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 This paper develops a methodology for the optimum layout design of sensor arrays of 
structural health monitoring (SHM) systems under uncertainty.  This includes finite element 
analysis under transient mechanical and thermal loads and incorporation of uncertainty 
quantification methods. The finite element model is validated with experimental data, 
accounting for uncertainties in experimental measurements and model predictions. The 
SHM sensors need to be placed optimally in order to detect with high reliability any 
structural damage before it turns critical.  The proposed methodology achieves this objective 
by combining probabilistic finite element analysis, structural damage detection algorithms, 
and reliability-based optimization concepts. 

Nomenclature 
n  = number of candidate sensor locations 
a  = number of optimal sensor locations 
( )xf   = objective function 

x  = vector containing the coordinates of a given sensor array 
[u,v]  = bounded box that contains all possible x (i.e. geometric constraints on x) 
( )CDP   = probability of correct detection 

{ }XΨ   = experimentally measured mode shape vector 
{ }AΨ   = analytically predicted mode shape vector 
D  = observed difference between model prediction and experimental observation 
ε   = sufficiently small value 
x , s  = sample mean and sample standard deviation of model predictions 

dn   = number of data points used to calculate x  and s 
[ ]⋅Φ   = cumulative distribution function of the standard normal distribution 
( )φ,, 21 xxgo  = Gaussian random field 
( )

ikS ω   = two-sided spectral density function of ( )φ,, 21 xxgo  
)(tF   = temperature scale factor for Young’s modulus 

t  = temperature of test article (degrees Fahrenheit) 
vMσ   = equivalent von Mises stress 

xσ , yσ , xyτ  = in-plane stress components 

optN   = number of features most effective for state classification 

( )xd j   =  discriminant function of structural state j (i.e. Mahalanobis distance) 

jµ , jΣ   = mean feature vector and covariance matrix of the learning data set of structural state j 
bestx   = optimal sensor array 
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I. Introduction 
Structural health monitoring (SHM) systems that report in real-time the flight vehicle’s condition in terms of 

reactions, stresses, and displacements, are central to meeting the demanding goals of increasing flight vehicle safety 

and reliability, while reducing vehicle operating and maintenance costs1.  The SHM system must be small, 

lightweight, energy efficient, and the most reliable sub-system on board the flight structure in order to make 

incorporation into existing flight vehicle designs possible with minimal impact on the structure’s performance.  The 

structural behavior of next generation flight vehicles, such as the Space Operations Vehicle (SOV), is inherently 

random due to the uncertainties in the flight environment.  A probabilistic structural analysis that includes the 

uncertainties associated with geometry, loads, and material properties is vital toward the success of the structural 

design. This includes the development of a finite element model, uncertainty quantification methods, and 

optimization techniques. Additionally, in order for the SHM system to detect with maximum probability any 

structural damage before it becomes critical, SHM system sensors need to be optimally placed.  While many 

advances have been made in terms of sensor technology, damage detection algorithms, structural reliability, and 

deterministic sensor placement optimization (SPO) schemes, much additional research needs to be focused on 

probabilistic modeling, probabilistic analysis and design, as well as on SPO under uncertainty, in order to extract the 

maximum information about the structure’s condition while taking the uncertainties into account. 

This paper develops a methodology for integrating the advances in various individual disciplines for the 

optimum design of SHM system sensor arrays under uncertainty.  The methodology aims at maximizing the 

probability of detecting damage by designing the locations of SHM system sensors. This includes the following 

steps:  (1) structural simulation and model validation, (2) probabilistic analysis, (3) damage detection, and (4) sensor 

placement optimization.  Section 2 of this paper defines the general methodology, while section 3 provides a 

numerical example to demonstrate SPO under uncertainty. 

II. Literature Review 
Several studies have investigated sensor placement optimization during recent years.  Hiramoto, et al,2 as well as 

Abdullah, et al,3 have addressed the need to place actuators in an optimal way to control the behavior of dynamic 

structures, where Hiramoto, et al, uses the explicit solution of the algebraic Riccati equation to determine the 

optimal actuator placement and Abdullah, et al, utilizes genetic algorithms to solve the optimization.  Genetic 

algorithms (GA) have also been employed to search for optimal locations of actuators in active vibration 
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control.4,5,6,7  With respect to SHM, Guo, et al,8 use a GA approach and a sensor placement optimization 

performance index based on damage detection to search for an optimal sensor array and Spanache, et al,9 use GA 

and account for economic/cost issues in the design of a cost optimal sensor system.  However, GA-based 

sensor/actuator placement optimization methods often generate invalid strings during the evolution process and 

require a predefined number of discrete sensor configurations, which do not guarantee global optima. 

Additionally, terrorism concerns have recently caused an increased interest in using sensor arrays for monitoring 

potential attacks on municipal water distribution systems.10,11,12  In this context, SPO has been attempted with 

respect to different objectives: 1) population exposed,13 2) volume of contaminated water consumed,14 and 3) time to 

detection.15  However, Watson, et al,16 points out that in practice a multi-objective optimization, which 

simultaneously considers multiple performance measures is more appropriate.  Other research areas that have shown 

a need for sensor networks and SPO include environmental monitoring (algae biomass monitoring, light intensity 

monitoring, etc.),17,18 monitoring of spatial distributions,19 and military surveillance operations20.  In all of these 

methodologies, a predefined number of discrete sensor locations from which the sensor networks grow must be 

provided. 

Related more closely to SPO of SHM systems of next generation flight vehicles, Li, et al,21 proposed an 

algorithm that aims to identify modal frequencies and mode shapes best, as well as increase the signal to noise ratio.  

However, it is not shown that a sensor array that best identifies modal frequencies and mode shapes optimizes more 

traditional SHM performance measures such as the probability of correct classification.  Gao and Rose2223 define a 

probabilistic SPO approach, where a probabilistic damage detection model that describes detection probabilities 

over a confident monitoring region with radius R  is defined for each sensor of a given sensor set.  The entire 

effectiveness of the sensor network is then assumed to be the joint effect of all sensors as estimated at a point by the 

union probability of all sensors.  A covariance matrix adaptation evolution strategy is used to search the decision 

variable domain.  Difficulties arise defining the probabilistic damage detection models and sources for uncertainty 

are not identified specifically.  A similar SPO framework that addresses imprecise detection probabilities as well as 

uncertain terrain properties is proposed by Dhillon, et al.24  Parker, et al,25 address SPO for SHM based upon the 

concept of observability from the fields of dynamic systems theory and engineering design optimization.  The 

technique uses a dynamical model of the structure in question to obtain performance measures with respect to 

damage detection and localization; however, it does not include uncertainty. 
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To the authors’ best knowledge the issues associated with SPO under uncertainty for SHM systems due to the 

spatial and temporal stochastic variability of material, geometric, and loading parameters have not been sufficiently 

addressed.  The methodology developed in this paper includes the stochastic nature of the model input parameters to 

perform a probabilistic finite element analysis utilizing Monte Carlo realizations to derive the stochastic 

characteristics of the model outputs, which are used with appropriate damage detection algorithms to estimate 

probabilistic performance measures of a given sensor layout.  Single-objective and multi-objective objective 

functions that utilize the probabilistic performance measures individually and in combination are considered.  

Additionally, a non-GA-based optimization algorithm, which considers the decision variables to be continuous and 

combines global and local searches, is employed. 

III. Proposed Methodology 

A. Structural Simulation and Model Validation 
For most realistic structures, the response due to various loads cannot be determined via a closed-form function 

of the input variables.  The response must be computed through numerical procedures such as a finite element 

method (FEM).  Several finite element software packages are available.  Regardless of the software package used, 

structural models and their corresponding simulations must capture all physical phenomena and include all relevant 

input parameters.  The appropriate analysis may include linear, nonlinear, and/or coupled structural-thermal 

simulations. 

In addition, model verification and validation is of extreme importance before employing the model results for 

damage detection and sensor layout optimization.  Several validation metrics have been proposed to asses the 

predictive capability of models, such as the modal assurance criterion (MAC), the modal scale factor (MSF),26 and a 

newly developed model reliability metric (MRM)27.  Validation of numerical models by comparison against 

experimental observations has to account for errors and uncertainties in both model predictions and measured 

observations.  MRM accounts for the probabilistic nature of and the uncertainty associated with both model 

predictions and laboratory observations (i.e. standard deviations, distributions, etc.). 
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B. Probabilistic Analysis 
Structural model parameters such as distributed loads 

and material and geometric properties have temporal 

and spatial variability and cannot be expressed as 

single random variables, but must be represented as 

random processes and random fields28.  Thus random 

process/field modeling is a key step in probabilistic 

finite element analysis.  The Karhunen-Loeve 

Expansion (KLE) has been used extensively to 

simulate Gaussian random processes.29  The wavelet 

transform method is an extension of the KLE simulation algorithm and is applicable to non-stationary Gaussian 

processes and fields.  Other random process/field generation sequences include the Pierson-Moskowitz Wave 

Spectra, the JONSWAP spectra30, Sakamoto’s Polynomial Chaos Decomposition31, and Shinozuka’s Gaussian 

stochastic process formulation32.  For example, the Gaussian stochastic fields and processes in Figure 1 were 

generated using Shinozuka’s spectral representation formulation and the Wiener-Khinchine relations.  Random field 

realizations, such as the ones shown can be used to simulate component thickness, material moduli, and spatially 

distributed loads such as thermal and pressure loading.  Representing spatially or temporally distributed model 

inputs through discretized random process/field realizations allows the inclusion of their uncertainty in FEM 

analyses. 

Once the model input parameters are randomly generated via the discretization of random processes/fields and 

applied as inputs to FEM models, repeated simulations of the finite element analysis at each realization are used to 

generate statistical and/or sensitivity information on model outputs at each possible sensor location i . For practical 

purposes, each node of the FEM model may represent a possible sensor location. 

C. Damage Detection Algorithms 
Damage detection and location identification algorithms include wavelet-based approaches33, two-stage modal 

frequency analysis34, and methods for eddy-current-based damage detection35.  Property matrix updating, nonlinear 

response analysis, and damage detection using neural networks are all methods used to manipulate the information 

gathered by SHM systems for decision making.  However, most structural damage detection methods and algorithms 

found in the literature examine the changes in the measured structural vibration response and analyze the modal 

 

 
Figure 1. Random field and process realizations with 

varying correlation structures. 
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frequencies, mode shapes, and flexibility/stiffness coefficients of the structure36.  This can be achieved either 

actively or passively, where active damage detection algorithms utilize the system response to an auxiliary 

excitation and passive methodologies utilize only the responses to operational vibrations.  A comprehensive review 

of the state of the art damage detection and location identification algorithms is provided in Ref. 36. 

The probabilistic FEM analysis in the previous section quantifies the statistics of the model outputs at all 

possible sensor locations.  Additional analysis is needed to estimate the probability of correctly identifying the 

structural state of a component for a given sensor layout, x 

(i.e. ( ) )layout sensor |tionclassifica structuralcorrect ( xPCDP = ).  This can be accomplished via any appropriate 

diagnostics signal analysis procedure (i.e. damage detection algorithm).  The signal analysis procedure employed in 

this study follows the general concepts of Ref. 37 and utilizes the feature extraction and state classification 

methodologies defined in Ref. 38.  Repeated analyses using different realizations of the random inputs to healthy 

and damaged structural FEM models and their respective state classification constructs a classification matrix from 

which several performance measures of the given sensor layout can be estimated.    Further details of such a 

procedure are given in Section IV.C. 

D. Sensor Placement Optimization 
The SPO problem can be generalized as “given a set of n candidate locations, find a locations, where a << n, 

which provide the best possible performance”39 in damage detection.  Studies by Padula39,40,41 and Raich42 have 

examined the problems and issues involved with SPO.  Integer and combinatorial optimization methods have been 

used to optimize the placement of actuators for vibration control and noise attenuation. In addition, genetic 

algorithms for the optimization of sensor layouts42 have been proposed.  Multivariate stochastic approximation using 

simultaneous perturbation gradient approximation allows for the inclusion of noise in function evaluations or 

experimental measurements and has been shown to be efficient for large-dimensional problems43. 

An approach to SPO that includes uncertainty is to employ Snobfit44 (Stable Noisy Optimization by Branch and 

Fit), an optimization scheme that is designed for bound-constrained optimization of noisy objective functions, which 

are costly to evaluate due to computational or experimental complexity.  The major advantage of using Snobfit is 

that the algorithm does not require a previously determined set of candidate sensor locations, but rather considers the 

following optimization problem. 
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],[  ..

)( min
vuxts

xf
∈

                 (1) 

where x is continuous and [u,v] is a bounded box in nℜ with a nonempty interior.44  

The underlying idea of the optimization formulation is to identify a sensor layout, x, that will maximize some 

performance measure, such as the probability of correctly classifying the structure as either healthy or damaged (i.e. 

classify the structure as healthy when it is indeed healthy and as damaged when it is damaged).  Here x represents a 

vector containing the coordinates of the SHM sensors for a given layout.  From the reliability analysis described 

above and a diagnostics signal analysis procedure, a performance measure such as ( )CDP , is known.  This allows 

the optimization formulation given in Eq. (1) to be utilized, where ( )CDPxf −=)(  and [u,v] are the geometric 

constraints on x given by the physical dimensions of the structure. 

IV. Application of Methodology 
The proposed methodology is implemented using the following example problem.  The structure under 

consideration is a simplified thermal protection system (TPS) component that is described in detail in Ref. 45, and 

shown in Figure 2.  The test article consists of a heat-resistant, 0.25 inch thick aluminum plate, held in place via four 

0.25 inch diameter bolts located 0.50 inches from the edges of the plate. 

A. Structural Simulation and Model Validation 
The structure under consideration is modeled using the 

commercial finite element software Ansys.46  A portion of 

the FEM model is shown in Figure 3.  Four-noded shell 

elements (Shell63) and two-noded spring elements 

(Combin14) are utilized to model the aluminum plate and 

bolted boundary conditions.  Approximately 3,300 nodes 

and 2,800 elements comprise the 19,836 degree of 

freedom (DOF) models.  In Figure 3, the four points 

located near the corners of the plate simulate the bolted 

boundary conditions via 48 spring elements per bolt with 

varying stiffness coefficients (depending on which structural state the model simulates), while the point near the 

center of the upper left quadrant of the plate simulates the piezoelectric actuator.  The analysis is transient and 

 
Figure 2. Experimental setup of TPS test article 
showing bolts and piezoelectric transducer 
placement [45]. 
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includes a dynamic mechanical load consisting of a sinusoidal frequency sweep, exciting the structure from 0 to 

1500 Hz in approximately 2.0 seconds.  This excitation represents the auxiliary input used with active damage 

detection algorithms.  Due to the high frequency of the excitation function, a mode superposition (MSP) transient 

analysis was used to evaluate the FEM model simulations.  MSP analysis sums factored mode shapes, obtained from 

a modal analysis, to calculate the dynamic response46.  MSP assumes that the structure behaves linearly. 

This study employs two metrics for validation of the finite element models.  The modal assurance criterion 

(MAC)26 provides a measure of the statistical correlation between model predictions and experimental observations.   

{ }XΨ  defines the experimentally measured mode shape 

vector and { }AΨ  the analytically predicted mode shape 

vector.  MAC is defined as  

      
{ } { }

{ } { }( ){ } { }( )A
T

AX
T

X

A
T

X

Ψ⋅ΨΨ⋅Ψ

Ψ⋅Ψ
2

              (2) 

and is a scalar quantity close to 1.0 if the experimental and 

theoretical mode shapes are in fact from the same mode. If 

the two mode shapes, which are being compared, actually 

relate to two different modes of vibration, a value close to 

0.0 should be obtained.  Generally speaking, a value in excess of 0.9 implies well correlated modes26. 

In addition to MAC, Ref. 27 defines a reliability measure via the simple metric ( )εε <<−= DPr , i.e. the 

probability that the observed difference, D, between model prediction and experimental observation is less than a 

small value ε .  It is calculated as  

         
( ) ( )
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
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





 Θ−−−
Φ−






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

 Θ−−
Φ=

s
xn

s
xn

r dd εε
,            (3) 

where Θ  is a single-valued experimentally observed measurement, x  is the sample mean and s  the sample standard 

deviation of the model predictions, and dn  is the number of data points utilized to calculate x  and s.  The 

cumulative distribution function (CDF) of the standard normal distribution is denoted as [ ]⋅Φ .  In addition to 

comparing modal frequencies via MRM, mode shape vectors may also be investigated.  These comparisons and their 

results47 lead to the conclusion that all model predictions are highly correlated to experimental observations in 

 
Figure 3. Finite element model of TPS component. 
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regards to natural frequencies as well as mode shapes, such that the models can be considered validated with high 

reliability. 

B. Probabilistic FEM Analysis 
In the current example, plate thickness, Young's modulus, Poison's ratio, and density are modeled as Gaussian 

random fields with independent, but equal correlation structures along orthogonal axes.  A two-dimensional 

stochastic process was generated for these model inputs using the spectral representation as defined in Eq. (4) via 

Shinozuka’s formulation48 and the Wiener-Khinchine relations49.  The Gaussian random field ( )φ,, 21 xxgo  can be 

simulated by the following series as 1N  and 2N  approach infinity. 

      ( ) ( ) ( ) ( )[ ]∑ ∑
−

=

−

=

++∆∆=
1

1

1

1
,212121

1

1

2

2

212121
cos2,,

N

k

N

k
kkkkkko xxSSxxg φωωωωωωφ         (4) 

where
i

u
i N

i
ω

ω =∆ , iik k
i

ωω ∆= , for 2,1=i .  Here 
iuω  is the upper cutoff frequency beyond which ( )

ikS ω  is 

considered zero. ( )
ikS ω  is the two-sided power spectral density function of the random field in the i  direction and 

21 ,kkφ  an array containing the independent random phase angles uniformly distributed between 0 and π2 .  iN  

defines the number of terms to be included in the dual summation in the i  direction.  The random fields in this study 

utilize the following power spectral density functions: ( ) ( )
iii kikiik bbS ωωσω −⋅= exp4

1 232  for 2,1=i .  Here iσ  is the 

standard deviation of the stochastic process in the i  direction and ib  its corresponding "correlation distance." 

For the random fields considered as 

FEM inputs to models of the test article, 

321 == bb  and 121 == σσ , where the 

magnitude of ( )φ,, 21 xxgo  is scaled after 

the fact to match the mean and coefficient of variation (COV) of the random field to be simulated.  πωω 5
21
== uu , 

while 3521 == NN .  Table I lists the means and COV used for each of the random fields simulated with Eq. (4). 

Temperature uncertainty was included as a random variable uniformly distributed between 65 and 75 degrees 

Fahrenheit.  The following temperature effect model was constructed via a quadratic regression analysis of data in 

Ref. 50: 

Table I. Mean and COV values used for random field simulation. 
Panel Thickness  

(in)
Young's Modulus  

(psi)
Poison's 

Ratio
Density       

(lb-mass/in^3)

Mean 0.2458 9.75E+06 0.3 2.59E-04
COV 0.02 0.02 0.02 0.02
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        ( ) ( ) 00067.11075775.210151525.1)( 526 +×+×−= −− tttF            (5) 

where )(tF  is a scale factor for Young's modulus and t  is the plate temperature in degrees Fahrenheit. 

Repeatedly executing deterministic finite element analyses using realizations of the model inputs provides data 

for statistical analysis of the model responses.  For the example at hand, 500 simulations using 500 realizations of 

the random inputs were executed; 100 simulations of the healthy model, 100 simulations of the model damaged at 

bolt 1, 100 simulations of the model damaged at bold 2, and so on, where a damaged bolt refers to a bolt at 25% 

nominal torque (damage was simulated analytically by altering the stiffness constants of the spring elements 

surrounding each bolt location).  These 5 sets of simulations and their corresponding response statistics are used for 

damage detection. 

C. Damage Detection and State Classification 
Figure 4 shows a typical sensor layout, where sensor location 1 is the point of input excitation and stationary, 

while sensor locations 2, 3, and 4 are the points of sensing and variable.  Also shown in Figure 4 are the locations of 

the 4 bolts which hold the test structure in place and are the locations of fastener damage.  The hatched areas in 

Figure 4 are regions where it is infeasible to place SHM sensors. 

From the pool of simulation output of the probabilistic FEM analysis consisting of temporal displacement data, 

an equivalenced von Mises stress is calculated via Eq. (6) as defined in Ref. 46 for each possible sensor location. 

           222 3 xyyyxxvM τσσσσσ ++−=               (6) 

where xσ , yσ , and xyτ  are the in-plane stress components, which are estimated from the displacement records of 

the four nearest neighboring nodes.  Plane stress conditions are assumed. 
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From the estimated von Mises stress records at sensor locations 

S2, S3, and S4, a set of features is extracted. Features are 

characteristics unique to a signal generated under a given set of 

parameters.  The set of features utilized for this example problem is 

based in the frequency-domain and is extracted via the well-known 

Welch method51,52 from the power spectral densities (PSD) of the 

signals.  With a bin size of 100 measurements and an overlap of 

50%, the Welch method produces 51 features each from the signals 

obtained at piezoelectric sensor locations S2, S3, and S4.  

Dimensionality reduction is achieved via feature selection.  Feature 

selection provides a subset of optN  features from the m-dimensional 

feature pool most effective for state classification.  In general, the fewer features used in a classifier, the more likely 

the training set performance will be representative of test set performance38.  A sequential forward search 

algorithm53,54 is used to identify 25 optimal features from the original 153-dimensional feature pool. 

The above defined feature vector is then used for state classification.  The state classifier utilized in this work is 

derived from Bayes decision theory and minimizes the probability of classification error37.  The discriminant 

functions, one for each structural state ("healthy", "damaged at bolt 1", "damaged at bolt 2", etc.), are the 

Mahalanobis distances as given in Eq. (7).   

           )()()( 1
jj

t
jj xxxd µµ −Σ−= −               (7) 

where j indexes the structural state, x is a feature vector to be classified, and jµ  and jΣ  are the mean feature vector 

and covariance matrix of the learning data set of structural state j.  The learning data set consists of the first 50 

simulations of each structural state.  Since the Mahalanobis distance requires the determination of the inverse of jΣ  

it is necessary that the feature covariance matrix be non-singular.  State classification is continued by evaluating 

each discriminant function for each simulation of the testing data set and assigning the state according to the 

discriminant function with the smallest value.   

It has been shown in Ref. 55 that the above damage detection algorithm works most efficiently in comparison 

with damage detection algorithms which utilize other feature types, feature extraction methods, dimensionality 

 
Figure 4. – TPS Test Plate with Typical 
Sensor Layout, Actuator, and Fastener 
Damage Locations. 



 
American Institute of Aeronautics and Astronautics 

 

12

reduction schemes, and feature selection algorithms.  This damage detection algorithm is then applied to testing 

data, which consists of the second 50 simulations of each structural state.  This yields a classification matrix 

corresponding to a given sensor layout, from which several performance measures may be estimated.  A sample 

classification matrix is shown in Table II.  Training and testing data sets are reversed to achieve higher fidelity 

within the classification matrix. 

Using the information contained in the 

classification matrix one can estimate 

several probabilistic performance measures 

of a given sensor layout, such as the 

probability of false alarm (Type I Error), the 

probability of missed detection (Type II 

Error), the probability of correct detection 

(Accuracy), and the probability of 

misdetection (1-Accuracy)56.  ( )Alarm FalseP  is defined as the likelihood that the damage detection algorithm 

classifies a healthy structure as damaged.  ( )Detection MissedP  is the probability that the damage detection method 

classifies a damaged structure as healthy.  Accuracy is measured via ( )DetectionCorrect P , which is defined as the 

probability that the damage detection method will classify a given structure correctly into its proper structural state 

(i.e. ( )ii ωωP  is state structural | as structureclassify ).  The compliment of ( )DetectionCorrect P  is ( )onMisdetectiP .  

These probabilities can be used to evaluate a given sensor array.  The performance measures are expressed as 

follows. 

     ( ) ( )TypeIPP ==
CM of 5 Rowin  Elements All of Sum

CM of 5 Rowin  Elements 4First  of SumAlarm False            (8) 

    ( ) ( )TypeIIPP ==
CM of 5Column in  Elements All of Sum
CM of 5Column  Elements 4First  of SumDetection Missed            (9) 

     ( ) ( )CDPP ==
CM of Elements All of Sum

CM of Elements Diagonal of SumDetectionCorrect          (10) 

         ( ) ( )DetectionCorrect 1onMisdetecti PP −=           (11) 

Table II. Sample classification matrix for a given sensor layout. 

Damaged 
1

Damaged 
2

Damaged 
3

Damaged 
4

Healthy

Damaged 
1

78 21 0 0 1

Damaged 
2

0 98 0 2 0

Damaged 
3

0 1 91 7 1

Damaged 
4

0 10 0 89 1

Healthy 0 11 0 1 88

True 
States

Classified States
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Evaluating Eqs. (8) to (11) for the classification matrix shown in Table II yields the following results.  

( ) 12.0Alarm False =P ; ( ) 033.0Detection Missed =P ; ( ) 89.0DetectionCorrect =P ; ( ) 11.0onMisdetecti =P .  

Repeating the above calculations for different 

sensor layouts generates different values of the 

performance measures.  Five randomly selected 

sensor layouts are shown in Figure 5 and their 

corresponding performance measures are shown in 

Table III.  Note that for the 5 sensor layouts 

presented, the best sensor layout varies depending 

on which performance measure is utilized.  For 

example, if maximum ( )CDP  is desired, sensor 

configuration SL1 is optimum; however, if 

minimizing ( )TypeIP  is the objective, sensor layout 

SL2 performs best.  A multi-objective optimization 

problem with an objective function of the form 

shown in Eq. 12 may be utilized.   

( ) ( ) ( ) ( )TypeIIPTypeIPCDPxf ⋅+⋅+⋅= γβα  (12) 

This however generates the additional problem 

of assigning values to α , β , and γ , which may 

prove to be difficult and depending on what values 

are chosen may cause the optimal solution to vary 

significantly.   

D. Sensor Placement Optimization 
The software package Snobfit44, programmed in Matlab57, is used to solve the optimization formulation given by 

Eq. (1) iteratively.  Snobfit is designed specifically to handle the following difficulties that arise with this particular 

problem. 

 
Figure 5. Five randomly selected sensor layouts. 

Table III. Performance measures corresponding 
to randomly selected sensor layouts of Figure 5. 

Sensor 
Layout P(CD) P(Type I) P(Type II)

SL1 0.916 0.12 0.0075
SL2 0.860 0.08 0.0050
SL3 0.866 0.12 0
SL4 0.894 0.11 0.0025
SL5 0.872 0.10 0.0075  
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• The function values are expensive to evaluate (i.e. obtaining the performance measures for a given 

sensor layout is computationally intensive). 

• Instead of a function value requested at a point x, only a function value at some nearby point x~  is 

returned (the finite mesh size of the FEM models restricts that “sense-able” responses required by 

the damage detection algorithm to estimate the performance measures are only available at nodal 

locations). 

• The function values are noisy (due to the finite number of simulations utilized to construct the 

confusion matrix, there is a finite precision with which the performance measures can be 

estimated). 

• The objective function may have several local minima. 

• Gradient information is not readily available. 

The Snobfit algorithm proceeds as follows to solve Eq. (1).  It partitions the bounded box ],[ vu  into a set of 

subboxes such that each contains exactly one point.  A branching algorithm is utilized for this purpose.  Snobfit then 

builds local quadratic models, around the current best point, bestx , and around all other points.  Two different types 

of quadratic models are used: a Hessian fit around the best point, bestx , and around all others a quadratic fit using as 

Hessian a suitable multiple of the Hessian matrix used in the model around bestx .  The suitable multiple is decided 

based on the point’s distance from bestx .  The algorithm then suggests a user-specified number of evaluation points 

to be used in the next iteration of the optimization.44   

The function can be evaluated at these points and other locations for further Snobfit iterations.  Due to the fact 

that the structural FEM model described in Section IV.A. has a finite fidelity and temporal data is only available at 

the nodes, the points which Snobfit requests are substituted with the nearest neighboring nodal locations. The 

damage detection and state classification procedure described in Section IV.C. is performed for these requested 

sensor layouts, where vectors u and v  confine sensors 2, 3, and 4 to their respective quadrants of the TPS 

component.  A natural stopping criterion would be to quit exploration if for a number of iterations no new bestx  is 

generated and the accuracy of bestx  as predicted by Snobfit converges to a reasonably small value. 
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The above defined procedure was carried out for the objective functions listed in the first column of Table IV.  

The first three objective functions are single-objective.  The 4th and 5th objective functions are of the form shown in 

Eq. 12, where 5.0−=α , 25.0=β , and 25.0=γ  for the 4th objective function and 5.0−=α , 25.0=β , and 

0.5=γ  for the 5th objective function.  In addition, the compliment of ( )CDP ,  ( )[ ]CDP−1 , is utilized in 

combination with α  as the first term of the 5th  objective function to adjust the relative importance of each of the 

three performance measures to a ratio of approximately 1:1:2 .  This brings the three individual objectives to a 

comparable scale.  The approximate ratio of relative importance of the three performance measures for the 4th 

objective function is 1:20:360 .  Other ratios of relative importance may be achieved by adjusting α , β , and γ .  

The corresponding results are also shown in Table IV, where Nite  is the number of Snobfit iterations, Nobj  is the 

number of objective function evaluations, and E is the measure of accuracy of the quadratic model at the optimal 

solution as estimated by Snobfit.  The coordinates given are with respect to the bottom left corner of the plate.  The 

results are visually presented in Figure 6. 

From Table IV and Figure 6 it can concluded that although the solution varies for different objective functions, 

the optimal sensor arrays corresponding to objective functions 2 through 5 are virtually identical.  Additionally, it 

was observed during Snobfit’s iterations that the optimal solutions to objective functions 2 through 5 was robust and 

insensitive to small changes in the independent variables (i.e. shifting sensors S2, S3, and/or S4 by less than 0.25 

inches in any direction, did not significantly alter the performance measures).  However, the solution to  the 1st 

objective function, ( ) ( )CDPxf −= , was very sensitive with respect to small changes in the independent variables 

(i.e. shifting sensors S2, S3, and/or S4 by less than 0.25 inches in any direction, significantly degraded the 

performance measures).   

Table IV. Results: optimal sensor arrays corresponding to different objective functions. 

S2 S3 S4 P(CD) P(Type I) P(Type II)

- P(CD) 71 258 8.75, 6.75 6.0, 3.5 3.5, 0.75 0.0104 0.944 0.13 0.0075

P(Type I) 12 58 7.0, 8.5 11.73, 0.27 5.75, 1.25 0.0426 0.916 0.01 0

P(Type II) n/a n/a 7.0, 8.5 11.73, 0.27 5.75, 1.25 n/a 0.916 0.01 0
-0.5 P(CD)+0.25 P(Type I)+0.25 P(Type II) 55 268 6.75, 8.75 11.60, 0.40 5.75, 1.25 0.0208 0.932 0.03 0.0025

0.5(1 - P(CD))+0.25 P(Type I)+5.0 P(Type II) 44 196 7.0, 8.5 11.73, 0.27 5.75, 1.25 0.0375 0.916 0.01 0

Corresponding Performance 
MeasuresEObjective Function                         

f(y) = Nite Nobj
Optimal Solution Coordinates for 

Sensors
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Difficulties were observed while optimizing the 3rd objective function, ( ) ( )TypeIIPxf −= .  Several sensor 

configurations produced probabilities of missed detection of zero percent, creating many optimal solutions, since a 

probability of missed detection less than zero percent is not possible.  The authors utilized the additional information 

gathered during the optimization of objective functions 2, 4, and 5, and declared 

( ) ( ) ( ){ }25.1 ,75.54 ;27.0 ,73.113 ;5.8 ,0.72 SSS  to also be the optimal solution for the 3rd objective function. 

 
Figure 6. Results: optimal sensor arrays corresponding to different objective functions. 
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V. Conclusion 
A methodology for sensor placement optimization under uncertainty is developed in this paper.  The method 

consists of four components:  (1) structural simulation and model validation, (2) probabilistic analysis, (3) damage 

detection, and (4) sensor placement optimization.  The methodology is applied to the optimization of the sensor 

array of a SHM system for a simplified TPS component. 

Further work is required in regards to validating this methodology with experimental data.  An additional 

investigation is necessary to determine the optimum number of sensors.  In this paper the number of sensors was 

fixed; only their coordinates were design variables.  It is reasonable to assume that as the number of sensors 

distributed across the structure increases, the estimated SHM performance measures improve.  However, due to 

weight penalties associated with additional sensors, as well as complexity constraints with respect to the amount of 

data acquired by the sensing system that requires processing (and therefore processing power), the number of 

sensors applied to the structure must be minimum.  In addition, future work needs to incorporate sensor reliability 

and redundancy into the optimization.  Issues such as sensor performance and failure under various environmental 

and operating conditions need to be addressed. 
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