
LA-UR- “0”3202
Approvedforpublicrelease;

distributionisunlimited.

Title: STRUCTURAL HEALTH MONITORING AT LOS ALAMOS

NATIONAL LABORATORY

Author(s): ch~les R. F~a, Hoon Sohn, ~d Scott W. Doebling

Submitted to: 2000 Us-Korea Conference on Science ~d Technology,

Entrepreneurship, and Leadership, Drake Hilton Hotel, Chicago,
Illinois, September 2-5,2000

Los Alamos
NATIONAL LABORATORY

LosAlamos NationalLaboratory,an affirmativeactionlequalopportunityemployer,isoperatadbythe Universityof Californiaforthe U.S.

Departmentof EnergyundercontractW-7405-ENG-36. Byacceptanceofthisarticle,the publisherrecognizesthatthe U.S. Government

retainsa nonexclusive,royalty-freelicenseto publishor reproducethe publishedformofthiscontribution,or to allowothersto do so,for U.S.

Governmentpurposes.LosAlamosNationalLaboratoryrequeststhatthe publisheridentifythisarticleas workperformadunderthe

auspicesofthe U.S. Departmentof Energy.LosAlamosNationalLaboratorystronglysupportsacademicfreedomand a rasearchefs rightto

publkh;as an institution,however,the Laboratorydcss notendorsetheviewpointofa publkationor guaranteeitatechnicalcorrectness.

Form836 (10/96)



DISCLAIMER

This repofi was.prepared as an account of work sponsored

by an agency of the United States Government. Neither

the United States Government nor any agency thereof, nor

any of their employees, make any warranty, express or

implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute

or imply its endorsement, recommendation, or favoring by

the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States

Government or any agency thereof.



DISCLAIMER

Port ions of this document may be iilegible

in electronic image products. Images are

produced from the best available original

document.



Structural Health Monitoring at Los Alamos National

Laboratory

ABSTRACT

-—.-,---,,-:, ---- “ .+ !: ~...3, .=,

Charles R. Farrarl, Hoon Sohn2, and Scott W. Doeb1ing3 ‘~”’-X~”L”::‘;” 1~~1~.~

MS P-946
lfj~~ %J+ ~YJJ

Los Alamos National Laboratory $~~~~

Los Alamos, NM, 87545

Structural health monitoring (SHM) is the implementation of a damage detection strategy

for aerospace, civil and mechanical engineering infrastructures. Typical damage experienced by

these infrastructures might be the development of fatigue cracks, degradation of structural

connections, or bearing wear in rotating machinery. Engineers at Los Alamos National

Laboratory (LANL) have been actively involved in SHM research for many years. These

activities have been supported by internal research funds, direct programmatic efforts,

partnerships with industry, and external work for other non-defense organizations. This paper

will summarize past and current SHM projects at LANL. The primary result of this work is the

development of LANL’s statistical pattern recognition paradigm for structural health monitoring.

This paradigm will be described in detail. The paper concludes discussing the future directions

for this technology that are currently being explored at LANL.

INTRODUCTION

The process of implementing a damage detection strategy for aerospace, civil and

mechanical engineering infrastructures is referred to as structural health monitoring (SHM). Here

damage, is defined as changes to the material and/or geometric properties of these systems,

including changes to the boundary conditions and system connectivity, which adversely affect the

system’s performance. The SH.M process involves the observation of a system over time using

periodically sampled dynamic response measurements from an array of sensors, the extraction of

damage-sensitive features from these measurements, and the statistical analysis of these features

to determine the current state of system health. For long term SHM, the output of this process is

periodically updated information regarding the ability of the structure to perform its intended

function in light of the inevitable aging and degradation resulting from operational environments.

After extreme events, such as earthquakes or blast loading, SHM is used for rapid condition

screening and aims to provide, in near real time, reliable information regarding the integrity of

the structure.
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This paper is intended to provide a summary of SHM technology developed at Los

Alarnos National Laboratory (LANL) over the last 15 years. During this period LANL’s SHM

technology has evolved from ad hoc procedures developed on a case-by-case basis to methods

based on linear modal analysis and finally arriving at general statistical pattern recognition

procedures that attempt to take advantage of the nonlinemities associated with many damaging

events. This learning process has culminated in the development of a statistical pattern

recognition paradigm that can be used to describe all SHM problems. A summary of this

paradigm will be provided. As the LANL staff’s viewpoint of the S13M problem has evolved,

these people have come to realize that an integrated, multi-disciplinary approach is necessary for

successful SHM. Significant future developments of this technology will, in all likelihood, come

by way of research efforts encompassing fields such as structural dynamics, signal processing,

motion and environmental sensing hardware, computational hardware, data telemetry, smart

materials, and statistical pattern recognition coupled with machine learning, as well as other

fields yet to be defined. This paper concludes by describing an integrated approach to SHM

encompassing many of these disciplines that is currently being undertaken at LANL.

EARLY STUDIES RELATED TO STRUCTURAL HEALTH MONITORING

Vibration-based damage detection work

at LANL had its beginnings almost 15 years ago

when engineers attempted to identify the onset

of seismically-induced buckling in scale-model

nuclear reactor containment structures from

changes in their measured vibration response

during shake-table testing. This work was

followed by attempts to infer damage in

seismically loaded scale-model reinforced

concrete shear wall structures from changes in

their shake-table induced vibration response

(Figure 1). Also, modal testing of glove boxes,

originally performed for finite element model

verification, identified faulty anchorage in the

glove box support structures. Through these

various experimental studies it became

apparent that vibration monitoring had the

Figure 1 Scale model nuclear power plant

diesel generator buildkg mounted on a

shake table.

potential to provide a mechanism for global monitoring of structural integrity. However, damage

detection was not the primary focus of these studies and no formal procedures for structural

health monitoring were developed as a result of these studies.

In a parallel effort, physicists at LANL developed and patented a vibration-based damage

detection system referred to as Resonant Ultrasound Spectroscopy (RUS) [1]. This system

combined sine-sweep vibration testing with a homodyne detection procedure to make very

precise resonant frequency measurements on small test specimens. For objects of very regular

geometry, such as ball bearings, this test system was shown to provide very accurate indicaticms

of material or geometric anomalies, such as out-of-roundness of a ball bearing. Subsequent

applications of RUS include the detection of salmonella poisoning in eggs from changes in their



vibration characteristics, the screening of captured Gulf-War ammunition to determine if artillery

shells contain conventional or chemical warheads, and detection of cracks in machined parts.

The formal study of structural health

monitoring began when these physicists and

engineers were asked to jointly participate in the

damage detection study on the 1-40 Bridge over

the Rio Grande (Figure 2) [2]. These tests were

performed in conjunction with engineers from

Sandia National Laboratory (SNL), faculty and

students from New Mexico State University, and

the New Mexico State Highway and

Transportation Department. The engineers from

LANL performed the experimental modal

analyses of the bridge in its undamaged and

darnaged conditions while engineers from SNL

ran a hydraulic shaker that provided the input for

these vibration tests. The physicists contributed

to these tests by demonstrating a non-contact

vibration measurement system based on a

microwave interferometer designed and

constructed at LANL [3].

F@me 2 A technician introduces

damage into a girder of the 1-40 Bridge.

Participation on the 1-40 Bridge tests led to internally funded research projects focused

directly on vibration-based damage detection. As part of these projects the LANL staff have

begun to formalize the process of structural health monitoring. The outcomes of these studies are

summarized below.

OUTCOME OF EARLY WORK

The investigators at LANL can point to three primary contributions to the structural

health monitoring field that have resulted from the early 1-40 Bridge tests and the intemally-

funded investigations of vibration-base damage detection. First, a literature review of structural

health monitoring studies was published, and in the authors’ opinion, this review is the most

comprehensive summary of the literature in this field to date [4]. Second, the computer code

DIAMOND was developed. This code assembles many recently developed methods for

vibration-based damage detection based on linear modal properties into one graphical user

interface code [5]. The final success of these projects was the development statistical analysis

procedures that can be used to quantify the variability in the measured modal properties that form

the basis for many of the current vibration-based damage detection methods. Brief summaries of

various projects that were conducted as part of these early formal investigations of structural

health monitoring are provided below.

Results of the 1-40 Bridge Project

To date, field verification of damage detection algorithms applied to large civil

engineering structures are (k) scarce as few full-size structures are made available for such

destructive testing. Because the 1-40 bridges over the Rio Grande in Albuquerque, New Mexico



were to be demolished and replaced, the investigators were able to introduce simulated cracks

into the structure, perform vibration test before and after each level of damage had been

introduced, and then use the test data to validate various damage identification methods. Staff

from LANL and SNL performed experimental modal analyses on the bridge in its undamaged

and damaged conditions. Researchers from Texas A&M University subsequently applied a

damage detection algorithm to these data [6]. The same damage detection algorithm was

independently applied by the LANL staff to these data and to numerical data from finite element

simulations of the 1-40 bridge where other damage scenarios were investigated [7]. The data

required by the damage identification algorithm are mode shapes and resonant frequencies for the

damaged and undamaged bridge. Results from these investigations are some of the first

comparative studies of various damage identification algorithms that have been reported in the

technical literature [8]. The general conclusion form this study was that linear modal properties

associated with the lower frequency global modes are somewhat insensitive to local damage and

subject to significant variability as a result of changing operational and environmental conditions

Results of the Alamosa Canyon Bridge project

The Alamosa Canyon Bridge

in southern New Mexico has been

designated as a bridge test facility by

the New Mexico State Highway and

Transportation Department.

Numerous modal tests were

performed on this structure for the

purposes of damage detection (Figure

3). With only limited abilities to

introduce damage into this structure,

tests focused on quantifying the

statistical variations in modal

properties that result from changin~,-
Fimre 3 Alamosa Canvon Rrike.

environmental conditions. [9, 10] It is imperative that these changes be quantified and that

changes resulting from damage are shown to be either greater than or different from those

resulting from the test-to-test variations. Statistical analysis techniques such as Monte Carlo

simulation and Bootstrap analysis have played an important role in the quantification of such

variability effects, as well as the incorporation of these effects into various damage identification

algorithms [11 ].

\

UC-Irvine bridge column tests

The University of California, Irvine (UCI) had a contract with CALTRANS to perform

static, cyclic tests to failure on seismically retrofitted, reinforced-concrete bridge columns. This

project is under the direction of Prof. Gerry Pardoen at UCI. With funds obtained through %s

~ LANL’s University of California interaction office, L~L staff

and a faculty member from the Mechanical Eng. Dept. at Rose-Hulman Institute of Technology

were able to petiorm numerous experimental modal analyses on the columns (Figure 4). These

modal tests were performed at stages during the static load cycle testing when various amounts of



damage had been accumulated in the columns. With

help from staff in LANL’s computer science division

these tests and the associated data obtained were used to

develop and demonstrate a statistical pattern recognition

process of vibration-based damage detection. This

study represented LANL’s first use of formal statistical

pattern recognition algorithms in structural health

monitoring studies [12].

A STATISTICAL PATTERN RECOGNITION

PARADIGM FOR STRUCTURAL HEALTH

MONITORING

Through the previously summarized studies and

interactions with staff in LANL’s computer science

division, it has been recognized that the vibration-based

damage detection problem is fundamentally one of

statistical pattern recognition. A statistical pattern

recognition paradigm for SHM can be described in

terms of a four-step process that includes 1. Operational

evaluation; 2. Data acquisition and cleansing; 3. Feature

extraction and data compression; and 4. Statistical

modeling for feature discrimination. It is the authors’

opinion that all structural health monitoring problems

can be defined in terms of this statistical pattern

Figure 4 A modal test being

performed on a bridge column at

the University of California,

Irvine.

recognition paradigm. These four steps are described below.

Operational Evaluation

Operational evaluation attempts to answers four questions regarding the implementation

of a structural health monitoring system:

1.

2.

3.

4.

What is the life safety and/or economic justification for performing the health monitoring

activity.

How is damage defined for the system being investigated and, for multiple damage

possibilities, which are of the most concern?

What are the conditions, both operational and environmental, under which the system to be

monitored functions?

What are the limitations on acquiring data in the operational environment?

Operational evaluation begins to set the limitations on what will be monitored and how

the monitoring will be accomplished. This evaluation starts to tailor the health monitoring

process to features that are unique to the system being monitored and tries to take advantage of

unique features of the postulated damage that is to be detected.



Data Acquisition and Cleansing

The data acquisition portion of the structural health monitoring process involves

seleeting the types of sensors to be used, selecting the location where the sensors should be

placed, determining the number of sensors to be used, and defining the data

acquisition/storage/transmittal hardware. This process is application specific. Economic

considerations play a major role in these decisions. Another consideration is how often the data

should be collected. In some cases it is adequate to collect data immediately before and at

periodic intervals after a severe event. However, if fatigue crack growth is the failure mode of

concern, it is necessary to collect data almost continuously at relatively short time intervals.

Because data can be measured under varying conditions, the ability to normalize the data

becomes very important to the damage detection process. One of the most common procedures

is to normalize the measured responses by the measured inputs. When environmental or

operating condition variability is an issue, the need can arise to normalize the data in some

temporal fashion to facilitate the comparison of data measured at similar times of an

environmental or operational cycle. Sources of variability in the data acquisition process and

with the system being monitored need to be identified and minimized to the extent possible. In

general, all sources of variability cannot be eliminated. Therefore, it is necessary to make the

appropriate measurements such that these sources can be statistically quantified.

Data cleansing is the process of selectively choosing data to accept for, or reject from, the

feature selection process. The data cleansing process is usually based on knowledge gained by

individuals directly involved with the data acquisition. Finally, it is noted that the data

acquisition and cleansing portion of a structural health-monitoring process should not be static.

Insight gained from the feature selection process and the statistical model development process

provides information regarding changes that can improve the data acquisition process.

Feature Extraction and Data Cleaiising

The data features used to distinguish the damaged structures from undamaged ones

receive the most attention in the technical literature. Inherent in the feature selection process is

the condensation of the data. The diagnostic measurements made during a structural health

monitoring activity typically produce a large amount of data. Condensation of the data is

advantageous and necessary, particularly if comparisons of many data sets over the lifetime of

the structure are envisioned. Also, because data may be acquired from a structure over an

extended period of time and in various operational environments, robust data reduction

techniques must result in the features sensitive to the structural changes of interest in the

presence of environmental noise.

The best features for damage detection are typically application specific. Numerous

features are often identified for a structure and assembled into a feature vector. In general, a low

dimensional feature vector is desirable. It is also desirable to obtain many samples of the feature

vectors. There are no restrictions on the types or combinations of data contained in the feature

vector. Typically, dynamic response parameters will be combined in a feature vector with data

quanti~ing environmental and operational conditions.

A variety of methods are employed to identify features for damage detection. Past

experience with measured data from a system, particularly if damaging events have been

previously observed for that system, is often the basis for feature selection. Numerical



simulation of the damaged system’s response to simulated inputs is another means of identifying

features. The application of engineered flaws, similar to ones expected in actual operating

conditions, to laboratory specimens can identify parameters that are sensitive to the expected

damage. Damage accumulation testing, during which significant structural components of the

system under study are subjected to a realistic accumulation of damage, can also be used to

identify appropriate features. Fitting linear or nonlinear, physical-based or non-physical-based

models of the structural response to measured data can also help identify damage-sensitive

features.

A summary of common features used in vibration-based damage detection studies can be

found in [4]. These features include, but are not limited to, those derived from basic modal

properties (resonant fi-equencies and mode shapes), mode shape curvature changes, dynamically

measured flexibility, changes in structural model parameters (elemental stiffness values)

resulting from model updating procedures, non-model based time-history and spectral pattern

methods, and methods based on nonlinear and/or non-stationary response introduced by the

onset of damage. An example of qualitative features based on nonlinear and non-stationary

response is shown in Figure 5 where the change in the time-frequency response of a cantilever

beam can be seen after a crack has been introduced into the beam.
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Figure 5. Time-frequency spectra of the free-vibration acceleration-time histories measured on

an untracked cantilever beam (left) and a cracked cantilever beam (right).

Statistical Model Development

The portion of the structural health monitoring process that has received the least

attention in the technical literature is the development of statistical models to enhance the

damage detection process. Almost none of the hundreds of studies summarized in [4] make use

of any statistical methods to assess if the changes in the selected features used to identify

damaged systems are statistically significant.

Statistical model development is concerned with the implementation of the algorithms

that operate on the extracted features to quantify the damage state of the structure. The

algorithms used in statistical model development usually fall into three categories. When data

are available from both the undamaged and damaged structure, the statistical pattern recognition



algorithms fall into the general classification referred to as supervised learning. Group

classijkation and regression analysis are supervised learning algorithms. Unsupervised

learning refers to algorithms that are applied to data not containing examples from the damaged

structure. Density estimation and outlier detection are the primary statistical tools employed in

an unsupervised learning mode [13].

The damage state of a system can be described in term of five different levels along the

lines of those discussed in [14] to answers the following questions: 1. Is there damage in the

system (existence)?; 2. Where is the damage in the system (location)?; 3. What kind of damage

is present (type)?; 4. How severe is the damage (extent)?; and 5. How much useful life remains

(prediction)? Answering these questions in the order presented represents increasing knowledge

of the damage state. The statistical models are used to answer these questions in an

unambiguous and quantifiable manner. Experimental structural dynamics techniques can be

used to address the first two questions in an unsupervised learning mode. To identify the type of

damage, data from structures with the specific types of damage must be available for correlation

with the measured features. Analytical models are usually needed to answer the fourth and fifth

questions unless examples of data are available from the system (or a similar system) when it

exhibits varying damage levels.

Finally, an important part of the statistical model development process is the testing of

these models on actual data to establish the sensitivity of the selected features to damage and to

study the possibility of false indications of damage. False indications of damage fall into two

categories: 1.) False-positive damage indication (indication of damage when none is present),

and 2). False-negative damage indication (no indication of damage when damage is present).

Although the second category is detrimental to the damage detection process and can have

serious implications, false-positive readings also erode confidence in the damage detection

process.

FUNDAMANETAL CHALLENGES FOR STRUCTURAL HEALTH MONITORING

The basic premise of SHM procedures that utilize vibration-based damage detection is

that damage will significantly alter the stiffness, mass or energy dissipation properties of a

system, which, in turn, alter the measured dynamic response of that system. Although the basis

for vibration-based damage detection appears intuitive, its actual application poses many

significant technical challenges. The most fundamental challenge is the fact that damage is

typically a local phenomenon and may not significantly influence the lower-frequency global

response of structures that is normally measured during vibration tests. Stated another way, this

fundamental challenge is similar to that in many engineering fields where the ability to capture

the system response on widely varying length scales, as is needed to model turbulence or to

develop phenomenological models of damping, has proven difficult. Another fundamental

challenge is that in many situations vibration-based damage detection must be performed in an

unsupervised learning mode. Finally, data normalization poses as significant challenge for this

technology if environmental and operational variability are to accounted for in the damage

diagnosis process. These challenges are supplemented by many practical issues associated with

making accurate and repeatable vibration measurements at a limited number of locations on

complex structures often operating in adverse environments.
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THE FUTURE: INTEGRATED STRUCUTRAL HEALTH MONITORING

The goal of current research efforts at LANL is to develop a robust and cost-effective

SHM system by integrating and extending technologies from various engineering and

information technology disciplines. The system will be composed of both hardware and software

components. Changes in dynamic response resulting from damage will be detected with

sensitive, dynamic response measurements made with active Micro-Electro Mechanical Systems

(MEMS) and fiber optic sensing technology. Here the term active indicates that the sensing units

will be designed to provide a local mechanical excitation source tailored to the monitoring

activity. Software for data iriterrogation will incorporate statistical pattern recognition algorithms

to identify that damage is present. Damage will be located by examining the transmissibility

between a local array of sensors using cross-comelation techniques. The software will be

integrated into the sensing unit through a programmable micro-processing chip. The processed

data output of these sensing units will be monitored at a central location using a wireless data

transmission system. This integrated system, depicted in Figure 6, is being developed with the

intent that it can be adapted to monitor a variety of engineering systems. These systems include

aircraft, space vehicles, rotating machinery in semi-conductor manufacturing facilities, and

buildings and bridges in high seismic regions. This strategy for SHM offers a potential for a

significant breakthrough in this technology through an integrated sensing/data interrogation

process that, to the author’s knowledge, has not been attempted to date.
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Figure 6. The current LANL research objective: Move from a conventional wired, off-the-shelf

sensing system to an active wireless system developed for a specific health monitoring activity.
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