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Abstract

Hundreds of genes reside in structurally complex, poorly understood regions of the human 

genome1-3. One such region contains the three amylase genes (AMY2B, AMY2A, and AMY1) 

responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the 

genome’s largest influence on obesity4, though genome-wide association studies for obesity have 

found this locus unremarkable. Using whole genome sequence analysis3,5, droplet digital PCR6, 

and genome mapping7, we identified eight common structural haplotypes of the amylase locus that 

suggest its mutational history. We found that AMY1 copy number in individuals’ genomes is 

generally even (rather than odd) and partially correlates to nearby SNPs, which do not associate 

with BMI. We measured amylase gene copy number in 1,000 obese or lean Estonians and in two 

other cohorts totaling ~3,500 individuals. We had 99% power to detect the lower bound of the 

reported effects on BMI4, yet found no association.

Like hundreds of human genes, the amylase genes reside in a structurally complex locus, 

one with inversions, deletions, and duplications8. Each of the three amylase genes, which 

encode enzymes that digest starch into sugar, varies widely in copy number, with AMY1 

varying from 2–17 copies9,10, AMY2A from 0–810, and AMY2B from 2–6. Given their role in 

starch metabolism and AMY1’s greater average copy number in three populations with high 

starch diets9, it has been hypothesized that AMY1 copy number shapes the metabolic 

response to diet. A recent study reported that each copy of AMY1 decreases the risk of 

obesity 1.2-fold4, potentially a profound effect since AMY1 copy number varies so widely 

(2–17 copies; standard deviation, 2.4 copies). The effect of AMY1 copy number, reported to 

explain 11% of the genetic contribution to obesity (far greater than the effect of SNPs at 

FTO, the largest effect detected in GWAS4), was not detected in a GWAS of 339,224 

people11. The discordance between these results raises questions about the completeness of 

GWAS and other genome-scale approaches in human genetics4. However, complex CNVs 

are notoriously difficult to measure12, and CNV association studies often involve rough 

copy number estimates that can be confounded by technical factors that would be readily 

detected in molecularly precise data13-15. We sought to understand these issues at the 

amylase locus.

We first measured the copy number of the three amylase genes in two large, partially 

overlapping cohorts. We analyzed whole genome sequence data from 569 individuals from 

Phase 1 of the 1000 Genomes Project16 using our Genome STRiP3,5 algorithm 

(Supplementary Tables 1 and 2). We also measured copy number in 114 parent-offspring 

trios from HapMap17 using droplet digital PCR (ddPCR) (Supplementary Fig. 1 and 2). 

These data, which were concordant across overlapping samples (Supplementary Fig. 3), 

revealed two relationships:
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1. Individuals are four times more likely to have an even (2, 4, 6, etc.) than an odd (1, 

3, 5, etc.) number of AMY1 copies (Fig. 1a).

2. AMY1 and AMY2A share parity – the copy numbers of AMY1 and AMY2A are 

almost always both odd, or both even (Fig. 1b).

These features have not been observed in studies that used lower-precision molecular 

methods, such as real-time PCR and array CGH, or lower-precision analyses of WGS data, 

to measure copy number2,4,9,18.

If these observations are correct, then they would need to arise from an underlying set of 

structural alleles, only some of which have been previously identified8,9,19. To ascertain the 

gene content of these amylase structural alleles, we extended an approach we developed for 

the 17q21.31 locus, one of the first structurally complex loci to be resolved into structural 

alleles20,21. We precisely measured and followed the segregation of each amylase gene’s 

copy number in 114 father-mother-offspring trios (from HapMap cohorts of European and 

West African ancestry), allowing us to assign copy numbers to transmitted and 

untransmitted chromosomes and thereby to assemble models of the gene contents of each 

structural allele (Fig. 1c). We further evaluated these inferences by: (i) quantifying how 

many individuals have genotypes that can be explained by a modest number of common 

haplotypes; and (ii) comparing our inferred structural haplotypes to the haplotypes 

previously identified by fiber FISH and restriction mapping of clones8,9,19.

We found that eight common haplotypes could explain 98% of the combinations of AMY1, 

AMY2A, and AMY2B copy numbers we observed in 480 Europeans from the 1000 Genomes 

Project16. We identified common haplotypes consistent with five of the six previously 

identified haplotypes8,9,19, along with three novel haplotypes in the European trios (CEU) 

and evidence for additional, rarer haplotypes in the West African trios (YRI) (Fig. 1c, 

Supplementary Table 3, and Supplementary Fig. 4). Because these analyses do not specify 

the order of these genes on the structural haplotypes, we used earlier data from cosmid 

mapping8,19 and fiber FISH9, and performed nanochannel-based genome mapping analysis7, 

to predict the order of structural features on these alleles (Fig. 1d and Supplementary Fig. 5).

This set of common haplotypes and their frequencies (Fig. 1c) explained both the 

predominance of even AMY1 copy numbers in diploid genomes and the sharing of odd/even 

parity between AMY1 and AMY2A. Most European chromosomes (89%) contained an odd 

number of AMY1 copies, which naturally sum to an even number in diploid genomes. In 

addition, the AMY1-odd haplotypes (those that have an odd number of copies of AMY1) each 

have one copy of AMY2A, while the AMY1-even haplotypes have either zero or two copies 

of AMY2A (Fig. 1c), resulting in odd AMY2A and AMY1 copy numbers segregating together 

and explaining the sharing of odd/even parity between these genes.

The structural haplotypes (Fig. 1c) also suggest the mutational history of the locus. The 

more common AMY1-odd haplotypes differ in the copy number of a tandemly duplicated 

cassette that contains two head-to-head AMY1 genes. We found that these AMY1-odd 

haplotypes (haplotypes AH1, AH3, AH5, AH7 in Fig. 1c) segregate on many of the same 

SNP haplotypes (Fig. 2a and Supplementary Fig. 6), and we identified different historical 
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recombination sites within their intergenic regions (Supplementary Fig. 7 and 8). Frequent 

non-allelic homologous recombination22 (NAHR) involving the tandem array could have 

generated these many structural forms (haplotypes AH1, AH3, AH5, AH7 in Fig. 1c). In 

contrast, the haplotypes containing even numbers of AMY1 copies appear to segregate on 

distinct SNP haplotype backgrounds, consistent with having arisen from unique mutational 

events that involved more-complex rearrangements by a rarer mutation mechanism (Fig. 1c).

Based on these AMY1 structures and their relationships to surrounding SNP haplotypes (Fig. 

2a), we hypothesized that individual SNPs near the amylase genes may at least partially 

correlate with AMY1 copy number within populations. We compared the AMY1 copy 

number of European individuals from the 1000 Genomes Project16 to their SNP genotypes 

and found SNPs that had an average difference of 0.6 to 2.0 AMY1 copies per SNP minor 

allele (Table 1). Permutation tests established that these correlations were statistically 

significant. The partial correlations between AMY1 copy number and these SNPs replicated 

in two independent cohorts of 768 and 2,807 European-ancestry individuals sampled in the 

U.S. and Europe (Fig. 2b, Supplementary Fig. 9, and Supplementary Table 4 and 5).

Although each of these SNPs explains only a small fraction of AMY1 copy number variation, 

power in GWAS arises from the product of linkage disequilibrium (r2) and sample size: in 

the GIANT Consortium’s meta analysis of SNP data from 339,224 individuals11, a 

contribution of AMY1 copy number to BMI as strong as that reported4 would be 99.9% 

likely to bring about a nominal (P < 0.05) association to the more correlated SNPs. 

However, none of the 17 SNPs in the GIANT meta-analysis reached even nominal (P = 

0.05) significance, and the SNPs as a group showed no trend toward low association 

statistics (Table 1 and Supplementary Fig. 10).

Since this lack of evidence for AMY1’s association with BMI is indirect, we conducted our 

own association analyses by directly measuring the copy numbers of the amylase genes 

using our high-resolution methods in three European cohorts.

We began by analyzing DNA from 1,000 Estonians selected from a broader Estonian 

Biobank23 cohort (51,535 individuals) for being in the tails of the BMI distribution – 500 

individuals with BMI<22 and 500 individuals with BMI>33. Among these 1,000 

individuals, we observed associations to the SNPs that have associated with BMI in earlier 

studies24, including SNPs at the FTO (P = 3.5×10-7), SEC16B (P = 5.3×10-4), and MTCH2 

(P = 9.6×10-3) loci, and association to a polygenic score calculated from 11 SNPs (P = 

3.7×10-12) (Table 2, Supplementary Table 6, and Supplementary Fig. 11). With these 

positive controls validating the study design and demonstrating power to detect the much 

larger reported effect of AMY14, we used ddPCR to obtain integer genotypes of all three 

amylase genes, again observing the preponderance of even AMY1 copy numbers (Fig. 3a). 

We had >99% power to detect (at nominal significance) effects as strong as those reported4. 

However, we did not observe even a nominal association between obesity and the copy 

number of any amylase gene (P = 0.70 for AMY1) (Fig. 3b and Supplementary Table 7).

We then analyzed two other cohorts of Europeans - one consisting of 2,807 individuals 

(1,437 type 2 diabetes cases and 1,370 controls) sequenced to >5x average coverage 
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(GoT2D cohort), and the other of 657 Europeans sequenced to 7x median coverage 

(InCHIANTI25). Analysis of amylase gene copy number (using Genome STRiP3,5) again 

showed the enrichment of even, relative to odd, copy numbers (Fig. 3a), validating the 

precision of the analysis. The GoT2D cases and controls each had 95% power, while 

InCHIANTI had 77% power, to detect the reported effect4 of AMY1 at nominal significance 

(Table 2). Yet, AMY1 copy number did not associate with BMI in any group (P = 0.31 for 

GoT2D controls, P = 0.24 for GoT2D cases, P =0.53 for InCHIANTI) (Fig. 3), or in a meta-

analysis of all 3,464 replication samples (P = 0.38). By contrast, SNPs at FTO and other loci 

implicated in GWAS had the associations expected given sample size and statistical power 

(Table 2, and Supplementary Table 8).

These results contrast with a recent report finding that AMY1 copy number exerts a stronger 

effect on BMI and obesity than do SNPs at FTO and other loci4. We believe that the 

difference from the reported observation likely comes from our use of higher-resolution 

approaches for both molecular and computational analysis (Supplementary Fig. 12). Many 

studies have found that low-resolution, poorly clustering molecular data conceal technical 

effects that can create the false impression of strong associations13-15,26,27. We also 

considered the possibility that our study could have failed to see a real genetic effect. Our 

study utilized an Estonian study cohort, in addition to two other European cohorts with 

elevated body weight. The Estonian diet is slightly different than that of other European 

countries28, though it appears to be similarly rich in starch29. We also considered the 

possibility that amylase acts in ways that are specific to lean individuals, but we saw no 

evidence for this in our BMI cohorts (Supplementary Table 9) and we note that other BMI-

associated variants have tended to associate in ways that are consistent across the BMI 

spectrum30. We note that a subsequent study of a different obesity cohort31 did not observe 

the previously reported shifting of the distribution of AMY1 copy number between obese and 

lean individuals, but instead described an outlier set of control samples with unusually high 

AMY1 copy number measurements31. We believe this constitutes a different hypothesis, 

rather than a replication, of the earlier finding at AMY1.

Fully understanding human genetic variation and its relationship to phenotypes will require 

characterizing hundreds of complex loci, like the amylase locus, that mutate at high 

frequencies in ways that cause large-scale changes in the dosage and expression of genes. 

Some of these loci could, as has been proposed32-34, represent loci capable of rapid 

evolutionary adaptation. The amylase locus offers several insights to guide studies of 

structurally complex loci. First, the high apparent complexity observed in measurements 

from diploid genomes may arise combinatorially from a modest number of common 

structural forms that appear in different combinations in different diploid genomes. Second, 

structurally complex loci reflect both ancient and recent mutations and may be best 

understood through combinations of analysis methods developed for common and rare 

variants, including tagging, imputation, and direct molecular analysis. Third, although 

GWAS may miss or under-estimate the relationships of structurally complex loci to 

phenotypes, accurately typed SNP markers can help constrain plausible expectations about 

the strength of a CNV’s potential effect on a phenotype. Whole genome sequencing of large 
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cohorts will ultimately reveal the extent to which this and many other structurally complex 

loci contribute to human phenotypes.

Methods

Cohort Collection

Estonian Sample Collection—The Estonian Biobank is the population-based biobank of 

the Estonian Genome Center of the University of Tartu (EGCUT) (www.biobank.ee). The 

EGCUT is conducted according to the Estonian Gene Research Act, and all participants are 

volunteers that have signed broad informed consent23. The cohort size is currently 51,535 

people from 18 years of age and up. All subjects are recruited randomly by general 

practitioners and physicians in hospitals. A computer-assisted personal interview is 

conducted at the doctor’s office to record personal data, genealogical data, lifestyle data, and 

the subjects’ educational and occupational history.

Medical history and current health status are recorded according to the ICD10 and 

medication according to the ATC. Anthropometric measurements are taken, along with 

blood pressure (sitting position at the end of the interview), and resting heart rate. 30-50 mL 

of venous blood are collected into EDTA Vacutainers. These are transported to the central 

laboratory of EGCUT at 4-6 degrees Celsius within 6 to 36 hours after collection. Upon 

arrival, DNA, plasma and WBC are immediately isolated and kept in aliquots in MAPI 

straws in liquid nitrogen.

A Hamilton Robotics Automated Sample Management system with a 100,000 tube capacity 

is used for intermediate storage of normalized DNA samples (50–100 ng/μL) in tubes with 

2D-barcodes. This enables a quick and highly accurate delivery of the samples by cherry-

picking according to the selected barcodes.

The 1,000 Estonian samples used in the current study were selected from the BMI extremes 

of the EGCUT population cohort of 51,535 samples. The lean (BMI < 22) and the obese 

(BMI > 33) groups were matched on age-at-recruitment and year-of-birth to account for 

cohort and life-course effects on overall body composition (demographic details given in 

Supplementary Table 10), resulting in the obese being in the 98th percentile (females: 99.5th 

percentile) of the cohort’s BMI and the lean being in the 87th (females: 82nd). The lower 

threshold for the lean control samples is due to age and gender matching to the obese 

samples. The extreme sets included 250 samples from both genders and were limited to only 

individuals with Estonian nationality and whose self-reported mother tongue was Estonian. 

Further measures to account for potential population structure are described further down.

GoT2D Sample Collection—The Genetics of Type 2 Diabetes (GoT2D) study aims to 

characterize type 2 diabetes and related quantitative traits’ genetic architecture through low-

coverage whole-genome sequencing, deep (~100x) exome sequencing, and 2.5M SNP 

genotyping of cases and controls from four large European cohorts: Diabetes Genetics 

Initiative (DGI), Finland-United States Investigation of NIDDM Genetics (FUSION), 

GoT2D-UK, and Kooperative Gesundheitsforschung in der Region Augsburg 

(KORA)26,35-38. These larger cohorts are a mixture of smaller ones obtained in Finland, 
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Sweden, the UK, and Germany. Due to the confounding effect of diabetes on BMI, cases 

and controls were analyzed separately while controlling for the cohort of origin. Only the 

low-coverage data was used in the current study (Supplementary Table 11).

InCHIANTI Cohort Sample Collection—We selected 680 individuals from the 

InCHIANTI study25,39 - a study of aging from the Chianti region in Tuscany, Italy - for low 

pass whole genome sequencing. Individuals were selected for sequencing based on the 

availability of gene expression and circulating biomarker data (Supplementary Table 12).

Whole-genome sequencing was performed at the Beijing Genomics Institute (BGI), 

Shenzhen, China using the Illumina HiSeq 2000 to obtain a minimum read depth of 6X. An 

average of 240 million paired-end 90bp reads per sample were aligned to the 1000 Genomes 

implementation of the Genome Reference Consortium’s build 37 of the human reference 

genome40, using the burrows-wheeler aligner (BWA) version 1.5.941.

GPC Cohort Sample Collection—Headed by the Center for Genomic Psychiatry at 

USC, the GPC cohort is a collection of individuals with schizophrenia and bipolar disorder, 

along with controls. Participants are recruited from the United States and selected sites 

abroad. The subset used in this study consisted of 768 self-reported (and genetically 

confirmed) European-ancestry patients from the United States that were whole genome 

sequenced from blood to a depth of 30x. Data on BMI were not available.

Droplet Digital PCR

General—Droplet digital PCR6 is similar in concept and preparation to a real-time qPCR 

reaction but with a few important modifications. Before amplification, the DNA is first 

digested with a restriction enzyme in order physically separate the copies of the CNV that 

are on the same DNA strand. The PCR reaction mixture is prepared similar to qPCR, with 

each primer at 900nM, the fluorescent probes at 250nM, and the input DNA around 1ng/ul. 

The reaction is then emulsified into approximately 20,000 water droplets surrounded by oil 

using a droplet generator (BioRad). The droplets are thermocycled using a standard 

thermocycler with the BioRad-supplied PCR protocol (with an additional 10 cycles), and the 

droplets containing the probes’ targets then become fluorescent. The fluorescent droplets are 

then counted by a droplet reader (BioRad). At low DNA input concentrations, each 

fluorescent droplet contains only one PCR target, thus allowing us to count the near-exact 

number of targets within the reaction – as opposed to comparing amplification curves, like 

in qPCR. At higher DNA concentrations, a Poisson correction factor is applied to account 

for droplets possibly having more than one target.

Control Probes—The standard control probe for ddPCR is targeted to RPP30. However, 

since amylase is in a late replicating region42, DNA isolated from replicating cells will 

naturally have less of it than other parts of the genome – the parts that have already 

replicated (Supplementary Fig. 3c). To counteract this, we used a probe assay targeted to 

just outside the amylase region, called Near_AMY (Supplementary Table 1).

Genotype Calling—The output of the droplet reader is a scatterplot with FAM 

fluorescence on the y-axis and HEX/VIC on the x. Each dot represents a droplet 
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(Supplementary Fig. 13). The Quantasoft software draws suggested thresholds for positive 

FAM and HEX droplets. The experimenter checks those thresholds and redraws if needed 

(while still blinded to sample identity). A CNV copy number call is found by dividing the 

number of droplets fluorescing FAM, corresponding to the CNV target, by the number of 

droplets fluorescing VIC, the control target (both numbers being Poisson corrected). Before 

the final genotype call, the raw CNV calls of each plate are corrected by a plate-wide 

correction factor, generally between 0.97-1.05 (Supplementary Fig. 13b,c).

HapMap Samples

Plates containing the HapMap17 DNA samples for CEU and YRI were subjected to ddPCR 

in three reactions for AMY2B, AMY2A, and AMY1 using the “assay1” assays listed in 

Supplementary Table 1. All except half the CEU individuals on the AMY2B run were done 

using the control assay Near_AMY. DNA inputs varied, due to the variation of DNA 

concentration across the plate, but the ideal DNA concentration strived for was 1ng/ul for 

AMY1 reactions and 0.5ng/ul for AMY2B and AMY2A reactions. All copy numbers reported 

are from a single reaction for each gene. We did not average multiple replicates to get copy 

numbers. However, we do have multiple runs on file for these assays and others 

(Supplementary Fig. 3b,d,e).

Estonian Samples

The Estonian DNA was aliquoted into 96 well plates, with a random distribution of under- 

and overweight samples (KS test, P = 0.51). The ddPCR runs were done within a three week 

period in the same lab, using the same machines, with an experimenter blind to the case-

control status of the samples – thus reducing the risk of batch effects and biases. Each 

sample had one genotyping run of each of these assays: AMY2B_assay1, AMY2A_assay1, 

AMY1_assay1, and AMY1_assay2 (with the exception of Plate 1, which did not have an 

AMY1_assay2 run).

AMY2B—Initially, 28 Estonians had copy number calls less than 2 for AMY2B (CN of 0 or 

1), a call that should be impossible given AMY2B’s copy number distribution. We 

hypothesized that an Estonian-specific SNP may be interfering with the assay and ran those 

samples again using AMY2B_assay2. All the samples, except for 3, then had calls consistent 

with the known AMY2B distribution (CN of 2 or 3). In the association analysis, the 

AMY2B_assay2 genotype calls were used for these samples.

AMY1—Two different assays targeting AMY1 were used in order to reduce the noise a 

single assay may have. Two different DNA input concentrations were used with the AMY1 

assays to ensure that each sample had at least one genotype call acquired when it was within 

the optimal concentration range for ddPCR. In the concentrated reaction, each sample of the 

plate was pre-calculated to have > 0.2ng/ul DNA input concentration and were genotyped 

with the AMY1_assay1. However, given the wide distribution of sample concentrations on 

each plate, the concentrated run resulted in many of the samples oversaturating their 

reactions. In the diluted run (AMY1_assay2), each sample input was pre-calculated to 

produce >10% probe-negative droplets, thus diluting the previously over-saturated samples.
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AMY2A-adjusted averaging of the AMY1 copy number calls—To avoid biases that 

may arise from sample DNA concentration differences between cases and controls, we did 

not filter or clean the data based on concentration and used every genotype call the BioRad 

QuantaSoft software provided. However, a straight average of these two AMY1 replicate 

genotype calls was not ideal, since many of the samples had one genotype call obtained 

when the sample was too dilute or over-concentrated, thus adding noise to their better 

genotype call (Supplementary Fig. 14).

Given that AMY1 and AMY2A share parity (that is, their copy numbers are either both odd or 

both even), we can check the correctness of the AMY1 copy number call using the AMY2A 

call. In practice, this means checking each individual’s two replicate AMY1 calls for 

concordance with their AMY2A call. If both AMY1 calls were concordant, they were 

averaged (70% of samples). If only one was concordant, only the concordant AMY1 

genotype was used (24% of samples). If both calls were not concordant, they were averaged 

(6% of samples). This resulted in better clustering at integers (average deviation from 

integer 0.152, compared to straight averaging 0.179) despite having nothing to do with 

either DNA concentration, distance from an integer, or confidence intervals. It should be 

noted that a BMI association was done separately with all three – arrangements AMY2A 

adjusted average, straight average, and each run separately – all resulting in P > 0.05.

Read-depth genotyping

Algorithm—As a second method for determining the integer copy number of the CNV 

segments, we used recent versions of the Genome STRiP software5 to determine copy 

number from whole-genome sequencing data. Briefly, for each CNV, the number of unique 

sequencing reads falling within the target CNV were counted for each individual and 

compared to the expected number of reads. We required a minimum mapping quality of 10 

and that the reads were aligned to a unique position on the reference genome, except in cases 

where the target CNV is duplicated in the reference genome (such as AMY1). The expected 

number of reads per copy was estimated based on the genome-wide sequencing coverage for 

each individual, correcting for the alignability of the CNV segment and for sequencing bias 

due to GC content. Alignability was estimated by mapping overlapping k-mers from the 

reference genome back to the reference. For the HapMap cohort (from 1000 Genomes Phase 

1), we used a k-mer length of 36 and for the GoT2D, InCHIANTI, and GPC cohorts (which 

have longer reads), we used a k-mer length of 101. GC-bias was estimated by counting the 

number of aligned reads in overlapping 400bp windows binned by GC fraction compared to 

a set of selected reference windows having no evidence of copy number variability.

The vectors of observed and expected read counts were fitted to a constrained Gaussian 

mixture model with two parameters (m1 and m2) and a site-specific number of genotype 

classes corresponding to the potential copy numbers. The number of copy-number classes 

was based on the individual with the highest observed to expected read count ratio (rounding 

up to the nearest integer and adding one extra copy number class). The means of each 

genotype class were constrained to be proportional (m1) to the copy number and the 

variances were constrained to be proportional (m2) to the copy number (or to a small 

constant k = 0.2 for the copy number zero class). After using an expectation maximization 
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(EM) algorithm to determine the most likely values for m1, m2 and the proportional 

weighting of each copy-number class, the relative likelihood of the observed read depth 

given each potential genotype class was calculated for each individual. Fractional copy-

number estimates for each individual used in plotting (Supplementary Fig. 1) are computed 

as the observed to expected ratios scaled by m1. Concordance with ddPCR in the 

InCHIANTI and GoT2D cohorts is given in Supplementary Fig. 15.

Determining the locations and boundaries of the copy-number variable 
genomic segments—We created an initial map of the potentially copy number variable 

segments at the amylase locus based on the paralogous gene annotations from the reference 

genome, annotated segmental duplications, and results from previous studies (Groot et al 

1989, Perry et al 2007). ddPCR measurements were used to confirm copy number variability 

at specific primer amplification sites, while measurements from sequencing read depth were 

used to determined variability (or lack thereof) by interrogating the average copy number 

per individual across longer genomic segments.

Segmentation was further guided by building an alignability map of the locus by aligning k-

mers (k=36, k=70 and k=100) from the reference genome back to the reference genome 

using BWA41 and using this alignability map to generate hypotheses about the extent of the 

copy-number variable segments. The segment boundaries were refined based on prospective 

genotyping of multiple candidate segments using sequencing read depth and Genome STRiP 

and then optimizing for segments that yielded integer copy numbers in all samples and high 

posterior genotype likelihoods (similar to the automated method used in recent versions 

Genome STRiP for optimizing boundaries in non-repetitive sequence). When some 

individuals were observed to cluster at mid-integer copy number estimates, suggesting the 

presence of additional copy-number variable sub-segments, we applied this procedure 

recursively down to the length scale resolvable from the available sequencing data sets. The 

variability of all segments, except for the intergenic region, was confirmed by designing 

ddPCR assays to these segments and carrying out ddPCR experiments to confirm the 

sequencing-based results

The bins used for the read-depth analysis are in Supplementary Table 1. Even though the 

bins for AMY1 are substantially larger than the AMY1 repeated segment, most of the signal 

Genome STRiP used to call genotypes arose from the AMY1 repeated segment 

(Supplementary Fig. 16).

BioNano Genomics, genome mapping

Nanochannel array based genome mapping experiments were performed by BioNano 

Genomics. In brief, genome mapping can be thought of as next-generation restriction 

mapping. Long, whole strands of DNA (~300kb) are labeled with a nickase that cuts at 

specific sequences and the DNA backbone is labeled with YoYo1. The DNA is 

electrophoresed through a NanoChannel array to straighten it for visual analysis. The 

nickase creates patterns that can be used to assemble a whole genome, or pieces thereof, in a 

manner similar to restriction mapping. Each amylase gene has its own restriction pattern, 
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and because genome mapping uses whole strands of DNA, we can determine the order and 

orientation of the genes from these patterns.

We selected three individuals who together had three unreported haplotypes (AH2, AH4B2, 

and AH2B2), one partially assembled haplotype (AH4), and two known haplotypes to serve 

as positive controls (AH3 and AH1) (Supplementary Fig. 5). The haplotypes that had 

already been assembled (AH3 and AH243) were largely consistent. On the other hand, the 

AH4 structure contradicts the Perry et al. structure with one fewer inverted AMY1 copies9. 

In addition, anonymous samples that BioNano had access to, as well as a European 

American family, contained AH1, AH3, and AH5, which assembled into structures 

consistent with the known haplotypes. Of note, in several haplotypes the AMY2A 

pseudogene is inverted. This feature appears to be stably inherited, but has not been 

confirmed using a second technology.

Genotyping InCHIANTI cohort with alternative read-depth method

We analyzed 657 samples after quality control checks. Average depth was 7x. We aligned 

the reads to a repeat masked GRC build 37 reference genome using the mrsFAST ultra 

version 3.3.1 algorithm, which can align single reads to multiple positions in the genome 

and so is optimal for regions of variable copy number44. Repeats were detected and masked 

using both RepeatMasker Open-3.045 and Tandem Repeats Finder 4.07b46. Reads were 

mapped in single-read mapping mode with a hamming distance threshold of < 4 bp. We 

derived GC corrected absolute copy number in 100bp windows using mrCaNaVaR version 

0.5147, a program that predicts from read depth and GC enrichment an absolute copy 

number. We calculated a mean copy number value for the three combined AMY1 regions, 

AMY2A and AMY2B. The distribution of AMY1 copy number is given in Supplementary Fig. 

12. The read-depth bins are in Supplementary Table 1.

Phasing of HapMap samples

At first, trios were phased manually using only those haplotypes described in previous 

literature8-10, resulting in successful phasing for only 7% of the trios and 15% of 

individuals. We noticed patterns in some of the unphased trios that could be explained by 

new haplotypes (Supplementary Table 3) and found population evidence to support to those 

haplotypes (Fig. 1c and Supplementary Fig. 4). Adding the 5 new haplotypes resulted in 

successful phasing for 27% of trios and 39% of individuals. The remaining trios and 

individuals do not necessarily contain unknown haplotypes; rather most of them just have 

genotypes that correspond with multiple combinations of known haplotypes. For instance, 6 

is the most common copy number for AMY1 and can be accomplished with 3 different 

combinations of known haplotypes, resulting in a phasing failure for nearly every six-copy 

number individual.

Calculation of haplotype frequencies

We could not calculate haplotype frequencies based on the individuals we could phase, since 

this would artificially enrich for haplotypes that can create unique, phase-able genotypes. 

Instead, we utilized haplotype AH2. Haplotype AH2 can be identified within individuals 

because it causes a characteristic decrease in AMY2A copy number, and its companion 
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haplotype can be found by simple subtraction of copy numbers. We selected individuals 

carrying haplotype AH2 from the GPC cohort and the Europeans of 1000 Genomes (142 

individuals total) and identified their other haplotype. We calculated the frequency of each 

haplotype in this pool of other haplotypes and reported it in Fig 1c. The frequency of 

haplotype AH4 cannot be determined this way, since it causes an increase in AMY2A that 

balances out haplotype AH2’s decrease, so its frequency was determined by identifying 

individuals that carry haplotype AH4 (marked by an increase in AMY2A) and dividing it by 

the total.

Clustering of SNP haplotypes (spiderplot)

All unrelated individuals in the 1000 Genomes European populations (CEU, TSI, GBR, 

FIN, IBS) that had amylase genotypes where the two structural haplotypes could be 

unambiguously determined were selected for SNP clustering in the spiderplot of Fig 2a. 

These individuals’ amylase haplotypes and SNP genotypes (downloaded from the 1000 

Genomes website, Omni chip data, (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

working/20120131_omni_genotypes_and_intensities/) were combined in a .bgl file and 

phased as a group using BEAGLE version 3.3.248 under the default conditions with no 

reference panel. The spiderplot created was from the 23 closest SNPs with a minor allele 

frequency greater than 1% and were outside of the variable region (resulting in 9 SNPs 

upstream, 14 downstream). The spiderplot was created by traversing the set of SNP 

haplotypes in both directions from the target variant (amylase) and grouping the haplotypes 

according to their state at each successive SNP to form two tree structures representing the 

left and right flanks. At each split, the branch corresponding to the minor allele was plotted 

above the branch corresponding to the major allele. The color of each horizontal segment 

indicates the allele frequency of the next SNP on the branch and the thickness corresponds 

to the number of haplotypes sharing that segment.

Association of SNPs to haplotypes and imputation

The individuals of the GPC cohort that had genotypes where the two amylase haplotypes 

could be unambiguously determined were used to search for tag SNPs for each haplotype. 

SNPs under 1% minor allele frequency and those within the copy number variable region 

were not used. Every remaining SNP was correlated with every haplotype, in turn, using a 

pearson test. During the test, all amylase haplotypes were recoded as 0 or 1, with the target 

haplotype being 1. P values were permuted by shuffling the amylase haplotypes 1 million 

times to create a distribution of possible r2 values for each SNP.

The efficiency of imputation was calculated based on leave-one-out trials. Briefly, each 

individual’s amylase haplotypes were masked, in turn, within the unphased data and phased 

using BEAGLE48 under default conditions using no reference panel. The amylase 

haplotypes that BEAGLE assigned were extracted and compared to the true values of the 

masked individuals. R-squared values were obtained with a pearson correlation and P values 

were calculated from 1 million permutations, creating an r2 distribution.
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Association of SNPs to diploid copy number of the amylase genes

Separately, the GPC cohort, the GoT2D cohort, and the Europeans of 1000 Genomes were 

genotyped with read-depth analysis, and the diploid copy number calls were combined with 

the individuals’ SNP genotypes (recoded as 0, 1, or 2 for the number of alternative alleles 

present). Linear regression using each SNP genotype, in turn, as the predictor for AMY1 

diploid copy number gave the effect size (slope of the line/coefficient of the regression) and 

r2 for the association of each SNP. P values were permuted by shuffling the amylase 

genotypes at least ten times (and up to a million times for the best SNPs) to create a 

distribution of effect sizes to which we compared the ‘true’ effect size. The permuted P 

values, r2 values, and effect sizes replicated across cohorts (Fig. 2c and Supplementary Fig. 

9).

Searching GWAS for associated SNPs

Given the GPC cohort’s greater sample size and larger set of SNPs genotyped, we chose this 

cohort to display in Fig. 2b. We downloaded the publicly available GIANT consortium 

(http://www.broadinstitute.org/collaboration/giant) SNP P values for BMI association24 and 

compared each SNP’s BMI P value with its association to AMY1 copy number (Fig. 2b and 

Supplementary Fig. 10). We calculated the likelihood of an amylase association driving the 

association of an AMY1-correlated SNP by using the power calculator (Genetic Power 

Calculator (at http://pngu.mgh.harvard.edu/~purcell/gpc/)49) with the values of the r2 set as 

0.111 (and translated to D’ using the equation D’ˆ2 = rˆ2*p1p2q1q2/Dmaxˆ2. The MAF was 

0.33.

SNP Genotyping of Estonians, along with the polygenic score and ancestry analysis

The Estonian extremes had been previously genotyped with ExomeChip-v1.1 (Illumina Inc). 

As several replating events occurred between the array and ddPCR genotyping, the samples 

from the ddPCR batch were further genotyped by using Sequenom’s MassARRAY system 

(which allows a single base extension with allele-specific masses). A multiplex pool of 24 

SNPs was used for BMI association in the Estonian cohort with 10 SNPs selected from the 

AMY locus (the best associated SNPs from 1000 Genomes) and 14 previously identified 

SNPs associated with BMI24 (Supplementary Table 13). The latter set of SNPs was assayed 

to estimate the statistical power in the Estonian cohort to validate BMI linked genetic 

associations. Genotypes were called by mass spectrometry. Samples with less than an 85% 

genotype success rate and SNPs with less than an 85% genotype success rate and/or poor 

Hardy-Weinberg P value (<0.001) were excluded from the analysis. 10 AMY locus SNPs 

and 11 BMI SNPs passed the QC and were used in subsequent analysis. We observed 100% 

genotype concordance between the MassARRAY and ExomeChip-v1.1 SNP calls.

PLINK50 --score functionality was used to build a single quantitative index of genetic 

susceptibility load for obesity. For that, the 11 BMI SNPs’ allele dosages were weighted 

against the effect-sizes reported in Speliotes et al. (Supplementary Table 13) and added up 

to a single polygenic score. Based on the estimated total trait variation explained reported in 

Speliotes et al., the constructed polygenic score is capturing roughly 0.8% of BMI variation.
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ExomeChip data was also used to account for potential population stratification in the 

extremes sample. ExomeChip genotype data was quality controlled using PLINK50 and 

standard quality control parameters – 1) sample call-rate >95%; 2) marker call-rate >95%; 

3) marker allele frequency > 1% and 4) Hardy-Weinberg P value <1×10-6. Cleaned data was 

combined with HapMap2 genotypes (downloaded from the PLINK resources page) and 

subsequently analyzed for population structure using the multidimensional scaling (MDS) 

function in PLINK. Resulting MDS plots show that, although Estonian samples cluster 

tightly with the CEU cluster (Supplementary Fig. 17), slight structuring is present within the 

cohort. For that reason, three first MDS vectors were used as covariates in the subsequent 

association analysis.

Phenotype normalization in the Estonian and GoT2D cohort

The standard GIANT Consortium protocol for normalizing the measures-of-obesity 

phenotype normally consists of adjusting BMI scores in a gender-stratified way for age, age-

squared and genetic ancestry vectors (usually three and obtained through PCA or MDS 

analysis of genome-wide genotype) (Supplementary Table 14) by fitting a linear regression 

model. Next, the residuals from the model are transformed using an inverse normal 

transformation and used in subsequent association analyses.

This protocol was slightly modified for normalizing the 1,000 Estonians to account for the 

extreme-design and to more precisely capture the underlying trait distribution in the whole 

sampling cohort of ~51,000. First, the previously described trait normalization (except only 

age and age-square were used as covariates) was separately performed in females (N:

32,724) and males (N:17,352), resulting in the normalized BMI statistics for the 1,000 

extreme samples given in Supplementary Table 6. In subsequent analyses, both genders 

were analyzed together and sex and three MDS genetic vectors (estimated using ExomeChip 

data) were used as covariates to account for both gender differences and population 

stratification.

Power Analysis Estonian Cohort

In order to make sure that the Estonian Extremes design has sufficient statistical power to 

find the associations reported in Falchi et al., we used the Genetic Power Calculator (at 

http://pngu.mgh.harvard.edu/~purcell/gpc/)49, since it has the option to account for 

threshold-selected quantitative trait design. Falchi et al. reports that AMY1 copy number 

explains 0.66% to 4.40% (95% CI) of the genetic variance in BMI. By using the same 

calculations as Falchi et al used to estimate the total variance explained for obesity, we 

back-calculated the mean total BMI variance explained and estimated it as 1.11% (95% CI = 

0.461–1.79). The phenotypic thresholds in standard deviation units for defining the case and 

control sets were obtained from the normalized BMI scores described in the previous 

paragraph and were as follows in standard deviation units – 1) Case thresholds +2.0 and 

+4.0; 2) Control thresholds -1.2 and -4.2.

The genetic effect sizes, trait-increasing allele frequencies, and respective total trait variation 

explained for the SNPs were obtained from the latest GIANT Consortium full report16 and 

have been outlined in Supplementary Table 13. For the GIANT Consortium based power 
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analysis, the stage 1 sample size of 124,000 was used. For estimating our power with the 

polygenic-scores, all individual SNP-based total trait variation explained were summed into 

one estimate (0.81%) and a conservative trait increasing allele frequency of 10% was used.

Association analysis in the Estonian sample cohorts

Both logistic and linear regression models were used to detect association between BMI and 

the 21 directly genotyped SNPs using PLINK50. In the linear regression model, the 

normalized BMI scores were used, and in both models, gender and three genetic vectors 

were used as covariates. We used the integer genotypes of the copy number of all three 

amylase genes obtained through ddPCR in the same 1,000 individuals. For the AMY1 gene, 

four different copy number estimates were used – AMY2A adjusted average, straight 

average, and both genotyping runs separately (as described in section AMY2A-adjusted 

averaging). Again both logistic and linear regression models were fitted using the same 

phenotype and covariates in R51. A similar analytical framework was used to detect the 

association between BMI and the constructed polygenic score. No association between the 

AMY genes’ copy number and obesity was observed by either model (Supplementary Table 

6).

Association analysis in the InCHIANTI cohort

We regressed the copy number values against body mass index corrected for age and sex. 

We used all copy number calls regardless of quality. The distribution of total (diploid) 

absolute copy number plotted against BMI is given in Fig 3e. Our analyses did not provide 

any evidence of an association between amylase copy number and BMI in AMY1 (P = 0.53), 

AMY2A (P = 0.37) and AMY2B (P = 0.49). Using the more refined method of classifying 

AMY1 copy number using the triplicated regions of AMY1 alone, we still did not see any 

association with BMI (P =0.50).

Association analysis in the GOT2D cohort

The dataset was first divided into T2D-cases (N: 1,437) and controls (N: 1.374). The BMI 

phenotype was transformed using the GIANT protocol (described above – adjusting BMI 

scores in a gender-stratified way for age and age-squared by fitting a linear regression model 

and subsequently applying inverse normal transformation on resulting residuals from the 

model). Cases and controls were analyzed separately and the copy number values were 

regressed against normalized BMI scores while adjusting for gender and source-cohort. All 

copy number calls were used, regardless of quality. The latter variable was included in order 

to correct for population stratification as the GOT2D sample consists of 9 separate cohort-

collections (Botnia, Diabetes-Registry, FUSION, Helsinki, KORA, Malmö, MPP, STT and 

WTCCC). Whereas both sub-cohorts (cases and controls) had >95% power to replicate the 

Falchi et al result (total variance explained 1.11%), we did not observe nominally significant 

associations with any of the AMY locus copy numbers in neither sub-cohort (Supplementary 

Table 8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The copy number distributions of the amylase genes and the structural haplotypes of 
the amylase locus
Whole-genome sequence data from European (CEU), Yoruba (YRI), Chinese (CHB), and 

Japanese (JPT) population samples from the 1000 Genomes Project were analyzed for 

AMY1, AMY2A, and AMY2B copy number using Genome STRiP. (a) The populations have 

similar distributions of AMY2A and AMY2B, but a different distribution for AMY1 (KS test, 

P value = 3 × 10−6). For AMY1, even copy numbers greatly outnumber odd copy numbers. 

(b) In the YRI and CEU population samples, AMY2A and AMY1 share parity in 98% of 

individuals: when AMY2A copy number is odd, so is AMY1 copy number. JPT and CHB 

samples had very few odd copy numbers and were excluded from the figure. (c) A 

preliminary map of eight common structural forms of the amylase locus in Europeans, 

derived from the above analysis and with structural features ordered using earlier data from 

cosmid mapping and (d) genome mapping experiments to analyze the haplotypes (AH2, 

AH3, AH4, AH2B2, AH4B2). Additional structural forms found only in African genomes 

are described in Supplementary Fig. 4.
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Figure 2. The relationship of the amylase structural haplotypes to SNPs and SNP haplotypes
(a) Displayed are the SNP haplotypes flanking the structural alleles of the amylase locus in 

the Europeans (CEU+GBR+TSI+IBS+FIN) of the 1000 Genomes Project. The amylase 

alleles are represented by the colored leaves, though the locus actually resides within the 

center of the plot. The colored columns are the SNP alleles, and the gray is the invariant 

surrounding region. The branchpoints mark where the SNP haplotypes diverge due to 

mutation or recombination. Note that the AMY1-odd structures (brown) share multiple SNP 

haplotype backgrounds, while other amylase structures (blue, green) segregate on distinct 

branches. Also note that specific SNP haplotypes (branches) appear to associate with greater 

or lesser average AMY1 copy number than others do. (b) The relationship of nearby SNPs to 

AMY1 copy number is consistent across two European-ancestry cohorts.
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Figure 3. The association analysis of AMY1 copy number to obesity or BMI in three cohorts
Out of a cohort of 51,535 Estonians, those in the tails of the BMI distribution (500 

individuals with BMI < 22 | 500 individuals with BMI > 33) were measured for copy 

number of all three amylase genes and genotyped for SNPs in obesity-related genes. (a) 

Measurements of AMY1 copy number in the Estonian cohort. (b) Obese and lean individuals 

show indistinguishable distributions of AMY1 copy number (P > 0.05). Statistical tests were 

performed on raw measurements as well as AMY2A-informed AMY1 copy number 

(Methods). (c) Measurements of AMY1 copy number and (d) association are shown for the 

GoT2D cohort controls. (e) Measurements of AMY1 copy number and (f) association are 

shown for the InCHIANTI cohort. Points are the mean BMI for each AMY1 copy number. 

Error bars are the 95% confidence intervals.
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