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Abstract
Protein structures may be used to draw functional implications at the residue level, but how sensitive are these implications 
to the exact structure used? Calculation of the effects of SARS-CoV-2 S-protein mutations based on experimental cryo-
electron microscopy structures have been abundant during the pandemic. To understand the precision of such estimates, 
we studied three distinct methods to estimate stability changes for all possible mutations in 23 different S-protein structures 
(3.69 million ΔΔG values in total) and explored how random and systematic errors can be remedied by structure-averaged 
mutation group comparisons. We show that computational estimates have low precision, due to method and structure het-
erogeneity making results for single mutations uninformative. However, structure-averaged differences in mean effects for 
groups of substitutions can yield significant results. Illustrating this protocol, functionally important natural mutations, 
despite individual variations, average to a smaller stability impact compared to other possible mutations, independent of 
conformational state (open, closed). In summary, we document substantial issues with precision in structure-based protein 
modeling and recommend sensitivity tests to quantify these effects, but also suggest partial solutions to the problem in the 
form of structure-averaged “ensemble” estimates for groups of residues when multiple structures are available.
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Introduction

Protein structures are commonly used as input to draw 
mechanistic implications at the residue level, either by 
inspection or more often by some form of computation/cal-
culation. This has been much the case during the pandemic 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2). The spike glycoprotein (S-protein) binds 
to the human receptor angiotensin-converting enzyme 2 
(ACE2) during cell infection and is targeted by the immune 
system, which is the mode of action of many vaccines. (Fehr 

and Perlman 2015; Letko et al. 2020; Liu et al. 2020; Wang 
et al. 2020; Forni and Mantovani 2021; van Dorp et al. 2021) 
Antigenic drift of new S-protein mutations is an urgent chal-
lenge, (McCallum et al. 2021; van Dorp et al. 2021) with 
the recent omicron variant being a hallmark example. (Liu 
et al. 2022; Planas et al. 2022) Accordingly, S-protein struc-
tures are of high interest. (Alsulami et al. 2021; Mehra and 
Kepp 2022) Made possible by the recent technical break-
throughs in cryo-electron microscopy (cryo-EM) of macro-
molecules, (Fernandez-Leiro and Scheres 2016; Murata and 
Wolf 2018; Danev et al. 2019; Blundell and Chaplin 2021) 
an unprecedentedly rich structural biology of the S-protein 
was induced by healthy competition during the pandemic, 
with hundreds of structures published. (Mehra and Kepp 
2022) While important of course in themselves, this richness 
of data also enables new options for testing the sensitivity 
of computational protein modeling to the exact choice of 
input structure.

The S-protein is under selection for antigenic drift and 
plausibly also for maintenance of overall fold stability, 
(Mehra and Kepp 2022) as seen in other cases of protein 
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evolution. (Bershtein et al. 2008; Tokuriki and Tawfik 2009; 
Goldstein 2011; Liberles et al. 2012; Kepp 2020) The prefu-
sion S-protein is in a conformationally variable metastable 
state that evades antibodies and contributes to ACE2 bind-
ing. (Berger and Schaffitzel 2020) An accurate understand-
ing and prediction of future SARS-CoV-2 evolution (Maher 
et al. 2022) requires insight into the potential impact of 
mutations, and experimental cryo-EM structures are essen-
tial for such insight. (Mehra and Kepp 2022).

Computer models are often applied to understand the role 
of specific residues, typically by studying mutations. How-
ever such models have limitations due to noise and biases 
in the training data and dependencies on a folded wild-type 
structure for extrapolating the impacts, if the mutant struc-
ture is not available. (Khan and Vihinen 2010; Christensen 
and Kepp 2012; Kepp 2015; Pucci et al. 2018, 2022; Calda-
raru et al. 2020, 2021a; Iqbal et al. 2021; Louis and Abriata 
2021) Computational methods carry bias toward some muta-
tion types. (Pucci et al. 2018; Caldararu et al. 2020) In addi-
tion to the heterogeneity within each separate cryo-EM map, 
which is informative of the ensemble dynamics within the 
settings of that study and increasingly handled with new 
techniques, (Scheres 2016; Zhong et al. 2021) “extra” heter-
ogeneity arising from e.g., different chemical conditions and 
sample and data collection protocols can also be important 
but has not been studied much, and only for crystal struc-
tures obtained by X-ray diffraction. (Mehra et al. 2020; Cal-
dararu et al. 2021a) We are not aware of any studies of the 
precision of cryo-EM structures in a functional context, i.e., 
how differences between cryo-EM structures of the suppos-
edly same protein state affect functional deductions from 
computation. Understanding the precision of such protein 
modeling requires comparing multiple structures. More than 
200 structures published during the pandemic (Alsulami 
et al. 2021; Mehra and Kepp 2022) makes the SARS-CoV-2 
S-protein an ideal study case for exploring this problem with 
a sufficiently large number of structures.

Our work was partly motivated by many well-cited com-
putational studies published during the pandemic using 
single methods and a few structures to deduce functional 
implications for single residues. (Delgado Blanco et al. 
2020; Hadi-Alijanvand and Rouhani 2020; Laha et al. 2020; 
Othman et al. 2020; Shorthouse and Hall 2021; Xue et al. 
2021; Teng et al. 2021; Kumar et al. 2022; Rochman et al. 
2022) In our initial studies, we found that results varied 
with method and structure choice, requiring us to investi-
gate much more data intensively many different structures, 
as we report below.

Here, we address this problem of precision (i.e., how 
much the choice of cryo-EM structure affects computa-
tionally deduced functional implications) via the structure-
guided impact of residue substitutions on S-protein stabil-
ity. Computational methods to estimate these effects from 

experimental wild-type structures have been developed and 
tested over several decades and their strengths and weak-
nesses are fairly well understood. (Sanavia et  al. 2020; 
Casadio et al. 2022; Pucci et al. 2022) We show that even 
without experimental data available to validate accuracy, 
the precision of such computational estimates is a major 
challenge. However, we demonstrate that we can utilize the 
rich structural biology of the S-protein by explicitly consid-
ering several experimental structures as a simple ensemble 
to improve the estimates.

Methods

Strategy

How much does the choice of cryo-EM structure affect 
functional deductions at the residue level? This question of 
inter-structure heterogeneity should not be confused with 
heterogeneity within a specific cryo-EM map, which gives 
important information on the ensemble in a specific study’s 
context. Computational estimates of the impact of mutating 
a residue based on a wild-type structure provide a metric 
for answering this question, which is essentially about pre-
cision and does not require the thermodynamic stabilities 
of hundreds of S-protein mutants to be known. The unique 
richness of cryo-EM structures of the S-protein (Mehra and 
Kepp 2022) offers an unprecedented possibility to test this 
question in the resolution regime of 2.5 − 3.5 Å.

Stability impacts of mutating a residue are arguably the 
most straightforward way to study this problem, as methods 
have been developed for several decades for this purpose. 
(Louis and Abriata 2021; Casadio et al. 2022; Pucci et al. 
2022) To estimate the effects of S-protein mutations, we 

1) use several methods for sensitivity analysis, including 
some that are more or less sensitive to structural varia-
tions,
2) account for heterogeneity in the experimental S-protein 
structures by using 23 structures as input,
3) compare both heterogeneity between structures of the 
supposedly same conformational state and between dif-
ferent conformational states,
4) illustrate that interpretations at the residue level can be 
very structure-dependent, and
5) propose protocols to handle this, by comparing muta-
tion groups rather than single mutations and sites, aver-
aged over an “ensemble” of experimental structures.

Protein structures studied

The initial part of our work emphasized S-protein struc-
tures without antibodies or ACE2 bound in an evaluation 
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of structural sensitivity. An example of the prefusion closed 
state is shown in Fig. 1a. We computed all mutations possi-
ble in the protein and illustrated results for a group of natural 
mutations (Fig. 1b) known to have large impact on func-
tion. (Tegally et al. 2020; Li et al. 2020; Chen et al. 2021; 
Yuan et al. 2021; Greaney et al. 2021; McCallum et al. 2021; 
Starr et al. 2021; Wang et al. 2021; Thomson et al. 2021; 
Dejnirattisai et al. 2021; Ferreira et al. 2021) We used six 
different S-protein structures all representing the S-protein 
closed state (Fig. 1c), selected based on resolution and resi-
due coverage. These include 6X6P by Herrera et al. 2021, 
7DF3 by Xu et al. 2021, 7CAB by Lv et al. 2020, 6X79 by 
McCallum et al. 2020, 7DDD by Zhang et al. 2021, and 
6VXX by Walls et al. 2020.

The number of residues (N), the percentage of outliers 
from a Ramachandran analysis (% Outl.), and the resolu-
tions (in Å) of these structures are given in Table 1. We 
note that the Ramachandran outliers partly reflect molecular 
mechanics force-field optimization and thus, while indicat-
ing deviations from expected realistic backbone conforma-
tions, do not inform directly on the empirical quality of the 
structure (in fact, very accurate structures may have some 
real outliers not observed upon force field optimization, 
which is biased toward small variation from ideal torsion 
angles). We also note that the ambient temperature ensemble 
may differ somewhat from the cryo-temperature ensemble 
obtained upon rapid cooling, in addition to chemical com-
position and cell effects (Mehra et al. 2020). We finally note 
that the cryo-EM structure deposited in the PDB is usually 
just one structure out of many that could be derived from the 
particle data, and it is possible to address the heterogene-
ity and ensemble effects of a specific experiment by other 
techniques. Our interest here is to quantify the effect of the 

choice of deposited structure on results, as it is standard to 
use a single structure sometimes rather arbitrarily if more 
good structures are available. However, we expect the struc-
tures to provide good information on backbone conformation 
and secondary and tertiary structure.

To understand conformation-state-specific mutation 
stability effects, we also studied all possible mutations in 
an additional 17 S-protein structures representing differ-
ent states: closed, open, locked and active (Table S1). To 
minimize confounding effects (chemical conditions, lab 
protocol, protein modifications) we only compared confor-
mational states reported by the same study (not one state 
from one study with another state from another study). 
These structures include 6VYB, (Walls et al. 2020) 7DWY, 
(Yan et al. 2021) 7DWZ, (Yan et al. 2021) 6XF5, (Zhou 
et al. 2020) 6XF6, (Zhou et al. 2020) 7A4N, (Juraszek et al. 
2021) 7AD1, (Juraszek et al. 2021) 6X2C, (Henderson et al. 
2020) 6X2A, (Henderson et al. 2020) 6X2B, (Henderson 
et al. 2020) 6ZGE, (Wrobel et al. 2020) 6ZGI, (Wrobel 
et al. 2020) 6ZGG, (Wrobel et al. 2020) 7KDG, (Gobeil 
et al. 2021) 7KDH, (Gobeil et al. 2021) 6Z97, (Huo et al. 
2020) and 6ZB4 (Toelzer et al. 2020) having N = 963−1099, 

Fig. 1  SARS CoV-2 S-protein structures studied in this work. a 
Trimer colored by chain (PDB code: 7DF3). b Prominent mutation 
sites studied shown as red balls on monomer unit (PDB code: 7DF3). 

c Six structurally aligned S-protein structures investigated in this 
work (each structure represented in a single color, RMSD 0.5−2.9 Å)

Table 1  Structures used in the present study to compute all mutations

PDB N % Outl Res (Å) Reference

6X6P 1017 0.0 3.2 Herrera et al. (2021)
7DF3 1088 0.3 2.7 Xu et al. (2021)
7CAB 1029 0.1 3.5 Lv et al. (2020)
6X79 950 0.1 2.9 McCallum et al. (2020)
7DDD 1088 0.1 3.0 Zhang et al. (2021)
6VXX 972 0.2 2.8 Walls et al. (2020)
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0−0.5% outliers from Ramachandran analysis, and resolu-
tions of 2.6−4.0 Å. These data were analyzed as pair com-
parisons of closed and open structures.

Methods to estimate stability effects of mutations

Protein mutations typically tend to more often be destabi-
lizing than stabilizing, because of the usual evolutionary 
optimization of structures, giving a skewed fold stability 
(ΔΔG) distribution of arising mutations. (Tokuriki et al. 
2007) Datasets accordingly also tend to be skewed toward 
destabilization and biased toward small stability effects, and 
also carry a bias in mutation type, as some mutations have 
been more commonly studied experimentally, e.g. alanine 
mutations, and these imbalances also affect method perfor-
mance. (Pucci et al. 2018; Caldararu et al. 2020) The output 
must thus be seen in the context of other methods using 
different approaches, in addition to with same method for 
other structural inputs.

To study the impact of method choice on the results for 
individual mutations, we used three methods, SimBa-2 (or 
SimBa-IB), (Caldararu et al. 2021b; Bæk and Kepp 2022a) 
I-Mutant 3.0, (Capriotti et al. 2005, 2006) and CUPSAT, 
(Parthiban et al. 2006) to compute the change in fold stabil-
ity (ΔΔG, in units of kcal/mol) for all possible mutations 
of all the 23 studied structures (69 chains). The methods 
represent three different design types–linear regression, 
machine learning, and force field-potential based–and are 
thus expected to provide a good indication of the maximal 
sensitivity toward method choice. SimBa has been tested 
both by us (Caldararu et al. 2021b) and in an independent 
benchmarking study (Pucci et al. 2022) where it performed 
slightly above average in terms of error and  R2, despite its 
simplicity. SimBa reduces biases by design, but was run in 
the nonsymmetric mode (IB) which typically has slightly 
higher accuracy for random mutations. (Bæk and Kepp 
2022a) I-Mutant (Capriotti et al. 2005, 2006) is a robust 
Support Vector Machine trained on ProTherm data which 
is not mutation-type or stability-balanced (Bæk and Kepp 
2022a; Pucci et al. 2022) but has shown good general per-
formance in many benchmarks, (Potapov et al. 2009; Kepp 
2014, 2015; Pucci et al. 2022) and has low structural sen-
sitivity. (Caldararu et al. 2021a) CUPSAT (Parthiban et al. 
2006) uses environment-specific force fields to predict pro-
tein stability that is more sensitive to structure input. (Kepp 
2015; Caldararu et al. 2021a) In addition, relative solvent 
accessibility (RSA) was calculated using each method for 
all the mutated sites using all 23 structures.

Computations and group comparisons

We used a group comparison protocol to illustrate how a 
hypothetical study of a few mutations of interest will be 

sensitive to method and structure choices, and to illustrate 
the statistical advantages of comparing mutations in groups 
against each other. By comparing groups of mutations, we 
can determine if a group of mutations has unusual properties 
relative to another group by e.g., a t-test. This protocol can 
produce meaningful results if output for single sites is uncer-
tain. The grouping protocol works because random errors 
are reduced with larger N of the sample size, and systematic 
errors are reduced by comparison of the average effects in 
a t-test (i.e., the systematic errors in a method will exist in 
both groups and partly cancels when comparing only the 
mean output of the groups). To this end, we computed the 
stability effect of all possible N × 19 mutations (about 18,000 
to 21,000 data points per chain) for each of the three chains 
of the closed six S-protein structures with all three methods, 
corresponding to approximately 3 × 19,000 ΔΔG values for 
each structure (N typically ~ 1000).

To illustrate the heterogeneity in estimates of functional 
impact at the individual residue level as would often fea-
ture in a study, we separated out results for a small group 
of mutations seen in prominent SARS-CoV-2 variants and 
known to impact virus function: K417T, K417N, N439K, 
N440K, Y449H, L452R, Y453F, S477N, T478K, E484K, 
E484Q, S494P, N501Y, and D614G. For example, K417T 
and K417N found in gamma (P.1) and beta (B.1.351) (Yuan 
et al. 2021) and L452R and N439K evade some antibodies 
(Li et al. 2020; McCallum et al. 2021; Starr et al. 2021; 
Thomson et al. 2021) as do mutations in the E484 site in 
e.g. alpha (B.1.117) and beta (B.1.351). (Tegally et al. 2020; 
Chen et al. 2021; Greaney et al. 2021; Wang et al. 2021; 
Yuan et al. 2021; Dejnirattisai et al. 2021; Ferreira et al. 
2021) We also performed complete saturated mutagenesis 
for additional structures in partially open states to estimate if 
the effects were state-dependent, such that the total number 
of protein structures studied was 23, or 69 chains, and the 
number of mutation effects computed was thus 69 × N × 19, 
about 1.23 million ΔΔG values in total for each of the three 
methods (3.69 million ΔΔG values).

Analysis of data and statistics

The percentage of outliers from Ramachandran plots (tor-
sion angles of the peptide backbone) indicate the realism of 
the experimentally obtained structure’s backbone conforma-
tions (Wlodawer et al. 2008) and were calculated using the 
Procheck program (Laskowski et al. 1993) (version 3.6.2) 
available via the PDBsum server. (Laskowski et al. 2018) 
The average ΔΔG, its standard deviation and average RSA 
values were calculated and compared. Mutation groups were 
compared for their stability effects using two-tailed student 
t-tests for the same mean, using 95% confidence intervals. 
We also studied the relationship between ΔΔG and RSA val-
ues using linear regression. Statistical analysis and plotting 
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were performed using Matplotlib and Sklearn libraries of 
Python 3 and Microsoft Excel.

Results and discussion

Computing the stability effects of SARS‑CoV‑2 
mutations

The main aim of our study was to investigate how much 
the choice of cryo-EM structure affects functional implica-
tions at the single residue level, illustrated by the stability 
effect of mutations. The rich S-protein structural biology 
has made such a study feasible and arguably also relevant to 
some biological conclusions specifically regarding S-protein 
mutations in the literature.

First, to quantify how structure choice affects computed 
estimates broadly, scatter plots of the ΔΔG values of all pos-
sible mutations in chain A of six similar prefusion S-protein 
structures (RMSD 0.5–2.9 Å) are shown in Figures S1, S2 
and S3 for the three methods. Despite the correlations, the 
result for a specific mutation commonly depends on the 
structure used, with cases of several kcal/mol differences 
and sign changes. SimBa and I-Mutant3.0 show less struc-
tural sensitivity (Figures S1 and S2), with  R2 > 0.9 between 
different structures, whereas CUPSAT shows large variation 
(Figure S3) with R2 ranging from 0.30 to 0.61, consistent 
with its larger emphasis on the local site geometry. (Kepp 
2015; Caldararu et al. 2021a) These plots illustrate how the 
structural variations in the cryo-EM structures affect the pre-
cision of functional implications for methods that emphasize 
such local site structural variations more or less.

To understand how this heterogeneity affects estimates 
for specific groups of mutations in an envisioned study, 
Fig. 2 shows the mutation effects estimated using the SimBa 
method for the 18 chains of these six structures. Results are 
shown for all possible mutations (blue), for a selection of 
mutations observed in the wild (green), and for all possible 
mutations in the sites harboring these selected mutations 
(orange) (negative values represent destabilization). The 
selected mutations in this example (green) could have been 
studied with any of these structures as the green data in one 
of the panels. However, Fig. 2 shows that results depend on 
structure used, with the average for all possible mutations 
varying from − 0.55 to − 0.58 kcal/mol (standard devia-
tion (SD) 1.32 to 1.38), from − 0.13 to − 0.55 (SD 0.95 to 
1.18) for all mutations in the selected sites, and from − 0.12 
to − 0.50 (SD 0.66 to 0.84) for the selected mutations in the 
example. The groups, by increasing N, reduce random errors 
in estimates, i.e., the central estimate interval is smaller for 
a larger batch of mutations than if studying one or a few 
mutations, as commonly done.

Figure 2 indicates structure-dependent variations even for 
a group comparison and a single method. Such dependencies 
are seen for all three methods (results for the other two meth-
ods in Figure S4 and Figure S5) and reflect differences in 
the cryo-EM structures that affect the model estimates. The 
group of all possible mutations provides a global compari-
son against which one can compare the mutations selected 
for study. Only the differences between averages are then 
relevant, not the direct values, even if structure-averaged, 
due to systematic and random errors in methods used to 
extract the information from the structures. We note that the 
three chains give similar results here because they are all in 
the down conformation.

The results suggest that random mutations are more 
likely to destabilize the S-protein, as expected since pro-
teins are optimized for some fold stability. (Tokuriki et al. 
2007) Therefore, stability effects tend to be skewed toward 
destabilization, and when trained on such data the methods 
develop a destabilization tendency that may be too small or 
too large. (Christensen and Kepp 2012; Pucci et al. 2018; 
Sanavia et al. 2020; Casadio et al. 2022) Most mutations 
have small, nearly neutral effects, but a few are predicted to 
be very destabilizing or stabilizing.

While individual mutation effects vary substantially even 
for the same mutation across different structures, the group 
comparisons for six structures reduce this noise considera-
bly. In all 18 comparisons, the naturally occurring mutations 
(green) are as a group less destabilizing than both control 
sets (blue and orange), and the site-specific control (orange) 
produces less destabilization than the full control group 
(blue), consistent with surface residues having less impact 
on stability, all-else-being equal. Thus, group comparisons 
can make computational studies of mutations meaningful 
despite the noise in structure and method input. We also 
note that the natural mutations (green) have consistently 
smaller destabilization effects than all possible mutations 
in the same naturally evolved sites (orange) by 0.08 kcal/
mol for 6X6P, 0.15 kcal/mol for 7CAB, and 0.12 kcal/mol 
for 6VXX, but only 0.01 kcal/mol for 7DF3, 0.05 kcal/mol 
for 6X79, and 0.03 kcal/mol for 7DDD.

The corresponding computations with I-Mutant and 
CUPSAT show similar results vs. the total group (Figure 
S4 and Figure S5). However, I-Mutant has a natural muta-
tion group slightly more destabilizing than the same-site 
mutation group, whereas CUPSAT has the same behavior 
for both control sets as SimBa, although producing larger 
values. There are clear differences in the magnitude of the 
effects both absolutely and relative to the compared groups.

For C3 symmetrized structures, the symmetry constraints 
generate identical chain conformations. However, the com-
parison of C1 (no symmetrisation) and C3 EM maps is 
interesting: for the structures based on C1 EM maps, we 
observed clear differences in averages (e.g., 7DDD, 6ZB4 in 
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Figure S5 and S8c) for individual chains for some methods. 
The cryo-EM chain structures, if not symmetrized, reflect 
relevant noise in the experiment or real dynamics but can 
give different results if one focuses on a single chain as basis 
for modeling or interpretation. These effects depend on the 
method used to map structure to function: if one puts a lot 
of emphasis on structural variations, such as CUPSAT, then 
the C1 differences between chains become larger.

The results document the importance of using multiple 
methods and structures and shows why the direct numbers 
cannot be used, only the differences in averages between 
mutation groups. Given the precision effects, we suggest 
that this type of analysis is done in future studies. We 

do not wish to discuss specific examples in the literature 
based on single mutations and structures, but our results 
suggest that studies based on single structures and meth-
ods or emphasizing the direct numbers of the computed 
effects for a few mutations (as the orange data in any of 
the panels in Fig. 2) should be supplemented by a broader 
sensitivity analysis of the type shown in the combined 
Fig. 2. (Laha et al. 2020; Walls et al. 2020; Shorthouse 
and Hall 2021; Teng et al. 2021) While we did study sev-
eral million ΔΔG values with this protocol, we stress that 
computer power is not a limiting factor for these methods, 
and the structures are available, so it is mainly a matter of 
scripting and automating the analysis.

Fig. 2  Violin plots of stability effects (ΔΔG, kcal/mol) calculated 
using the SimBa method  (six structures, chains A, B, and C). Blue 
violins represent all possible mutations in the chain; orange represent 

all possible mutations at selected mutated positions; green represents 
selected natural mutations. The values are the average and standard 
deviation (in brackets) of the datasets
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Implied mutation effects: structure and method 
dependencies

To illustrate how this heterogeneity affects computed results, 
Fig. 3 summarizes results for 14 natural S-protein mutations 
observed in variants of concern, computed using the same 
six prefusion S-protein structures as in Fig. 2. The simple 
linear regression model SimBa (Fig. 3a) and the vector 
machine model I-Mutant (Fig. 3b) produce results relatively 
less sensitive to structure input, consistent with previous 
findings (Caldararu et al. 2021a, b; Bæk and Kepp 2022a) 
and more similar tendencies of destabilization, except for 
S477N and N501Y where SimBa predicts high stabiliza-
tion and I-Mutant a small impact. They tend to provide the 
same sign regardless of structure used, but magnitudes vary. 
However, I-Mutant predicts all mutations to be destabilizing, 
which the other methods do not. Since this comparison is for 
the prefusion S-protein, the chains are nearly identical and 
the methods produce similar results for all chains except a 
few cases for CUPSAT (Fig. 3c).

Figure 3 shows that the methods disagree on the magni-
tude and sometimes sign, i.e., one cannot draw conclusions 

for a single mutation based on a single method. The obvi-
ous solution to such errors is to only consider differences 
between mutations for each method separately. For CUP-
SAT, an example of a statistical force-field based method, 
the conclusions sometimes depend substantially and even 
qualitatively on the structure used, with e.g., S494P being 
very destabilizing when using 6VXX but very stabilizing 
when using 7CAB. This shows that results from single struc-
tures can be very imprecise for methods that emphasize local 
site geometry. Opposite effects to those reported could have 
been seen if using another structure. As far as we know, most 
(if not all) studies published used mainly one method and 
one or a few structures of the S-protein, and we suggest that 
the structure-averaged group differences, as illustrated in 
Fig. 2, will solve some of the precision issues seen in Fig. 3.

Since all structures selected here are of reasonable resolu-
tion from a cryo-EM perspective and are of similar residual 
coverage, no structure is clearly preferable to any other. 
Thus, in an ensemble of structures, differences are likely 
due to variations in chemical conditions and sample prepara-
tion and data collection. For this reason, we weighted all six 
structures equally as an “ensemble”, simply averaging out 

Fig. 3  Change in stability (kcal/mol) of studied natural mutations for six prefusion structures of the SARS-CoV-2 S-protein. a SimBa. b 
I-Mutant 3.0. c CUPSAT
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the structural heterogeneity to get a more compressed indi-
cation of the stability effects of natural mutations (in blue) 
in Figure S6. The standard deviations across the structures 
(in orange) can be taken as a measure of the “precision” of 
the method for the studied mutation group (Caldararu et al. 
2021a). This comparison yields in general good agreement 
between I-Mutant and SimBa, but very different results for 
CUPSAT even after averaging out structural heterogeneity 
and considering the standard deviations.

Reducing heterogeneity by structure‑averaged 
group comparisons

To reduce structural noise, we compared the structure-
averaged results only, and additionally only considered 
differences in averages for groups of mutations, rather 
than direct values or differences in values of individual 
mutations. Figure 4 shows that even though local hetero-
geneity affects individual mutation estimates, compari-
son of mutation groups is statistically meaningful (i.e., 

has precision high enough to give statistically significant 
results in comparisons), as confirmed by a two-tailed t-test 
for the same mean (Table S2). The difference between the 
studied natural mutations and all possible mutations in the 
protein was significant at > 99% confidence for all three 
methods, as was all possible mutations in the natural muta-
tion sites vs. all possible sites in the S-protein. The simi-
lar comparative behavior predicted by the three methods 
after incorporating structural heterogeneity differs from 
the analysis of individual mutations in Fig. 3. In the com-
parison of the natural mutations vs. all possible mutations 
in the naturally evolving sites, results are significant for 
SimBa (Fig. 4a) and I-Mutant (Fig. 4b), but not for CUP-
SAT (Fig. 4c), and the direction of effect differs between 
I-Mutant and SimBa, making these results inconclusive. In 
other words, conclusions based on a single cryo-EM struc-
ture can sometimes be misleading, and a sensitivity test to 
the use of other equally reasonable cryo-EM structures as 
input is therefore recommended.

Fig. 4  ΔΔG values of some important natural mutations compared to full-protein averaged mutation backgrounds, averaged over six closed 
S-protein structures (6X6P, 7DF3, 7CAB, 6X79, 7DDD and 6VXX). a SimBa. b I-Mutant3.0. c CUPSAT
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State‑specific effects

The SARS-CoV-2 S-protein undergoes a conformational 
change when fusing with host cells, from the closed prefu-
sion state studied above to a partially open state interacting 
with ACE2, with one, two, or three of its receptor binding 
domains (RBD) in an upwards conformation (1-up, 2-up, 
3-up). To test whether the conformational change affects 
the stability trends discussed above, or if the stability 
effects were more or less pronounced in the open states, we 
computed the mutation effects for all-possible mutations 
for 17 additional S-protein structures (for each of the three 
chains) in the partially open or locked states. Consistently, 
the overall tendency of natural mutations to produce less 
destabilization as a group than the group of random muta-
tions was seen not just for the closed structures (Figure S7, 
as discussed above) but also for these additional structures, 
with an overview for all 23 structures provided in the Sup-
porting Information Figures S8-S9.

To explore whether these conformational changes affect 
the estimated stability effects, we analyzed the pairs of 
closed and open structures published from the same studies 
to reduce noise from confounders (such as different proto-
cols and conditions of structure preparation and analysis) 
in Figures S10–S15, with one example shown in Fig. 5, 
for 6ZGE (closed uncleaved, locked) vs. 6ZGI (closed and 
cleaved) and 6ZGG (1-up). For the mutations as a whole, 
the state did not substantially affect the stability effects, irre-
spectively of using SimBa (Fig. 5a), I-Mutant (Fig. 5b), or 
CUPSAT (Fig. 5c), due to the group effect of large N averag-
ing out the heterogeneity at the site level.

This finding was also confirmed by other pair compari-
sons given in the Supporting Information, such as for 6VYB 
(open), 7DWY (locked) and 7DWZ (active) (Figure S10), 
6XF5 (prefusion closed) and 6XF6 (prefusion 1-up) (Figure 
S11), 7A4N (closed) and 7AD1 (1-up) structures (Figure 
S12), 6X2C (closed), 6X2A (1-up) and 6X2B (2-up) (Figure 
S13), 6VXX (closed) and 6VYB (open/1-up) (Figure S14), 
and 7KDG (closed) and 7KDH (1-up) structures (Figure 

Fig. 5  Comparison of the ΔΔG values of important natural mutations in 6ZGE (closed uncleaved, locked), 6ZGI (closed cleaved) and 6ZGG 
(cleaved 1-up) structures using three methods: a SimBa. b I-Mutant3.0. c CUPSAT
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S15). Numerical data for these plots are available in Tables 
S3-S9. All these pair comparisons suggest that group ten-
dencies are not much affected by the state of the protein, 
although some individual sites (and thus mutations) are dis-
ordered and thus highly sensitive to conformational state and 
the structure used, a notable example being the D614 site 
(Mehra and Kepp 2022) that harbors the D614G mutation 
that was fixated early in the pandemic.(Yurkovetskiy et al. 
2020; Mansbach et al. 2021).

Relationship between solvent accessibility 
and stability effects

Since we expect that the more solvent-exposed sites have 
milder impact on the S-protein’s fold stability than random 
mutations, (Caldararu et al. 2021b) regardless of the protein 
state (open, closed), we mapped this relationship in Fig. 6. 
The blue circles represent the stability effects of the studied 
natural mutations averaged over the six S-protein structures. 
The larger green and orange circles represent the average 

of the natural mutation effects and the average of all pos-
sible mutation effects, respectively, with stability changes 
shown vertically and solvent exposure of the site shown 
horizontally.

As confirmed by the aggregate results of SimBa (Fig. 6a), 
I-Mutant (Fig. 6b), and CUPSAT (Fig. 6c), the natural muta-
tions (as a group shown in green) tend to be more solvent-
exposed and less destabilizing than expected for a random 
mutation as a group (orange circle) in the S-protein. The 
similarly decent correlations (R = 0.36 − 0.75, with same 
direction) of the average RSA with average ΔΔG also exist 
while using different methods. The composite results consid-
ering structural heterogeneity by averaging data and group 
comparisons yield similar tendencies for the three methods 
that increases significance, which could be different if ana-
lyzing a single method and structure, and a few mutations. 
Thus, while the average site in the SARS-CoV-2 S-protein 
is only 25% solvent-exposed, the studied natural mutations 
are on average 40% exposed, although there is substantial 
variation.

Fig. 6  Scatter plots of ΔΔG vs. relative solvent accessibility (RSA) 
for natural mutations (blue circles) (structure-averaged on 6X6P, 
7DF3, 7CAB, 6X79, 7DDD and 6VXX). Green circles represent the 

average for the natural mutations and orange represents the average 
for all possible chain mutations. a SimBa. b I-Mutant-3.0. c CUPSAT
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Conclusions

The SARS-CoV-2 pandemic has motivated publication of 
hundreds of cryo-EM structures of the S-protein. (Mehra 
and Kepp 2022) While of value for understanding SARS-
CoV-2, this unprecedented effort also enables investigation 
of a more fundamental topic: how precise are computed 
implications using cryo-EM structures? The precision of 
such estimates is as important as the accuracy, but only the 
former can be studied meaningfully if many structures of 
the same protein state are available, whereas assessment 
of accuracy requires large unbiased experimental data sets. 
It has now become possible to study this problem at high 
data coverage due to the SARS-CoV-2 pandemic produc-
ing many structures even for the same states of a single 
protein.

We show that precision is a major challenge already 
before any accuracy assessment. Since results can be very 
dependent on structure used, one cannot simply rely on 
one method and structure. To handle this, the protein mod-
eling community is recommended to use several methods 
and structures of presumed similar quality to sensitivity 
test conclusions. A more robust protocol involves analysis 
at four levels: 

1) structure-averaging to reduce noise in the residue 
coordinates,
2) comparing several methods to understand errors and 
obtain consensus estimates,
3) using groups of mutation averages to reduce noise 
and improve significance (large N effect), and
4) comparing only differences between averages of 
mutation groups, to reduce systematic errors.

We can thereby utilize the structural information more 
broadly and take advantage of the law of large numbers to 
reduce noise for individual residues. The issues are prob-
ably aggravated when having additional heterogeneity 
from protein–protein or protein–ligand interactions. Our 
study may have some general relevance to the computa-
tional structural biology field by quantifying how method 
and structure choices affect deduced structure–function 
relationships at the residue level of cryo-EM structures. 
Variations in published structures, partly due to some arbi-
trariness in the structure taken as representative from each 
cryoEM map and partly due to real variations in protocols, 
reflect a real additional uncertainty that we need to deal 
with, in addition to the uncertainty seen within a single 
experiment.

As a note, similar issues of precision and heteroge-
neity may in principle exist also for crystal structures. 

However, even with a statistically meaningful analysis of 
many available structures of the supposedly same protein 
state, as was possible for S-protein cryo-EM structures 
due to the pandemic, the distinct protocol for fitting and 
modeling X-ray reflections will lead to heterogeneity and 
resolution not being directly comparable. For example, 
the crystal packing could affect the solvent-exposed sites 
differently from the frozen protein obtained from cryo-
EM microscopy, and this could also affect both precision 
and accuracy, i.e., even if precision would be higher for 
exposed crystal-structure sites, their realism could be 
lower, although these effects will take substantial work to 
understand fully.

Structure-averaged group comparisons offer a partial 
solution, utilizing the published data broadly. In cases 
where several (same-state) structures are available, if there 
is no reason to favor one over the other, several struc-
tures should be used to produce the chemical insight and 
a sensitivity estimate provided. In the absence of several 
structures, the heterogeneity could be generated computa-
tionally. Molecular dynamics may, with some limitations 
due to sampling, force field, and realism of the chemical 
composition, be used to estimate conformational hetero-
geneity, e.g., under different conditions of temperature 
and ionic strength and pH. (Bottaro and Lindorff-Larsen 
2018; Mehra et al. 2020), and machine-learning methods 
could be expected to help to represent the heterogeneity 
of an ensemble beyond the single experiment itself, if the 
more problematic e.g., polar disordered residues can be 
described by ensembles. (Chen and Shukla 2022; Bæk 
and Kepp 2022b) If the protein is not very flexible and 
condition-dependent, a few structures might be sufficient 
for the analysis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00249- 022- 01619-8.
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