Map for 6-Hour Intensity Forecast: (Top) IR channels of CNN “nowcasting” model for Hurricane Jose
[2017] with observed IR structure above the horizontal black lines, and +6 hour forecasted structure from deep auto-regressive generative model
below the horizontal lines. (Center) Pixel-wise SHAP variable importance of IR inputs on 6-hour intensity forecast. (Bottom Left) SHAP variable
importance of VMax (linearly interpolated operational intensity estimates) and Delta V (2-h rate of change of operational intensity estimates) on the
6-h intensity forecast. (Bottom Right) Aggregated SHAP values over each channel showing IR features contributing significantly to the intensity
forecasts.
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Fig. A2. IR Channels and SHAP Variable Importance Map for 6-Hour Intensity Forecast: As figure A1, but for Hurricane Nicole [2016].
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APPENDIX B

Input Saliency for Forecasting Model

Our model results in Section 4 showed that structural forecasts result in 12-hour intensity predictions of comparable
accuracy to NHC official forecasts. Here we apply a simple gradient-based approach to provide some insight as to how
much the model relies on different IR inputs when making predictions. The gradient describes how much a feature
contributes to the model response 𝑌 . More specifically, we define the saliency 𝑆𝑖 (x) of the 𝑖𝑡ℎ pixel or feature by

𝑆𝑖 (x) =
����� 𝜕𝑌𝜕𝑥𝑖 ���x

�����, (B1)

where x denotes the total input.
In order to visualize the overall impact of each input channel (four IR quadrants, the radius channel, the time channel,

the observed prior intensity, and the observed prior intensity change) on the forecasted future intensity, we “aggregate”
the saliency, summing over all pixels in each channel. Figure B1 shows the saliency aggregated by channel over
time for each of our three example TCs. Note that because prior intensity/intensity change are not included in the
convolutional layers, they are linear, and thus have a fixed saliency; because the model is nonlinear in the other channels,
the saliency varies over time with the IR inputs. Of particular note is that the aggregated saliency of the IR input
channels is comparable to the persistence features, indicating that the model does not simply rely on persistence to make
its predictions but instead makes use of the structural forecasts. Figure B2 shows the same values for IR channels with
the mean and trend removed, demonstrating that the model tends to rely more heavily on convective structure in the
southern quadrants, and particularly the southeast quadrant.
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Fig. B1. Saliency per input layer in the model. Saliency values over time indicate that the model for TC intensity forecasts utilizes image inputs to
a degree comparable to prior intensity values.
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Fig. B2. Trend- and mean-removed saliency for image inputs. Comparing the saliency values over time indicates 1) the southern quadrants
are more heavily utilized by the forecasting model, and 2) the degree to which the model relies on one quadrant over another is not constant (e.g.
Hurricane Jose [2017] around Sept. 14, 2017).
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APPENDIX C

Additional Forecast Materials for Case Studies

Fig.C1. Hurricane Jose [2017] 6-hr Guidance: Hurricane Jose was subjected to vertical wind shear out of the west/northwest due to Hurricane
Irma; the structural forecasts tend to underestimate temperatures in the NW quadrant and thus overestimate TC intensity. (Left) Distribution of
forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right) Simulated profiles by quadrant with observed
profiles represented by solid black curves, and averaged simulated profiles represented by dashed red curves.
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Fig. C2. Hurricane Jose [2017] 12-hr Guidance: At 12-hour lead times, this TC’s evolution is still well modeled save for a handful of
individual overestimates. (Left) Distribution of forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right)
Simulated profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed red
curves.



23

Fig. C3. Hurricane Nicole [2016] 6-hr Guidance: Hurricane Nicole underwent several rapid intenity change events. At 6 UTC 7 October, the
structural forecast models the cloud top temperatures well, but this is insufficient to predict the extreme change from intensification to weakening
even at 6-hour lead times. (Left) Distribution of forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right)
Simulated profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed red
curves.
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Fig. C4. Hurricane Nicole [2016] 12-hr Guidance: Model biases during the quick shifts from intensification to weakening and during stead
intensification are exacerbated at 12-hour lead times. (Left) Distribution of forecasted intensities with observed (black) and average forecast (red)
intensities marked. (Right) Simulated profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles
represented by dashed red curves.
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(A)

(B)

(C)

Fig. C5. Hurricane Nicole [2016] 12-hr Structural Forecasts: The observed structural trajectory is shown in the top left corner of each row.
To the right, we see 10 individual simulations of radial profiles (averaged over all quadrants) at 12-hour lead times. All radial profiles above the
black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the average simulation over 64
simulated trajectories.
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Fig.C6. Hurricane Nicole [2016] Forecasts By Quadrant (B):As Figure C5, but broken down by quadrant for example (B) only. The observed
structural trajectory is shown in the top left corner. To the right, we see four individual simulations of radial profiles by quadrant at 12-hour lead
times. All radial profiles above the black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner
shows the average simulation over 64 simulated trajectories.
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(A)

(B)

(C)

Fig. C7. Hurricane Jose [2017] 12-hr Structural Forecasts: The observed structural trajectory is shown in the top left corner of each row.
To the right, we see 10 individual simulations of radial profiles (averaged over all quadrants) at 12-hour lead times. All radial profiles above the
black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner, shows the average simulation over 64
simulated trajectories.
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Fig. C8. Hurricane Jose [2017] Forecasts By Quadrant (A): As Figure C7, but broken down by quadrant for example (A) only. The observed
structural trajectory is shown in the top left corner. To the right, we see four individual simulations of radial profiles by quadrant at 12-hour lead
times. All radial profiles above the black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner
shows the average simulation over 64 simulated trajectories.
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(A)

(B)

(C)

Fig. C9. Hurricane Dorian [2019] 12-hr Structural Forecasts: The observed structural trajectory is shown in the top left corner of each row.
To the right, we see 10 individual simulations of radial profiles (averaged over all quadrants) at 12-hour lead times. All radial profiles above the
black horizontal line are observed, while profiles below the black line are simulated. The bottom left corner, shows the average simulation over 64
simulated trajectories.
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Fig. C10. Hurricane Dorian [2019] Forecasts By Quadrant (A): As Figure C9, but broken down by quadrant for example (A) only. The
observed structural trajectory is shown in the top left corner. To the right, we see four individual simulations of radial profiles by quadrant at
12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles below the black line are simulated. The bottom
left corner shows the average simulation over 64 simulated trajectories.


