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Abstract

This article will present and discuss the approach and the first results of a long-term dynamic monitoring campaign on an

offshore wind turbine in the Belgian North Sea. It focuses on the vibration levels and modal parameters of the fundamen-
tal modes of the support structure. These parameters are crucial to minimize the operation and maintenance costs and

to extend the lifetime of offshore wind turbine structure and mechanical systems. In order to perform a proper continu-

ous monitoring during operation, a fast and reliable solution, applicable on an industrial scale, has been developed. It will
be shown that the use of appropriate vibration measurement equipment together with state-of-the art operational

modal analysis techniques can provide accurate estimates of natural frequencies, damping ratios, and mode shapes of off-

shore wind turbines. The identification methods have been automated and their reliability has been improved, so that
the system can track small changes in the dynamic behavior of offshore wind turbines. The advanced modal analysis tools

used in this application include the poly-reference least squares complex frequency-domain estimator, commercially

known as PolyMAX, and the covariance-driven stochastic subspace identification method. The implemented processing
strategy will be demonstrated on data continuously collected during 2 weeks, while the wind turbine was idling or

parked.
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Introduction

Online monitoring of wind turbines is a more and more

critical issue as the machines are growing in size and

offshore installations are becoming more common. To

decrease the power generation cost by optimizing the

weight, the turbines are becoming structurally more

flexible and therefore are more affected by the wind

and wave excitation. Thus, an accurate validation of

their dynamic behavior is mandatory. On the other

hand, inspection and maintenance of offshore installa-

tions are much more cumbersome and expensive than

the inspection and maintenance of onshore turbines.

Thus, a remote monitoring application with the ability

to predict structural changes can help to reduce opera-

tion and maintenance (O&M) costs and contributes to

a better assessment of the lifetime of these structures.

Many large-scale offshore wind farm projects use

monopile foundations to obtain a cost-effective design.

Even for water depths beyond 30 m, the monopile

design is currently being considered as an option.

During the design of these monopile structures, fatigue

due to combined wind and wave loading is one of the

most important problems to take into account.

Structural resonances that are excited by the dynamic

wind and wave forces can lead to large amplitude stres-

ses and subsequent accelerated fatigue. The current

practice is to design the wind turbine support structure

in such a way that the tower fundamental resonance

does not coincide with the fundamental rotational (1P)

and blade passing (3P for three-bladed turbines)
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frequencies of the rotor.1 However, the higher order

rotor harmonics might still coincide with higher modes

of the support structure inducing important vibrations

and consequently reducing the fatigue-life. Experiments

performed by the Maritime Research Institute

Netherlands (MARIN) also confirmed that breaking

waves could induce significant oscillations and accelera-

tions in the turbine.2 This can have a significant effect

on the lifetime of the wind turbines.

In the particular case of monopile foundations,

scouring and reduction in foundation integrity over

time can be problematic. These issues reduce the funda-

mental structural resonances of the support structure.

As a consequence, the first resonance can be shifted to

the frequency range in which much of the broadband

wave and gust energy is concentrated. Thus, a lower

natural frequency means that more energy can create

resonant behavior increasing fatigue damage.1 On the

other hand, it might also affect the higher modes of

the support structure making them coincide with

some of the higher order rotor harmonics, for exam-

ple, 6P, 9P. Numerical analysis has shown that the

natural frequencies are notably affected by scour. In

Zaaijer,3 a study of the dynamic behavior for a tripod

and monopile design of a 6-MW turbine is presented.

It is shown that the natural frequencies of the support

structure decrease when scour occurs. This effect is

more important for the second resonance frequency

of the support structure, which, in the case of mono-

poles foundations, presents a decrease of 10% for a

scour depth of 5 m (length approximately equal to

the assumed pile diameter). Continuous monitoring

of the effect of scour on the dynamics of the wind tur-

bine will therefore help to make a better decision on

when to plan maintenance activities on the scour

protection.

In this context, the development and validation of

tools for automatic identification of the modal para-

meters based on the measurement of the dynamic

response of wind turbines is fundamental. The success

of subsequent structural health monitoring algorithms

depends on the accuracy of these identified parameters.

Description of the dynamic monitoring

system

First, it should be stated that the main goals of the

monitoring system described in this section are the

characterization of the wind turbine tower vibrations

and the tracking of the structure most relevant modal

parameters, in order to evaluate its structural perfor-

mance and detect eventual abnormal behaviors that

may reduce its lifetime and or may imply maintenance

activities.

The monitoring campaign is performed at the

Belwind wind farm, which consists of 55 Vestas V90

3 MW wind turbines. The wind farm is located in the

North Sea on the Bligh Bank, 46 km off the Belgian

coast (Figure 1).

The instrumented wind turbine is placed on a mono-

pile foundation structure with a diameter of 5 m and a

wall thickness of 7 cm. The hub height of the wind tur-

bine is on average 72 m above sea level. The transition

piece is 25 m high. The interface level between the tran-

sition piece and the wind turbine tower is at 17 m above

sea level. The actual water depth at the location of the

tested wind turbine is 22.9 m and the monopile has a

penetration depth of 20.6 m. The soil is considered stiff

and mainly consists of sand.

The structural components instrumented in this

campaign are the tower and the transition piece.

Measurements are taken at four levels using a total of

10 sensors. The measurement locations are indicated in

Figure 2. The chosen levels are 67, 37, 23, and 15 m

above sea level, respectively, levels 1–4. There are two

accelerometers mounted at the lower three levels and

four at the top level. The chosen configuration is primar-

ily aimed at identification of tower bending modes. The

two extra sensors on the top level are placed to capture

the tower torsion. The data acquisition system, a

CompactRIO system of National Instruments, is

mounted in the transition piece. Since the project aims

at characterizing the dynamics during a long period, it

was also required that the data acquisition system can

be remotely accessed and is capable of automatic startup

in case of power shutdowns. The data acquisition soft-

ware allows the continuous recording of accelerations.

The selected accelerometers have a high sensitivity (1 V/

g) and are able to measure very low-frequency signals

(0–250 Hz). This is necessary considering that the lower

modal frequencies of interest are expected to be around

0.35 Hz, and the expected vibration magnitude is very

low.

The monitoring software records the measured accel-

eration with a sampling frequency of 20 Hz and creates

consecutive data files with a duration of 10 min, which

are then sent to a server installed onshore using a dedi-

cated fiber installed under the seabed. Therefore, in

each day, a total of 144 files are created. These data files

receive a time-stamp in order to be possible to correlate

the parameters derived from the acceleration time series

with the SCADA and ambient data. The SCADA data

(power, rotor speed, pitch angle, nacelle direction) and

ambient data (wind speed, wind direction, wave height,

wave period, temperature, etc.) are collected at 10-min

intervals. Figure 2 characterizes the SCADA data col-

lected during the monitoring period under analysis in

this work. Note that the x-axis is labeled as ‘‘index’’

and each data point represents a 10-min value; since the

Devriendt et al. 645

 at b-on: 01100 Universidade do Porto on October 30, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


monitoring period has a duration of 2 weeks, a total of

2016 values are presented. The wind speed is varied

between 0 and 16 m/s. The pitch angle was almost con-

stant during the period of analysis, with a pitch angle of

78� or 88.3�. Most of the time, the wind turbine was

idling with a rotational speed lower than 1.3 r/min or

was in parked conditions.

As already referred, during the long-term

measurement campaign, our aim is to continuously

monitor the vibration levels and the evolution of

the frequencies and damping values of the funda-

mental modes of the tower and foundation. In order

to fulfill this goal, the following steps will be

followed:

Figure 1. Location Belwind wind farm (left), park layout (right) and wind turbine location (arrow).

Figure 2. Measurement locations and data acquisition system based on NI CompactRIO System (left), SCADA data (right): from

top to down: r/min, pitch angle (�), yaw angle (�), and wind speed (m/s).
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Step 1. Pre-processing of vibration data.

Step 2. Automated operational modal analysis (OMA).

Step 3. Tracking mode shapes, frequencies, damping

values.

In the following sections, the algorithms associated

with these steps will be discussed in detail. Then, in sec-

tion ‘‘Monitoring results,’’ their performance will be

demonstrated on 2 weeks of data.

Pre-processing of vibration data (Step 1)

The inputs for the following steps are the time series

measured by the 10 accelerometers. Each day the suc-

cessive 10-min data blocks are processed, resulting in

144 values per day per calculated parameter.

Considering the frequency band of interest and in order

to reduce the amount of data, the recorded time series

have been filtered with a band-pass filter and re-

sampled with a sampling frequency of 12.5 Hz.

Since the accelerometers are mounted on the wind

turbine tower and in the transition piece, in order to

measure the vibrations along the axis of the nacelle, it is

necessary to take the yaw angle (angle of the nacelle

with regard to a fix coordinate system) into account

and project the measured directions into the coordinate

system of the nacelle.4 Figure 3 shows an example of

the accelerations measured on the four levels for 10 min

of wind and wave excitation. It also shows the move-

ment seen from above in both the fore-aft (FA—along

the axis of the nacelle) and side–side (SS—perpendicu-

lar to the axis of the nacelle) directions.

Figure 4 presents one of the plots, created in the first

step of the continuous monitoring routines. The plot

shows the root mean square (RMS) values of the accel-

eration time series in the FA-direction for each 10-min

Figure 4. RMS values of the acceleration time series in the FA-direction during monitoring period (top), the variation during 24 h

of the RMS values of the accelerations in the FA-direction at the highest level (blue) and the wave period (red) (bottom).
RMS: root mean square; FA: fore-aft.

Figure 3. Example of measured accelerations during ambient excitation on four levels, with level 1 the highest level: left plot—

accelerations along the side–side direction; right plot—movement seen from above.
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interval. This figure already shows some of the dynamic

characteristics of an offshore wind turbine. The opera-

tional deflection shape of the wind turbine in parked

conditions results in a maximum vibration amplitude

at the upper level and a minimum vibration amplitude

at the lowest level.

It can also be observed that the RMS values vary

periodically. This is due to the changing wave periods,

which vary accordingly between 3 s (0.333 Hz) and 6 s

(0.166 Hz), respectively, getting closer and further away

from the resonance frequencies of the fundamental first

bending modes of the wind turbine, which are located

around 0.35 Hz. Figure 4 also compares the evolution

of the wave period and RMS values of the accelerations

at the highest level in the FA-direction during 1 day.

One can conclude that waves have the possibility to

excite the structure into dynamically amplified vibra-

tions when the wave period gets closer to the fundamen-

tal foundation/tower frequencies. This also confirms

the relevance to monitor these frequencies. Note that

the RMS values are also affected by other ambient

parameters such as wave height and wind speed.

Automated OMA (Step 2)

Introduction

Identification of the modal parameters of a full-scale

operating wind turbine is particularly difficult, and in

the research community, a lot of effort still goes into

the development of suitable methods to tackle this

problem.5 Classical experimental modal analysis meth-

ods cannot be applied because the input force due to

the wind and the waves cannot be measured. For this

reason, OMA methods have to be used to identify the

modal parameters from the response of a mechanical

structure in operation subjected to unknown random

perturbations.6–10

These methods work under the assumption that the

system is linear time-invariant during the analyzed time

interval. Moreover, they assume that the unknown

input excitation is white noise within the frequency

band of interest. However, due to the rotating rotor

and the corresponding harmonic force contributions,

the white noise assumption is violated. As a conse-

quence, the application of OMA becomes more chal-

lenging. The analysis in this article is focused on a

period during which the wind turbine was idling or in

parked conditions, presenting a rotating speed always

lower than 1.5 r/min. This means that the risk of hav-

ing some harmonic components in the frequency band

of interest resulting from the rotating equipment is very

low. Therefore, the white noise assumption in parked

conditions is valid and OMA is applicable.

In the context of dynamic monitoring systems

recording continuously the responses of an instrumen-

ted structure, it is very important to develop tools that

can process the collected data automatically.

Consequently, a lot of research has been developed

with the goal of achieving algorithms that can automat-

ically extract accurate estimates of modal parameters

from continuously recorded structural responses during

normal operation conditions.

The research efforts that have been performed to

automate the identification of structural modal para-

meters using parametric algorithms are focused on

three complementary aspects: the development of new

identification algorithms that can produce clearer stabi-

lization diagrams (Cauberghe et al.11), the study of cri-

teria to characterize the quality of the estimates and

finally the development of tools to automatically inter-

pret stabilization diagrams.

In the field of the development of new identification

algorithms, an important outcome was the poly-

reference least squares complex frequency-domain

estimator (p-LSCF) method,12 which provides clearer

stabilization diagrams that facilitate the selection of the

physical mode estimates.11

Concerning the definition of additional criteria to

distinguish physical mode estimates from spurious ones,

such as the complexity of the modal vector, the modal

transfer norm or uncertainty of the estimates, details

can be found in Verboven et al.13 and Reynders et al.14

After the elimination of all, or at least part of the

spurious mode estimates, there is still the need for a

procedure to group all the estimates associated with

models of different orders that are related with the

same physical mode. The most simplistic approaches

overcome this step with the selection of a conservative

model order, instead of analyzing the results of several

model orders. However, this is not the most adequate

procedure, because it can happen that the selected

model does not contain estimates for all the modes and

even if all estimates are present, there is no guarantee

that the estimates provided by that model order are the

best ones. A natural way for the automatic interpreta-

tion of stabilization diagrams consists in the develop-

ment of algorithms to mimic the decisions that an

experienced modal analyst takes during the examina-

tion of a stabilization diagram. This is followed for

instance in Scionti et al.15

An alternative is the use of cluster analysis.16 This

can be performed using non-hierarchical clustering

algorithms, as it is presented in Verboven et al.,13

Goethals et al.17 and Carden and Brownjohn;18 or

using hierarchical algorithms, as it is described in

Magalhães et al.19 and Verboven et al.20
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Description of the implemented procedure

In order to allow a proper structural health monitoring

during operation, based on the dynamic properties of

the wind turbine foundation and tower, a fast and reli-

able solution applicable on industrial scale has been

developed. The identification methods have been auto-

mated, and their reliability for this particular type of

data has been improved.

In Verboven et al.13 and Vanlanduit et al.,21 auto-

mated modal identification approaches are presented

based on the use of a frequency-domain maximum like-

lihood estimator (MLE) and stochastic validation cri-

teria combined with a fuzzy C-means clustering

approach, yielding promising results. In Magalhães

et al.,19 the authors developed a methodology for auto-

matic identification of modal parameters, using para-

metric identification methods, based on a hierarchical

clustering algorithm. This has been successfully applied

in the continuous monitoring of a bridge. In this work,

the algorithm adopted to automate the identification

process is a combination of the above approaches and

consists of the following three steps:

Step 2.1. Identification of modal parameters using a

state-of-the-art OMA estimator.

Step 2.2. Perform a hierarchical clustering algorithm

on the identified poles.

Step 2.3. Classification and evaluation of the identified

clusters using a fuzzy clustering algorithm.

Identification of modal parameters using a state-of-the-art

OMA estimator. Identification of the modal parameters

from the collected data sets can be achieved with differ-

ent OMA techniques. A detailed description of some of

these methods can be found in Hermans and Van Der

Auweraer,6 Brincker et al.,7 Cauberghe,8 and Peeters

and De Roeck.22 The techniques used in this article are

the p-LSCF12 and the covariance-driven stochastic sub-

space identification (SSI-COV) method.22

When the vibrations measured during normal opera-

tion are used, the first task consists of calculating the

correlation functions of the measured accelerations. It

has been shown that the output correlation of a

dynamic system excited by white noise is proportional

to its impulse response.23 Therefore, the fast Fourier

transformation of the positive time lags of the correla-

tion functions can directly be used as input for the

frequency-domain identification methods. The time-

domain OMA estimators can be directly applied to a

matrix with the auto- and cross-correlation functions.

The parameters that need to be chosen are the length

of the used time segment and the number of time lags

taken from the correlation function used for the spectra

calculation.24 The spectra resolution, controlled by the

number of time lags taken from the correlation func-

tions, should be high enough to well characterize all the

modes within the selected frequency band. At the same

time, it should be kept as low as possible to reduce the

effect of the noise. In El-Kafafy et al.10 and Devriendt

et al.,25 different numbers of time lags taken from the

correlation functions have been evaluated and 512

points taken from the correlation functions were found

to be a good choice. In Devriendt et al.,26 it was evalu-

ated if 10 min for the length of the time segments used

in the continuous monitoring of the offshore wind tur-

bine would be sufficient to identify the modal para-

meters in a robust way. It is assumed that within a time

segment of 10 min, the ambient conditions, for exam-

ple, wind speeds, stay more or less constant, needed for

the OMA time-invariant assumption. Ten minutes is

also the commonly used time interval for the SCADA

data and the Meteo data, and thus has the advantage

of making future analyses of the data easier. It was

found that although the standard deviation (SD) when

using only 10 min was higher than for data sets using,

for example, 40 min, especially for the damping values

of the first FA and SS bending modes, the mean values

were comparable, and thus 10 min were considered suf-

ficient to find estimates of the modal parameters with

acceptable quality.

Then, the poles are estimated with an OMA estima-

tor for different model orders. In a non-automated way,

these results can be used to construct a stabilization dia-

gram from which the user can try to separate the physi-

cal poles (corresponding to modes of the system) from

the mathematical ones.11 By displaying the poles (on the

frequency axis) for an increasing model order (i.e. num-

ber of modes in the model), the diagram helps to select

the physical poles, since, in general, they tend to stabilize

for an increasing model order, while the computational

poles scatter around. As a result, a construction of the

stabilization chart is nowadays one of the requirements

for a modal parameter estimation algorithm, and it has

become a common tool in modal analysis.

Figure 5 shows an example of a stabilization dia-

gram using a 10-min time segment with 512 time lags

taken from the correlation functions and a maximum

model order of 60. The analysis focuses in the frequency

range of 0–2 Hz, where the main vibration modes of

interest are expected. The stabilization diagram seems

to have around five well-identifiable stable poles. In a

non-automated approach, we could manually select the

poles in the stabilization diagram by clicking on the sta-

ble poles, indicated by a red ‘‘s.’’ The results of such a

manual selection can be found in Table 1. It is clear that

this may depend on the user as the selection of different

poles will give slightly different results. For high noise

levels, the stabilization diagrams can be difficult to

interpret and the results become even more user

Devriendt et al. 649

 at b-on: 01100 Universidade do Porto on October 30, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/


dependent. Moreover, stabilization diagrams require

interaction and therefore, they cannot directly be used

when autonomous modal parameter estimation is

needed. The next paragraph will present how this pro-

cess can be automated in a robust way.

Perform a hierarchical clustering algorithm on the identified

poles. For the automatic selection of the physical poles

that represent the modes of interest, a hierarchical clus-

tering algorithm is used. The goal is to cluster poles that

are related to the same physical mode. Several basic

procedures are available in the MATLAB Statistics

Toolbox, and several articles have successfully applied

these methods.13,19,21 In this work, a robust agglomera-

tive hierarchical approach was used based on the

method presented in Verboven et al.27 The algorithm

starts with the calculation of a distance matrix between

all the poles, estimated for the different orders. In order

to make the cluster algorithm suited for the identifica-

tion of the different system poles, the following condi-

tions must be taken into account to assure that each

structural mode is represented by just one cluster:

1. The number of poles in one cluster is limited to the

selected maximum model order minus the number

of orders that are not considered for clustering.

2. A pole is added to a cluster by taking the nearest

pole that results from a solution corresponding to

a different model order.

3. All the poles corresponding to a single physical pole

must be clustered before a next cluster is started,

while the poles already clustered are not further

considered.

Each time a new cluster is initiated, a new distance

matrix is computed using the remaining poles. When

looking for a new pole to be added to a cluster, a pre-

defined frequency interval (i.e. 1% of the mean fre-

quency of the initiated cluster) is considered. In our

case, it was possible to consider such a small interval

from the start because of the high quality of the mea-

surements and the corresponding estimates. When the

noise levels of the collected data are higher, a larger

interval can be used. As long as the number of poles,

each corresponding to a different model order, is larger

than the maximum number of poles that a cluster can

contain, the width of the frequency interval is reduced.

This maximum number of poles equals the maximum

model order minus the number of orders that are not

considered for clustering. One can choose not to use

the first orders for the clustering algorithm, because the

low-order estimates can be of less quality and because

some system poles only show up as stable lines for

higher model orders. One can also choose not to con-

sider clusters with a small number of poles. Figure 6

shows the results of the algorithm when the first 30

orders were not used and only clusters with more than

20% of the maximum number of poles a cluster can

contain were retained.

It could be observed in the stabilization diagram

(Figure 5) that the poles are very scattered around the

main peak, making the manual pole selection less obvi-

ous. However, looking at the results of the clustering

algorithm, we can clearly see three clusters appearing

(Figure 6 right) and we can easily identify the clusters

for the first FA mode and the SS mode. Therefore, this

Table 1. Frequencies and damping values of identified modes by manual selection and cluster analysis.

Manual selection

Freq. (Hz) 0.3295 0.3576 0.3711 – 0.7387 1.0727 1.2033 – 1.4811 1.5692
Damp. 0.7267 0.9380 0.9290 – 2.1074 1.2333 0.9504 – 1.8778 0.9528

Cluster analysis

Freq. (Hz) 0.3345 0.3578 0.3705 0.5133 0.7394 1.0725 1.2045 1.4304 1.4831 1.5679
Damp. 1.3608 0.9743 1.1210 1.5774 1.3097 1.1644 0.9880 0.4201 1.5843 0.8535
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Figure 5. Stabilization diagrams for 10 min of data using the p-

LSCF estimator.
p-LSCF: poly-reference least squares complex frequency-domain

estimator.
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seems to be an efficient approach for the automatic

identification. Based on the cluster results, a statistical

analysis yields the mean and SD for each of the esti-

mated poles and hence for the damped natural frequen-

cies and damping ratios. In Table 1, the mean values

are presented for comparison with the manual selection

from the stabilization diagrams. The SD on the fre-

quencies and damping values can be used for validation

purposes and for the separation of physical and mathe-

matical poles. One can also calculate an identification

success rate by dividing the number of poles in each

cluster by the maximum number of poles a cluster can

contain. These parameters will be used in the next para-

graph to distinguish the well-identified clusters from

the clusters with estimates of less quality or to distin-

guish the physical poles from the mathematical ones.

Note that mode information was not included in the

cluster analysis. Other cluster algorithms include the

modal assurance criterion (MAC)28 when calculating

the distance matrix.19 The MAC value allows quantify-

ing the degree of correlation between the mode shapes

related with different poles. In this work, it was decided

to base the clustering only on the poles (related with

the natural frequencies and modal damping ratios),

because useful mode information might not always be

available; this might especially be the case when only a

small number of sensors is used. If mode information is

available, it will be used to distinguish physical from

non-physical poles as will be discussed later in the next

section.

Classification and evaluation of the identified clusters using a

fuzzy clustering algorithm. The clustering procedure

assures that each of the system poles will be represented

by just one single cluster. However, since typically high

model orders are chosen, not each cluster corresponds

to a system pole. Therefore, each of the clusters needs

to be assessed for its physicality. Second, when continu-

ous monitoring is done not all data sets will allow to

identify all the physical modes and their corresponding

frequencies and damping values with high confidence.

Therefore, criteria can be defined that can distinguish

physical modes from mathematical ones and that allow

to discard estimates of low quality. The number of

poles in a cluster, or the identification success rate, as

well as the SDs on the frequencies and damping values

of each cluster, may give a good indication for the

quality of the identified poles and their clusters. When

a sufficient number of sensors is available, mode shape

information can be used to further evaluate the clusters

by also considering the well-known validation criteria

such as the MACs, modal phase collinearity (MPC)

and the modal phase deviation (MPD).28 For each pole

in a cluster, the corresponding mode shape information

can be computed and the following percentage ratios

can be calculated: the fraction of mode shapes that

have an MPC larger than 80% and an MPD smaller

than 10�.

An iterative fuzzy C-means clustering algorithm,

proven to be useful for the automation of the modal

mode extraction, can now be used to evaluate the clus-

ters. In Verboven et al.13 and Vanlanduit et al.,21 the

approach was used to classify the identified poles into

physical and computational poles. Based on the results

for each of the validation criteria, the clusters identified

after the first step will now be grouped into two classes

using this algorithm, that is, cluster with well-identified

physical poles and clusters with computational poles or

badly identified physical poles. This algorithm is
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(right).
FA: fore-aft.
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implemented in the MATLAB Fuzzy Logic Toolbox.

The output of the fuzzy C-means clustering algorithm

gives a classification result for the clusters. If the classi-

fication result is larger than 50%, then it is decided that

the cluster belongs to the class of clusters with physical

poles that have a good estimate and can be used for

continuous monitoring. The following validation cri-

teria will be used:

� Variable 1: the SDs of the estimated resonance

frequencies;
� Variable 2: the SDs of the estimated damping

values;
� Variable 3: the identification success rate;
� Variable 4: the fraction of mode shapes that have

an MPC larger than 80%;
� Variable 5: the fraction of mode shapes with an

MPD smaller than 10�.

Table 2 gives the values for these variables for all

clusters obtained after the hierarchical clustering algo-

rithm in case of the data set of 10 min under analysis

and using 512 time lags for the correlation functions.

Table 2 also gives the mean MAC, MPC, and MPD

values within a cluster. After the variables have been

computed, an interval scaling27 is performed in order to

obtain variables of the same type, which are defined in

the same interval (e.g. 0–1). The variables with a large

range (i.e. variables 1 and 2) are transformed using a

logarithmic transform. Second, all variables are sub-

tracted by their minimum and divided by their range

(i.e. the maximum minus the minimum).

Figure 7 presents the results of the fuzzy clustering

algorithm. In the first case, only variables 1 and 2 are

used. As can be noticed, the SD gives a good distinc-

tion between the physical and mathematical clusters

and those clusters that are not very well identified. In

this case, the accepted clusters correspond with the

well-excited modes in the FA-direction (see later in

Figure 8). This also justifies the usefulness of the uncer-

tainty values derived in the initial hierarchical cluster-

ing approach. When we include variable 3, we can see

that more clusters are positively classified. There are

seven clusters that stand out because of their high iden-

tification success rate (i.e. .80%), which correspond

with the stable lines that were previously observed in

the stabilization diagrams (Figure 5). The first cluster

with a high identification success rate is, however, not

accepted in the final classification results, due to its

high SDs on damping and frequency. This cluster was

related with the coloring due to the wave excitation.

Finally, we can also evaluate the effect of variables 4

and 5. These variables enhanced the classification result

of the last two clusters. These clusters are physical

modes related with weakly excited higher bending T
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Figure 7. Variables used for the clustering algorithm in case of the data set of 10 min and using 512 time lags and the cluster

classification results in case of using variables 1 and 2 (top); variables 1, 2, and 3 (middle) and using all five variables (bottom).

Figure 8. Five dominant identified mode shapes identified during the monitoring campaign.
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modes. The classification result of the mode around

0.37 Hz (first SS mode) and 1.2 Hz (second FA mode)

was slightly lowered due to a low fraction of mode

shapes that have an MPC larger than 80%. As a result,

the mode around 0.37 Hz, although physical, is no lon-

ger positively classified in this data set.

When applying the proposed method to the 2016

data sets of 10 min of data, most of the times five clus-

ters were retained by the above-presented method using

all classification variables. These five clusters corre-

spond with the five dominant vibration modes that

were well excited and identified while the wind turbine

was in parked conditions. The mode shapes are shown

in Figure 8. The first mode is the first FA bending

mode (FA1). The second mode is the first SS bending

mode (SS1). These modes are characterized by a lot of

motion at the nacelle level. Next, a mode with a second

FA bending mode behavior in the tower and almost no

motion at nacelle level (FA2) is identified. This mode is

in fact a coupled blade mode inducing some vibrations

in tower and foundation in the FA direction. The last

two modes also show a second bending mode behavior

in the tower but with a small motion of the nacelle,

respectively, in the SS (SS2N) and FA (FA2N) direc-

tions. These modes are the actual second bending

modes of tower and foundation, respectively, in the SS

and FA directions.

It can be concluded that the implemented algorithm

seems to be an efficient approach for the classification

of the identified clusters and thus can be considered as

a valuable tool to be used in automatic identification

and continuous monitoring. Other variables can be

defined and used in the algorithm, for example, vari-

ables based on pole zero pairs and pole zero correla-

tions.13,21 Note also that in Table 2, the mean MAC

values of all clusters are high; therefore, considering

this information in the first or second clustering step

would probably not have altered the results a lot.

Tracking of natural frequencies, mode

shapes, and modal damping values (Step

3)

In the last step, the different physical modes are tracked

over time. Since the natural frequencies and damping

ratios of the modes may change due to changes in the

operating conditions, it is not always straightforward

to determine which identified modes from two subse-

quent data sets correspond to the same physical mode.

Furthermore, it can happen that two modes cross each

other in terms of natural frequency or damping ratio or

even that the estimation algorithm returns a single

mode at the moment of crossing, masking the other

mode and seriously hampering the tracking process. In

the case of the wind turbine, this is observed with the

closely spaced first FA mode and first SS mode. Due to

small asymmetries in the structure or soil conditions,

these modes can have crossing frequencies due to

changing yaw angles. In the presented method, the

mode shape information in the form of the MAC is

applied for mode tracking.

Initially, the modes of interest for the tracking are

selected from the reference model obtained from an

analysis of the first data sets. Mode tracking over the

consecutive instants is done from a group composed by

all the physical cluster mean estimates that have a natu-

ral frequency that does not differ more than 5% from

the reference value. The cluster with the highest MAC

value is selected and is only accepted if the MAC ratio

is higher than 0.8. This approach makes it possible to

track estimates of the same physical mode and allows

possible frequency shifts lower than 5%, motivated by

the different ambient and operating conditions or

hypothetical damages. The reference modal parameters

(natural frequencies, modal damping ratios, and mode

shapes) used in this case are the ones presented in

Figure 8.

Figure 9 illustrates the different mode shapes identi-

fied in the 2016 successive data sets. It can be seen that

the mode shapes are very coherent over the different

data sets, indicating that the adopted methodology is

clearly able to track the different physical modes. Small

differences can be attributed to, for example, small

errors on the yaw angle used for the coordinate trans-

formation or small asymmetries in the foundation

structure and soil conditions.

Monitoring results

This section presents the obtained results using the pre-

sented continuous and automated monitoring approach

using two different state-of-the-art OMA algorithms in

Step 2, respectively, the p-LSCF and SSI-COV method.

Figure 10 presents the evolution of the natural frequen-

cies and the modal damping values of the five tracked

modes during the monitoring period. The methodology

has been able to successfully identify the closely spaced

FA and SS modes, even when the frequencies cross

each other. The methodology also successfully man-

aged to capture the small daily variation on the reso-

nance frequencies of the highest three modes. These

changes can be attributed to the tidal effect. Figure 11

shows the evolution of the resonance frequency of the

fourth monitored mode with the tidal level during

1 day. The lowest two modes seem to be less sensitive

to this effect. This can be understood due to the fact

that the highest three modes, all showing a second

bending mode behavior, have a higher relative motion
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at the water level in comparison with the first FA and

SS bending modes. The same reasoning can be followed

to justify why the frequencies of the second-order

bending modes of this structure are more sensitive to

scour as referred in the introduction. These modes have

a larger relative motion at the mudline in comparison

Figure 9. Evolution of the mode shapes of the five dominant modes during monitoring period: FA-direction (red lines) SS-direction

(green lines), top views (right figures); from top left to bottom right: FA1, SS1, FA2, SS2N, and FA2N.
FA: fore-aft; SS: side–side.

Figure 10. Evolution of frequencies of the five dominant modes during monitoring period using the p-LSCF estimator (top) using

the SSI approach (bottom).
p-LSCF: poly-reference least squares complex frequency-domain estimator; SSI: stochastic subspace identification; FA: fore-aft.
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with the first bending modes. Obviously, tracking the

frequencies of the second-order bending modes will be

of great interest if one wants to monitor scour. The

accuracy at which the method is able to track changes

due to the tidal level is promising toward using the

approach to monitor changes in soil conditions.

The variation in the modal damping ratios of all the

tracked modes is represented in Figure 12. It can be

observed that the values for the three higher modes are

reasonably coherent (taking into account that the esti-

mates of the modal damping ratios always present

some uncertainties), while the ones associated with the

two lower modes present a higher scatter. This can be

explained by the fact that identifying two closely spaced

modes always increases the uncertainty, especially on

the damping values. Also, the fact that only 10 min of

data are used affects more significantly the quality of

the estimates of the lower modes. However, a part of

this high scatter can also be attributed to the high

dependence of the damping of these modes with differ-

ent operational and ambient parameters, for example,

the wind speed. Figure 13 gives the complete overview

of the damping values of all modes as a function of the

wind speed obtained during the 14 days of monitoring.

The red lines indicate the linear fit through all mea-

sured data points. These lines give a good first

Figure 12. Evolution of damping values of the five dominant modes during monitoring period using the p-LSCF estimator (top)

using the SSI approach (bottom).
p-LSCF: poly-reference least squares complex frequency-domain estimator; SSI-COV: covariance-driven stochastic subspace identification; FA: fore-

aft.

Figure 11. Variation during 24 h of the identified frequencies of mode 4 (FA2N) (blue) and the tidal level (red) using the p-LSCF

estimator (left) using the SSI-COV method (right).
FA: fore-aft; p-LSCF: poly-reference least squares complex frequency-domain estimator; SSI-COV: covariance-driven stochastic subspace

identification.
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indication about the relation between the damping val-

ues and the wind speeds for the different modes.

Table 3 synthesizes the results of the continuous

monitoring routines in the processing of 14 days of

data. In the second column, the success rate of the

identification of the five dominant modes is quantified.

The lowest success rate can be found for the first SS

bending mode (SS1). This could be expected, as this

mode is most of the time only weakly excited, thus dif-

ficult to identify. The success rate of the highly excited

first FA mode (FA1) is higher. It can also be concluded

that the identification of the closely spaced first FA

mode and SS mode is difficult, but feasible. During this

monitoring period, the SSI-COV approach resulted in

a slightly higher success rate for the first two modes.

The other three modes, FA2, SS2N, and FA2N, pres-

ent high success rates for both methods. Columns 3–6

present the mean values and the SDs (std) of the natu-

ral frequencies (freq) and damping values (damp)

within the monitoring period. The higher SDs on the

frequencies of the two higher modes show that the

influence of ambient conditions, such as the tidal effect,

is higher on these modes. With regard to the damping

values, a higher SD on the first two modes is observed,

motivated by the reasons already discussed above. The

SSI-COV approach identifies slightly higher damping

values than the p-LSCF approach for all modes. The

mean values of the MAC coefficients are high (higher

than 0.9), which means that the mode shapes are not

very sensitive to the ambient conditions and that the

adopted identification procedure derived always high-

quality estimates. This also validates the MAC-driven

tracking algorithm.

Conclusion

This article presents a state-of-the art long-term

dynamic monitoring solution for offshore wind tur-

bines. The described processing algorithms include

automatic pre-processing and online identification of

the wind turbine dynamic parameters. The proposed

method proved to be very efficient in the identification

and tracking of the wind turbine five most dominant

modes in parked conditions. The two tested identifica-

tion algorithms, p-LSCF and SSI-COV, were capable

of identifying the modes of interest even adopting short

data sets of 10 min. In this monitoring campaign, the

SSI-COV approach yielded a higher success rate for the

closely spaced first FA and SS modes. The SSI-COV

approach also resulted in slightly higher damping val-

ues for all modes.

The results obtained during 14 days, which involved

the analysis of 2016 data sets, showed the ability of the

proposed approach for automated monitoring. The

method achieved a high accuracy of the estimates,

enabling the detection of small variations in the fre-

quencies and modal damping values due to fluctuations

in the operational or ambient conditions.

The main advantage of the adopted processing meth-

odologies can be found in the continuous monitoring of

Figure 13. Damping values of the five dominant modes (from top to down: mode 1 (FA1), mode 2 (SS1), mode 3 (FA2), mode 4

(FA2N), and mode 5 (SS2N)) in function of wind speed using p-LSCF (left) and SSI (right)
FA: fore-aft; SS: side–side; p-LSCF: poly-reference least squares complex frequency-domain estimator; SSI: stochastic subspace identification.
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the resonance frequencies (and damping ratios) of sev-

eral structural modes over a long period using ambient

excitation only instead of commonly used periodically

start–stop events. The automated OMA thus allows

identification over the full range of operational condi-

tions rather during a very particular event, that is, a

rotor stop. These long-term data will allow distinguish-

ing the operational and environmental variability of the

resonance frequencies of the turbine form the structural

changes using regression models or principal compo-

nent analysis (PCA).

Future studies will be conducted to understand and

eliminate the effect of the different operational and ambi-

ent conditions on the identified parameters. This will be

required in order to exploit the use of these parameters

in the identification of changes in the dynamic behavior

and structural integrity of the offshore wind turbine. The

next challenge will also be to evaluate the proposed pro-

cessing methodology on the data sets obtained while the

wind turbine is rotating at rated speed.
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23. Magalhães F, Cunha A, Caetano E, et al. Damping esti-

mation using free decays and ambient vibration tests.

Mech Syst Signal Pr 2010; 24(5): 1274–1290.

24. Bendat J and Piersol A. Engineering applications of corre-

lation and spectral analysis. New York: John Wiley &

Sons, 1980.

25. Devriendt C, Jan Jordaens P, De Sitter G, et al. Damping

estimation of an offshore wind turbine on a monopile

foundation. In: EWEA 2012, Copenhagen, 16–19 April

2012.

26. Devriendt C, Jan Jordaens P, De Sitter G, et al. Damping

estimation of an offshore wind turbine on a monopile

foundation. IET Renewable Power Generation 2013; 7(4):

401–412.

27. Verboven P, Cauberghe B, Parloo S, et al. User-assisting

tools for a fast frequency-domain modal parameter esti-

mation method. Mech Syst Signal Pr 2004; 18(4):

759–780.

28. Maia NMM and Silva JMM. Theoretical and experimen-

tal modal analysis. Baldock: Research Studies Press Ltd,

1997.

Devriendt et al. 659

 at b-on: 01100 Universidade do Porto on October 30, 2015shm.sagepub.comDownloaded from 

http://shm.sagepub.com/

