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1. Introduction

Despite the rapid development of computational techniques in 

recent decades, a first-principles investigation of strongly cor-

related disordered alloys is still very challenging. Nowadays, 

substitutional alloys are mainly studied by two different 

approaches (for recent reviews see [1] and [2] and references 

therein). In the first approach, a large supercell with randomly 

distributed atoms of different types is employed. This strategy 

is easy to implement and allows one to investigate the prop-

erties related to local geometry. The main drawbacks of this 

approach are the high computational costs and the discrete set 

of concentrations. The second approach involves the mean-

field ideology for description of substitutional alloys. This 

ideology is commonly implemented using the coherent poten-

tial approximation (CPA) [3]. The main idea of the CPA is 

to provide the same physical properties of a one-component 

effective medium as the average of alloy species embedded 

in this effective medium. At present, the CPA implementation 

with the so-called diagonal type of disorder is considered to 

be the best local approximation for alloys [4, 5]. At the same 

time, it is clear that the CPA cannot be used to study the effects 

of short-range order in alloys, and extensions are needed.

In order to describe the properties of actual alloys from 

first principles, the density functional theory (DFT) uses 

both above-mentioned approaches, which suffer from all 

DFT problems. In particular, the paramagnetic state cannot 

be properly simulated by nonmagnetic DFT calculations, and 

the DFT alone usually fails to reproduce the properties of 

strongly correlated systems. To solve the former problem, 

the disordered local moment (DLM) method is widely used 

[6]. In this method the paramagnetic state is modeled by ran-

domly distributed magnetic moments in a supercell with a 

condition of zero net magnetization. The latter problem is 

usually solved using the so-called LDA  +  U method [7], 

where the strong electronic correlations are treated in a static 

way. Application of these methods in combination with CPA 

gives good results [8, 9]. At the same time, the LDA  +  U 

method works well for insulators with long-range magnetic 

order, while it is less suitable for metallic systems. Also, 

additional approximations are required to describe finite-

temperature effects.
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The dynamical mean-field theory (DMFT) [10] was devel-

oped two decades ago, and is currently regarded as a very pow-

erful tool for the description of strongly correlated systems. In 

this theory a lattice problem with many degrees of freedom 

is replaced by a correlated atom (or ion) embedded in an 

energy-dependent effective medium that has to be determined 

self-consistently. The finite-temperature Green’s function for-

malism is employed to solve the impurity problem. It allows 

one to treat properly both the temperature effects and the para-

magnetic state. The combination of the DMFT with density 

functional theory (DFT  +  DMFT or LDA  +  DMFT) resulted 

in a good description of the spectral properties of strongly 

correlated paramagnetic compounds [11]. Afterwards, the 

DFT  +  DMFT method was successfully applied to study dif-

ferent properties of real materials (for a review see [12, 13]).

The CPA and DMFT methods share the effective-medium 

or mean-field interpretation, and thus they can be easily com-

bined. The first application of the DMFT to the Anderson–
Hubbard model (Hubbard model with disorder) was done by 

Janiš et al [14], who investigated thermodynamic properties 

and constructed a phase diagram. Later, many authors studied 

the magnetic [15, 16], spectral [16–18] and thermodynamic 

properties [19, 20] of the disordered Hubbard model. In par-

ticular, they found that the metal–insulator transition can occur 

in a correlated alloy at non-integer filling [17], and a system 

can be driven from the weakly to strongly correlated regime 

by a change of disorder strength or concentration [17, 20]. 

In the framework of ab initio calculations, the CPA  +  DMFT 

method was used to study the spectral and magnetic properties 

of binary alloys [21–23] and Heusler alloys [24]. The influ-

ence of disorder and correlation effects on thermopower in 

NaxCoO2 was investigated by Wissgott et al [25].

In this paper, we propose a computational scheme for total 

energy calculations of substitutional alloys with strong elec-

tronic correlations. The scheme is implemented within the 

CPA  +  DMFT approach and applied to study the γ–ε struc-

tural transition in Fe–Mn alloys with manganese content from 

10 to 20 at.%. The Fe–Mn alloys exhibit a variety of inter-

esting properties such as the shape-memory effect [26], Invar 

and anti-Invar effects [27]. In addition, these alloys at 15–35 

at.% Mn were found to possess improved strength and duc-

tility, making them the basis for transformation- and twinning-

induced plasticity (TRIP and TWIP) steels [28]. Starting from 

10 at.% Mn, upon cooling the γ phase with a face-centered 

cubic (fcc) lattice transforms martensitically to the ε phase 

with a hexagonal close packed (hcp) lattice [29]. Up to 23 at. 

% Mn, this transition occurs in the paramagnetic region [30], 

which significantly complicates the use of most methods of 

electronic structure calculation.

The previous first-principles studies of Fe–Mn alloys were 

performed using the CPA approach implemented within the 

EMTO formalism [31–35] and supercell approach [33, 35–38].  

The paramagnetic state was simulated by means of the DLM 

model. In these studies, the elastic properties [31], mag-

netic properties [35], lattice stability [32] and stacking fault 

energy [36, 37] were investigated. The enthalpies of forma-

tion at 0 K were calculated in [38]. The influence of Al and 

Si additions on the elastic properties and lattice stability was  

investigated in [34] and [33], respectively. In all previous 

studies of Fe–Mn alloys the Coulomb correlations were con-

sidered in some average sense within DFT, while they were 

demonstrated to play a crucial role in pure iron [39–41].

The paper is organized as follows. In section 2 we present 

a computational scheme of the CPA  +  DMFT method for real 

alloys implemented for total energy calculations. In section 3 

we employ this technique to study the phase stability and 

magnetic properties of Fe–Mn alloys. Finally, conclusions are 

presented in section 4.

2. Method

Let us consider a binary alloy A1−xBx with substitutional type 

of disorder. It can be described by the Anderson–Hubbard 

Hamiltonian

ˆ ( ˆ ˆ )
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where ˆ σ
+cim  (ˆ σcim ) is the creation (annihilation) operator of an 

electron with spin σ at orbital m of site i, ˆ ˆ ˆ=σ σ σ
+n c cm

i
im im , µ is 

the chemical potential, ′tmm  is the hopping amplitude, ε m
i  is the 

on-site energy and H.c. denotes the hermitian conjugate of the 

preceding term. The last term in Hamiltonian (1) corresponds 

to the on-site Coulomb interaction, which is considered in the 

density–density form:

ˆ ˆ ˆ∑=
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′ ′
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where σσ′ ′Umm
i  is an element of the Coulomb interaction 

matrix. The on-site potential ε m
i  and Coulomb matrix σσ′ ′Umm

i  

depend on the site index i and are different for different atomic 

species. At the same time, each site can be occupied by an 

atom of type A with probability ( )− x1  or of type B with 

probability x. The hopping amplitudes are assumed to be site-

independent, which implies similar shapes of band structures 

for constituents A and B. This approximation is reasonable 

for constituents with similar electronic structures, when the 

on-site local potentials are close in energy relative to the band-

width [4, 5, 42].

For material-specific calculations all parameters of 

Hamiltonian (1) are to be determined, and we follow the con-

ventional LDA  +  DMFT prescription [43, 44]. In this case, 

the Hamiltonian can be rewritten as

ˆ ˆ ( ) ˆ ˆ ˆ∑ µ= + − + −

σ

σεH H n H H .
i m

m
i

m
i

DFT

, ,

Coul DC (3)

Here, the kinetic contribution is replaced by the DFT 

Hamiltonian ĤDFT calculated in a basis of Wannier functions 

or other localized orbitals. The on-site local potential ε m
i  can 

also be found from DFT results as the center of gravity of 

orbital m at site i in a supercell calculation. The following 

disorder parameter can be introduced as a difference between 

centers of gravity for different atomic species:
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= −ε εV .m m m
B A (4)

The constrained DFT method [45] can be used to deter-

mine elements of the screened Coulomb interaction matrix 

σσ′ ′Umm
i . The last term in equation (3), ĤDC, is introduced to 

avoid double counting of the Coulomb interaction already 

present in ĤDFT. The fully localized limit is taken, and

ˆ ¯ ˆ∑ ∑= − ≡ ε⎜ ⎟
⎛

⎝

⎞

⎠
H U n

1

2
,

i

i i

i

i
DC DC (5)

where Ū i is the average Coulomb interaction and ˆ ˆ= ∑ σ σn ni
m m

i .

Within the CPA  +  DMFT approach a real alloy is replaced 

by an effective medium with local Green function

∫

∫

ω ω
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(6)

where ( )ω π β= +n2 1 /n  are the fermionic Matsubara fre-

quencies, β denote the inverse temperature, I is the unit matrix 

and ( )ωΣ i n  is the local effective potential or self-energy, which 

has to be determined self-consistently. The integration is per-

formed over the first Brillouin zone of volume VBZ. In contrast 

to the conventional CPA approach, the self-energy now con-

tains information not only about disorder, but also about elec-

tronic correlations. Using the Dyson equation one can obtain 

the bath Green function

( ) ( ) ( )ω ω ω= +Σ
− −
G Gi i i ,n n n0

1
med

1 (7)

which is required to calculate the impurity Green functions 

( )ωG i nA  and ( )ωG i nB . The action of an impurity embedded in 

the effective medium is
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where ( ) ( )ω ω ω∆ = −
−
Gi i im n n m n0,

1  is the hybridization func-

tion. The corresponding impurity Green function can be 

expressed as

ˆ ˆ ˆ ˆ
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According to the CPA ideology, the local Green function 

of the effective medium is interpreted as a weighted sum of 

impurity Green functions:

( ) ( ) ( ) ( )ω ω ω= − +G x G x Gi 1 i i .n n nmed A B (10)

Having obtained ( )ωG i nmed  by equation  (10), one can easily 

compute the new self-energy from the Dyson equation:

( ) ( ) ( )ω ω ωΣ = −
− −
G Gi i i .n n n0

1
med

1 (11)

This new effective potential is then used in equation (6) to cal-

culate the local Green function of the effective medium. The 

above equations are iteratively solved until convergence with 

respect to the self-energy is achieved.

In the orbital space, the above Green functions, self-ener-

gies and other quantities are matrices of the same size as ĤDFT. 

At the same time, they have a block diagonal structure in the 

orbital space, and hence solution for different types of orbitals 

can be performed separately. For the uncorrelated subspace 

(Wannier functions of sp character), the impurity action in 

equation (8) becomes Gaussian, and the impurity Green func-

tion can be evaluated straightforwardly:

( ) ( )

( )

ω ω

ω ω

= −

= − −∆

− −
ε

ε

GG i i

i i .

i m n m n m
i

n m
i

m n

,
1

0,
1

 (12)

To calculate the impurity Green functions in the correlated 

subspace (the Wannier functions of d character), equation (9) 

is to be solved. The continuous-time quantum Monte Carlo 

method [46] was used for the above purpose.

The calculation of total energy has been thoroughly dis-

cussed for the LDA  +  DMFT method [47] and for a single-

band model of a disordered system [20]. Following the same 

route, the total energy in the CPA  +  DMFT method can be 

defined as

= + + − −
+ +E E E E E E .total DFT kin

CPA DMFT
Coul
CPA DMFT

kin
0

DC

 (13)

Here, the first term is the total energy obtained in self-consis-

tent DFT calculations. The second term is the CPA  +  DMFT 

kinetic energy, which can be defined as

∑

∑ ∑
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+ − +
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n

ε ε
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(14)

where the first term depends on the Green function of the 

effective medium, which includes disorder and correla-

tion effects; the last two terms in equation  (14) represent a 

contribution to the kinetic energy due to disorder. The third 

term in equation (13) corresponds to the Coulomb energy in 

CPA  +  DMFT and can be expressed via double occupancies:

∑

∑

= −

+

σσ

σσ σ σ

σσ

σσ σ σ

+

′ ′

′ ′ ′ ′

′ ′
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.
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(15)

The fourth term on the right-hand side of equation (13) is the 

sum of DFT valence-state eigenvalues, which is evaluated as 

the thermal average of the DFT Hamiltonian with the non-

interacting DFT Green function:

[ ( ) ( )]∑ ω= ω +

E T H Gk kTr , i e ,
n

n

k

kin
0

,

DFT med
0 i 0n

 (16)

where

( ) [( ) ( )]ω µ ω= + − −G I Hk k, i i .n nmed
0

DFT
1 (17)

J. Phys.: Condens. Matter 27 (2015) 465601



A S Belozerov et al

4

The last term in equation  (13) corresponds to the double-

counting energy, which can be written in the fully localized 

limit as

( )
¯ ( ) ¯ ( )

= −
−

+
−

E x
U n n

x
U n n

1
1

2

1

2
.DC

A A A B B B

 (18)

It should be noted that the above described CPA  +  DMFT 

scheme as well as the expression for total energy behave cor-

rectly in different limiting cases. Namely, if there is one type 

of atomic species ( =x 0 or =x 1) or the atomic species are 

identical (Vm  =  0 and =U UA B), all equations reduce to the 

conventional LDA  +  DMFT ones. In the non-interacting limit 

( = =U U 0A B ), the equations transform to those of classical 

CPA.

As discussed in section 1, the DMFT together with the CPA 

have already been used to study single-band models and real 

alloys. In contrast to studies [21–24] where the CPA  +  DMFT 

approach was implemented within the Korringa–Kohn–
Rostoker method, in our computational scheme we first calcu-

late material-specific parameters for Hamiltonian (1) and then 

solve it using the CPA  +  DMFT set of equations. Our scheme 

is similar to that used in [25] where the on-site potential was 

introduced to mimic the Na potential in NaxCoO2.

3. Results and discussion

To perform calculations within DFT, we employed the 

full-potential linearized augmented-plane-wave method 

implemented in the Exciting-plus code (a fork of ELK 

code with a Wannier function projection procedure [48]). 

The exchange–correlation potential was considered in the 

Perdew–Burke–Ernzerhof form [49] of the generalized gra-

dient approximations (GGA). The calculations were carried 

out with the experimental lattice constants =a 3.5812fcc  Å for 

the γ phase, =a 2.5273hcp  Å and =c 4.0857hcp  Å for the ε 

phase [50]. The total energy convergence threshold of 10−6Ry 

was used. Integration in the reciprocal space was performed 

using × ×18 18 18 and × ×16 16 10 k-point meshes for the 

γ and ε phases, respectively. In nonmagnetic calculations the 

ground state of ε-Fe is 99 meV/atom lower in energy than the 

ground state of γ-Fe. The supercells with eight atoms were 

constructed by doubling all primitive vectors for fcc structure 

and two vectors in the hexagonal plane for hcp structure. In 

each supercell, one atom of Fe was substituted by a Mn atom. 

The distances between Mn and its nearest periodic image are 

equal to 5.065 Å and 4.086 Å for the fcc and hcp structures, 

respectively. We note that the local relaxation effects are 

neglected within our scheme. In the case of Fe–Mn alloy, they 

are expected to be insignificant, since Fe and Mn are neigh-

bours in the periodic table and have close atomic radii (1.26 

Å and 1.27 Å, respectively). A detailed comparison of CPA 

results with those obtained using large supercells can be found 

in [51].

For CPA  +  DMFT calculations a localized basis is required, 

and to this aim, effective Hamiltonians were constructed for 

each phase in the basis of Wannier functions. From con-

verged plane-wave data the Wannier functions were built as a 

projection of the original Kohn–Sham states to site-centered 

localized functions of spd character as described in [52]. We 

note that the obtained Wannier functions are not maximally 

localized, which is in fact not necessary for the calculations. 

Figure 1 shows the original band structure (black lines) for 

pure fcc Fe (top panel) and the fcc supercell structure (bottom 

panel) in comparison with bands corresponding to the con-

structed Wannier Hamiltonians (red dots). The Wannier func-

tion basis describes well the DFT energy bands up to 18 eV 

above the Fermi level.

In the following, we use the Wannier function Hamiltonians 

of pure iron for CPA  +  DMFT calculations and refer to them 

as hosts of the corresponding crystal structures. The manga-

nese ions are cited as impurities. In this terminology, ĤDFT 

from equation (3) is the host Hamiltonian, and ε Fe is already 

included in ĤDFT. The disorder parameter Vm can be found 

as the difference between centers of gravity for densities of 

states (DOS) for Mn and the most distant Fe atom in supercell 

calculations.

Band structures for pure Fe and Mn in fcc and hcp crystal 

structures are presented in figure 2 (left panels). One can see 

that the energy bands of Mn can be described as those of Fe 

shifted by a constant value. This value can be regarded as an 

upper limit for the disorder parameter and is about 0.5 eV 

for d states at the Γ point. Comparing the band structures of 

pure elements and constructed supercells (central panels of 

figure 2), one can note a shrinking of the Mn 3d bandwidth 

in the supercells with respect to pure Mn. This is supported 

by the local densities of states (figure 2, right panels) for Mn 

Figure 1. Band structures for fcc Fe (upper panel) and the fcc 
supercell containing seven Fe and one Mn atoms (lower panel) 
obtained in nonmagnetic GGA calculations (solid lines) in 
comparison with bands corresponding to the constructed effective 
Hamiltonians in the spd Wannier functions basis (dots). The Fermi 
level is at zero energy.
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and the most distant Fe atom in the supercells. The disorder 

parameters evaluated for different orbitals as the difference 

between centers of gravity of corresponding DOSs are pre-

sented in table  1. Since the s and p bands extend beyond 

the region where they are well described by the constructed 

Wannier functions (see figure 1), the centers of gravity were 

calculated using an energy window of 15 eV. Using a wider 

energy window affects only the values of the disorder param-

eters for s and p states. However, as will be discussed further, 

the disorder parameters Vs and Vp have little influence on the 

results.

For CPA  +  DMFT calculations we used the AMULET 

code [53] developed in our group. Our calculations were 

carried out with =U 4 eV and =J 0.9 eV obtained by the 

constrained density functional theory (cDFT) calculations 

in the basis of spd Wannier functions [54]. This =U 4 eV 

is in agreement with U from 3.5 to 4.5 eV obtained with the 

constrained random-phase approximation (cRPA) [55]. The 

Coulomb interaction within CPA  +  DMFT was considered in 

the density–density form and had an atomic structure for the d  

shell. The Coulomb interaction matrix was parametrized [7] 

via Slater integrals F0, F2 and F4 linked to the Hubbard param-

eter ≡U F0 and Hund’s rule coupling ( )≡ +J F F /142 4  with 

=F F/ 0.6254 2 . Fixed values of d state occupations were used 

for double-counting terms (see equation (5)). These values are 

=n 6.79d
Fe  (6.84) and =n 5.74d

Mn  (5.80) for the γ (ε) phase. To 

solve the impurity problems, we employed the hybridization 

expansion continuous-time quantum Monte Carlo (CT-QMC) 

method [46].

In figure 3 we present densities of 3d states obtained by 

CPA and CPA  +  DMFT methods. They were calculated as 

a weighted sum of local densities of states for constituents, 

obtained using the Padé approximants. Taking into account 

the electronic correlations by DMFT resulted in a transfer of 

spectral weight from the states near the Fermi level to higher 

energies. As in pure bcc iron [54], the Hubbard bands are not 

clearly distinguished since =U 4 eV is less than the band-

width of about 6 eV. One can note a similar impact of elec-

tronic correlations on density of states as for systems without 

structural disorder.

In figure 4 we present the obtained CPA and CPA  +  DMFT 

total energies of Fe0.9Mn0.1 in the γ and ε phases. The CPA 

alone resulted in a weak temperature dependence of total 

energies with the ε phase being 86 meV/atom lower in energy 

than the γ phase. At the same time, our calculations by 

CPA  +  DMFT led to the stabilization of the γ phase at high 

temperatures. In contrast to the ε phase, the total energy of 

Figure 2. Band structures for pure Fe and Mn (left panels) and supercells containing seven Fe and one Mn atoms (central panels) obtained 
in nonmagnetic GGA calculations. Local densities of states for the Mn atom and the most distant Fe atom in the supercell calculations are 
presented in the right panels. The fcc and hcp structures correspond to the upper and lower panels, respectively. The spd Wannier functions 
basis is employed. The Fermi level is at zero energy.
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Table 1. Disorder parameters for different orbital symmetries 
obtained in supercell calculations.

Phase Vs (eV) Vp (eV) Vd (eV)

fcc 0.098 0.131 0.318

hcp 0.151 0.161 0.362
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the γ phase is almost independent of temperature. However, 

the kinetic and Coulomb contributions due to electronic cor-

relations and disorder have a strong temperature dependence 

in both phases (lower panel of figure 4). In the case of the γ 

phase, an increase in the kinetic contribution with tempera-

ture is well compensated by the Coulomb contribution. The 

total energy curves of γ and ε phases intersect at T0  =  440 K, 

which is close to the experimental γ–ε transition temperature 

of about 470 K [56].

The obtained results are weakly affected by the disorder 

parameters Vs and Vp for itinerant s and p states, respec-

tively. In particular, with = =V V 0s p , the total energy curves 

intersect at 600 K for 10 at.% Mn. A simultaneous increase 

(decrease) of Vd parameters for both phases for 0.05 eV results 

in a decrease (increase) of T0 for about 100 K. Since the energy 

difference between γ and ε phases is quite small, the obtained 

results are sensitive to the Coulomb interaction parameters. 

Calculations with =U 3 eV resulted in T0  =  1200 K, while 

employing =U 5 eV led to stabilization of the γ phase at all 

temperatures. However, the employed =U 4 eV was calcu-

lated using the spd Wannier function basis set [54] and is in 

agreement with values from 3.5 to 4.5 eV obtained by cRPA 

calculations [55].

To assess the relative stability of phases, the Gibbs free 

energy = + −G E pV TStotal  should be used instead of total 

energy. Since the γ–ε transition in Fe–Mn alloy is observed at 

atmospheric pressure, ∆ γ ε−p V  is only about 10−4 meV/atom, 

which is much smaller than the other contributions to the 

Gibbs energy difference between the phases. Calculation of 

the entropy from first principles is still a challenging problem. 

The entropy can be decomposed into the electronic, magnetic, 

vibrational and configurational contributions:

= + + +S S S S S .el mag vib conf (19)

The configurational entropy depends only on the concentra-

tions of constituents. Hence, the configurational entropy differ-

ence ∆ =
γ ε−S 0conf  for a given Mn content. The following simple 

estimates can be obtained for other entropy contributions.

The electronic entropy [57] can be expressed as

S k f f f f Nln 1 ln 1 d ,el B { ( ) ( ) [ ( )] [ ( )]} ( )∫ ε ε ε ε ε ε= − + − −
−∞

+∞

 (20)

where kB is the Boltzmann constant, ( )εf  is the Fermi function 

and ( )εN  is the density of states. The difference in electronic 

entropies ∆ γ ε−Sel  is almost independent of temperature and is 

equal to − k0.037 B. The magnetic entropy in the paramagnetic 

state can be expressed as

 ( )= +S k mln 2 1 .mag B av (21)

Here, mav is the average local magnetic moment, which was 

calculated as a weighted sum of local moments on Fe and Mn 

atoms. The local magnetic moment for a constituent of type i 

was estimated using the average square of instantaneous local 

moments:

⟨( ) ⟩ (⟨ ˆ ˆ ⟩ ⟨ ˆ ˆ ⟩)∑= −
σ

σ σ σ σ

′

′ ′m n n n n .z
i

mm

m
i

m
i

m
i

m
i2

 (22)

Figure 3. Density of 3d states obtained by CPA and CPA  +  DMFT 
calculations for γ (upper panel) and ε (lower panel) phases of 
Fe0.9Mn0.1 at β = 16 eV−1. The Fermi level is at zero energy.
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The obtained temperature dependence of squared local 

moments for 10 at.% Mn is presented in figure 5. The local 

moments in the γ phase are found to be larger than those in the 

ε phase. This is in agreement with results obtained by Reyes-

Huamantinco et al for 22.5 at.% Mn using the DLM method 

[37]. All local moments except those on Mn in the ε phase 

have a weak dependence on temperature. The calculated dif-

ference of magnetic entropies ∆ γ ε−Smag  is almost independent of 

temperature and is equal to − k0.057 B.

The vibrational entropy difference can be expressed via the 

ratio of Debye temperatures as

∆ =
Θ

Θ

γ ε

γ

ε

−S k3 ln ,vib B
D

D

 (23)

where ΘγD (ΘεD) is the Debye temperature for the γ (ε) phase. 

Using the approximation for Debye temperature derived by 

Moruzzi et al [58] and experimental bulk moduli for γ and ε 

phases with 22.6 at.% Mn [59], we obtained Θ Θ =
γ ε/ 1.052D D , 

resulting in ∆ =
γ ε−S k0.152vib B. Taking into account all contri-

butions, the total entropy difference ∆ =γ ε−S k0.058 B. This 

value is close to 0.037 kB obtained for the entropy change at 

the γ–ε transition in pure Fe at 15 GPa using the Clausius–
Clapeyron equation  and the slope of the phase boundary in 

the pressure–temperature phase diagram. Using the Gibbs free 

energies, we find the γ–ε transition at 530 K in good agree-

ment with experiment.

To analyze the driving force behind the γ–ε transition, 

in figure 6 we present the contributions to the energy differ-

ence between the ε and γ phases. We find that the tempera-

ture dependence of total energy difference is mainly from the 

Coulomb contribution at low temperatures ( <T 600 K) and 

from the kinetic contribution at high temperatures ( >T 600 K).  

At the same time, the last two terms in expression (14) for the 

kinetic energy make a negligible contribution, since the occu-

pancies depend weakly on temperature in both phases (figure 5).  

Hence, the temperature dependence of the kinetic energy dif-

ference is mainly due to the first term in expression (14), which 

includes both the electronic correlations and disorder effects.

The magnetic correlation contribution to the Coulomb 

energy can be approximately expressed as ⟨ ⟩= −E I mzCoul
magn 1

4

2 , 

where ( )= +I U J4
1

5
. Squared local moments on Fe atoms have  

a similar temperature behaviour in both phases (figure 5),  

and their difference decreases slightly from 0.6 to 0.57 µ
B
2  

upon cooling from 930 to 290 K, lowering the energy of the 

ε phase with respect to the γ phase. The opposite behaviour is 

observed for the local moment on Mn, which decreases faster 

upon cooling in the ε phase than in the γ phase, favouring 

the stabilization of the latter. However, one should keep in 

mind that the Mn contribution is significantly suppressed at 

given concentrations. The obtained results indicate that both 

the Coulomb and kinetic contributions play an important role 

at the γ–ε transition in Fe–Mn alloys. This is in contrast to 

the α–γ transition in pure iron where the magnetic correlation 

energy was shown to be an essential driving force behind this 

transition [39].

In figure  7 we present the γ–ε transition temperature as 

a function of Mn concentration. The total entropy difference 

depends weakly on temperature and is equal to k0.067 B for 

20 at.% Mn. The calculated transition temperature decreases 

with increasing Mn content from 10 to 20 at.% in agreement 

with the experimental data [60]. However, the difference 

between the calculated and experimental transition tempera-

tures grows with Mn content. This difference is less than 100 

K for 10 and 15 at.% Mn, while it is about 230 K for 20 at.% 

Mn. This can be caused by the fact that the effective-medium 

approach employed in CPA and DMFT gives better results at 

low concentrations. To identify the specific role of Mn, in the 

lower panel of figure 7 we present the difference in Coulomb 

and kinetic energies between the phases at 360 K. We find 

that the Coulomb energy is responsible for the decrease in 

the γ–ε transition temperature. This can be explained by the 

increasing contribution of Mn to the Coulomb energy of the 

alloy, while the magnetic correlation energy of Mn favours the 

stabilization of the γ phase at low temperatures.

Figure 5. Average squared local magnetic moments of Fe and 
Mn atoms in Fe0.9Mn0.1 alloy in γ and ε phases obtained by 
CPA  +  DMFT. The inset shows the occupancy of 3d states.
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4. Conclusions

We have presented a computational scheme for total energy 

calculations of disordered alloys with strong electronic cor-

relations. It employs the CPA  +  DMFT approach, treating 

electronic correlations and disorder on the same footing. The 

proposed computational scheme can be used to study correla-

tion-induced structural and/or magnetic transitions as well as 

related properties in paramagnetic and magnetically ordered 

phases of disordered systems. In particular, we applied it to 

study the γ–ε structural transition in paramagnetic Fe1−xMnx 

alloys with x from 0.1 to 0.2. The calculated transition tem-

perature is in good agreement with the experimental data. The 

local magnetic moment on Mn was found to have a more pro-

nounced temperature dependence in the ε phase than in the γ 

phase. Upon cooling, this leads to a lowering of the energy of 

the γ phase with respect to the ε phase due to magnetic cor-

relation energy. Both the Coulomb and kinetic energies were 

demonstrated to contribute to the γ–ε transition. This is in 

contrast to the α–γ transition in pure Fe, where the magnetic 

correlation energy alone was shown to be responsible for the 

structural transformation [39]. However, one should keep in 

mind that the kinetic energy in the CPA  +  DMFT approach 

includes both the electronic correlations and disorder effects, 

which cannot be separated.

Considering the alloys with Mn content from 10 to 20 at.%, 

we found that the decrease in the γ–ε transition temperature 

is caused by the Coulomb energy. This agrees well with the 

above-mentioned finding that the magnetic correlation energy 

of Mn favours the stabilization of the γ phase at low temper-

atures. The obtained results indicate that the CPA  +  DMFT 

approach is a promising tool for studying real substitutional 

alloys with strong electronic correlations.
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