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ABSTRACT 

The real-world structures are subjected to operational and environmental 

condition changes that impose difficulties in detecting and identifying structural 

damage. The aim of this report is to detect damage with the presence of such 

operational and environmental condition changes through the application of the Los 

Alamos National Laboratory’s statistical pattern recognition paradigm for structural 

health monitoring (SHM). The test structure is a laboratory three-story building, 

and the damage is simulated through nonlinear effects introduced by a bumper 

mechanism that simulates a repetitive impact-type nonlinearity. The report reviews 

and illustrates various statistical principles that have had wide application in many 

engineering fields. The intent is to provide the reader with an introduction to feature 

extraction and statistical modelling for feature classification in the context of SHM. 

In this process, the strengths and limitations of some actual statistical techniques 

used to detect damage in the structures are discussed. In the hierarchical structure of 

damage detection, this report is only concerned with the first step of the damage 

detection strategy, which is the evaluation of the existence of damage in the 

structure. The data from this study and a detailed description of the test structure are 

available for download at: http://institute.lanl.gov/ei/software-and-data/. 
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1. INTRODUCTION 

This report summarizes the analysis of test data obtained from a laboratory three-story 

structure as part of structural health monitoring (SHM) process. This research has been 

performed in the Engineering Institute (EI) at Los Alamos National Laboratory (LANL), in 

collaboration with the Laboratory for Concrete Technology and Structural Behavior (LABEST) 

of the Faculty of Engineering of the University of Porto (FEUP). The EI is an education- and 

research-focused collaboration between the LANL and the University of California, San Diego 

(UCSD), Jacobs School of Engineering. The technical focus of this institute is damage prognosis, 

a multidisciplinary engineering science concerned with assessing the current condition and 

predicting the remaining life of aerospace, civil, and mechanical infrastructures. The LABEST is 

a research unit that aims to develop innovative technology in the field of material and structural 

behavior of civil engineering infrastructure. In the last years, this laboratory has gained 

significant experience in structural monitoring of civil infrastructure. 

The aim of the present report is to use LANL’s statistical pattern recognition paradigm 

for SHM on the data set obtained from a laboratory test structure, in order to point out the 

strengths and limitations of several statistical procedures for detecting damage in the structures. 

1.1 The Structural Health Monitoring Process 

SHM is the process of detecting damage in structures. The goal of SHM is to improve the 

safety and reliability of aerospace, civil, and mechanical infrastructure by detecting damage 

before it reaches a critical state. To achieve this goal, technology is being developed to replace 

qualitative visual inspection and time-based maintenance procedures with more quantifiable and 

automated damage assessment processes. These processes are implemented using both hardware 

and software with the intent of achieving more cost-effective condition-based maintenance. A 

more detailed general discussion of SHM can be found in (Worden et al., 2004; Farrar and 

Worden, 2007) 

The authors believe that all approaches to SHM as well as all traditional nondestructive 

evaluation procedures (e.g., ultrasonic inspection, acoustic emissions, active thermography) can 

be cast in the context of a statistical pattern recognition problem (Farrar et al., 2001). The LANL 

statistical pattern recognition paradigm for the development of SHM solutions can be described 

as the following four-step process:  

i.  Operational evaluation; 

ii.  Data acquisition; 

iii.  Feature extraction; and 

iv.  Statistical modelling for feature classification. 

A necessary first step to developing an SHM capability is to perform an operational 

evaluation. This part of the SHM solution process attempts to answer four questions regarding 

the implementation of a SHM system: (1) What are the life safety and/or economic justifications 

for monitoring the structure? (2) How is damage defined for the system being monitored? 

(3) What are the operational and environmental conditions under which the system of interest 

functions? (4) What are the limitations on acquiring data in the operational environment? 

Operational evaluation defines, and to the greatest extent possible quantifies, the damage that is 

to be detected. It also defines the benefits to be gained from deployment of the SHM system. 

This process also begins to set limitations on what will be monitored and how to perform the 
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monitoring as well as tailoring the monitoring to unique aspects of the system and unique 

features of the damage that is to be detected. 

The data-acquisition portion of the SHM process involves selecting the excitation 

methods; the sensor types, numbers, and locations; and the data acquisition/storage/ 

processing/transmittal hardware. The actual implementation of this portion of the SHM process 

will be application specific. A fundamental premise regarding data acquisition and sensing is that 

these systems do not measure damage. Rather, they measure the response of a system to its 

operational and environmental loading or the response to inputs from actuators embedded with 

the sensing system. Depending on the sensing technology deployed and the type of damage to be 

identified, the sensor readings may be more or less directly correlated to the presence and 

location of damage. Data-interrogation procedures (feature extraction and statistical modelling 

for feature classification) are the necessary components of an SHM system that converts the 

sensor data into information about the structural condition. Furthermore, to achieve successful 

SHM, the data-acquisition system will have to be developed in conjunction with these data-

interrogation procedures. 

A damage-sensitive feature is some quantity extracted from the measured system-

response data that is correlated with the presence of damage in a structure. Ideally, a damage-

sensitive feature will change in some consistent manner with increasing damage level. 

Identifying features that can accurately distinguish a damaged structure from an undamaged one 

is the focus of most SHM technical literature (Doebling et al., 1996; Sohn et al., 2004). 

Fundamentally, the feature-extraction process is based on fitting some model, either physics-

based or data-based, to the measured system response data. The parameters of these models or 

the predictive errors associated with these models then become the damage-sensitive features. 

An alternate approach is to identify features that directly compare the sensor waveforms or 

spectra of these waveforms measured before and after damage. Many of the features identified 

for impedance-based and wave propagation-based SHM studies fall into this category (Kessler 

et al., 2002; Park et al., 2003; Ihn et al., 2004; Sohn et al., 2004). 

The portion of the SHM process that has received the least attention in the technical 

literature is the development of statistical models to enhance the damage-detection process. 

Statistical modelling for feature classification is concerned with the implementation of the 

algorithms that analyze the distributions of the extracted features in an effort to determine the 

damaged state of the structure. The algorithms used in statistical model development usually fall 

into three general categories: (i) Group classification; (ii) Regression analysis; and (ii) Outlier 

detection. The appropriate algorithm to use will depend on the ability to perform supervised or 

unsupervised learning. Here, supervised learning refers to the case where examples of data from 

damaged and undamaged structures are available. Unsupervised learning refers to the case where 

data are only available from the undamaged structure. 

Inherent in the data acquisition, feature extraction, and statistical modelling portions of 

the SHM process are data normalization, cleansing, fusion, and compression. As it applies to 

SHM, data normalization is the process of separating changes in sensor reading caused by 

damage from those caused by varying operational and environmental conditions (Farrar, Sohn 

and Worden, 2001; Sohn et al., 2001; Worden et al., 2002; Sohn et al., 2003; Sohn, 2006). Data 

cleansing is the process of selectively choosing data to pass on to, or reject from, the feature 

selection process. Data fusion is the process of combining information from multiple sensors in 

an effort to enhance the fidelity of the damage detection process. Data compression is the process 

of reducing the dimensionality of the data, or the features extracted from the data, in an effort to 

facilitate efficient storage of information and to enhance the statistical quantification of these 
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parameters. These four activities can be implemented in either hardware or software and usually 

a combination of the two approaches is used. 

The hierarchical structure of damage detection can be divided into a four-step process, 

accordingly to Rytter (1993), that answers the following questions (Farrar and Worden, 2007; 

Worden et al., 2007): 

 

i. Is the damage presented in the system (existence)? 

ii. Where is the damage (location)? 

iii. What kind of damage is present (type)? 

iv. What is the extent of damage (severity)? 

The answers to the questions above can be made only in a sequential way, e.g., the 

answer to the severity of damage can only be made with a priori knowledge of the type of 

damage. When applied in an unsupervised mode, statistical algorithms are typically used to 

answer questions regarding the existence and location of damage. When applied in a supervised 

learning mode and coupled with analytical models, the statistical algorithms can be used to better 

determine the type of damage and the severity of damage. 

1.2 The Objective of this Report 

Currently, in the SHM field, there are two well-known approaches to separate the 

changes in the measured system response caused by operational and environmental conditions 

from those changes caused by damage. The first approach consists of measuring the parameters 

related to operational and environmental conditions such as temperature, humidity, traffic loads 

as well as the structural response at different locations. Then, the normal conditions can be 

parameterized as a function of different operational and environmental conditions. With such a 

parameterized model, novelty detection processes can be used to detect when the measured 

system response deviates from the normal condition that corresponds to the appropriate 

operational and environmental conditions. The second approach, and used in this study, attempts 

to establish the existence of damage for cases when measures of the operational and 

environmental parameters that influence the system’s dynamic response cannot be measured. 

The objective of this study is to apply the LANL statistical pattern recognition paradigm 

for SHM to data acquired from a laboratory three-story building structure. The report applies 

various statistical procedures that have been widely used in different engineering fields and 

briefly reviews the theoretical basis for some of them. More theoretical and detailed 

developments of the applied statistical procedures are available from the references.  

In the hierarchical structure of damage detection, this report addresses the need for robust 

incipient damage-detection methods. Therefore, it is concerned with determining the existence of 

damage in the test structure. Even though locating and assessing the severity of damage are 

important in terms of estimating the residual lifetime of the structures, the reliable detection of 

damage existence must precede these more detailed damage descriptions. To achieve this goal, 

this report is mainly focused on feature extraction and statistical modelling for feature 

classification. 

The layout of this report is as follows. Section 2 provides a summary description of the 

test structure that relates the sources of simulated damage to real-world damage in the structures, 

the data-acquisition system, and measured data. For the measured data, the undamaged and 

damaged state conditions as well as the assumptions behind them are defined. In Section 3, the 
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physics-based numerical model is summarized. This model was used to validate some 

assumptions about the system response as well as the measured experimental data. Section 4 

provides a general overview on the importance of feature extraction in the SHM process. 

Moreover, well-established feature extraction procedures are applied to the measured data. This 

section also points out the main advantages and disadvantages of each of these feature extraction 

approaches in the current application. The features are extracted in both time and frequency 

domains in order to explore the different perspectives of the data to the greatest extent. Special 

attention is given to the autoregressive (AR) model as a feature extraction technique. In 

Section 5, several statistical procedures for feature classification are presented that discriminate 

the undamaged and damaged state conditions, with emphasis on the statistical process control 

(SPC) techniques. In Section 6, the applicability of the autoassociative neural network (AANN), 

Mahalanobis distance, and singular value decomposition (SVD) to data normalization for feature 

classification is demonstrated on data measured from the test structure. These algorithms are 

used to identify signal deviations from the normal condition. Basically, these algorithms classify 

features from potential damaged conditions as outliers when they are compared to the features 

extracted from the normal condition. 

This report concludes with a general discussion and summary regarding the effectiveness 

of the various feature extraction and statistical modelling procedures to identify damage in this 

test structure.  
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2. EXPERIMENTAL PROCEDURE 

2.1 Test Structure Description 

The three-story building structure shown in Figure 1(a) is used as a damage-detection 

test-bed structure. The structure consists of aluminum columns and plates assembled using 

bolted joints, which slides on rails that allow movement in the x-direction only. At each floor, 

four aluminum columns (17.7 × 2.5 × 0.6 cm) are connected to the top and bottom aluminum 

plates (30.5 × 30.5 × 2.5 cm) forming a four degree-of-freedom (DOF) system. Additionally, a 

center column (15.0 × 2.5 × 2.5 cm) is suspended from the top floor. This column is used as a 

source of damage that induces nonlinear behavior when it contacts a bumper mounted on the 

next floor, as shown in Figure 1(b). The position of the bumper can be adjusted to vary the extent 

of impacting that occurs during a particular excitation level. 

In the context of SHM, this source of damage is intended to simulate the fatigue cracks 

that subsequently open and close under operational and environmental loading conditions, or 

loose connections that rattle. Figure 2 shows a schematic representation along with the basic 

dimensions of the test structure. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
(a) Three-story building structure and shaker (b) The adjustable bumper and the 

suspended column 

Figure 1: Test structure setup. 
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Figure 2: Basic dimensions of the three-story building structure (all dimensions are in cm).  

2.2 Data Acquisition System 

An electrodynamic shaker provides a lateral excitation to the base floor along the center 

line of the structure. The structure and shaker are mounted together on an aluminum baseplate 

(76.2 × 30.5 × 2.5 cm), and the entire system rests on rigid foam. The foam is intended to 

minimize extraneous sources of unmeasured excitation from being introduced through the base 

of the system. A load cell with a nominal sensitivity of 2.2 mV/N was attached at the end of a 

stinger to measure the input force from the shaker to the structure. Four accelerometers with 

nominal sensitivities of 1,000 mV/g were attached at the center line of each floor on the opposite 

side from the excitation source to measure the system’s response. Because the accelerometers are 

mounted at the center line of each floor they are insensitive to torsional modes of the structure. In 

addition, the shaker location and the linear bearings minimize the torsional excitation of the 

system. 

A Dactron Spectrabook data acquisition system was used to collect and process the data. 

The output channel of this system, which provides the excitation signal to the shaker, is 

connected to a Techron 5530 Power Supply Amplifier that drives the shaker. The location and 

characteristics of the five sensor channels (Channels 1–5) used in these tests can be found in 

Figure 2 and Table 1, respectively. 
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Table 1: Characteristics of the Sensors Used Throughout the Testing 

Channel Number Transducer Reference Nominal Sensitivity 

Channel 1 Load cell PCB 208 C03 

SN 22569 

2.2 mV/N 

Channel 2 Accelerometer PCB 336C 

SN 10099 

1000 mV/g 

Channel 3 Accelerometer PCB 336c 

SN 10120 

1000 mV/g 

Channel 4 Accelerometer PCB 336c 

SN 9916 

1000 mV/g 

Channel 5 Accelerometer PCB 336C 

SN 10100 

1000 mV/g 

The analog sensor signals were discretized with 8,192 data points sampled at 3.125 ms 

intervals corresponding to a sampling frequency of 320 Hz. These sampling parameters yield 

time histories of 25.6 s in duration. When these data were transformed into the frequency 

domain, the spectra consisted of 3,600 lines displaying the data up to a maximum frequency of 

140.6 Hz at a resolution of 0.0391 Hz. A band-limited random excitation in the range of  

20-150 Hz was used to excite the structure. This excitation signal was chosen in order to avoid 

the rigid body modes of the structure that are present below 20 Hz. The excitation level was set 

to 2.6 V RMS in the Dactron system, which corresponds to, approximately, 20 N RMS measured 

at Channel 1. 

2.3 Measured Data 

Force- and acceleration-time histories (time series or sample records) for a variety of 

different structural state conditions were collected as shown in Table 2 along with information 

that describes the different states. For example, the state condition labelled “State #4” is 

described as “87.5% stiffness reduction in column 1BD,” which means there was 87.5% stiffness 

reduction in the column located between the base and first floor at the intersection of plane B and 

D as defined in Figure 2. 

The structural state conditions can be categorized into four main groups. The first group 

is the baseline condition. The baseline condition is the reference structural state and is labelled 

State #1 in Table 2. The bumper and the suspended column are included in the baseline 

condition, but the spacing between the bumper and the column was maintained in such a way 

that there were no impacts during the excitation. The second group includes the states when the 

mass and stiffness of the columns were changed. Real-world structures have operational and 

environmental variability, which create difficulties in detecting and identifying structural 

damage. In order to simulate such operational and environmental condition changes, tests were 

performed with different mass and stiffness conditions (States #2–#9). The mass change, m, 

consisted of 1.2 kg (approximately 19% of the total mass of each floor) being added to the first 

floor and to the base, as shown in Figure 3 (a). The stiffness change was introduced by reducing 

one or more columns’ stiffness by 87.5%. This process was done by replacing the corresponded 

column with another one with half the cross-section thickness in the direction of shaking. The 

third group includes damaged state conditions simulated through the introduction of 

nonlinearities into the structure using a bumper and a suspended column, with different gaps 

between them, as shown in Figure 3 (b). The gap between the bumper and the suspended column  
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Table 2: Data Labels of the Structural State Conditions 

 

Label 

State 

Condition 

 

Description 

State #1 Undamaged Baseline condition 

State #2 Undamaged  Mass = 1.2 kg at the base 

State #3 Undamaged Mass = 1.2 kg on the 1
st
 floor 

State #4 Undamaged 87.5% stiffness reduction in column 1BD 

State #5 Undamaged 87.5% stiffness reduction in column 1AD and 1BD 

State #6 Undamaged 87.5% stiffness reduction in column 2BD 

State #7 Undamaged 87.5% stiffness reduction in column 2AD and 2BD 

State #8 Undamaged 87.5% stiffness reduction in column 3BD 

State #9 Undamaged 87.5% stiffness reduction in column 3AD and 3BD 

State #10 Damaged Gap = 0.20 mm 

State #11 Damaged Gap = 0.15 mm 

State #12 Damaged Gap = 0.13 mm 

State #13 Damaged Gap = 0.10 mm 

State #14 Damaged Gap = 0.05 mm 

State #15 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base 

State #16 Damaged Gap = 0.20 mm and mass = 1.2 kg on the 1
st
 floor 

State #17 Damaged Gap = 0.10 mm and mass = 1.2 kg on the 1
st
 floor 

 

m

1st Floor

Base 2nd Floor

3rd Floor

Gap

Column

Bumper

 

(a) Mass, m, added at the base (b) Nonlinearity source 

Figure 3: Structural details. 
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was varied (0.20, 0.15, 0.13, 0.10, and 0.05 mm) in order to introduce different levels of 

nonlinearity (States #10–#14) for a given level of excitation. Finally, the fourth group includes 

the state conditions with damage in addition to mass and stiffness changes used to model 

operational and environmental condition changes (States #15–#17). 

For each state condition, ten tests were performed in order to take into account the 

variability in the data. Thus, for each of the five transducers, ten time histories were measured in 

each structural state condition. Additionally, the data acquisition system recorded the associated 

frequency response functions (FRFs) of the response at Channels 2–5 relative to the input 

measured with Channel 1 and the corresponding coherence functions. A Hanning window was 

applied to the time-domain data for leakage reduction and five averages were used to reduce the 

influence of random noise in the FRF estimates. Note that the Hanning window is commonly 

used when calculating spectral quantities from random time histories. The recorded time history 

for each test corresponds to the last time history used in the averaging process. 

To illustrate the output results from the data-acquisition system for one test of State #1, 

Figure 4 and Figure 5 show the force-time history from Channel 1 and the acceleration-time 

history from Channel 5, respectively. Figure 6 shows the FRF (y-axis on the left-hand side) 

relating the input excitation at Channel 1 and response at Channel 5 and its coherence function 

(y-axis on the right-hand side) calculated from five averages. Notice that the FRF is in 

logarithmic scale to compress the large signal amplitude and expand the small ones, allowing 

easier visualization of all frequencies in the signal. The coherence function is a measure of the 

correlation between the output signal and the input signal at each frequency. If the coherence 

value is 1, it suggests that the output is only caused by the input. If the coherence value is 0, then 

it suggests that none of the output is linearly correlated with the input. In Figure 6 the coherence 

function is, in general, close to 1, giving an indication that the responses are directly correlated 

with the input. 

 

0 5 10 15 20 25
-80

-60

-40

-20

0

20

40

60

80

Time (sec)

F
o
rc

e
 (

N
)

 

Figure 4:  Force-time history from Channel 1 of State #1.  
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Figure 5:  Acceleration-time history from Channel 5 of State #1.  

 

 

Figure 6:  FRF and coherence function from Channel 5 of State #1. 

 

2.3.1 Operational and Environmental Effects 

Many papers and reports discuss the changes in structural characteristics caused by 

operational and environmental condition changes (Woon and Mitchell, 1996; Soon et al., 1999). 

The most pronounced structural changes have been associated with temperature variations. For 

example, the measured fundamental frequency of the Alamosa Canyon Bridge in New Mexico 

varied approximately 5% during a 24-hour test period, and this variability was correlated to the 

temperature difference across the bridge deck (Sohn et al., 1999). The physical reason for this 

correlation is the temperature dependence of the material properties, such as Young’s modulus, 

Poisson’s ratio, coefficient of thermal expansion (which can result in a change in the boundary 

conditions), and damping. Such variability often manifests itself in linear changes in the stiffness 

or mass of a structure. For a given structure, if the percent shift in natural frequency, relative to 

the reference temperature, is approximately the same for each mode (Woon and Mitchell, 1996), 



12 

it implies that temperature change affects the elastic modulus. Moreover, changes in the natural 

frequencies can also be correlated to changes in mass. In the case of bridges, a significant 

volume of traffic increases the mass of the structure and consequently decreases the natural 

frequencies. 

These factors have posed challenges when using modal properties as damage-sensitive 

features. As stated above, in order to simulate the changes in real-world structures caused by 

varying operational and environmental conditions, several sources of variability were included in 

the test structure. This variability includes adding mass and reducing the stiffness at several 

different locations. Figure 7 shows the FRFs, of the response from Channel 5 and the excitation 

force at Channel 1, for the baseline condition state (State #1) and an undamaged state with 

operational variations corresponding to a 1.2-kg mass attached on the first floor (State #3). As 

expected, the case with the added mass resulted in lowering the natural frequencies. 

2.3.2 Nonlinearities Effects 

The simulated damage was introduced through nonlinearities resulting from impacts with 

a bumper, as shown in Figure 3(b). When the structure is excited at the base, the suspended 

column hits the bumper. The level of nonlinearity depends on the amplitude of oscillation and 

the gap between the column and the bumper. As described above, this source of damage is 

intended to simulate fatigue cracks that open and close upon dynamic loading. Figure 8 shows 

FRFs of the response from Channel 5 and the excitation force at Channel 1 for the baseline 

condition state (State #1), the damaged state consisting of a gap of 0.05 mm (State #14), and for 

the damaged state consisting of a gap of 0.10 mm and 1.2 kg added on the first floor (State #17). 

The figure shows shifts of the resonance frequencies as well as distortions of the FRF shape 

caused by the nonlinearities. 
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Figure 7:  FRFs (based on five averages) of the response at Channel 5 and the excitation force 

at Channel 1 for State #1 (baseline) and State #3 (1.2-kg added mass on the first 

floor). 
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Figure 8:  FRFs (based on five averages) of the response at Channel 5 and the excitation force 

at Channel 1 for State #1 (baseline), State #14 (gap = 0.05 mm), and State #17 

(gap= 0.10 mm and 1.2-kg added mass on the first floor). 
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3. NUMERICAL SIMULATION 

The goal of this section is to develop a physics-based numerical model of the test 

structure in order to compare the numerical results with the measured experimental data. In 

general, numerical models can be used to define the SHM system properties, such as sensor type 

and location, before deploying a monitoring system on real-world structures and to validate some 

SHM systems’ measurements. 

The test structure is modeled as four lumped masses at the floors, including the base that 

slides on rails, as shown in Figure 9. The stiffness 

 

k1 and damping 

 

c1 are intended to simulate the 

friction between the rails and the structure. 

 

 

Figure 9:  Shear-building model of the test structure. 

 

For the shear-building model shown in Figure 9, the equations of motion can be written 

in a matrix notation as follows: 

where the ][M , ][C , and ][K  are the mass, damping, and stiffness matrices of the system, 

respectively, )}({ tF  is the input vector excitation, and }{y  is the vector of unknown 

displacements at the nodal coordinates. The mass and stiffness matrices are given by  

where for 4,...,1=i , im  denotes the mass at the i
th

 floor and ik  denotes the stiffness of the i
th

 

story. The equations of motion can be uncoupled with the modal damping assumption (Naeim 

and Kelly, 1999), in which ][C  can be evaluated from the following modal damping matrix 

)}({}]{[}]{[}]{[ tFyKyCyM =++      , (1) 
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where iζ , iω , and iM  are the damping ratio, natural frequency and modal mass, respectively, 

associated with the i
th

 mode. The modal damping ratios are estimated from the measured 

experimental data. The matrices ][C  and ][ nC  can be related by 

where ][φ  is the mode shapes’ matrix. As a consequence, the matrix ][C  is determined by 

For the numerical model described above, Figure 10 shows the comparison between the 

numerical and experimental mode shapes. Notice that the first mode is a rigid body mode and, 

for convenience, is not illustrated here (see Section 2). The experimental modal parameters were 

estimated using the rational-fraction polynomial (RFP) method as described later in 

Subsection 4.3.1. The experimental natural frequencies and damping ratios for the baseline 

condition (State #1) as well as the numerical natural frequencies are summarized in Table 3. 

Note that the numerical model assumes, for the aluminium, a calibrated Young’s Modulus equal 

to 65 GPa and negligible friction between the rails and the structure. 

One common technique of comparing numerical and experimental mode shapes is by 

means of modal assurance criterion (MAC) (Maia and Silva, 1997), which is defined as follows: 

 

The subscripts N and E refer to numerical and experimental, respectively, and i and j 

refer to the particular modes that are being compared. The MAC value is bounded between 0 and 

1 with a MAC value close to 1 indicating close correlation. As shown in the Figure 11, the MAC 

values of the second, third, and fourth mode shapes are very close to one, giving an indication 

that the numerical and experimental mode shapes are highly correlated. 

Figures 12 (a) and (b) show the experimental and the numerical acceleration responses at 

the third floor (Channel 5), respectively. The experimental response corresponds to the measured 

time-history response of the baseline condition (State #1) resulting from the excitation measured 

at Channel 1. The numerical response corresponds to the acceleration at the same location 

calculated for the same experimental excitation. Apparently, the figure indicates that the 

acceleration amplitudes of both responses are consistent. Two techniques can be used to 

numerically compare both responses, namely, the correlation analysis and power spectral density 

(PSD) comparison. 
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Figure 10: Numerical (NM) and experimental (Exp) mode shapes of the baseline condition. 

 

Table 3: Experimental and Numerical Modal Parameters 

Mode 

number 

Frequency (Hz) Damping 

ratio (%) Experimental Numerical 

2 30.7 29.8 (-2.9 %) 6.3 

3 54.2 54.0 (-0.4 %) 2.0 

4 70.7 71.6 (+1.3 %) 0.97 
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Figure 11:  Correlation between numerical and experimental mode shapes by MAC. 
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Figure 12:  Experimental and numerical responses of the baseline condition from Channel 5, 

resulting from the measured experimental excitation at Channel 1. 

Correlation is a statistical technique used in signal processing for analyzing the 

relationship between two or more signals. The cross-correlation is a standard technique of 

estimating the degree to which two different signals are correlated. Considering two random 

variables 

 

X and 

 

Y, the cross-correlation 

 

RXY at delay or time lag τ  is defined as 

where Xµ  and Yµ  are the means of the corresponding variables, E  is the expected value, and 

 

t  

is an integer for a discrete-time process. The standard deviations of the variables, 

 

σ X  and 

 

σY , in 

the denominator, serve to normalize the range of the correlation, and for a stationary process, its 

values are in the range [-1, 1]. A coefficient equal to 1 indicates perfect correlation, i.e., the 

variables overlap when they are shifted by τ , and -1 indicates perfect anticorrelation where the 

variables are completely out of phase when shifted by τ.  

Autocorrelation function is the correlation of a signal with itself, and for the variable 

 

X 

is defined as 

The autocorrelation function is used in order to find out repeating patterns within the 

responses, such as the presence of periodic signals buried under noise. As a general rule, it is 

sufficient to compute the values of the autocorrelation for values of 4/n≤τ , where 

 

n  is the 

number of data points in the signal (Montgomery, 1997). In this case, by overlapping the 

numerical and experimental autocorrelation function, this procedure permits us to evaluate if the 

numerical response reasonably characterizes the experimental data. The autocorrelation functions 

 

RXY(τ) =
E (Xt − µX )(Yt +τ − µY)[ ]

σ XσY
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shown in Figure 13, in an overlap format, indicate that the experimental and numerical responses 

are correlated. 

Another manner to compare the accuracy of the experimental and numerical responses is 

by means of overlapping the PSDs of both responses, as shown in Figure 14. In this case, each 

PSD is estimated by averaging small spectrum quantities of segments from the time history. 

Basically, for each response, the associated time history (8,192-point length) is divided into 

segments according to a moving window of 1,024-point length. Each segment is windowed with 

a Hamming window. The fast Fourier transform is computed in each segment using a moving 

window with 50% overlap. Finally, the set of spectrum estimates is averaged to form the final 

PSD. In the figure, the numerical estimated PSD seems to fit the experimental PSD, even though 

the former has more energy content in the second and less energy in the third natural frequencies.  

In conclusion, the results of this section summarize the development of a 4-DOF physics-

based numerical model to better understand the structural behavior of the system. The damping 

matrix for this model was obtained using the results of the experimental modal analysis. The 

Young’s modulus was adjusted so that the analytically predicted natural frequencies agreed with 

the experimental ones. The developed numerical model assumes negligible friction between the 

rails and the structure. The model shown predicts the measured baseline response with a high 

level of certainty. 
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Figure 13:  Autocorrelation functions of the experimental and numerical responses. 
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Figure 14:  PSD of the experimental and numerical time histories. 
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4. FEATURES EXTRACTION 

In the SHM field, the ideal approach for features selection is to choose features that are 

sensitive to damage, but are not sensitive to operational and environmental variations. However, 

in real-world structures such an approach is not always possible, and intelligent feature 

extraction procedures are usually required (Worden et al., 2007). In this section, several feature 

extraction procedures are presented, based on basic-statistics analysis, time-series analysis, 

frequency-domain analysis, and time-frequency analysis. 

Because no explicit mathematical equation can be written for the time histories produced 

by a random phenomenon, such as the measured data in this report, statistical procedures must be 

used to define the properties of the data. In statistics, the data from a random process is said to be 

stationary and ergodic when the moments and joint moments are time invariant and they do not 

change when computed over different time histories (Bendat et al., 2000). In this report some of 

the basic statistical properties such as the first four statistical moments as well as autocorrelation 

functions are used to describe the random data. A more detailed theoretical explanation about 

these basic statistics will be given later, namely in Subsection 4.1. First, a global view of the first 

four statistical moments for all ten time histories from Channel 5 of each state condition is 

presented from Figure 15 to Figure 18. 

The randomness highlighted in Figure 15 is related to the plot’s scale, and it turns out to 

be meaningless because the mean is approximately zero for all state conditions. The standard 

deviation (Figure 16), skewness (Figure 17), and kurtosis (Figure 18) do not vary significantly 

when computed for each of the ten time histories associated with a particular damaged condition. 

Furthermore, the autocorrelation functions shown in Figure 19 for State #1 (baseline) and 

State #14 (highest level of damage) are relatively consistent for all ten time histories 

corresponding to the respective condition.  

Based on the previous observations, it is assumed that the random processes in this study 

are weakly stationary or stationary in the wide sense. This assumption implies that the statistics 

of a single time history are representative of the entire time-history ensemble corresponding to a 

specific damaged state. 
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Figure 15:  Mean for all time histories from Channel 5 of all state conditions. 
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Figure 16:  Standard deviation for all time histories from Channel 5 of all state conditions. 
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Figure 17:  Skewness for all time histories from Channel 5 of all state conditions. 
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Figure18:  Kurtosis for all time histories from Channel 5 of all state conditions. 
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Figure 19:  Autocorrelation functions for all time histories from Channel 5 of State #1 and 

State #14. 

 

4.1 Basic Statistics 

This subsection is concerned with the extraction of basic signal statistics as damage-

sensitive features. In order to show an overview of the raw data’s appearance, acceleration-time 

histories of States #1, #3, #7, #14, and #17 from Channels 2 to 5 are plotted, in concatenated 

form, in Figure 20. From these plots it can be seen that the amplitude of the time histories is 

relatively consistent, based on visual inspection. Because the input to the shaker was specified as 

a normal distribution random signal, it is assumed that the time histories from the baseline and 

other undamaged conditions are also normally distributed. This assumption is based on the well-

known result from random vibrations (Wirsching et al., 1995) that a linear system subjected to a 

normally distributed random input will exhibit a normally distributed random response.  

In order to establish the underlying distribution of the data, statistical techniques are used 

to estimate the probability density function (PDF) of the measured data. Moreover, it is expected 

that the damage can introduce significant changes in the acceleration-time-history PDFs and, as a 

consequence, the first four statistical moments and PDFs are discussed as damage-sensitive 

features. 

4.1.1 First Four Statistical Moments of the Measured Data 

The first four statistical moments (mean, standard deviation, skewness, and kurtosis) are 

often computed when examining raw time-series data. It should be noted that many classical 

statistical tests depend on the assumption of normality, and when the time-series data have 

significant skewness and kurtosis diverges from three, the normality assumption is no longer 

valid. A brief review on the first four moments will be given in this subsection. 
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Figure 20:  Acceleration-time histories of various state conditions from Channels 2 to 5. 

When a random variable X  is measured in terms of deviations from its mean, its 

expectation yields moments about the mean, also referred to as central moments. The n
th

 central 

moment of the probability distribution of a random variable X  is defined as 

where )(XEX =µ  is the mean of X . The mathematical operator )(XE  is the expectation of the 

random variable X , i.e., in simple terms, the expectation operator calculates the mean of a 

random quantity. Thus, the first central moment of a standard normal distribution is zero, 

because the first moment of a symmetric distribution about the mean is zero. 

The variance is the second central moment. The variance of a random variable, 2

Xσ , is a 

measure of the dispersion from the mean, and is defined as 

 

µn = E(X − µX )n

    , (9) 

22 )( XX XE µσ −=     . (10) 

State#1 State#3 State#14 State#17 State#7 

State#1 State#3 State#14 State#17 State#7 

State#1 State#3 State#14 State#17 State#7 

State#1 State#3 State#14 State#17 State#7 
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The square root of the variance is called the standard deviation and is denoted as Xσ . 

Although the mean describes the central tendency of the data, the standard deviation describes 

the spread about the mean. 

The third statistical moment is a measure of the asymmetry of the PDF. The normalized 

third statistical moment is called the skewness, S, and is defined as 

where a positive skewness means that the right tail is longer and that the area of the distribution 

is concentrated below the mean. On the other hand, a negative skewness means that the left tail is 

longer and that the area of the distribution is concentrated above the mean. The skewness of a 

standard normal distribution is zero. 

The fourth statistical moment is a measure of the relative amount of data located in the 

tails of a probability distribution. The kurtosis, k, is the normalized fourth statistical moment and 

is defined as 

where a kurtosis greater than three indicates a “peaked” distribution that has longer tails than a 

standard normal distribution. This means that there are more cases far from the mean. Kurtosis 

less than three indicates a “flat” distribution with shorter tails than a standard normal 

distribution. This property implies that fewer realizations of the random variable occur in the 

tails than would be expected in a normal distribution. The kurtosis of a standard normal 

distribution is three. 

The th
k  central moment about the mean, mk, for a sample nxx ,...,1  with n  observations 

from a random process X  is defined as 

where 1mx =  is the sample average. 

In statistics, it is common to use a standard data normalization procedure in the form of 

where 

 

n  are the observations, 

 

x j  is the mean, and 

 

s j  is the standard deviation of each sample j . 

Thus, the normalized sample given by 

 

z j

n  has a zero mean and a unit standard deviation.  

Figure 21 shows the first four statistical moments of one time history from Channels 2-5 

of each state condition. The mean and standard deviation of the time histories does not give any 

insight about the presence of nonlinearities associated with the damaged state conditions 

(States #10–#17). However, the skewness and kurtosis show some differences in the damaged 

states when compared to the undamaged states conditions (States #1–#9). 
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Figure 21:  First four statistical moments for each state condition. 

 

From Figure 21 it is clear that for almost all of the damaged states, the skewness diverges 

from zero, with the possible exception to State #16. It is of interest to note that the skewness has 

an opposite sign for the sensors on either side off the impact device, implying that the response 

from Channel 4 has more values below the mean in its damaged condition, and the response 

from Channel 5 has more values above the mean. Moreover, these same damaged states in 

general have larger kurtosis (larger than 3.2) than the undamaged states. Note that a kurtosis 

larger than three means that most of the variance is caused by nonfrequent extreme deviations 

from the mean. However, for both skewness and kurtosis, the changes are only significant in the 

data from Channel 4 and 5, which are on the floors directly above and below the bumper 

location. This fact points out the challenge of using sensors to detect sources of damage far from 

the damage locations.  
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In conclusion, the skewness and kurtosis can be used as features to detect damage that 

results in a linear system subsequently exhibiting nonlinear dynamic response and when the 

damage introduces an asymmetry into response data. In these cases, the sensors had to be located 

close to the damage. 

4.1.2 Probability Density Distribution 

Relevant statistical changes in the acceleration-time histories from Channel 5, that are the 

result of damage, can be observed in the estimated PDFs obtained from data corresponding to the 

structure in its different damaged conditions. As stated above, the measured data of the baseline 

condition are assumed to be normally distributed. Based on this assumption, the normal 

probability plots are used to graphically verify whether the measured data are from a normal 

distribution. The normal probability plot will be linear when the data come from a normal 

distribution. If the data are related to another probability distribution, they will introduce 

curvature in the plot.  

Figure 22 shows normal probability plots of State #1 (baseline), State #3 (1.2 kg added 

mass on the first floor), State #14 (gap of 0.05 mm), and State #17 (a gap of 0.1 mm and 1.2 kg 

added on the first floor). The nonlinear scale of the vertical axis corresponds to empirical 

probability (from 0 to 1) versus the accelerations data points in the horizontal axis. In a normal 

probability plot, all points should fall close to the dashed line if the data are normally distributed. 

Thus, the plots clearly show that data from the baseline condition (State #1) and the state 

affected by simulated operational and environmental conditions (State #3), but without 

nonlinearities, are normally distributed. Note that in this case the shaker does not have a 

feedback control mechanism and as such has difficulty in reproducing an accurate Gaussian 

input. This difficulty manifests itself in the tails of the distribution where slight deviations from 

the normal condition can be seen. However, the states with the nonlinearities (States #14 and 

#17) show that an assumption of normality is not justified, as shown by the significant curvature 

in the tails of the normal probability plot. 

Another technique to verify the underlying distribution of the data is to estimate its PDF 

using nonparametric density estimators. In statistics, the histogram density estimator and the 

kernel density estimator are two techniques used to estimate an unobservable underlying PDF of 

a random variable. Although the former is the oldest and most widely used form of density 

estimation, in this study only the latter is used. 

The kernel density estimator is a generalization and improvement over histograms. Given 

data from a sample of a population, the kernel density estimator makes it possible to draw 

inferences about the entire population being studied. A very brief summary of the approach will 

be given here for completeness. More details about this estimator can be found in the references 

(Silverman, 1986). 

Considering a series from a random variable X  with n  observations, nxx ,,1  , the 

estimated density distribution, )(ˆ xf , is given at any point x  by 

where K  is the kernel function and h  is the bandwidth, also called the smoothing parameter. 

Even though there are many choices among kernels, in this study, K  is taken to be a standard 

Gaussian function with a zero mean and unit variance as follows: 
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Figure 22:  Normal probability plots of four state conditions for Channel 5. 

 

One of the most important factors for a good kernel density estimator is the choice of the 

smoothing parameter h . The quality of the kernel estimate depends less on the shape of the 

kernel function than on the value of its bandwidth. A value h  that is too small or too large is not 

useful because small values of h  lead to spiky estimates, and the kernel density estimate is said 

to be undersmoothed. On the other hand, large values of h  lead to flat estimates and the kernel 

density estimate is said to be oversmoothed. In the SHM field, the definition of this parameter 

tends to be crucial because damage often manifests itself as small changes in the tails of the 

distribution. Several techniques to estimate the optimum value for h  can be found in the 

references (Browman, 1984). 

Figure 23 shows the individual estimates of the PDFs for Channel 5 of States #1, #3, #7, 

#14, and #17 using the kernel density estimator. This estimation is based on the normal kernel 

2

2

1

2

1
)(

x

exK
−

=
π     . 

(16) 
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function given by Eq. (16) and using a smoothing parameter h  that is a function of the number 

of points in each time history. The density is estimated at 100 equally spaced points that cover 

the range of acceleration amplitudes in each time history. Based on the results shown in  

Figure 23, one can conclude that there exists a difference between the PDF of damaged  

State #14 and the other state conditions.  

From Figure 21 and Figure 23, it can be seen that: (i) the PDFs of States #14 and #17 

have negative skewness; (ii) State #14 has more nonfrequent values in the tails than the other 

states as indicated by its large value of kurtosis; (iii) as the level of damage increases, the PDFs 

of the corresponding state conditions deviate from a normal distribution. 

In conclusion, it follows from analysis of the PDF estimates that the baseline condition is 

normally distributed. However, as the level of damage increases, the PDFs deviate from a normal 

distribution. 

4.2 Time-Series Analysis 

Time-series analysis takes into account the fact that data points taken over time may have 

an internal structure, such as autocorrelation, trend, or seasonal variation (NIST/SEMATECH, 

2008). This subsection gives a brief overview of some damage-sensitive features extraction 

techniques based on time-series analysis and applies them to the measured data, with special 

attention being given to AR models. 

4.2.1 Autoregressive Model 

The AR model with p autoregressive parameters, AR(p), can be written as 

where 

 

xi is the measured signal at discrete time index 

 

i , and 

 

ei  is an unobservable random error 

(or residual error) at the 

 

i th  signal value. The unknown AR parameters, jφ , can be estimated by 

using either least squares or the Yule-Walker equations (Box and Jenkins, 1976). In this report 

only the former is used. 
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Figure 23:  PDFs estimated by a kernel density estimator using time histories from Channel 5. 
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In SHM, the AR model can be used as a damage-sensitive feature extractor based on two 

approaches: (1) using the AR parameters jφ ; and (2) using the residual errors. The first approach 

consists of fitting an AR model to signals from undamaged and damaged structure. Then, the AR 

parameters jφ  are used as damage-sensitive features. The second approach consists of using the 

AR model, with parameters estimated from the baseline condition, to predict the response of data 

obtained from a potentially damaged structure. The residual error, which is the difference 

between the measured and predicted signal, is calculated at time i  as follows: 

where ix̂  is the predicted th
i  signal value. This approach is based on the assumption that damage 

will introduce either linear deviation from the baseline condition or nonlinear effects in the signal 

and, therefore, the linear model developed with the baseline data will no longer accurately 

predict the response of the damaged system. As a consequence, the residual errors associated 

with the damaged system will increase. Note that for a fitted AR (p) model, the residual errors 

can only be computed for pi > time points. 

4.2.1.1 Model Identification 

The order of the AR model is an unknown value. A high-order model may perfectly 

match the data, but will not generalize to other data sets. On the other hand, a low-order model 

will not necessarily capture the underlying physical system response. In order to find out the 

optimum model order, several techniques are used in this study, such as Akaike’s information 

criterion (AIC), partial autocorrelation function (PAF), root mean squared error (RMSE) and 

SVD. A brief explanation of all techniques will be given for completeness. The specific goal of 

using several techniques is to establish upper and lower bounds for the optimum number of 

parameters needed to fit the data. The analysis is carried out for one acceleration-time history 

from Channel 5 of the baseline condition (State #1). 

4.2.1.1.1 Akaike’s Information Criterion 

The AIC has been used to assess the generalization performance of linear models. In a 

simple way, this technique returns a value that is the sum of two terms as follows: 

where 

 

Lm is the maximized log-likelihood of the residual error, and m  is the number of 

adjustable parameters in the model. It assumes a tradeoff between the fit of the model and the 

model’s complexity. The first term is related to how well the model fits the data, i.e., if the 

model is too simple, the residual errors increase. On the other hand, the second term is a penalty 

factor related to the complexity of the model, which increases as the number of additional 

parameters grows (Box et al., 1994; Bishop, 1995; Everitt, 2002). 

Figure 24 shows the AIC values calculated using Eq. (19) as a function of the order of 

AR models. The optimum AR order is associated with the minimal ACI value, i.e., smaller AIC 

values suggest an optimal tradeoff between minimizing the residual error while maintaining a 

model that will generalize to predict other data sets well. For the data from the baseline 

condition, the AIC values converge around a 25
th

 order model, giving an indication that an 

AR(25) model is a good start. 

iii xxe ˆ−=
    , (18) 

mLAIC m 22 +−=
   , (19) 
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4.2.1.1.2 Partial Autocorrelation Function 

The coefficients from a PAF were estimated by fitting AR models of successively 

increasing order p  to the measured data and then plotting the last estimated coefficient, ppφ , as a 

function of the model order. Thus, the AR model of Eq. (17) can be rewritten as follows: 

For an AR model of a noise-free order p  process, the PAF, kkφ , will be nonzero for 

pk ≤  and zero for pk > . For real-world structures with noise in the measurements, the partial 

autocorrelation coefficients of an actual AR(p) will not be zero after lags greater than p . Thus, it 

is necessary to define upper and lower bounds for which AR(p) will be considered zero if the 

coefficients are within those limits (Box and Jenkins, 1976). The idea is to look for the points of 

the PAF that are essentially zero. An approach based on the standard deviation error, φσ , of the 

PAF is defined as follows: 

where the estimated partial autocorrelation coefficients of order 1+p  and higher are 

approximately independently distributed, and n  is the number of observations used in fitting the 

AR model. Placing a confidence interval for statistical significance is helpful for this purpose. 

For example, assuming an approximate 95% confidence interval for the partial autocorrelation 

coefficients, the limits are placed at 

 

±2σφ . 

Figure 25 shows the first 60 estimated partial autocorrelation coefficients for one time 

history from Channel 5 associated with State #1 obtained by directly fitting AR models of 

increasing order. This PAF shows statistical significance for lags from 1 to about 25 (note that 

lag 0 is always 1). Theoretically, the next lags should be between the limits of the confidence 

interval set up by the dashed horizontal lines. In spite of some coefficients falling outside the 

limits, the PAF indicates that an AR(25) model should be appropriate. 
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Figure 24:  AIC values of AR models of increasing order (Channel 5 of State #1). 
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Figure 25:  Estimated PAF of AR models of increasing order (Channel 5 of State #1). 

 

4.2.1.1.3 Root Mean Squared Error 

In statistics, the RMSE of an estimator θ̂ , with respect to the estimated parameter θ , is a 

real value of how much the estimator differs from the estimated parameter, as follows: 

In the AR model, the RMSE is a measure of the differences between values estimated by 

model and the values actually measured. For a time series from a random variable X  with 

 

n  

observations in the form of nxx ,...,1 , Eq. (22) becomes 

For the purpose of finding the optimum AR model, the RMSE is plotted as a function of 

the model order. The estimation of the AR order can be achieved by minimizing the RMSE 

value. Figure 26 shows the RMSE of AR models of increasing order (from 1 to 60) for one time 

history from Channel 5 of State #1. The results suggest that an AR model of order 

 

p =10 would 

fit the time history well. 

 

 

RMSE( ˆ θ ) = E(( ˆ θ −θ)2)    . (22) 

 

RMSE( ˆ x ) =
1

n
(xi − ˆ x i)
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Figure 26:  RMSE of AR models of increasing order (Channel 5 of State #1). 

 

4.2.1.1.4 Singular Value Decomposition 

In linear algebra, the SVD is a factorization of a rectangular matrix, M, of dimension 

(mxn), defined as follows 

where the matrix 

 

Λ(mxn) contains the singular values on the diagonal and zeros on the off 

diagonal terms. The matrices )(mxmU  and )(nxnV  are square. SVD is used to determine the effective 

rank of a matrix M . In order to conduct the analysis, Eq. (17) might be written as 

or  

where X  is the measured signal and { }φ  contains the AR parameters. Assuming that 60=p , the 

matrix 

 

M has a dimension of 8,132 60× . Figure 27 shows the SVD for 

 

M composed by one 

time history from Channel 5 of State #1. The results plotted in the figure suggest that an AR(30) 

model order may work well. 

4.2.1.1.5 Conclusions 

The four techniques used did not give consistent results for the optimum order of the AR 

model. The AIC and PAF suggest that an AR model of the 25
th

 order should be appropriate. 

Using the SVD technique through the effective rank of a matrix, the singular values’ respective 

amplitude suggests that a 30
th

 order model should work. However, by tracking the RMSE of the 
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residual errors for models of increasing order, this technique gives an indication that a 10
th

 order 

model should be appropriate. Based on this analysis, throughout this report both the AR(5) and 

AR(30) models will be used in order to point out the influence of the AR model order on the 

damage-detection process. 

4.2.1.2 Model Estimation 

Figure 28 and Figure 29 plot the AR(5) and AR(30) model parameters, respectively, for 

all the structural state conditions. The AR parameters were estimated by fitting the AR model to 

a time history from Channel 5 of each state condition using the least-squares technique. The 

parameters are assembled into groups for discrimination purposes. In the case of the AR(5) 

model, the damaged states are split into two groups in order to highlight the influence on the AR 

parameters of the operational and environmental effects (damagedOEE). The figures suggest that 

increasing the level of nonlinearities in the damaged states tends to decrease the amplitude of the 

parameters. To better clarify those changes, Figure 30 shows the magnitude of the third AR(5) 

model parameter for all state conditions at Channel 5. One can generally see a correlation 

between the amplitude and the level of nonlinearity for the damaged state conditions without 

simulated operational and environmental variations (States #10–#14), However, the amplitude of 

the damaged states with those variations (States #15–#17) have no correlation with the level of 

damage. These results suggest that the operational and environmental variations can introduce 

changes in the structural response and mask the responses related to damage. This fact makes the 

discrimination of the damaged states challenging with operational and environmental variations 

from all the undamaged states. 

In conclusion, AR parameters appear to be potential damage-sensitive features. The 

source of damage seems to induce changes in those parameters related to the level of damage 

and, therefore, this feature can also be used to evaluate the severity of damage. However, the 

correlation with the level of damage seems to disappear when the damage is present with 

simulated operational and environmental variations. 

After the parameters have been estimated for both AR models, these models will be 

analyzed to test how well the models fit the data. Figure 31 (a) and Figure 32 (a) show an overlap 

of the measured and estimated acceleration-time histories at Channel 5 for the baseline condition 

(State #1) using the AR(5) and the AR(30) models, respectively. From a qualitative point of view 

windowed time histories with 50 points, shown in Figure 31 (b) and Figure 32 (b), illustrate that 

both the AR(5) and the AR(30) models developed from the baseline condition appear to predict 

the data well.  
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Figure 27:  SVD of the AR(60) model using a time history from Channel 5 of State #1. 
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Figure 28:  AR(5) model parameters for all structural state conditions (Channel 5). 
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Figure 29:  AR(30) model parameters for all structural state conditions (Channel 5). 
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Figure 30: Amplitude of the 3
rd

 parameter from the AR(5) model at Channel 5 for all state 

conditions. 
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Figure 31:  Comparison of the measured and estimated time histories using the AR(5) model fit 

to State #1 data from Channel 5. 
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Figure 32: Comparison of the measured and estimated time histories using the AR(30) model 

fit to State #1 data from Channel 5. 

One indication that the AR model is fitting well the data is indicated by a Gaussian-

distributed residual error. Figure 33 (a) and Figure 34 (a) show a histogram of the residual errors 

using 20 bins and an imposed Gaussian distribution that is based on the mean and standard 

deviation from these data. As it was expected, the histograms show that the higher the order of 

the AR model, the lower the magnitude of the residual errors. Notice that depending on the level 

of nonlinearity introduced by the bumper, the distribution of the residual errors may not be 

Gaussian when the baseline-based AR model is used to predict the response based on data from 

the damaged states.  

The central limit theorem states that the distribution of a sum of random variables tends 

to be normal, even when the distributions of the individual random variables forming the sum are 

decidedly not normal. Therefore, one can normalize the data by forming sums of the residual 

errors and examining the statistical properties of these sums. This process also reduces the 

number of residual errors per time history that need to be stored. The process begins by first 

performing a standard data normalization. For each residual error time history given by Eq. (18), 

the residual errors mean, 

 

µe , is subtracted from each value i, and the result is divided by the 

residual errors standard deviation, 

 

se , resulting in a standard normalization procedure (recall 

Eq. (14)) defined as 

where z  is the normalized residual errors vector. Next, the normalized residual errors are 

grouped into 4-sample data blocks, and the mean of each data block is calculated. The mean 

values are the new damage-sensitive features. For the AR(5) model, this process reduces the 

residual error features from 8187 individual values to 2046 subgroups of residuals. Note that the 

residual errors are computed from accelerations measurements in the range of 6 to 8192, and for 

convenience the last three residuals are discarded. For both models, the transformed residual 

errors are shown in Figure 33 (b) and Figure 34 (b), along with the normal distribution based on 

the mean and standard deviations of these mean values. 

Even though the residual errors of both models, apparently, have an underlying normal 

distribution, other techniques might be used to verify the data independency. In this study, the 

 

zi =
ei − µe

se    , 
(27) 
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PSD function of the residual errors is used to find the correlation or the presence of periodic 

signals buried under noise. Figure 35 and Figure 36 plot the PSD of the residual errors from both 

AR(5) and AR(30) models. Notice that the residual errors are estimated from one time history 

from Channel 5 corresponding to State #1. The plots show that the resulting residuals from the 

AR(5) model are correlated, because it is still possible to identify the three natural frequencies 

estimated, in Section 3, at 30.7, 54.2, and 70.7 Hz. 
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Figure 33:  AR(5) residual errors histograms with the corresponding Gaussian distribution 

(Channel 5, State #1). 
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Figure 34:  AR(30) residual errors histograms with the corresponding Gaussian distribution 

(Channel 5, State #1). 
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Figure 35:  Log PSD of the AR(5) model residual errors (Channel 5, State #1). 
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Figure 36:  Log PSD of the AR(30) model residual errors (Channel 5, State #1). 

 

The previous analysis suggests that the AR(30) model indicated by the SVD technique is 

appropriate, because the residual errors are independent and normally distributed when the 

baseline response is calculated with parameters estimated from the same condition. The next step 

is to use the baseline-based AR model to predict data from potential damaged states. If some 

anomalies are present in the system, the residual errors will increase as discussed in 

Section 4.2.1. Note that this approach is based on the assumption that anomalies will introduce 

either linear deviation from the baseline condition or nonlinear effects in the signal and, 

therefore, the linear model developed with the baseline data will no longer accurately predict the 

response of the damaged system. As a consequence, with such indications, a next action might be 

to launch a full investigation to identity the cause of such anomalies. Note that those anomalies 

can result from either operational and environmental effects or damage. In order to discriminate 

those anomalies caused by damage from those anomalies caused by operational and 
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environmental variability, it is postulated that the damage can introduce underlying nonrandom 

patterns in the measured data. 

In order to find repeating patterns within the time histories, such as the presence of 

periodic signals buried under noise, correlation analysis is carried out using Eq. (8). Figure 37 

shows the autocorrelation functions of the original acceleration-time histories from Channel 5 of 

State #1 (baseline), State #7 (under environmental variations), State #14 (highest level of 

damage), and State #17 (under operational variations and damage) using the first 200 

coefficients. The strong correlation suggested by the autocorrelation functions is an indication of 

repeating patterns within time histories. Moreover, from these figures, it is difficult to make any 

inferences about the structural condition, such as the presence of periodic signals buried in the 

noise that is introduced by the nonlinearites. 

Figure 38 shows the autocorrelation functions of the residual errors from the AR(5) 

model of the four states mentioned above. Theoretically, if the AR model accurately represents 

the original time histories, the residual errors should be nearly uncorrelated. Looking at the plots, 

one can conclude that the residual errors from the AR(5) model are still correlated. However, 

Figure 39 indicates that increasing the AR order reduces the correlation among the residual 

errors for the undamaged state conditions and, at the same time, it points out patterns in the 

residual errors when damage is introduced by the bumper. These patterns are not present in the 

undamaged time histories. This fact points out the need to choose an appropriate AR model order 

that captures the damage-related information contained in the signal. 

 

 

Figure 37: Autocorrelation functions of the original time histories from Channel 5. 
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Figure 38: Autocorrelation functions of the AR(5) residual errors. 

 

 

Figure 39: Autocorrelation functions of the AR(30) residual errors. 
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Another way to check the existence of patterns in the data is by means of the lag plot 

technique (NIST/SEMATECH, 2008). For completeness, a brief description of this technique is 

given as follows. For a time-discrete variable X, the lag plot consists of plotting the values of 

 

xi 

versus 

 

xi−τ , where τ  is the lag. If the underlying data are not random, it is possible to identify a 

trend or pattern in the lag plot. Lag plots can be generated for any arbitrary lag; however, the 

most commonly used lag is 1. Furthermore, the lag plot can be used to identify the existence of 

outliers. Note that a cluster around a straight line with a positive slope is an indication of positive 

correlation in the observations. 

Figure 40 shows plots of the original acceleration-time histories from Channel 5 of States 

#1, #7, #14, and #17 for a lag equal to 1. The damage seems to introduce slight changes into the 

correlation among the original data. However, these changes are amplified using the residual 

errors from the AR(5) and AR(30) models, as shown in Figure 41 and Figure 42, respectively. 

The plots suggest that both undamaged states (States #1 and #7) are randomly distributed with no 

correlation. However, the nonlinearities associated with damaged states (States #14 and #17) 

introduce some autocorrelation into the AR residual errors. Note that this analysis discriminates 

the undamaged and damaged state conditions, even in the presence of operational and 

environmental variations. 

In conclusion, the autocorrelation function, as well as the lag plot, suggests that although 

the time histories of each state condition have some correlation, damage introduces strong 

correlation in the AR residual errors, whereas there is no correlation in the residual errors for 

undamaged states, even in the presence of operational and environmental variations. This fact 

indicates that the AR residual errors can be efficiently used as damage-sensitive features, which 

confirms the previous studies in the literature. 

 

 

Figure 40:  Lag plots of the original time history from Channel 5. 
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Figure 41:  Lag plots of the AR(5) model residual errors from Channel 5. 

 

 

Figure 42:  Lag plots of the AR(30) model residual errors from Channel 5. 
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4.2.2 Principal Component Analysis of Autoregressive Parameters 

Principal components analysis (PCA) is a classical technique of multivariate statistics for 

mapping multidimensional data into a lower dimension with a minimal loss of information 

(Bishop, 1995; Jolliffe, 2004). A brief description of this technique is given as follows. 

Mathematically, the goal of PCA is to map n  vectors n
x  in a d -dimensional space 

),...,( 1 dxx  onto n  vectors n
z  in a p -dimensional space ),...,( 1 pzz , where dp < . Basically, the 

vectors n
x  can be represented, without loss of information, as a linear combination of a set of d  

orthogonal vectors iu  

This technique performs an orthogonal transformation by retaining only the significant 

eigenvectors. The eigenvectors with the higher magnitude of eigenvalues are the principal 

components of the data set and they correspond to the dimensions that have the largest variability 

in the data set. More precisely, for a d -dimensional data set with n  vectors, it is possible to 

calculate d  eigenvectors, and then, choosing only the first p  eigenvectors, the final data set can 

be rewritten with only p  dimension ( dp < ) without significant loss of information. The iu  

satisfy the following system of equations 

where ∑  is the covariance matrix of the set of n  vectors and iλ  are the eigenvalues. 

 

The principal components can also be obtained using SVD technique by decomposing ∑  

in the form of  

where Λ  is a diagonal matrix containing the ranked eigenvalues iλ , and V  is the matrix 

containing the corresponding eigenvectors iu . Notice that the results of PCA are generally 

discussed in terms of components scores ( iz ) and loadings ( iu ). 

In the SHM field, PCA is used for three primary purposes: (i) evaluation of patterns in 

the data; (ii) data cleansing; and (iii) data compression. The evaluation of patterns in the data is 

achieved through a linear mapping of data from the original feature space into a transformed 

feature space, where the eigenvectors (principal components) are orthogonal to each other and, 

as a consequence, they are uncorrelated. One can extract lines or patterns that characterize the 

data. The eigenvalues provide information about the variance of the principal components. The 

eigenvectors with the higher magnitude of eigenvalues are the principal components of the data. 

Data cleansing is a process used to discard those linear combinations of the data that have small 

contributions to the overall variance, i.e., the principal components with lower eigenvalues. This 

process can be achieved by reversing the projection back to the original feature space using only 

the principal components with higher eigenvalues. Data compression is the process of reducing 

the dimensionality of the data or the feature. Data compression can be achieved by reversing the 

projection back to the original feature space using only the principal components with higher 

eigenvalues. However, mapping the data into a lower dimension space may result in a loss of 

some information that can be necessary to discriminate the damaged from undamaged states. 

∑
=

=
d

i

i

n

i

n
uzx

1    . 
(28) 

iii uu λ=∑
   , (29) 

T
VVΛ=∑    , (30) 
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In this study, PCA technique is applied to evaluate patterns in the data for each state 

condition. Figure 43 illustrates the variability explained by each principal component for two 

extreme state conditions: baseline condition (State #1) and the most damaged condition 

(State #14). In this case the number of vectors is equal to ten, i.e., equal to the number of time 

histories for each state condition from Channel 5. The plots show that both states are 

characterized by a well-defined pattern because the first principal component explained almost 

100% of the variability. 

In order to investigate the use of AR parameters as damage-sensitive features in a 

transformed feature space created using the PCA technique, Figure 44 displays the AR(30) 

parameters from Channel 5 for all the state conditions projected onto the first two principal 

components. The state conditions are divided into four groups as stated in Subsection 2.3: 

baseline condition (BC); undamaged conditions with operational and environmental effects 

(UC); damaged condition (DC); and damaged condition with operational and environmental 

effects (DCOEE). The visualization of the AR parameters in the transformed space shows three 

principal characteristics: (i) the undamaged and damaged state conditions are not linearly 

separable in a two-dimensional projection; (ii) in general, the parameters of undamaged states 

seem to populate the borders of an ellipse; and (iii) the parameters from the undamaged state 

conditions have higher variance in the first principal component than the ones from the damaged 

state conditions as shown in Figure 45. 

Notice that the projection assumes the same shape by projecting the first principal 

component onto the remaining principal components because all of those components have 

residual variance as shown in Figure 43. In conclusion, using the PCA of the AR parameters to 

project these parameters onto the first two principal components does not result in a linear 

separation of the state conditions. PCA does show that the undamaged and damaged state 

conditions cluster well. However, the damaged cluster falls within the undamaged cluster, 

implying that some projection techniques such as support vector machines are needed to define a 

damaged-undamaged linear decision boundary in a higher dimensional space.  
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Figure 43:  Plot of the percentage variability explained by each principal component 

(Channel 5). 
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Figure 44:  AR(30) parameters (Channel 5) projected onto the first two principal components. 
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Figure 45:  Plot of the variability explained by the first principal component of each state 

(Channel 5). 

4.2.3 Correlation Coefficient Using Time Domain Data 

This subsection uses the correlation coefficient between times histories to find 

correlations among the structural state conditions. For completeness, a brief definition of the 

correlation coefficient is given below. 

The covariance matrix, 

 

∑, describes the correlation between elements of a vector or 

elements of a matrix. It is a generalization of the concept of the variance of a scalar-valued 

random variable to higher dimensions. For 

 

N  variables, the covariance matrix has a dimension 

of 

 

N × N( ). Considering two random variables 

 

X and 

 

Y, the covariance between those variables 

is given by 

where E is the mathematical expectation, and 

 

µX  and 

 

µY  are the means of each variable. Then, 

the correlation coefficient is given by 
 

cov(X,Y) = E X − µX( ) Y− µY( )[ ]   , (31) 
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where 

 

σ X  and 

 

σY are the standard deviations of each variable. Therefore, the correlation can be 

interpreted as a standardized covariance. Note that the correlation coefficient is a zero-lag 

normalized correlation function given by Eq. (7). The unbiased estimator for the correlation 

coefficient between X and Y based on two samples of dimension 

 

n , sample standard deviations 

 

sx  and 

 

sy , and samples means of 

 

x  and 

 

y , is given by 

In order to investigate the use of correlation coefficients as potential damage-sensitive 

features to identify the existence and locate the damage among the sensors, a standardized 

covariance matrix 

 

∑ with elements defined by Eq. (33) was calculated for each state condition. 

In this case, the variables are one time history from each channel (2 to 5). Because the 

accelerometers are distributed at four different locations, each matrix 

 

∑ has a dimension of 

 

(4 × 4).  

Figure 46 shows three coefficients per state condition, namely 

 

r25, 

 

r35, and 

 

r45. Notice that 

the indices of the coefficients correspond to the channel’s number instead of the position in the 

matrix. For instance, 

 

r25 consists of the correlation coefficient between Channel 2 and 5. The 

correlation coefficients based on the time histories are not able to discriminate the damaged from 

undamaged states or to locate the damage among the sensors, because the coefficients follow no 

systematic pattern that can be associated with the damaged states. This fact can be justified by 

considering the singularities imposed by the bumper (see Subsection 4.4.3). The singularities 

manifest themselves as a local phenomenon in time, which is not enough to produce trends in the 

time histories that can be identified by a global parameter such as the correlation coefficient. 

 

ρXY =
cov(X,Y)

σ XσY    , 
(32) 
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Figure 46:  Correlation coefficient, 

 

rij , by state condition, between Channels 

 

i  and 

 

j . 
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4.3 Frequency Domain Analysis 

The analysis carried out in this subsection intends to highlight the limitations of using 

modal parameters as damage-sensitive features, specifically the natural frequencies. 

Additionally, correlation analyses are performed using FRFs. 

4.3.1 Modal Parameters 

Modal parameters as damage-sensitive features were widely used in early SHM studies 

(Doebling et al., 1996). The motivation behind this approach is that modal parameters (natural 

frequencies, mode shapes, and modal damping) are functions of the physical properties of the 

structure (mass, damping, and stiffness). Therefore, any changes in the physical properties 

caused by structural damage will result in changes in the modal parameters. However, many 

studies using this approach only investigate numerical models or simple laboratory structures, 

and, therefore, they do not include operational and environmental variability and their associated 

effects on modal parameters. This variability can cause changes in the modal parameters that can 

mask the changes resulting from damage. Furthermore, it has been found in many cases that 

modal parameters do not have the required sensitivity to small defects in a structure (Farrar et al., 

2000). Thus, in this subsection some limitations associated with the use of modal parameters as 

damage-sensitive features will be discussed. 

The modal parameters estimation is done by curve fitting a parametric form of the FRF, 

defined in terms of the resonant frequencies, modal damping, and mode shapes, to the measured 

FRFs from one test corresponding to each state condition. The frequencies, damping ratios, and 

modes shapes were estimated using an RFP global curve fitting method using commercial modal 

analysis software. The RFP is a frequency-domain curve-fitting method that operates directly on 

the complex FRF. This method performs a least-squared error-curve fit to all FRFs. Note that the 

curve fitting is applied to minimize the effects of measurement noise.  

The specified frequency bands over which the RFP method was applied were determined 

by visualizing the imaginary part of the complex mode indicator function (CMIF), as shown in 

Figure 47 for State #1. By looking at this plot, three frequencies can be clearly identified. 

Therefore, for all state conditions, the FRFs were curve fit in one window with a frequency band 

between 25 and 80 Hz, as shown in Figure 48. Table 4 summarizes the estimated natural 

frequencies and damping ratios corresponding to each state condition. For completeness, the 

mode shapes of the baseline condition are plotted in Section 3. 

In order to highlight the differences from the baseline condition (State #1), Figure 49 

shows the natural frequencies of all state conditions and  Figure 50 plots the frequency 

differences between the baseline condition and the other states. One can observe that in general 

the differences decrease for the undamaged state conditions (States #2–#9) and increase for the 

damaged states with no mass or stiffness changes (States #10–#14). However, the challenge of 

this study is to detect damage when the structure is also affected by operational and 

environmental changes. Thus, as shown in Figure 50, it is clear that changes in frequencies 

associated with the damage introduced for States #15, #16, and #17 are masked by the varying 

mass and stiffness values associated with these state conditions. 

Note that apparently the damping ratios do not show signs of consistently increasing or 

decreasing with the damaged state conditions. Theoretically, the impacts associated with damage 

should increase the energy dissipation, which should manifest itself in higher damping. 

However, damping ratios are empirical values that must be obtained by measurements that 

assume a linear system. As a consequence, the lack of consistent changes in damping as a 
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function of damage can be justified by the fact that the damping ratios are estimated through the 

FRF curve-fitting process that fits a linear modal model to these nonlinear-system response data. 

Another aspect that can lead to discrepancies in the damping estimate is the use of the Hanning 

window to estimate the FRFs, which tends to bias the damping ratio estimates and yields values 

higher than are actually present (Maia et al., 1997). 

In conclusion, this subsection has demonstrated some limitations of using modal 

parameters as damage-sensitive features, specifically the natural frequencies. One cannot 

conclude which data are from the damaged states by just examining changes in the natural 

frequencies when other sources of variability are present that influence the dynamic response 

characteristics of the structure. 

 

 

 

Figure 47:  CMIF for one FRF from Channel 5 of State #1. 

 

 

Figure 48: Curve fitting example for the FRFs from Channels 2–5 of State #1. 
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Table 4: Experimental Natural Frequencies and Damping Ratios of All State Conditions 

State condition Frequency (Hz) Damping ratio (%) 

2nd 3rd 4th 2nd 3rd 4th 

State #1 30.7 54.2 70.7 6.3 2.0 0.97 

State #2 30.4 52.9 70.3 6.4 1.5 0.76 

State #3 30.9 53.1 68.2 5.5 2.1 0.82 

State #4 30.9 51.2 69.2 7.1 2.2 0.55 

State #5 30.3 47.0 67.8 7.0 1.8 0.38 

State #6 29.7 53.9 65.8 5.3 1.7 1.2 

State #7 28.6 54.2 62.2 5.1 1.7 0.72 

State #8 30.2 51.1 69.3 5.6 2.2 0.80 

State #9 28.9 47.4 68.0 4.6 2.6 0.80 

State #10 31.1 54.4 70.9 6.6 2.1 1.0 

State #11 31.7 54.5 70.9 7.0 1.9 0.93 

State #12 31.8 54.9 71.2 6.3 1.9 1.0 

State #13 32.4 55.2 71.4 6.3 1.9 1.0 

State #14 33.5 57.6 74.2 7.1 2.2 0.97 

State #15 31.6 54.0 71.1 5.4 1.6 0.73 

State #16 31.0 53.4 68.3 5.3 2.3 0.82 

State #17 32.3 54.4 69.2 5.0 2.2 0.80 
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Figure 49: Natural frequencies for all state conditions. 
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Figure 50:  Frequency deviations from the baseline condition (State #1) for all state conditions. 

4.3.2 Correlation Coefficients Using Frequency Response Functions 

In Subsection 4.2.3, the correlation coefficient was used to develop a global measure of 

the correlation between two time histories. Furthermore, time-domain data was used to 

investigate the usefulness of correlation coefficients across the sensors as potential damage-

sensitive features. Now, the same procedure is carried out using frequency domain data, namely 

the FRFs. Therefore, the variables of each standardized covariance matrix, 

 

∑, composed of 

correlation coefficients defined in Eq.(33), are the FRFs of each channel (2 to 5) and, therefore, 

for each state condition, the matrix 

 

∑  has a dimension of 

 

(4 × 4). 

Figure 51 shows three correlation coefficients 

 

r25, 

 

r35, and 

 

r45 per state condition. As with 

the time-domain data, the results show that the correlation coefficients estimated from the FRFs 

do not show any describable deterministic pattern across the sensors to discriminate the 

undamaged and damaged state conditions. 

Instead of using the correlation coefficient to analyze the correlation across the sensors 

for each state condition, the correlation coefficient can also be used to analyze the correlation 

between FRFs corresponding to different states. In this approach, the matrix 

 

∑ is formed for 

each channel. Because there are seventeen state conditions, for each channel the matrix 

 

∑ has a 

dimension of 

 

(17 ×17) . Figure 52 (a) and (b) show the correlation coefficients between the 

baseline (State #1) and all the structural state conditions (States #1–#17) at Channels 4 and 5, 

respectively. Once again, these figures show that the use of correlation of the FRFs does not 

discriminate the undamaged and the damaged state conditions. 

In conclusion, the correlation coefficient analysis was carried out to see if this feature can 

be used to identify the existence of damage as well as to locate the damage across the sensors. 

For both cases, either looking at changes in FRFs across the sensors for a particular damage case 

or looking at changes between an FRF of the baseline and all states conditions, the correlation 

coefficients do not discriminate the undamaged and damaged state conditions. This fact may be 

associated with the operational and environmental variations that introduce changes in the 

frequency content of the FRF and, therefore, those variations mask the changes in correlation 

associated with the damaged state conditions. 
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Figure 51:  Correlation coefficient per state condition across the channels. 
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Figure 52:  Correlation coefficient per state condition. 

4.4 Time-Frequency Analysis 

This subsection examines the time-frequency-amplitude representations of the signals in 

an effort to identify the damage. The main advantage of this representation is to track the 

evolution of the frequency components of the signal over time. 

For a stationary system, the frequency content should not change over time. However, 

nonlinearities introduced into the structure by a bumper can result in a nonstationary system. 

Therefore, if damage manifests itself as a nonlinearity, the signals from a damaged structure can 

be time-variant and, as a consequence, the frequency content may change with respect to time in 

a manner that can be correlated with damage. 

4.4.1 Short-Time Fourier Transform 

The STFT is used to determine the frequency content of small segments of a signal over 

time. The Fourier transform algorithm is applied to a subset or window of the complete time 

history and is used to calculate related spectral quantities for this window of data such as the 

PSD. This process is repeated using a moving window, while the data windows are allowed to 

overlap. This technique maps a signal into a function of both the time and frequency domains. 
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The STFT provides information about the frequency content and also about how the frequency 

content evolves over time. For a given sampling rate, the frequency resolution of the STFT is 

determined by the time length or period of the window. Notice that for a signal from a stationary 

system, the frequency content should not change over time. The spectrogram command in 

Matlab is used to compute the STFT and to visualize how the frequency components change 

over time. 

In this study, each 8,192-point acceleration-time history is split into 512-point time 

windows with a 50% overlap in order to compute the STFT. A Hamming window is applied in 

each time-domain segment. For each segment, the discrete-time Fourier transform is computed to 

produce an estimate of the time-varying frequency content of the signal. If the time history used 

to compute the STFT is representative of a stationary system, it is expected that one will observe 

no changes in the frequency content as a function of time. 

Figure 53, Figure 54, and Figure 55 illustrate the spectrogram for one time history from 

Channel 4 corresponding to State #1 (baseline), State #10 (gap = 0.20 mm) and State #14 

(gap = 0.05 mm), respectively. Note that in each figure the spectrogram is plotted in a time-

frequency-amplitude and time-frequency representation. Figure 56 plots the concatenated format 

of the spectrograms in each state, where the time domain between 0-25.6 s corresponds to the 

State #1, between 25.6-51.2 s to State #10, and 51.2-76.8 s to State #14. A few observations can 

be made, based on these spectrograms: 

i. All three states show significant energy content around the three identified resonant 

frequency components, at 30.7, 54.2, and 70.7 Hz (for the baseline condition), which 

correspond very well to the results from the analytical (Section 3) and experimental 

modal analysis results (Section 4). Note that the first frequency component is below 

20 Hz, and it is not represented as explained in Section 2; 

ii. The second resonant frequency component (30.7 Hz) has lower energy content than the 

other two; 

iii. The damaged State #14 seems to distribute energy content in more broadly across the 

spectra by decreasing the energy at the frequency components; 

iv. There is no significant indication that the damaged States #10 and #14 come from a 

nonstationary system; however, in the case of State #14, the damage seems to impose a 

steady increase in the natural frequencies over time when compared to the other two 

states. 

Even though, theoretically, the stiffness of the structure should change throughout the 

measurement as a result of the impacts between the bumper and suspended column, the 

spectrograms do not show this result. Two reasons are presented to explain this result: 

i. For a low level of damage (State #10), the impacts occur relatively infrequently in time 

and are not sufficient to change the frequency components for that specific length of the 

window. However, for a high level of damage (State #14), the high number of impacts 

makes the structure stiffer, but because many impacts occur within a given time 

window their effects tend to be averaged out in the spectral estimation process, and 

these effects are similar in every window; therefore, the system still exhibits stationary 

characteristics; 

ii. The tradeoff between frequency resolution and the length of the window to compute the 

Fourier transform can be a limitation to identify changes because of high-frequency 

components for short durations; the lower the length of the window in time, the poorer 

the frequency resolution. Recall that shorter-duration windows permit good time 
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resolution but poor frequency resolution. On the other hand, longer-duration windows 

permit good frequency resolution but have poor time resolution. 

 

 

 

 

 

Figure 53: STFT analysis of signal from State #1, Channel 4. 
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Figure 54:  STFT analysis of signal from State #10, Channel 4. 
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Figure 55: STFT analysis of signal from State #14, Channel 4. 
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Figure 56: Individual spectrograms in concatenated format, Channel 4. 

In conclusion, the STFT analysis does not show any significant changes in the frequency 

components for the lowest damaged state (State #10). However, some minor indications of the 

time-varying nature of the signal’s frequency content can be seen for the damaged state 

corresponding to the most impacts (State #14), but it would be difficult to base a damage 

assessment on such subtle changes. Note that, within a given window, the Fourier transform 

represents the average properties of the signal, and these average properties remain constant 

throughout the time history. 

 

State#14 

State#10 

State#1 
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4.4.2 Wavelet Transform 

The WT has been developed to overcome the resolution limitations of the STFT. Recall 

that in STFT analysis, the time and frequency resolutions are determined by the length of the 

window, and yield a time-frequency representation of the signal that has constant resolution in 

time and frequency. However, wavelet analysis uses a different window technique with variable-

sized length. Actually, the wavelet analysis allows the use of long time intervals for more precise 

low-frequency information and shorter time intervals to better capture the time-varying nature of 

the high-frequency information (Misiti et al., 2007). As a consequence, wavelets analysis can 

have a good time and poor frequency resolution at high frequencies, and good frequency and 

poor time resolution at low frequencies. 

The major advantage of the wavelets is the ability to perform local analysis. In the SHM 

field, this ability makes the wavelets useful in detecting nonlinearities related with 

discontinuities in the signal caused by transient processes such as the impacts in this experiment 

(Robertson et al., 2003). 

The continuous wavelet transform (CWT) is defined by convolving the signal )(tf  with 

scaled and shifted versions of the wavelet function ψ , as follows: 

This process produces WT coefficients, C , that are a function of two parameters: scale 

and position. The scale parameter is correlated with the frequency, and it dilates or compresses 

the wavelet function. In terms of frequency, low frequencies (high scales) correspond to global 

information of a signal. High frequencies (low scales) correspond to a detailed view of a signal 

that usually lasts a relatively short time (Polikar, 2007). The parameter position intends to move 

the wavelet function along the time signal as a moving window. The resulting WT coefficients 

estimated at different scales and positions provide both frequency and time information about the 

signal being analyzed.  

A wavelet function is a waveform with finite duration and an average value of zero. 

There are many wavelet functions available in the references (Misiti et al., 2007). Note that the 

type of wavelet to use is dependent on the signal to be analyzed. 

Recall that the impacts cause changes in the high-frequency components for short 

durations. In order to compare with the STFT analysis, the wavelet analysis carried out in this 

study uses the same discrete-time signal as before, i.e., the same acceleration-time histories from 

Channel 4 corresponding to States #1, #10, and #14. A complex Morlet wavelet is used to form 

the CWT, which consists of 143 scales. Figure 57, Figure 58, and Figure 59 plot the WT 

coefficients in both time-frequency-amplitude and time-frequency representations. The colour at 

each point is associated with the magnitude of C, which represents the energy distribution of the 

signal. A few observations can be made based on the visual inspection of the CWT, as follows:  

i. The third and fourth frequency components (54.2 and 70.7 Hz for baseline condition) 

can be clearly seen in these plots; 

ii. The amplitude of the WT coefficients associated with the frequency components at 

54.2 and 70.7 Hz decrease for the damaged State #14, but other frequency components 

across the spectrum increase as a result of the nonlinearities associated with the 

impacts; 

dttpositionscaletfpositionscaleC ××= ∫
+∞

∞−
),,()(),( ψ    . (34) 
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iii. The peaks of the frequency components in Figure 59 for the most damaged condition 

(State #14) drift in frequency over time as indicated by the distribution in the higher 

amplitudes of the WT coefficients at frequencies around 54.2 and 70.7 Hz. Although 

these same bands can be seen at the lowest damage level (State #10) they are not as 

broad in frequency, and this feature is attributed to the reduced number of impacts 

associated with this damage level. 

 

 

 

Figure 57:  CWT of time history from State #1, Channel 4. 
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Figure 58:  CWT of time history from State #10, Channel 4. 
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Figure 59:  CWT of time history from State #14, Channel 4. 
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Figure 60 (a) and (b) show a limited frequency bandwidth between 45 and 80 Hz from 

Figure 57 and Figure 59, respectively. The figures are plotted with a different WT coefficient 

scale in order to highlight the changes of the frequency components over time. By looking at the 

time-varying nature of the peaks of the frequency components in both figures, there is an 

indication that the damaged State #14 (Figure 60 [b]) corresponds to a nonstationary system 

because the impacts appear to cause the frequencies associated with peaks in the WT coefficients 

to vary in time as would be expected in a system where the stiffness alternates between two 

different states. In contrast, for the baseline condition, these peaks remain relatively constant in 

frequency throughout the duration of the signal as would be expected for a linear time-invariant 

system.  

The wavelets analysis can also be used to find hidden patterns or singularities in the 

signal that usually last a short time relative to the duration of the signal. For this purpose, State 

#10 is used because of the reduced number of impacts between the bumper and the suspended 

column. For this state condition, it was observed when measuring the data that the impacts 

occurred once in a while and with no more than 10 impacts per time history.  

As a reference, Figure 61 (a) shows a Channel 4 time history corresponding to State #10 

and Figure 61 (b) shows the AR(30) residual errors squared from a prediction of that time 

history. The spikes correspond to singularities imposed by the impacts in the time history that the 

AR(30) model cannot predict. Note that Figure 61 (b) plots the squared errors to amplify the 

residual errors correlated with those singularities. 

Singularities in the time history can be identified by the presence of modulus maxima of 

the WT coefficients at specific frequency through their evolution along the time axis. For 

comparison, Figure 62 corresponds to the limited frequency bandwidth between 45 and 80 Hz in 

time-frequency representation of the Figure 58. The impacts can be identified in Figure 62 by 

comparing the spikes with those in Figure 61 (b). Moreover, the impacts are more correlated in 

time with the third frequency component (54.2 Hz for the baseline condition), suggesting that the 

bumper’s impacts most influence the third mode. However, it should be pointed out that there is 

not a direct one-to-one correlation between peaks in the residual error plot and the peaks in the 

modulus of the WT coefficient plot, indicating a need to validate these features with information 

about the true number of impacts. 

In conclusion, the CWT confirms some of the observations made with the previous STFT 

analysis about the nonstationary nature of the response corresponding to the most damaged 

condition (State #14). However, even though theoretically the CWT has better time resolution at 

higher frequencies than the STFT, it does not have the resolution in time to establish that the 

lower level of damage (State #10) corresponds to a nonstationary system. Although the results do 

not allow one to conclude that State #10 is from a nonstationary system, the CWT did reveal 

changes in the WT coefficient amplitudes that can be correlated with the bumper’s impacts when 

compared to changes in the residual errors of an AR model. 

4.4.3 Holder Exponent 

Mathematically, the Holder exponent is a measure of the signal’s regularity. Because 

singularity points have no continuous derivatives, the singularities can be identified when the 

Holder exponent suddenly drops to a value of zero or below.  

In SHM, the Holder exponent can be used to identify damage that introduces 

discontinuities into the measured dynamic response data (Robertson et al., 2003). Basically, this 

technique indicates the presence of singularities and identifies when they occur. As a 
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consequence, the drops in the Holder exponent can be used as damage-sensitive features. In real-

world structures, it can potentially be used to identify singularities associated with cracks that 

open and close during dynamic loading. 

 

 

 

 

Figure 60:  Details of the CWT for the time histories from State #1(a) and State #14 (b), 

Channel 4. 
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Figure 61:  AR(30) model residual errors of one time history from Channel 4 of State #10. 

 

 

Figure 62:  Details of the CWT for the time history from State #10, Channel 4. 
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In this study, the Holder exponent is used to identify singularities in the time histories 

imposed by the bumper. A procedure is presented for capturing the time-varying nature of the 

Holder exponent based on WT by applying it to potential nonstationary random time histories 

from the damaged state conditions. 

Figure 63 (a) is a portion of the time history from Channel 4 of State #10 plotted in 

Figure 61 (a). Note that indications of impacts cannot be seen in that figure. The plot of the 

Holder exponent function calculated from the State #10 time history is shown in Figure 63 (b). 

Recall from Figure 61 (b) that the AR(30) residual errors can be used to identify discontinuities. 

Figure 63 (c) and (d) plots the same portion of the AR(5) and AR(30) residual error data, 

respectively. Red circles mark the significant drops in Holder exponent values and the 

corresponding spikes in the AR residual errors associated with potential impacts. Although the 

drops in the Holder exponent function are fairly apparent to the naked eye, identification of them 

using threshold lines is difficult because of the considerable variability associated with the 

Holder exponent.  
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Figure 63:  Portion of a time history from State #10 (Channel 4) with the associated Holder 

exponent function and residual errors from both AR models. 

 

In conclusion, the Holder exponent technique can be used to extract damage-sensitive 

features when damage introduces discontinuities into the measured dynamic response data. 

However, it is necessary to develop statistical classifiers in order to detect the presence of such 

singularities. For State #10, considering the previous conclusions from the time-frequency 

analysis, the Holder exponent and AR residual error results show that the impact damage is 

better detected with a time-domain approach as opposed to a frequency-domain approach. The 

frequency and time-frequency domain approaches do not have sufficient time resolution to 

capture an individual impact and, as such, these effects tend to be treated only in an average 

sense with these methods. 
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5. CLASSIFICATION ALGORITHMS 

The last section presented statistical techniques that are concerned with extraction of 

damage-sensitive features from dynamic response data. A damage-sensitive feature was defined 

as some quantity extracted from the measured system response data that is correlated with the 

presence of damage in a structure. This section is concerned in developing statistical models to 

classify those damage-sensitive features in order to enhance the damage-detection process.  

The algorithms used in statistical model development usually fall into three general 

categories: (1) Group classification; (2) Regression analysis; and (3) Outlier detection. The 

appropriate algorithm to use depends on the ability to perform supervised or unsupervised 

learning. Here, supervised learning refers to the case where examples of data from damaged and 

undamaged structures are available. In this case, the classes are predefined and a set of labelled 

data is used to develop the algorithms that classify future data as belonging to either the 

undamaged or damaged class in a discrete manner. With appropriate data, this approach can be 

used to generate a regression model that performs a more continuous classification where new 

features may be assigned to a particular damage level. Note that such an approach is predicated 

on having data and the associated features available from the different damage levels. 

Unsupervised learning refers to the case where data are only available from the undamaged 

structure. In this case, only one data class is known, and algorithms are developed to identify 

subsequent features that are outliers to this class. 

In this section, three techniques are applied in an unsupervised learning mode to classify 

the data obtained from the test structure, namely SPC, cluster analysis, and factor analysis (FA). 

These techniques differ in the way they perform the learning task. The SPC models the 

underlying distribution of the baseline condition to define the threshold limits. Then, the 

discrimination of undamaged and damaged state condition is based on the number of features 

falling beyond the threshold limits. On the other hand, in cluster analysis and FA techniques, the 

classes are discovered from the underlying similarity among the data. 

5.1 Statistical Process Control 

The SPC techniques may be applied for feature classification in an effort to discriminate 

the damaged from the undamaged state conditions. SPC uses control charts for monitoring 

whether the process is operating in statistical control. The process is said to be in control when 

the process data vary randomly within the control limits (or threshold values). The purpose is to 

detect any abnormal changes in the process. These changes are observed as abnormal points on 

the charts that caused changes in the mean and/or variance of the data. Abnormal conditions are 

identified by a statistically significant number of points exceeding the control limits as well as by 

systematic changes to the data within the control limits (e.g., the data are no longer randomly 

distributed within the control limits). Control charts often make assumptions of normality (the 

data have a normal distribution) and independence (data are not correlated) for better 

performance (Grant et al., 1988; Montgomery, 1997; Gupta et al., 2007). 

In this study, the process is defined by the dynamic response characteristics of the test 

structure, and it is expected that damage, particularly that which introduces nonlinear response 

characteristics, will produce changes in the system’s responses that can be identified as abnormal 

points in the control charts. 
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5.1.1 Statistical Basis of the Shewhart X-bar Control Charts 

The Shewhart X-bar control charts are used to identify when data points fall outside the 

control limits (throughout this report, these points are also called “outliers”). A statistically 

significant amount of points outside the control limits is an indication that a process is out of 

control. Physically, it is an indicator that the structure has an unusual source of variability that 

deviates it from the baseline condition. On the other hand, if data points fall inside the control 

limits, the process is said to be in control. Note that there are cases where all data points fall 

inside the control limits, and the process is not in control, as will be explained later. A brief 

theoretical description of X-bar control charts is described below. 

Suppose a random variable X  that is characterized by a normal probability distribution 

described by its parameters: mean µ  and standard deviation σ . If 

 

x1,...,xn  is a sample of size n  

and x  is the average of this sample, then based on the central limit theorem, the samples means 

 

x i are normally distributed with mean 

 

µ and the standard deviation 

 

σ x = σ / n . Thus, in 

 

100(1−α)%  of the cases, the sample mean ix  will fall between the following interval: 

where 

 

Zα/ 2  is a parameter related to the confidence interval, and 

 

α  is the desired significant 

level. The standard deviation of the distribution of the ix  values is 

 

σ / n , i.e., the standard 

deviation of the population divided by the square root of the sample size. It is also commonly 

referred to as the standard error of the mean. The limits are a function of data acquired when the 

process is thought to be in control and may not necessarily have any direct relationship to the 

actual process performance. Generally, the parameters µ  and σ  corresponding to the underlying 

process are unknown, and it is necessary to estimate these parameters from samples when the 

process is thought to be in control.  

One method to estimate the parameters of the probability distribution is as follows. 

Suppose that m  samples of X  with n  observations each are available. The best estimator of µ  

is given by 

where ix  is the sample average value for the 

 

i th  sample. The standard deviation can be estimated 

from either the m standard deviations or the ranges of the m  samples (Montgomery, 1997). By 

using the former one, an estimate of standard deviation, σ̂ , can be obtained by averaging the m  

standard deviations 

 

si. 

With these estimates of the process mean and standard deviation, the control charts limits 

(UCL—upper control limit, CL—centerline, and LCL—lower control limit) are defined as 

follows for the following 3σ confidence intervals: 

 

µ − Zα/ 2

σ
n

≤x i≤ µ + Zα/ 2

σ
n

   , (35) 

∑
=

=
m

i

ix
m 1

1µ̂    , (36) 

 

ˆ σ = 1

m
si

i=1

m

∑    . (37) 
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Setting the control limits requires one to make a tradeoff between false-positive 

(indications of damage when none is present) and false-negative (no indication of damage when 

damage is present) indications of damage. In this study 99.73% confidence intervals of a normal 

distribution corresponding to three standard deviations from the mean were chosen for the 

control limits. Thus, in Eq.(35), 2α/Z  is replaced by 3 (Montgomery, 1997). The quantity plotted 

is the sample average 

 

x i, therefore, the chart is usually called an X-bar chart.  

5.1.2 Control Charts with Autocorrelated Process Data 

As stated above, control charts are developed based on the assumption that the data 

generated by the process when it is thought in control are normally and independently 

distributed. Moreover, an out-of-control process manifests itself with changes in the mean and 

standard deviation. However, control charts can lead to many false alarms when the observations 

are not independent and positively correlated (Montgomery, 1997).  

Unfortunately, the assumption of independent and uncorrelated observations is not valid 

for the measured acceleration data, as shown in Figure 37. The autocorrelation shown for the 

baseline condition (State #1) is certainly large enough to affect the efficacy of control charts. 

One approach for dealing with correlated data is to first model the data using time series models, 

for instance, the AR models, and then to apply the control charts to the AR residual errors 

between the estimated and measured data. This approach assumes that the residual errors given 

by Eq. (18) are normally and independently distributed with mean zero and standard deviation 

 

s. 

For instance, Figure 39 (a) shows that after fitting an AR(30) model to a time history from 

Channel 5 of State #1, and using that model to predict the same time history, the associated AR 

residual errors have practically no correlation. However, two final remarks are made regarding 

the correlation among the residual errors. First, even though there is no correlation among the 

residual errors associated with the AR(30) model, the same is not valid for the AR(5) model, as 

highlighted in Figure 38 (a). This is one indication that the AR(30) should have fewer outliers for 

the normal condition states. Second, the correlation highlighted in the autocorrelation functions 

(Figure 39) and lag plots (Figure 42), shows a high degree of correlation in the residual errors 

from the damaged states. This correlation implies that the impacts introduce some kind of pattern 

in the response that can make the process appear to be out of control. 

For the reasons highlighted above, the control chart analysis is performed using the AR 

residual errors. For comparison purposes, residual errors from both AR(5) and AR(30) models 

are examined.  

5.1.3 Control Chart Analysis 

The Shewhart X-bar control charts are constructed based on the subgroups of residuals 

from the AR models. The implemented process can be summarized as follows. First the AR 

parameters are estimated by fitting an AR model to an acceleration-time history from Channel 5 

of the baseline condition (State #1). Then, for each state condition, the AR residual errors 

between the predicted and the measured time histories are calculated and reorganized in 

n
CLLCL
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n
CLUCL

σ
µ

σ

ˆ
3

ˆ

  
ˆ

3

−=

=

+=

   . (38) 
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subgroups of 4. Subgroups of 4 or 5 data points each are recommended, as is discussed in 

Montgomery (1997). Before dividing the residuals into subgroups, they are normalized by 

subtracting the mean and dividing by the standard deviation of the residuals from the baseline 

condition. This data normalization procedure based on the baseline condition is applied to all 

residual error data sets that are analyzed. Second, the upper and lower control chart limits are 

calculated as described in Section 5.1.1, based on the sample mean and standard deviation of the 

baseline condition. Third, an X-bar control chart is constructed for each state with the subgroups 

of residual errors as inputs. Note that each subgroup is represented by one data point and the 

centerline of the charts is zero because the sample mean of the associated normalized residual 

errors is zero, as described above. The upper and lower control chart limits correspond to 

99.73% confidence intervals, implying that approximately 0.27% of the data points from normal 

condition states can be expected to fall outside of the control limits. For 2046 data points, these 

limits imply that about 6 points should fall outside of those limits. 

In order to check the influence of the AR model order on the stability of the process, the 

control charts are plotted for all the state conditions using both AR(5) and AR(30) models. 

Figure 64, Figure 65, and Figure 66 show the X-bar control charts using the grouped AR(5) 

residual errors. On the other hand, Figure 67, Figure 68, and Figure 69 plot the X-bar control 

charts using the grouped AR(30) residual errors. Figure 70 summarizes the number of outliers 

falling beyond the control limits for both models. The threshold horizontal dashed line is set up 

based on the maximum number of outliers present in all the undamaged states  

(State #1–#9). In this case, the threshold is conditioned by State #9. 

As shown in Figure 70 for residual error data obtained with either the AR(5) or AR(30) 

models, the number of outliers beyond the control limits seems to increase for the damaged state 

conditions. These results indicate that some unusual source of variability is present in the 

damaged states. The threshold horizontal dashed line can be used to examine the relative 

performance of the AR(5) and AR(30) models. In the case of the AR(30) model, the number of 

outliers associated with all damaged states are greater than the ones associated with undamaged 

states (State #16 is on the transition border). In the case of the AR(5) model, some damaged 

states have a number of outliers that are within those found for the undamaged states, such as 

States #10, #11, and #16. The better results for the AR(30) model might be associated to the 

correlation among the residual errors within the damaged states as highlighted in Figure 39. 
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Figure 64:  The X-Bar control plot of the mean of the grouped AR(5) residual errors 

(Channel 5). 
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Figure 65:  The X-Bar control plot of the mean of the grouped AR(5) residual errors 

(Channel 5). 
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Figure 66:  The X-Bar control plot of the mean of the grouped AR(5) residual errors 

(Channel 5). 
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Figure 67:  The X-Bar control plot of the mean of the grouped AR(30) residual errors 

(Channel 5). 
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Figure 68: The X-Bar control plot of the mean of the grouped AR(30) residual errors 

(Channel 5). 
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Figure 69:  The X-Bar control plot of the mean of the grouped AR(30) residual errors 

(Channel 5). 
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Figure 70:  Number of outliers falling outside the control limits. The horizontal dashed line 

corresponds to the maximum number of outliers found in the undamaged states 

(Channel 5). 

5.1.4 Conclusions 

The Shewhart X-bar control charts were employed in order to control the mean value of 

the residual-error time histories from all state conditions. Results from this analysis showed that, 

in general, the number of outliers beyond the control limits increase for the damaged states even 

when they are affected by the operational and environmental variations. Also, the influence of 

model order on this classification technique was examined. More consistent results were 

obtained with the grouped AR(30) residual errors. 

The control charts showed that SPC techniques might be used to detect the existence of 

anomalies in the acceleration responses. When a considerable number of data points fall outside 

the control limits, the process is considered out of control, and in this case, loss of control is 

assumed to be caused by anomalies. With such indications of damage, a next step might be to 

launch a full investigation, for example, through visual inspections or local off-line 

nondestructive evaluation, to identify the cause of such anomalies. 
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Notice that there is still the possibility of all the points falling within the control limits, 

but the process is not in control. This is the case when the points exhibit some sort of systematic 

behavior, i.e., data points assume a nonrandom pattern. There are several common nonrandom 

patterns that indicate the process is out of control as documents in Montgomery (1997). 

A problem that has often confronted the researches using control charts is when to 

consider recomputing the control limits. Initially, the control limits need to be established 

assuming that both the structure and the SHM system are undamaged. However, because of 

normal aging of the structures, one should evaluate the need to recalculate the control limits 

every time a statistically significant sign of instability is detected. 

5.2 Cluster Analysis 

Data clustering is a common statistical data-analysis technique that is used in many 

fields, such as machine learning, data mining, and pattern recognition. Data clustering is the 

classification of objects (variables) into different clusters (groups), so that the data in each cluster 

share some common underlying similarity (e.g., Euclidean distance). 

There are many kinds of clustering (MATLAB, 2008), such as Hierarchical Clustering, 

which is a way to divide the data into different clusters by creating a cluster tree, as shown in 

Figure 71. In this process, clusters at one level are joined at the next higher level by 

progressively merging clusters. The higher the level in the tree, the smaller number of clusters.  

In this study, cluster analysis is applied in order to discriminate the undamaged and 

damaged state conditions into two groups. Thus, the objects are the structural state conditions, 

and a binary classification in the form of two main clusters is assumed, 

i.e., one corresponds to the undamaged state conditions (+1) and another corresponds to the 

damaged state conditions (-1).  

Figure 72 plots the binary classification of all state conditions using the parameters of the 

AR(30) model as damage-sensitive features extracted from the times histories of Channel 5. The 

Euclidean distance is the metric used to determine the similarity between AR parameters vectors 

that are used to define the system states. As shown in the figure, this technique can correctly 

classify all the state conditions. 

Figure 73 plots the hierarchical cluster tree, where the states are paired into binary 

clusters by proximity until a hierarchical tree is formed. One can clearly observe that until the 

clustering reaches the top of the tree, the states are progressively grouped into two main state 

condition clusters: undamaged states and damaged states. The height of the clusters above the 

origin represents the Euclidean distance between the centroids of two clusters. 

In conclusion, cluster analysis is able to group the undamaged and damaged state 

conditions into two main clusters based on the underlying similarity of the AR(30) parameters as 

damaged-sensitive features. 
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Figure 71:  Traditional representation of the Hierarchical Clustering. 
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Figure 72:  Feature classification assuming two clusters using AR(30) parameters (Channel 5). 
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Figure 73: Cluster tree of the state conditions (Channel 5). 
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5.3 Factor Analysis 

In statistics, FA is a technique used to explain variability among observed random 

variables in terms of fewer unobserved random variables called factors. Thus FA attempts: (i) to 

reduce the number of variables, for instance to reduce two variables to one factor, and (ii) to 

explain the correlation between variables in terms of a small number of underlying factors not 

observed directly (e.g., temperature and humidity), in an effort to classify variables. 

In the context of SHM, FA may be used as both data normalization (Kullaa, 2003; 

Kullaa, 2005) and a classifier technique. In this study, FA is used as a classifier technique to 

discriminate the undamaged and damaged state conditions.  

Mathematically, the observed variables 

 

X are assumed to be dependent on a linear 

combination of the common factors ξ , plus an error term ε  (unique factors) as follows: 

where the coefficients stored in matrix Λ  are known as loadings.  

Because each factor might affect several variables, they are known as common factors. A 

schematic model of this algorithm is shown in Figure 74.  

Alternatively, the FA model can be specified by the correlation (or covariance) matrix, 

 

∑, of the observed variables 

 

X, as follows: 

where the diagonal matrix, ψ , contains the specific variances. The specific variance is related to 

the independent random nature of each variable. In theory, a specific variance equal to 1 

indicates no common factor component in that variable, but a specific variance of 0 indicates that 

the variable is entirely determined by common factors (MATLAB, 2008). 

In order to demonstrate an application of this technique as a classifier, the seventeen state 

conditions are considered as variables, and the features are the AR(30) parameters extracted from 

one time history of Channel 5.  

Assuming three common factors (1
st
, 2

nd
, and 3

rd
), the dependence of each variable on the 

factors is illustrated in Figure 75 where the factor loadings Λ  are the coordinates. The figure 

clearly discriminates all the undamaged and damaged state conditions. Based on the distance 

(or proximity) of the states to the axes (MATLAB, 2008), one can reasonably conclude that the 

first factor axis represents the undamaged state conditions, and the second factor axis partially 

represents the damaged state conditions. Thus, the figure suggests the existence of an unobserved 

underlying variable common in all damaged state conditions. Although the damaged state 

conditions are influenced mostly by the second factor, they have nonnegligible components on 

the first and third axes.  

In order to measure the level of independence of each state condition, Figure 76 shows 

the computed specific variance for each state. As stated above, a specific variance equal to 1 

indicates no common factor component in that state condition, but a specific variance of 0 

indicates that the state condition is entirely determined by common factors. In the figure, the 

damaged state conditions seem to assume higher specific variance; however, there are some 

exceptions. These results suggest that the nonlinearities introduce some random behavior into the 

damaged states and reduce the level of dependence between state conditions. 

 

X = Λξ + ε    , (40) 

ψ+ΛΛ=∑ T

   , (41) 
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In conclusion, the FA technique is able to discriminate all damaged state conditions from 

undamaged state conditions with a high level of certainty. It is able to identify unobserved 

underlying variables common in all damaged state conditions that drive the changes from the 

normal condition. 

 

 

Figure 74:  FA schematic model (Kullaa, 2003). 

 

 

Figure 75:  Factor loadings of each state condition (Channel 5). 
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Figure 76:  Specific variance by state condition (Channel 5). 

 

6. DATA NORMALIZATION FOR FEATURE CLASSIFICATION 

Inherent in the data acquisition, feature extraction, and statistical modelling portions of 

the SHM process, described in Section 1, is data normalization. In the context of SHM, data 

normalization is the process of separating changes in sensor reading caused by damage from 

those caused by varying operational and environmental conditions (Farrar et al., 2001). 

As with the previous section, this section is associated with the feature classification 

portion of the damage-detection process. However, the authors decided to split the classification 

algorithms in two sections, because the algorithms applied in this section are performed in an 

unsupervised learning manner by first taking into account all the undamaged state conditions to 

train the algorithms. This procedure is currently defined as data normalization because it permits 

the algorithms to learn the underlying factors that influence the distribution of the undamaged 

state conditions.  

Basically, in this section, each algorithm first uses training data composed of features 

from the normal condition of the structure, i.e., features from all the undamaged state conditions 

that include sources of variability (changing mass and stiffness) as previously described. This 

normalization procedure intends to make the classification algorithm output invariant to the 

sources of variability that influence the feature distribution. Therefore, when features from 

potentially damaged conditions are analyzed, it is expected that the classification algorithm will 

identify them as outliers even in the presence of operational and environment variability. As part 

of this process, threshold levels for outlier detection must be established that take into account 

the variability present in the data in an effort to reduce the number of false-negative and false-

positive indications of damage. For this purpose, three different algorithms are applied based on 

AANNs, Mahalanobis distance, and SVD technique. Note that different features (AR parameters 

and residual errors as well as FRFs) are used in order to enhance the flexibility of these damage-

detection algorithms. 

6.1 Autoassociative Neural Network 

The AANN algorithm is employed as a novelty detection technique. Using features 

extracted from the time histories of the undamaged state conditions, the AANN is trained to 
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characterize the underlying dependency of the identified features on the unobserved operational 

and environmental variations by treating this unobserved dependency as hidden intrinsic 

variables in the neural network. The architectural of the AANN consists of three hidden layers: 

the mapping layer, the bottleneck layer, and de-mapping layer. The number of nodes in each 

layer as well as the number of input features is problem specific. The name AANN comes from 

the fact that the target outputs are simply the inputs of the network. 

Figure 77 shows the typical network architecture with m  damage-sensitive features, five 

nodes in both mapping and de-mapping layers, and two nodes in the bottleneck layer. This 

network is related to nonlinear principal components analysis (NLPCA). While PCA develops a 

mapping based on linear correlations among variables, NLPCA can find nonlinear correlations 

present among the features. More details about AANN can be found in the references (Kramer, 

1991; Sohn et al., 2001; Jolliffe, 2004) .  
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Figure 77:  Network architecture of an AANN. 

In the SHM field, the AANN can be used in two manners. First, the network can be 

trained to learn the correlations between features and, therefore, it can reveal the unobserved 

sources of variability that influence the structural response. This correlation is represented at the 

bottleneck output, where the number of nodes depends on the number of unobserved independent 

variables that influence the structural response. Second, assuming the network is trained to learn 

the correlations, the predicted errors at the output layer will grow when the features, which are 

fed to the network, come from a potentially damaged condition. Those residual errors are given 

by 

where Y  is the target vector, and Ŷ  is the output layer for each state. In order to establish a 

quantitative measure, a novelty index ( NI ) can be adopted, which is defined to be the Euclidean 

distance between the targets and the outputs of the neural network. For a sample of a state 

condition Y  with m  features in the form of 

 

y1,...,ym, the NI  is given by  

where y  is the target feature and ŷ  is the output feature of the neural network. If the features are 

related to an undamaged state, YY ˆ≈  and 0)( ≈YNI . On the other hand, if the features come 

YYE ˆ−=    , (42) 

∑
=

−=
m

i

ii yyYNI
1

2)ˆ()(    , (43) 
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from a damaged state, the neural network is not able to predict the targets, and the NI  deviates 

from zero, thereby indicating an abnormal condition in the structure. Notice that the technique 

presented here is a mixture of two different learning algorithms, i.e., supervised learning is used 

to obtain the operational and environmental conditions’ dependency, albeit without direct 

measure of these conditions, but unsupervised learning is used to detect damage. 

In order to illustrate what the unobserved variable at the bottleneck output looks like, 

Figure 78 shows measured structural strain-time histories (Signal 1 and 2) at one deck cross 

section and the measured ambient temperature. The data were collected from the pedestrian 

bridge of Viana do Castelo during its normal operation (Figueiredo et al., 2007). It is assumed 

that the structural response is mainly influenced by the daily temperature variation. An AANN 

algorithm, with two inputs and two outputs, and one node in the bottleneck layer, is used to 

estimate the underlying unobserved variable. In the same figure, one can see the resulting 

bottleneck output that is seen to be related to the temperature. Notice that the measured ambient 

temperature is only a reference temperature variable because the temperature at several locations 

on the cross-section are not necessarily the same. 

In order to reduce the computation effort, the AANN algorithm is trained using the AR(5) 

parameters as features. The training data matrix is composed of AR parameters from two time 

histories (Channel 5) of each undamaged state condition ( 2 9n = ×  state conditions), i.e., the 

baseline condition (State #1) state and states with simulated operational and environmental 

variations (States #2–#9). As a consequence, the training data matrix has a dimension of 5 18×  

( 5=m  and 18=n ). The features were scaled so that the data set ranges from -1 to 1. The 

dimension of the mapping and demapping layers were fixed according to Kramer (1991). 

Therefore, the network is built up with a feed-forward neural network to perform the mapping 

and demapping, where the network outputs are simply the reproduction of the network inputs. 

The network has 10 nodes in each mapping and demapping layer and two nodes in the bottleneck 

layer. The nodes in the bottleneck layer intend to represent the two underlying parameters 

driving the changes in the features: the changes in stiffness and mass. A Levenberg-Marquardt 

back-propagation algorithm was used to train the network. Because it is not guaranteed to get the 

same sensitivity each training iteration, several trainings with different initial conditions were 

performed for that architecture to ensure that the global minimum was achieved. Features from 

one time history of each state condition, that were not used during the training, were 

subsequently used in order to validate the algorithm. 

Figure 79 indicates that the residual errors of the AANN, given by Eq. (42), grow when 

the features of damaged states are fed to the network. The vertical dotted lines in the figure 

separate the state conditions (each segment is of 5 points). From a qualitative visualization, it 

seems to be unclear if State #16 comes from an undamaged or damaged state condition. 

However, the novelty indices given by Eq. (43), and plotted in Figure 80, give a better 

discrimination of all state conditions. The horizontal threshold line is set based on the maximum 

magnitude for the undamaged state conditions. 
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Figure 78:  Output in the bottleneck layer and measured data (Signals 1 and 2, Temperature). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
-1.5

-1

-0.5

0

0.5

1

1.5

AR Points by state condition #

R
e
s
id

u
a
l 
e
rr

o
rs

 

Figure 79:  Residual errors using the AR(5) model parameters estimated at Channel 5. 
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Figure 80:  Novelty indices using the AR(5) model parameters estimated at Channel 5. 
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In conclusion, the AANN algorithm was shown to discriminate all damaged and 

undamaged state conditions, when two nodes were used in the bottleneck layer to account for 

operational and environmental variations (intentionally introduced mass and stiffness changes in 

this case). Note that this procedure does not use any direct measure of these mass and stiffness 

changes. An underlying assumption is that the data sets used to train the network encompass this 

source of variability. If a new set of data were acquired under an environmental or operational 

condition not considered in the training, there is no guarantee that these will be properly 

classified. Also, in this study there was a priori knowledge regarding the number of operational 

and environmental parameters controlling the variability, and this information was used to 

choose the number of nodes in the bottleneck layer. Selection of the number of nodes in this 

bottleneck layer is critical to the performance of the AANN as a data normalization algorithm. 

6.2 Mahalanobis Distance 

The Mahalanobis distance is a distance measure used for multivariate statistics that can 

be used to identify and quantify outliers. The Mahalanobis distance differs from the Euclidean 

distance because it takes into account the correlation between the variables, and it does not 

depend on the scale of the observations. 

Considering a group of 

 

m p-dimensional real-valued patterns belonging to pℜ  with a 

multivariate mean vector T

p ),...,,( 21 µµµµ =  and covariance matrix, ∑ , the Mahalanobis 

distance between that group and a new pattern T

pxxxx ),...,,( 21=  is defined as 

In the context of data normalization for feature classification, the mean vector µ  and 

covariance matrix 

 

∑ represent the normal operational condition and x  represents a potential 

damaged condition. 

In this study, the normal condition of the structure is defined by using the AR model 

parameters from four time histories measured at Channel 5 and corresponding to each of the nine 

undamaged state conditions (States #1–#9). As a consequence, for the case of the AR(5) model, 

the mean vector and covariance matrix have a dimension of 15×  and 55× , respectively. In 

order to test the robustness of this data normalization method, Figure 81 and Figure 82 show the 

Mahalanobis squared distances calculated using Eq. (44) for AR(5) and AR(30) models, 

respectively. The test data are made up of one-time history for each state condition. Notice that 

the time histories used to define the normal condition were not used to test the method. The 

figures suggest that the effectiveness of the Mahalanobis distance as a damage indicator is a 

function of the AR model order. Furthermore, for the AR(30) model, the Mahalanobis distance 

provides a robust damage indicator that is almost invariant under the variability associated with 

the undamaged states. Note that in both figures, the Mahalanobis distances are presented in 

square units in order to enhance the differences between undamaged and damaged states. 

Some authors (Worden and Manson, 2000) have used the Mahalanobis squared distance 

as a distance measure for multivariate statistics’ outlier detection. In this context, Eq. (44) should 

be rewritten as follows: 

)()( 1 µµ −∑−= −
xxD

T

   . (44) 

 

Dζ
2 = (xζ − x )T ∑−1(xζ − x )   , (45) 
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where the ζx  is the potential outlier, x  is the mean vector of the sample observations, and ∑  is 

the sample covariance matrix. The mean and covariance may be inclusive or exclusive (Worden 

and Manson, 2000). In this study, because the undamaged and damaged states are known a 

priori, the method is developed in an exclusive manner, not using the data from the damaged 

condition in forming the estimates of the mean and covariance. As stated above, the normal 

operational condition of the structure is set up by the mean vector and covariance matrix, using 

only data from the undamaged state conditions. 
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Figure 81:  Mahalanobis squared distances using the AR(5) parameters (Channel 5). 
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Figure 82: Mahalanobis squared distances using the AR(30) parameters (Channel 5). 
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The exclusive Mahalanobis squared distances calculated using Eq. (45) are plotted, in 

concatenated form, in Figure 83 and Figure 84, based on the AR(5) and AR(30) parameters 

estimated from Channel 5, respectively. The results seem to discriminate the undamaged and 

damaged state conditions with a high level of reliability only for the AR(30) model. 

However, the outliers plotted in Figure 84 have an unexpected pattern. Regardless of the 

mean vector and covariance matrix computed based on AR parameters from the undamaged 

states (training set), the magnitude of the outliers is much higher in the undamaged states 

(States #1–#9) than damaged states (States #10–#17). These results can be understood by 

examining the spatial distribution of the AR(30) parameters for each state. Recall that Figure 44 

shows that the undamaged states assume a higher variance in the first principal component than 

the damaged state conditions. On the other hand, the centroid of the undamaged states given by 

x  is very close to the centroid of the damaged states and, as a consequence, the Mahalanobis 

squared distance from a potential outlier is higher when it comes from undamaged states. 
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Figure 83: Mahalanobis squared distance for outlier detection using the AR(5) parameters 

estimated from Channel 5. 
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Figure 84: Mahalanobis squared distance for outlier detection using the AR(30) parameters 

estimated from Channel 5. 
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Figure 85 and Figure 86 plot the Mahalanobis squared distances using the grouped 

residual errors from the different AR models as damage-sensitive features (see 4.2.1.2). Both 

figures show a higher density of outliers in the states with nonlinearities introduced by the 

bumper, with exception of State #16. Furthermore, by simple visualization, the Mahalanobis 

squared distances also show which damaged state contributes most to the number and amplitude 

of the outliers. 

 

 

Figure 85:  Mahalanobis squared distance for undamaged and damaged states using AR(5) 

grouped residual errors. The dash lines, CV1 and CV2, are the threshold lines. 

 

 

Figure 86:  Mahalanobis squared distance for undamaged and damaged states using AR(30) 

grouped residual errors. The dash lines, CV1 and CV2, are the threshold lines. 
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The establishment of threshold values for outlier detection is an important task in order to 

define a statistical separation between damaged and undamaged states. Some authors (Worden et 

al., 2000; Sohn et al., 2001) have proposed the Monte Carlo method to arrive at those values. 

However, in this study, another approach is presented based on data from all the undamaged 

states. The methodology used is summarized through the following steps: 

i. Form a training-set matrix )( pn ×  with signals from the undamaged state conditions. 

Rows n  are the observations and the columns p  are the number of state conditions. 

The more known undamaged state conditions that are available, the more likely the 

Mahalanobis squared distance will be able to detect damage. In this case, the signals are 

the AR-grouped residual errors estimated from the time histories of Channel 5; 

ii. Calculation of the mean vector x  and covariance matrix ∑ ; 

iii. Calculation of the Mahalanobis squared distances, 

 

Dζ
2, for all signals corresponding to 

each undamaged state condition; 

iv. The threshold for outlier detection is defined by the critical value (CV) equal to the 

largest value of 

 

Dζ
2 calculated in step iii. 

Figure 85 and Figure 86 show the Mahalanobis squared distances along with a horizontal 

threshold line defined by the critical values CV1. Taking into account the states with points 

falling beyond the threshold line, for the AR(5) and AR(30) model, the procedure outlined above 

gives one false-negative indication (State #16) and two false-negative indications (States #10 and 

#16) of damage, respectively. The increase in the number of false indications for the higher order 

AR model is an indication that the AR(30) model is probably overfitting the original time 

histories. 

In order to overcome the overfitting related limitation, the critical values CV2 shown in 

the same figures are estimated based on a confidence interval for the parameter of an exponential 

distribution. Thus, steps (iii) and (iv) outlined above are changed as follows. First, an exponential 

distribution is assumed that best fits in some sense the largest values 

 

Dζ
2 of each AR-grouped 

residual errors’ series from all the undamaged state conditions (States #1–#9). Note that for 

Channel 5, each state condition has ten series. Thus, the exponential distribution has 90 data 

points. Then, the parameter of the exponential distribution that gives the highest likelihood is 

calculated, given the 90-point data. Finally, in order to discard the extreme values, the upper 

bound 99% confidence interval for the parameter is assumed as the critical value. As shown in 

Figure 85 and Figure 86, the new threshold line improves the discrimination especially for the 

AR(30) model, where it is able to discriminate all the undamaged and damaged state conditions. 

Note that this procedure does not take into account the extreme values caused by the overfitting 

associated to the AR(30) model. 

In conclusion, the reliability of the Mahalanobis distance in data normalization for feature 

classification was demonstrated to be a function of the type of damage-sensitive features used. 

When assuming the AR parameters as damage-sensitive features, the performance is sensitive to 

the number of AR parameters. In this case, the AR(30) model gives better results than the AR(5) 

model. On the other hand, using the AR grouped residual errors as damage-sensitive features 

together with the methodology proposed to define the threshold limits, the AR(5) model proved 

to perform better than the AR(30) model. However, it was demonstrated that by using confidence 

intervals, it is possible to improve the classification. This procedure is important for discarding 

extreme values that frequently are related to noise or singularities imposed, for instance by the 

acquisition system, that influence the threshold values. 
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6.3 Singular Value Decomposition 

Some authors have proposed a damage-detection method based on the SVD technique 

(Ruotolo et al., 1997; Ruotolo et al., 1999). This technique relies on the determination of the rank 

of a matrix. In the SHM context of data normalization for feature classification, the aim of this 

technique is to detect damage regardless of operational and environmental effects. A very brief 

summary of the approach will be given for completeness. 

In linear algebra, the SVD is a factorization of a rectangular real or complex matrix M  

defined by 

where U  and V  are two orthogonal matrices, i.e., IVVUU
HH == , and 

 

Λ contains the 

singular values of matrix M along its diagonal line sorted in descending order. The superscript 
H
 

denotes complex conjugate transposal. 

In the context of damage detection, the matrix M  can be defined as a state matrix 

composed of characteristic vectors, iw  and 

 

wd , which represent a particular property of the 

structure, e.g., natural frequencies, mode shapes, and FRFs, where iw , ,...,pi 1= , is related to the 

normal operational condition i , and 

 

wd  is related to the current condition that may be damaged 

or undamaged. For p  known normal operational conditions and one current condition, the state 

matrix M  can be defined as  

By estimating the rank of the matrix M , if the characteristic vector 

 

wd  comes from an 

undamaged structure, it is expected that the rank will not change and will be equal to p . By 

contrast, if 

 

wd  comes from a damaged structure, the rank will be equal to 1+p . 

Theoretically, if M  is rank deficient, i.e., some undamaged state conditions are a linear 

combination of the others, some of the singular values should be zero. However, real-world data 

are not perfect and will often have measurement noise that can mask the state conditions, which 

would affect the rank of M . Thus, the presence of noise in the data introduces residuals in the 

singular values. In order to discriminate the higher singular values related to the state conditions 

from ones related to the noise, it is important to define threshold values. 

In order to use the SVD technique to discriminate the undamaged and damaged state 

conditions, a three-step process is outlined as follows: 

i. Calculate the singular values of the state matrix [ ]n

p

n
wwM ,,11 =  with only 

undamaged state conditions. The more samples per state, the lesser the influence of 

noise. Rows n  are the observations and the columns are the number of state 

conditions p . This matrix intends to set the normal operational condition and, therefore, 

it defines the reference condition of the structure; 

ii. Calculate the singular values of a state matrix [ ]n

d

n

p

n
wwwM ,,,12 =  with the previous 

undamaged states plus one potential damaged state condition n

dw ; This matrix intends to 

test the actual state of the structure; 

iii. Fit two independent curves to the previous singular values from 1M  and 2M ; when the 

curves are plotted together, if the potential damaged state condition is effectively 

related to some source of variability in the structure not seen before, the curves should 

 

M = U Λ V H

   , (46) 

 

M = w1,...,wp,wd[ ]   . (47) 
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not overlap because it is assumed that the potential damaged state, n

dw , is linearly 

independent of the other undamaged states. 

The process described above is applied individually for Channels 2, 3, 4, and 5, using 

FRFs. These kind of functions are useful, because they take into account relationship between 

the acceleration responses and the excitation force applied to the structure and thus fully 

characterise the system’s dynamic properties (Maia et al., 1997). Figure 87 plots the magnitude 

of the FRFs from Channel 4 for five state conditions (States #1, #3, #7, #14, #17). Clearly, the 

FRFs from the damaged states show distinct changes at high frequencies. The portion of the 

FRFs below 20 Hz is related to noise, and therefore it is ignored, as explained in Section 2. As a 

consequence, each FRF has 3,088 data points. Notice that four channels are used in order to 

analyze the sensitivity of each accelerometer to detect nonlinearities introduced at the third story 

of the structure. 
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Figure 87:  FRFs of five state conditions estimated at Channel 4. 

 

For each channel, the normal operational condition state matrix 1M  is composed of two 

FRFs from time histories of each undamaged state condition (States #1–#9) in order to increase 

the redundancy and decrease the influence of noise in the measurements. Because the 

experimental data set contains nine known undamaged state conditions, 1M is composed of 

eighteen characteristics vectors. As a consequence, 1M has a dimension of .183088×  The state 

matrix 2M  is composed of the same characteristics vectors of 1M  plus one characteristic vector 

 

wd  related to a potential damaged state, namely from States #1, #3, #7, #14, and #17. As a 

consequence, in each run, 2M  has a dimension of 3088 19× . Note that the characteristic vector 

 

wd  varies in order to examine the capabilities of this method to detect the different damage 

conditions. It follows that one should expect deviations from the normal condition only when 

 

wd  

is composed of FRFs from States #14 and #17. 

Figure 88, Figure 89, Figure 90, Figure 91, and Figure 92 plot the first fitted 15 singular 

values (Channels 2–5) when 

 

wd  is composed of FRFs from States #1, #3, #7, #14, and #17, 

respectively. In the figures, the “Reference condition” represents the fitted singular values from 

1M  and the “Test condition” represents the fitted singular values from 2M . Notice that for the 

undamaged state conditions, the characteristic vector 

 

wd  is not used in 1M  to establish the 
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normal condition. As expected, the figures indicate slight deviations from the normal condition 

when 

 

wd  is composed of FRFs from damaged state conditions (States #14 and #17). Moreover, 

for those states, even though this technique seems to be sensitive to detect damage across all 

accelerometers, the magnitude of the deviation decreases for the accelerometers located far from 

the source of damage. 

In conclusion, the method presented based on the SVD technique has revealed potential 

for data normalization when well-known undamaged state conditions exist. The more 

undamaged conditions are available, the more feasible the method can be. However, the analysis 

carried out was only qualitative and therefore there is a need to establish threshold values that 

can be useful to evaluate if statistically significant changes have occurred in the singular values. 
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Figure 88:  First 15 singular values in decreasing order for Channels 2–5 (State #1). 
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Figure 89:  First 15 singular values in decreasing order for Channels 2–5 (State #3). 
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Figure 90: First 15 singular values in decreasing order for Channels 2–5 (State #7). 
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Figure 91:  First 15 singular values in decreasing order for Channels 2–5 (State #14). 
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Figure 92: First 15 singular values in decreasing order for Channels 2–5 (State #17). 
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7. CONCLUSIONS AND FINAL REMARKS 

The objective of this study was to apply the LANL statistical pattern recognition 

paradigm for SHM to data sets acquired from a laboratory three-story building structure. This 

report reviewed and applied various statistical procedures that have been widely used for data-

analysis problems in many different engineering fields. 

In the hierarchical structure of damage detection, this report addressed the need for robust 

incipient damage-detection methods. Therefore, it is concerned with determining the existence of 

damage in the test structure. Even though locating and assessing the severity of damage is 

important in terms of estimating the residual lifetime of the structures, the reliable detection of 

damage existence must precede these more detailed damage descriptions. To achieve this 

objective, this report specially focused on developing statistical procedures addressing the 

feature extraction process and statistical modelling for feature classification in order to detect 

damage. 

Before applying the statistical procedures to the data sets, a 4-DOF physics-based 

numerical model was developed to better understand the structural behavior of the system. The 

damping matrix for this model was obtained using the results of the experimental modal analysis. 

The Young’s modulus was adjusted so that the analytically predicted natural frequencies agreed 

with the experimental ones. The developed numerical model assumes negligible friction between 

the rails and the structure. The model showed how to predict with a high level of certainty the 

measured baseline response. 

In the feature extraction process, the AR models were subject to special attention. The 

estimated parameters as well as residual errors of the AR models were used as damage-sensitive 

features. The AR parameters’ respective amplitudes decreased, accordingly, for smaller gaps 

between the bumper and suspended column, i.e., the smaller the gap, the smaller the amplitude of 

the AR parameters. Because the original data are highly correlated, the low-correlated AR 

residual errors were used in several statistical procedures for feature classification. Other 

damage-sensitive features were tested, such as modal parameters, statistical moments (mean, 

standard deviation, skewness, and kurtosis), PCA, STFT, WT, holder exponent, and correlation 

coefficients. Note that the correlation coefficients showed that both time histories and FRFs did 

not follow any deterministic pattern that can be picked out from the correlation. This result can 

be understood, based on the fact that the discontinuities associated with the damage caused short-

duration changes to the system response and did not input any steady-state trends into the time 

histories. 

The statistical modelling for feature classification was carried out by applying algorithms 

in an unsupervised learning mode. In the SPC techniques, the Shewhart X-bar control charts 

were employed in order to classify the mean value of grouped AR model residual errors from 

time histories corresponding to all the state conditions. This method showed that, in general, the 

number of outliers beyond the control limits increased for the damaged state conditions, even 

when they are affected by the simulated operational and environmental variations. Also it was 

shown that the feasibility of this method is a function of the AR model order. For this technique, 

the control limits were set up based on the distribution of the baseline condition.  

The AANNs, Mahalanobis distance, and SVD algorithms were implemented in an 

unsupervised learning mode by first taking into account features from all the undamaged state 

conditions to train the algorithms. This procedure is currently defined as data normalization 

because it permits the algorithms to learn the underlying distribution of all the undamaged state 

conditions that included simulated operational and environmental variability introduced by 

changing the mass and stiffness of the structure. The Mahalanobis distance and SVD offered 
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some advantages over AANNs in terms of computational effort. This fact would make those 

algorithms a better choice for implementation on embedded hardware. 

In statistics, the data from a random process is said to be stationary and ergodic when the 

moments and joint moments (e.g., autocorrelation functions) are time invariant, and they do not 

change when computed over different sample records. Based on the analysis of those moments, it 

was assumed that the random process presented in this study is weakly stationary or stationary in 

the wide sense. However, the time-frequency analysis carried out using STFT and WT did show 

that the stiffness changes over time for the most damaged state. It turns out that the states do 

come from a nonstationary system. This contradiction can be related to the systematic impacts 

between the bumper and the column that make the test structure statistical stationary over an 

entire time record, but structurally nonstationary when shorter time scales are considered. 

Significant contributions of this work include (i) understanding of how the AR model 

parameters change with the type of damage introduced by the bumper; (ii) comparison of 

different feature extractors and statistical procedures for feature classification using standard data 

sets; (iii) showing that even though a system can be statistically stationary, in reality it can be 

structurally nonstationary. 

For future work, the authors recommend a deep investigation of the identification of the 

impacts over time. For this purpose, it is recommended to use sensors at impact locations. The 

impacts identified by accelerometer or acoustic sensors attached to the suspended column could 

be used to accurately identify the impacts and to correlate them with the other channel responses. 

The data from this study and a detailed description of the test structure are available for 

download at http://institute.lanl.gov/ei/software-and-data/. 
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