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Magnetic resonance imaging enables the noninvasive mapping of

both anatomical white matter connectivity and dynamic patterns

of neural activity in the human brain. We examine the relationship

between the structural properties of white matter streamlines

(structural connectivity) and the functional properties of correla-

tions in neural activity (functional connectivity) within 84 healthy

human subjects both at rest and during the performance of

attention- and memory-demanding tasks. We show that structural

properties, including the length, number, and spatial location of

whitematter streamlines, are indicative of and can be inferred from

the strength of resting-state and task-based functional correlations

between brain regions. These results, which are both representa-

tive of the entire set of subjects and consistently observed within

individual subjects, uncover robust links between structural and

functional connectivity in the human brain.

cortical networks | diffusion MRI | functional MRI

Human cognitive function is supported by large-scale inter-
actions between different regions of the brain. The ana-

tomical scaffolding that mediates these interactions can be
described by a structural connectome that maps the spatial lay-
out of white matter (1). Structural connectivity (SC), defined by
the physical properties of these direct anatomical connections,
supports the relay of electrical signals between brain regions.
Neurophysiological events can similarly be described by a func-
tional connectome that maps coordinated changes in neuronal
activity, field potentials, blood flow, or energy consumption (2).
Functional connectivity (FC), defined by temporal correlations
in such neurophysiological events, reflects the resting-state and
task-dependent strengths of correlated activity in different brain
regions (3–5). The estimation of structural and functional con-
nectivity from different experimental techniques raises two com-
plementary questions about the quantitative relationships between
structural and functional connectomes: (i) to what extent can the
resting-state and task-dependent strengths of functional correla-
tions between brain regions be inferred from structural con-
nectomes, and (ii) to what extent can the physical properties of
anatomical connections be inferred from functional connectomes?
Connectomes, whether examined at the neural or systems level,

are networks whose structural properties, such as the length and
number of connections, can differentially impact functional
properties, such as local or global correlations in temporal dy-
namics. Whereas the length and density of anatomical connections
are thought to impact functional processes such as information
segregation and integration (6, 7), the extent to which such rela-
tionships are robustly observed in the human brain is not well
understood. Previous studies have been limited in scope to specific
anatomical connections and brain regions, small sample sizes, and
resting-state neural activity (8–13) and have consequently left
several fundamental questions unanswered. How do variations in
structural features, such as the length and number of anatomical

connections, differentially contribute to functional correlations?
To what extent do these contributions vary across cognitive
states to distinguish between resting, task-general, and task-
specific FC? Can we distinguish between features that are re-
flective of underlying organizational principles and those that
are potentially predictive of behavior?
We address these questions by combining the specificity of

anatomical and functional analysis with the statistical power of
84 subjects measured noninvasively at rest and during the per-
formance of attention- and memory-demanding tasks. SC is es-
timated from diffusion tensor imaging (DTI) measurements of
white matter, whereas FC is estimated from functional magnetic
resonance imaging (fMRI) measurements of changes in blood-
oxygenation-level-dependent (BOLD) signals (4).
In what follows, we introduce a set of multimodal approaches

for isolating relationships between structural and functional
connectivity across subjects and brain states. We compare the
structural measures of streamline number and length, thought to
differentially impact sensory processing (6, 7), with the task-
dependent functional measure of BOLD correlation strength,
thought to reflect the coordinated control of different brain
regions. We show that partitions in these connectivity measures,
in combination with the delineation between inter- and intra-
hemispheric connectivity, enable both the inference of function
from structure and the inference of structure from function. We
further identify structural measures that distinguish cognitive
states, with interhemispheric and local dense intrahemispheric
connectivity supporting resting-state function and long-range
intrahemispheric connectivity supporting task-driven function.
These findings provide insight into the design of the human brain
and the constraints imposed by its architecture.

Model

In constructing brain networks, localized brain regions are rep-
resented as nodes, and the strengths of structural or functional
connectivity between brain regions are represented as weighted,
undirected connections between nodes.
We select regions by subdividing the Automated Anatomical

Labeling (AAL) Atlas (14) into 600 regions of similar volume.
From this set of regions, we compute structural and functional
networks for 84 individual subjects (SI Appendix).
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Structural brain networks are obtained from DTI measure-
ments via a tractography algorithm used to identify white matter
streamlines. For each subject, we compute two measures of SC:
the total number N and average length L of streamlines linking
two regions. We define a binary number C that specifies the
presence or absence of SC, such that Ci,j = 1 if regions i and j are
linked by one or more streamlines, and Ci,j = 0 otherwise.
Functional brain networks are obtained from fMRI measure-

ments of BOLD time series. Pearson’s correlations are computed
between scale 2 wavelet coefficients (0.06–0.125Hz) of regional
mean time series. For each subject, we compute three measures of
FC: thecorrelationbetween two time seriesmeasuredat rest (resting
state) and during the performance of attention and facial recogni-
tion memory tasks (attention and memory states, respectively).
Analysis of aword recognitionmemory task produced similar results
(SI Appendix). Given that task-driven changes in FC are small rel-
ative to resting-state values (15), we compare the strength of FC
measured at rest (rsFC) to that measured in deviations ΔasFC =

asFC− rsFCof the attention state (asFC) fromrest and in deviations
ΔmsFC=msFC− rsFC of thememory state (msFC) from rest. The
integration of FC estimates across subjects (see following section)
ensures that this approach selects robust, biologically meaningful
variation between task-driven and resting-state FC.
In what follows, we perform two complementary analyses to

identify structural properties that are indicative of function
(SC→FC) and functional properties that are indicative of
structure (FC→SC).

Statistical Methods. The brain exhibits both sparse and variable
SC, with far fewer anatomical connections than would be
expected at random (16) and with patterns of connectivity that
vary between individuals (1). Of the possible 179,700 pairings
between 600 regions, less than 2% are measured to be ana-
tomically linked within a given subject, whereas even fewer are
measured to be consistently linked across subjects. Despite this
observed sparsity of structural connections, functional correla-
tions are inherently nonsparse and can persist between regions
that have no direct anatomical link (9).
Previous studies have accounted for the nonsparsity of func-

tional correlations by comparing the presence vs. absence of SC
within single subjects (9). However, the desire to reliably assess
group-level properties requires that we consider the degree to
which SC is consistent across subjects. We therefore choose to
examine structural and functional connectivity between region
pairs that are linked by direct anatomical connections within
a large percentage of subjects. Although this approach necessarily
restricts our analysis to a subset of functional correlations, the
reliable presence of anatomical connections enables us to extend
beyond comparisons of present vs. absent connectivity to isolate
specific contributions of different structural measures to FC.

Representative vs. Subject-Specific Analyses. In an analogous man-
ner to the construction of subject-specific brain networks for the
assessment of subject-level properties, we can assess group-level
properties by constructing a “representative brain network”
whose connections are weighted by subject-averaged, rather than
subject-specific, values of SC and FC. We use the properties of
this representative network to select subsets of consistently con-
nected regions pairs that are used in the subsequent analyses of
SC→FC and FC→SC. Care must be taken, however, when assess-
ing FC→SC, as the selection of structurally connected region pairs
must be performed indirectly using only nonstructural infor-
mation so as not to bias the analysis (see following subsection).
Our analysis of SC→FC (and analogously FC→SC) can be

summarized in the following steps:

i) select subsets of consistently structurally-connected region
pairs based on structural (nonstructural) measures

ii) partition subgroups of connections based on similarities in
structural (functional) properties

iii) compare functional (structural) properties of subgroups

Note that the two analyses are completely symmetric (such
that SC and FC can be everywhere interchanged), with one ex-
ception: both subsets of region pairs are selected (albeit by dif-
ferent measures) based on consistency in SC alone.
We perform these analyses first on the representative brain

network. We then verify, using the same sets of region pairs subject
to the same partitioning, that the observed structure–function
relationships are consistently maintained across subject-specific
networks. SI Appendix contains an extensive treatment of variations
in the parameters used for both selecting and partitioning region
pairs, with all results being consistent to those reported here. SI
Appendix additionally verifies, in a manner consistent with ref. 9,
that our results are robust to distance-related effects that could
arise from spatially autocorrelated measurements of SC and FC.

Notation. In comparing different connectivity measures, we will
refer to the average〈O〉and SD σ〈O〉of a given measure O.
When computed across subjects, we reference the quantity with
the subscript s (e.g.,〈O〉s), and when computed across con-
nections within a single subject, we reference the quantity with
the subscript c (e.g.,〈O〉c).

Selecting Consistently Connected Region Pairs. Within a single
subject, the presence of nonzero SC is specified by the set of
region pairs with Ci,j = 1. Identifying consistently nonzero SC
then requires that we select, via a thresholding process, region
pairs with high values of the subject-averaged value〈C〉s, which
we term the “consistency in connectivity.” For reasons to be
discussed shortly, we choose to perform this process indirectly by
thresholding quantities that relate to, but are distinct from,〈C〉s.
Importantly, the choice of thresholded quantities need not be the
same for the analyses of SC→FC and FC→SC so long as the
former does not use information about FC and the latter does not
use information about SC.
We find that〈C〉s increases with both the normalized number

of streamlines N = hNis=σsðNÞ (a purely structural measure) and
the inverse interregional distance 1/d (a purely geometric mea-
sure of Euclidean distance). We impose thresholds NT = 0:6 and
1/dT = 0.1 mm−1 to select two largely overlapping subsets of re-
gion pairs for the respective analyses of SC→FC and FC→SC
(Fig. 1A). Both subsets are similar in size (3,085 vs. 3,079 region
pairs, respectively) and average consistency〈C〉s,c (86% vs. 79%,
respectively). Note that there is no optimal nonstructural measure
for selecting structurally connected region pairs. Although
thresholding in 1/d inherently favors the selection of short con-
nections, the resulting ability to reliably estimate consistency in
connectivity is crucial for the unbiased inference of SC from FC.
Qualitatively similar results can be achieved by selecting re-

gion pairs via the direct measure〈C〉s. We choose instead to
select region pairs via N and 1/d because this selection avoids two
drawbacks of using〈C〉s directly: (i)〈C〉s requires information
about SC and is therefore less optimal than 1/d for the assess-
ment of FC→SC, and (ii)〈C〉s lacks a single-subject correlate
that would enable the extension of these methods to single-
subject brain networks and is therefore less optimal than N for
the assessment of SC→FC. Furthermore, because N and 1/d
scale roughly linearly with one another, it is straightforward to
tune NT and 1/dT to achieve a desired consistency and subset size
while maintaining similar results.

Comparing Partitioned Subgroups of Region Pairs. In the subsequent
analyses, we quantify the extent to which subgroups of con-
nections partitioned based on structural (functional) measures
show similarities in functional (structural) properties. We com-
pare the properties of partitioned subgroups by evaluating shifts
in the complementary cumulative distribution functions (cCDFs)
of a given connectivity measure O. The cCDF(O), which meas-
ures the probability of finding O > O* for every value of O*,
enables the simultaneous comparison of different instantiations
of the quantity O. When assessing the representative brain
network, we report the full cCDF distributions of〈O〉s. When
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comparing across subject-specific networks, we report the dis-
tribution averages〈O〉c.

Results

Inferring Function from Structure (SC→FC). Structural connections
are unevenly distributed between different regions of the brain
(17). For example, a significant number of thickly myelinated
streamlines is present in the corpus callosum. Similarly, certain
brain regions are more densely or distantly interconnected than
other regions (18). We investigate the extent to which variations
in these structural properties are reflected in the strength of
communication between brain regions.
Structural partitions. We separately consider “long” vs. “short”
connections, whose lengths are greater and less than a threshold
value LT, and “dense” vs. “sparse” connections, whose numbers
are greater and less than a threshold value NT, where our defi-
nition of “density” differs from definitions in which N is scaled
by the cross-sectional streamline area. Our choice of thresholds
LT = 20 mm and NT = 30, in combination with the delineation
between inter- and intrahemispheric connections, defines four
nonoverlapping structural subgroups, long and short interhemi-
spheric connections and long and dense intrahemispheric con-
nections, whose properties we compare with the remaining bulk
of short, sparse intrahemispheric connections (Fig. 1B).
FC of the representative brain. In the resting state, we find striking
differences in the strength of FC between regions linked by
different types of structural connections (Fig. 2 A and D). All
interhemispheric connections, regardless of length, show strong
rsFC. The reduced sensitivity of interhemispheric correlations to
variations in connection length could be due to the insulating
properties of heavy myelination that help minimize signal decay
along interhemispheric streamlines. Dense intrahemispheric
connections show similarly strong rsFC, a property that could
reflect signal amplification from large numbers of connections
(Fig. 2 E and F). Long intrahemispheric connections, however,
show notably weak rsFC despite being of similar length and
number to the set of long interhemispheric connections. These
observations extend beyond previous findings of increasing rsFC
with decreasing interregional distance (9) to identify structural

mechanisms that support strong rsFC between nearby inter- vs.
intrahemispheric regions.
During task performance, we find that a majority of connections

decrease in FC during attention (Fig. 2 B and E) but increase in FC
during memory (Fig. 2 C and F) relative to their behavior at rest.
Interhemispheric and dense intrahemispheric connections, which
displayed relatively strong rsFC, show similar changes in both asFC
and msFC to the remaining bulk of connections. Long intrahemi-
spheric connections, however, show significant changes in FC be-
tween tasks, exhibiting weaker connectivity in the attention state
and stronger connectivity in the memory state as compared with the
remaining bulk of connections. The magnitude of these changes,
which distinguishes attention from memory states, becomes more
pronounced when biasing toward longer connections.
Individual variability in FC. The overall strength of FC varies sig-
nificantly across subjects. Within subject-specific brain networks,
however, we find that structural subgroups of connections show
qualitatively similar shifts in FC to those observed in the repre-
sentative brain network. In the resting state, all subjects exhibit
strong FC between interhemispheric and densely linked intra-
hemispheric regions, and they exhibit weak FC between distantly
linked intrahemispheric regions (Fig. 2G). In attention and
memory states, all subjects exhibit similar changes in FC pro-
duced by structural subgroups (Fig. 2 H and I).
Summary of SC→FC.The strong values of rsFCand consistent changes
in asFC and msFC exhibited by interhemispheric and dense intra-
hemispheric connections suggest that these connections support
strong resting-state function. In contrast, the weak values of rsFC
but large changes in asFC and msFC exhibited by long intrahemi-
spheric connections suggest that these connections support task-
dependent changes in attention and memory function and might, in
agreement with the implication of long distance connections in
motors tasks (19), support more general task-based function.

Inferring Structure from Function (FC→SC). The results of the pre-
vious section revealed that the structural features of anatomical
connections differentially impact functional correlations between
brain regions. As a stronger test of the relationship between SC
and FC, we investigate whether functional correlations can
similarly be used to infer underlying structural properties.
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Fig. 1. Constructing and partitioning brain net-

works. (A). Consistency in connectivity〈C〉s as a

function of scaled number N and inverse inter-

regional distance 1/d, with average values〈C〉s,c in-

dicated in the lower right. We impose thresholds NT

and 1/dT (dashed lines) to select two largely over-

lapping subsets of region pairs with high〈C〉s.

Regions selected via NT and 1/dT are, respectively,

used to infer FC from SC (B) and infer SC from FC

(C). Horizontal and vertical projections show val-

ues of〈C〉s (gray) as a function of N and 1/d. (B)

Number〈N〉s vs. length〈L〉s of streamlines between

region pairs selected via NT . We apply a length

threshold LT = 20 mm and a number threshold NT =

30 (dashed lines), and we further distinguish inter-

hemispheric connections (outlined markers). In

combination, these partitions separate four non-

overlapping subgroups, short (light green) and long

(light blue) interhemispheric connections and dense

(dark green) and long (dark blue) intrahemispheric

connections, from the remaining bulk of short,

sparse intrahemispheric connections (tan). (C) In-

tersubject variance σs(rsFC) decreases for increas-

ing〈rsFC〉s between region pairs selected via 1/dT.

We apply functional thresholds rsFCT (dashed lines)

to separate low (bottom 33% in brown), inter-

mediate (middle 33% in orange), and high (top

33% in yellow) rsFC, and we further distinguish

interhemispheric connections (outlined markers).

(D) Coronal, axial, and sagittal views of structural

and functional subgroups of connections. Gray nodes mark region centers, and straight lines mark curvilinear streamlines in the representative brain.
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Functional partitions. Given the pronounced separation in the rest-
ing-state properties of structural subgroups, we infer SC from
resting-state, rather than task-driven, FC. We apply fixed thresholds
rsFCT to separate weak (bottom 33%), intermediate (middle 33%),
and strong (top 33%) rsFC, and we distinguish inter- from intra-
hemispheric correlations (Fig. 1C). Consistent with the previous
section, nearly two-thirds of all interhemispheric correlations fall
into the strongly correlated subgroup.
SC of the representative brain. We find striking differences in the
structural properties of connections that support strong vs. weak
correlations (Fig. 3 A and B), with intrahemispheric region pairs
being more densely connected and linked by shorter connections,
on average, than interhemispheric region pairs (Fig. 3 C and D).
Both inter- and intrahemispheric region pairs that show in-

creasingly strong rsFC are linked by an increasingly large number
of connections. Whereas increasingly strong interhemispheric
FC is further supported by increasing long connections, the
separation in the length distributions produced by strongly
vs. weakly correlated regions is small and can change across
thresholding methods. This finding suggests, in agreement with
the previous section, that interhemispheric connection length
does not strongly distinguish variations in rsFC.
We additionally find that inconsistent connectivity can alter the

apparent distribution of intrahemispheric connection lengths.
Correcting for inconsistent connectivity (a process that requires
knowledge of SC) reveals that strong rsFC is consistently sup-
ported by short intrahemispheric connections (Fig. 3D).
Individual variability in SC. We again find significant intersubject
variation in the overall number and length of connections, but we
find consistent subject-specific shifts in the structural properties
that differentially support strong vs. weak correlations.
Individual subjects show strikingly consistent separation in the

increasing number of intra- and interhemispheric connections
that link strongly vs. weakly correlated regions (Fig. 3E). The

observed length of these connections, however, is again sensitive
to artifacts arising from inconsistent connectivity. If we remove
such artifacts, we find that strong intrahemispheric correlations
are consistently supported by short connections, whereas in-
terhemispheric regions show reduced separation in the length of
connections that support strong vs. weak correlations (Fig. 3F).
Summary of FC→SC. The consistent link between connection num-
ber and rsFC strength suggests that high numbers of connections
facilitate strong FC, regardless of where they are implemented. In
comparison, the varied length dependence exhibited by inter- vs.
intrahemispheric rsFC suggests that the role of connection length
in facilitating strong FC depends on the anatomical properties of
the regions linked by these connections.

Discussion

Identifying relationships between structural and functional net-
works is crucial for understanding the large-scale organization of
the human brain. Previous structure-function studies have been
limited to specific brain regions, small sample sizes, and resting-
state activity (8, 9, 13) for which it is difficult to reliably assess the
differential contributions of several structural measures to task-
dependent function. In the present study, we develop methods
for inferring consistent relationships between structural and
functional connectivity across subjects and cognitive states.

Synopsis. This study uncovered several principles of large-scale
brain organization. (i) Variations in specific structural measures,
notably connection length and number, differentially impact FC.
(ii) Spatial location constrains structure–function relationships,
with structurally similar inter- vs. intrahemispheric connec-
tions supporting different strengths of functional correlations.
(iii) These relationships are state-dependent, such that SC
differentially impacts resting vs. task-driven cognitive states.

A

B

C

D

E

F

G

H

I

Fig. 2. FC of structural subgroups. Functional measures〈rsFC〉(Top),〈ΔasFC〉(Middle), and〈ΔmsFC〉(Bottom) produced by structural subgroups of con-

nections in representative and subject-specific brain networks. (A–C) Density maps of〈FC〉s vs.〈N〉s and〈L〉s in the representative brain, with structural

partitions indicated below and to the left of each subfigure. (A) In the resting state, we see significant variation in FC across variations in SC. During task

performance, we see overall (B) suppression during attention and (C) activation during memory, with less variation in FC across variations in SC. (D–F) cCDFs

of〈FC〉s produced by structural subgroups of connections in the representative brain. (D) In the resting state, interhemispheric connections and dense

intrahemispheric connections show strong FC, whereas long intrahemispheric connections show weak FC. During task performance, long intrahemispheric

connections show larger (E) decreases in〈FC〉s during attention and (F) increases in〈FC〉s during memory compared with the remaining subgroups of con-

nections. (G–I) Subject-specific values of〈FC〉c produced by structural subgroups of connections, where subjects are ordered by overall FC such that each

vertical cross-section represents a single subject. (G) In the resting state, all subjects show strong〈FC〉c between interhemispheric and densely-connected

intrahemispheric regions, and all subjects show weak〈FC〉c between distant interhemispheric regions. (H and I) During task performance, all subjects show

similar changes in the strength of〈FC〉c measured within different structural subgroups.
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The combined analyses of FC→SC and SC→FC identify
structural properties that consistently support strong resting-
state function. We find that large numbers of connections con-
sistently underlie strong rsFC, a result that supports both em-
pirical and computational studies of resting-state activity (9, 20).
Connection length distinguishes strong from weak intrahemi-
spheric rsFC but has minimal impact on interhemispheric rsFC.
Analysis of SC→FC further identified structural properties

that support task-dependent changes in function. Notably, long-
range intrahemispheric connections, which link brain regions
important for attention (21, 22) and memory (23, 24) (SI Ap-
pendix), are found to both support and distinguish between at-
tention and memory states. We find that global changes in FC
additionally distinguish between task states, with overall FC in-
creasing during attention but decreasing during memory com-
pared with rest. This result is compatible with findings that
default mode and fronto-parietal FC increases in memory relative
to rest, with FC between these networks and cingulo-opercular
and cerebellar networks increasing with memory load (25).
The observation of structurally mediated FC does not discount

previous findings that functional correlations can persist in the
absence of direct SC, as is observed in persons with agenesis of
the corpus callosum (26), and may be mediated by indirect SC
(9). Although these findings have suggested that the inference of
SC from FC is impractical (9), we show that such inference is
reliable within a subset of region pairs. These results support the
utility of BOLD fluctuations not only as a measure of functional
correlations but also as a measure of the underlying structural
features that support such correlations.

Implications for Development, Aging, and Disease. Changes in
resting and task-driven FC have been linked to both develop-
ment (27, 28) and aging (29, 30). Intriguingly, older adults have
been shown to more strongly recruit homologous regions in
opposing hemispheres to maintain task performance (31). The
resulting patterns of functional compensation rely on the

microstructural integrity of the corpus callosum, suggesting that
white matter structure constrains adaptive brain function with
age (32). Taken with our present findings, greater task-related
interhemispheric FC may compensate for age-related declines in
the structural properties of the long intrahemispheric connections
that we find to support attention and memory processes.
These results provide further insight into the structural mecha-

nisms that could contribute to the altered FC observed in neuro-
logical disorders (33, 34). Disruptions to dense connections could
affect the topological nodal properties of network hubs, a conse-
quence that has been linked to altered rsFC in diseases such as
epilepsy (35). Disruptions to interhemispheric connections could
similarly reduce rsFC, as is observed in patients with axonal injury in
the corpus callosum (36). As changes in FC have been linked to
variability in task performance (37, 38), structural disruptions are
further expected to impact behavior across a range of cognitive tasks.

Methodological Considerations. Individual variability in SC may
arise in part from the use of an atlas-based, rather than individual
surface-based, parcellation of cortical and subcortical brain
regions (SI Appendix). However, the observed sparsity in in-
dividual SC has been shown in previous studies to be highly robust
across scanning sessions (16). Furthermore, recent results have
indicated that fiber pathways can exhibit abrupt turns that would
not be identified by the tractography algorithm used here (18).
Such deterministic algorithms can similarly fail to distinguish
branching and crossing fiber pathways, a limitation that can bias,
for example, interhermispheric SC towardmidline structures. The
presence of these pathways, which may be better identified via
probabilistic tractography algorithms (e.g., ref. 39), warrants
further exploration and is expected to strengthen the structure–
function relationships observed here.
Whereas the analyses of FC→SC and SC→FC produce con-

sistent results, the latter analysis is more difficult. The difficulty
arises in selecting, without knowledge of SC, region pairs that
show consistent SC across subjects. Whereas consistent SC can
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be achieved by restricting the analysis to small interregional
distances, this approach biases against the selection of the task-
relevant set of long intrahemispheric connections, hindering the
inference of SC from task-driven FC.
The methodological approaches developed here focus on raw

measures of direct pairwise connectivity and can therefore be
broadly applied to a range of interconnected systems. The appli-
cation of higher-order connectivity measures such as modularity,
clustering, and path length to the present analysis may help bridge
the findings of previous studies that have separately assessed
structural (8, 16) and functional (19, 40) human brain networks
(see ref. 41 for a review). Alternative methods can be used to ex-
plicitly model resting-state and task-based neural activity (see, e.g.,
ref. 42), and such methods may additionally help elucidate the
task-dependent features of neural activation patterns that con-
tribute to the structure–function relationships observed here.

Final Remarks. In concluding, we can speculate as to why the
brain might be structured in this manner, with many short and
few long connections that differentially impact resting vs. task-
driven function. Connections are energetically expensive to both
maintain and use (43–46), favoring short and sparse over long
and dense connectivity. However, few long connections might
more efficiently transmit information between distant regions,

as is needed during task performance, than do many short con-
nections. Conversely, dense connectivity might enhance the ro-
bust properties of default mode function by reducing the
potential impact of local disruptions to the structural integrity of
white matter streamlines. Finally, an insensitivity of resting-state
correlations to variations in connection length could be crucial
for functionally binding the two hemispheres, which, although
structurally segregated, must support a single cognitive identity.
It remains a challenge for future theoretical, computational,

and experimental studies to examine in greater detail the bio-
physical origins of this organization. The present study lays
a strong foundation for such investigations, as it provides insight
into the principles that might have constrained the evolution and
development of anatomical brain architecture, and it makes
specific predictions about the functional implications of degra-
dations to this architecture. Identifying links between anatomical
and functional connectivity is crucial for understanding the
capabilities of and constraints on human cognitive function.
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