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ABSTRACT:

Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they

allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second,

objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should

combine the structure and texture information of images and comply with some invariant properties. This paper contributes to the

indexing of high-resolution satellite images. We suggest a satellite image indexing method relying on topographic maps and a shape-

based image indexing scheme. The proposed approach contains both the textural and structural information of satellite images and is

also robust to changes in scale, orientation and contrast. Experimental analysis on a real satellite image database confirms the efficiency

of the approach.

1 INTRODUCTION

Remote sensed satellite imaging has been widely applied to agri-

culture, geology, forestry, regional planning, and many other ap-

plications for analyzing and managing natural resources and hu-

man activities. In the past few years, with the development of

imaging techniques, satellites with very high spatial resolution

imaging systems have been launched, e.g. IKONOS, QuickBird,

World-View-1, GeoEye-1, which enable satellite imagery to pro-

vide more accurate earth observation and measure small objects

on the surface up to 0.5 m.

However, satellite images of high spatial resolution present many

challenging problems in image understanding, information min-

ing, and pattern recognition. First, with the enhancement of spa-

tial resolution, more details on the earth surface emerge in satel-

lite imagery. Unlike the case of low-resolution satellite images,

where texture and intensity cues have been proved to be efficient

for recognition (Li and Castelli, 1997, Richards and Jia, 2005,

Ruiz et al., 2004), structures become more important for analyz-

ing high-resolution satellite images. It is of great interest to in-

vestigate new image indexes, which can describe both the struc-

ture and texture information for high-resolution satellite image

recognition. Second, in satellite images of high spatial resolu-

tion, objects contained in the same type of scenes might appear at

different scales and orientations. For instance, the buildings in ur-

ban areas or the bridges on the river always show at various sizes

and orientations. Moreover, if satellite images were taken under

different weather conditions, there might be lighting changes be-

tween images of the same type. For these reasons, image indexing

methods should comply with some invariant properties, such as

scale invariance, orientation invariance and contrast invariance.

In order to extract structural features from optical satellite im-

ages of high-resolution, (Ünsalan and Boyer, 2004) proposed to

use statistics of straight lines and their spatial arrangement over

relatively small neighborhoods. (Bhattacharya et al., 2007, Bhat-

tacharya et al., 2008) suggested to use geometrical information,

e.g. edge and Junction density, from the extracted road network

and segmented urban regions for structural satellite image index-

ing. As inspired by the works in computer vision, (Newsam

and Yang, 2007) investigated interest point descriptors, such as

Scale-invariant feature transform SIFT, for characterizing remote

sensed images. Other structural features are computed from the

pre-segmentation of images. One main disadvantage of this kind

of approaches is that they rely on some pre-analysis of images,

such as edge detection and segmentation, which are in them-

selves challenging problems. In addition, when these indexing

schemes focus on structure information, they ignore the use of

texture cues.

This paper contributes to structural indexing of high-resolution

optical satellite images. The proposed indexing scheme is based

on a complete morphological image representation, called Topo-

graphical Map (Caselles et al., 1999), which is made of all the

connected components of the level lines of images. More pre-

cisely, the indexing of satellite images follows the shape-based

indexing scheme, proposed by (Xia et al., 2009). First, satel-

lite images are decomposed into tree of shapes, by using a mor-

phological transformation, named Fast Level Set Transformation

(FLST) (Monasse and Guichard, 2000). Then, image features are

developed from those shape ensembles and their relationships.

The derived shape-based features describe the structure distribu-

tions of images. They also encode the texture information of im-

ages, if taking shapes as textons (Zhu et al., 2005). Furthermore,

the developed satellite images features are invariant to geometric

transformations involving scaling and rotating and are robust to

illumination changes.

The remainder of the paper is structured as follows. In Sec-

tion 2, we give a brief review on our shape-based image index-

ing scheme. We then detail the proposed approach for high-

resolution satellite images in Section 3. Section 4 provides the

experimental analysis and Section 5 concludes the paper.

2 SHAPE-BASED IMAGE INDEXING FRAMEWORK

This section sketches the basics of our work, i.e. the topographic

map and the shape-based image indexing framework.
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2.1 Topographic map

For a gray-scale image u, the upper and lower level sets are de-

fined respectively as χλ(u) = {x ∈ Ω; u(x) ≥ λ} and χλ(u) =
{x ∈ Ω; u(x) ≤ λ}, for λ ∈ R. The topographic map (Caselles

et al., 1999) of the image u is made of the connected compo-

nents of the topological boundaries of the upper level sets of the

image (they could be equivalently defined from the lower level

sets). Observe that the connected components of upper level sets

(respectively of the lower level sets) are naturally embedded in

a tree structure. Monasse and Guichard combined these two re-

dundant tree structures, by drawing on the notion of shape, and

developed an efficient way to compute a hierarchical representa-

tion of images (Monasse and Guichard, 2000), named FLST1 as

mentioned before. A shape is defined as the interior of a level

line (the boundary of a level set). Figure 1 shows an example of

the topographic map representation of a synthetic image.

It is shown that topographic map, the tree of shapes of an image

has many impressive properties. First, it inherits a hierarchical

structure from the nesting properties of level sets and it’s a scale

space without any geometrical degradation. Secondly, it’s a com-

plete image representation and can encode both the geometric and

radiometric information simultaneously. And it’s also invariant to

any contrast changes.

Figure 1: Representation of an image by its topographic map.

Left: an original digital image; Right: representation of the im-

age by its tree of shapes, where (A,B, . . . , I) denote the corre-

sponding shapes.

2.2 Shape-based image indexing framework

By relying on the topographic map representation, Xia et al. pro-

posed a shape-based invariant image indexing scheme in (Xia et

al., 2009). A flowchart of the scheme is provided in Figure 2.

The idea is to decompose images into shapes (by using FLST)

and then develop image features from the shape ensembles and

their relationships. It has been shown that the framework is very

efficient for achieving geometric invariant texture features and

obtain state-of-the-art performance on invariant texture recogni-

tion task.

Figure 2: Shape-based image indexing framework.

As the topographic map provides a complete representation of

images, the modeling of texture u is converted to the modeling

of the tree of shapes (S, T ), as p(u) = p(T, S). The invariant

texture features first rely on classical shape moments, then make

use of the hierarchical structure of the topographic map.

1The codes of FLST are included in the free software MegaWave, and

can be downloaded at http://megawave.cmla.ens-cachan.fr/.

The (p+ q)th order central moments of shape s is defined as

µpq =

∫ ∫

s

(x− x)p(y − y)q dxdy, (1)

where (x, y) are the center of mass of s. According to the frame-

work of (Xia et al., 2009), three different invariant features are

developed from the invariant moments of shape ensembles S:

• EH: histogram of elongation ǫ = λ2
λ1

;

• CH: histogram of compactness κ = 1

4π
√

λ1λ2

;

• CtH: histogram of contrast: γ(x) =
u(x)−means(x)(u)√

vars(x)(u)
.

where s(x) is the smallest shape containing pixel x, λ1 and λ2

are the two eigenvalues of the normalized inertia matrix of shape

s, with λ1 ≥ λ2.

To develop features from the tree structure T , the parent-children

relationships are used by defining an ancestor family of s, NM
s ,

as shapes containing the m-th (m ≤ M ) cascaded parents of s.

The feature is:

• SH: histogram of scale ratio α(s) = µ00(s)
〈µ00(s′)〉s′∈NM

;

where 〈·〉
s′∈NM is the mean operator on NM .

Observe that EH is invariant to similarity (translation, scaling and

rotation) changes and CH, SH and CtH are invariant to affine

transformations. Furthermore, all the four features are invariant

to increasing contrast changes.

3 STRUCTURAL SATELLITE IMAGE INDEXING

This part devotes to the structural indexing of high-resolution

satellite images, under the shape-based image indexing frame-

work.

3.1 Structures of satellite imagery

Panchromatic images and multispectral images are the main types

of optical satellite images acquired by optical remote sensing sen-

sors. For satellite imagery in panchromatic format, all the struc-

ture information is, of course, contained in the gray scale image.

However, for a multispectral satellite image U = {u1, u2, . . . , uL}
of L bands, an L-dimensional vector is stored for each pixel. In

this case, we suppose that the main structure information of U is

included by its p-energy channel L, defined as

L =

(

∑

ui∈U

(ui)
p

) 1
p

, p ≥ 1. (2)

Actually, Caselles et al. have proved that the main geometric

information of natural color images are contained in their lumi-

nance channel (Caselles et al., 2002) (where p = 1). In the con-

text of this work, as we shall see, we will only deal with natural

color satellite images, so the analysis of structure information is

based on the luminance channel. The same scheme could be ap-

plied to multispectral images using the p-energy channel L.
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3.2 High-resolution satellite image indexing

High-resolution satellite images allow to accurately represent small

objects on the earth surface, such as cars, airplanes and buildings.

An important and discriminative measurement for the objects is

made of the shapes of their contour. For instance, bridges usu-

ally have elongated shapes, and the outlines of cars are usually

compact and not too elongated.

First, following the shape-based image indexing scheme presented

in Section 2, we also use the elongation histogram (EH), com-

pactness histogram (CH), scale ratio histogram (SH), and con-

trast histogram (CtH) mentioned in Section 2 as indexes of satel-

lite images.

Secondly, for the purpose of this paper, we propose to add sev-

eral features, all invariant to similarity, a necessary invariance for

satellite images. For instance, the orientation distribution of an

image is also an available structure feature.

Orientation distribution: For a shape s, its orientation θ is cal-

culated as

θ =
1

2
arctan

2µ11

µ20 − µ02
(3)

The resulted structure feature is the histogram of θ, named Orien-

tation Histogram (OH), on all the shapes contained by the image.

We can also develop more structural features from the tree struc-

ture T , by using the M -order ancestor family NM :

Nested contrast: For a shape s, we define its nested contrast δ(s)
as,

δ(s) = 〈|u(s)− u(s′)|〉s′∈NM . (4)

Maximum axis ratio: It’s defined as ratio between the maxi-

mum eigenvalue of shape s and the average maximum eigenvalue

among its ancestor family, as

ρ(s) =
λ1(s)

〈λ1(s′)〉s′∈NM

. (5)

where 〈·〉NM is the mean operator on NM . We can similarly

define the axis ratio by replacing λ1 with λ2. However, observe

that µ00(s) ∝ λ1λ2, so the similar definition involving to λ2 will

be redundant with the scale ratio α(s).
The corresponding features are the histograms of δ and ρ of all

the shapes on the tree, called nested contrast histogram (NCH)

and maximum axis ratio histogram (MAH), respectively. They

are invariant to similar transformations.

input : Satellite image u

output: A set of indexes of u

Compute the luminance channel L(u) of the image;1

Decompose L(u) into a tree of shapes {S, T} ;2

for each si in S do3

Compute the shape attributes ǫi, κi, γi, θi;4

end5

for each si and NM
si

on T do6

Compute αi, δi, and ρi;7

end8

for each attribute ξik in {ǫi, κi, γi, θi, αi δi, ρi} do9

compute histogram H(ξk) =
#{ξi

k
=ξk,1≤i≤N}

N
.10

end11

Algorithm 1: Structural satellite image indexing.

A given high-resolution satellite image u is then characterize by 7
1-D histograms as detailed above (EH, CH, SH, CtH, OH, NCH,

MAH). The pipeline of the indexing steps is given by Algorithm 1.

Remark that in order to compute the dissimilarity between two

satellite images, we use the Kullback-Leibler divergence to com-

pute distances between single descriptors and then add them to-

gether. Especially, for comparing two OH’s, one is circularly

shifted to compute the Kullback-Leibler divergence with the other

and the minimum divergence among them is taken as the dissim-

ilarity.

4 EXPERIMENTAL ANALYSIS AND DISCUSSION

In this part, we illustrate the proposed analysis scheme on high-

resolution satellite image recognition tasks. In order to evaluate

the efficiency of the proposed approach, we also compare it with

other features for satellite image indexing.

As the structural image indexing approach proposed by (Bhat-

tacharya et al., 2007) relies on edge or junction density in small

patches of images, it is not invariant to scale changes and of

course not comparable to our approach. The interest point based

features, such as SIFT descriptor, might have some potential for

the structural analysis of satellite images. For example, it has

been used by (Newsam and Yang, 2007) for satellite image re-

trieval. However, one main disadvantage of interest points based

approaches is that the detection of interest points depends on the

contrast of the images. For some images where no contrasted

structure presents, for instance, the meadow and forest displayed

in Figure 3, there will be few interest point detected, which makes

the indexing of those images difficult.

Figure 3: Two examples where few SIFT descriptors are detected.

Left: a forest image; Right: a meadow sample.

In this work, we simply compare the proposed structural indexes

with texture features based on Gabor filters with 6 scales and 8
orientations. In order to achieve rotation invariant, we average on

all the 8 orientations.

4.1 High-resolution Database

To test the proposed satellite image indexing method, we collect

a set of satellite images exported from Google Earth2, which pro-

vides high-resolution satellite images up to 0.5 m. Some samples

of the database are displayed in Figure 4.1. (The database can be

downloaded at (Xia, 2009).) It contains 12 classes of meaning-

ful scenes in high-resolution satellite imagery, including Airport,

Bridge, River, Forest, Meadow, Pond, Parking, Port, Viaduct, Res-

idential area, Industrial area, and Commercial area; For each

class, there are 50 samples. It’s worth noticing that the image

samples of the same class are collected from different regions in

satellite images of different resolutions and then might have dif-

ferent scales, orientations and illuminations.

2http://earth.google.com/
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Airport Bridge River

Forest Meadow Pond

Parking Port Viaduct

Residential area Industrial area Commercial area

Figure 4: Some samples of the testing high-resolution satellite image database. For each class, there are 50 samples, and 4 of which

are shown here.

4.2 Retrieval and classification

We apply the proposed analysis scheme to two common satel-

lite image recognition tasks: retrieval and classification. For re-

trieval, one sample is used as a query image (thus removed from

the database) and the Nr most similar samples are retrieved from

the database. One after the other, all samples in the database

are used as query images, and the average recall is computed in

function of the number Nr of retrievals for evaluating the perfor-

mance.

In the classification experiment, Nc samples from each class are

randomly chosen as a training set and the remaining samples are

classified thanks to a nearest-neighbor classifier. The rate of cor-

rect classifications is then computed as a function of Nc. In order

to consolidate the results, classification rates are averaged on a

sequence of 200 random training sets.

Figure 5(a) shows the average retrieval performance on the whole

database. It indicates that by using only one sample, averagely

52.84% samples of the same class can be correctly retrieved among

the first 49 matches. However, in the same context, if we use

the mean and standard deviation of Gabor filter responses, only

21.19% samples can be retrieved averagely. According to the

performance curve, when the number of matches is extended to

200, 90.50% samples can be retrieved by using the structural in-

dexes. But the same percentage to Gabor features is 54.13%.

Some illustrations of the retrieval results are displayed in Fig-

ure 6, 8(a), 8(b), where a query image is followed by its first 49
closest samples. The retrieval results for all samples can be found

at (Xia, 2009).

Figure 6 shows a retrieval result of bridge category, which is very

structured. Observe that even though there are large illumination

changes between samples and the query image, the method works

well, thanks to the contrast invariance of the indexing scheme.

It’s also interesting to inspect the false alarms and observe that

there often contains some structures similar to bridges, see the

parts framed in red inside Figure 7. Figure 8(a) and 8(b) illustrate

two retrieval examples respectively on river and viaduct class.

Even structures in this two classes are complicated, the proposed

approach works well.

Figure 5(b) shows the average classification performance by us-

ing nearest-neighbor classifier, when the number of training im-

ages ranges from 1 to 25. It indicates that the structural indexes

outperforms the Gabor features dramatically. Furthermore, Ta-

ble 1 shows the average classification rate for each class of the

database. We can see that Gabor features are efficient only on

some texture classes, e.g. forest and meadow. The proposed

structural indexes work well on classes with complicated struc-

tures such as viaduct and airport, and also on classes containing

more textures.

However, we found that the structural indexes can not distin-

guish industrial and residential classes well. This is because those

two categories share many similar structures, and some semantic

information of the scene might be helpful (Bordes and Maı̂tre,

2007).

Figure 7: Some false alarms of bridge retrievals. The parts

framed in red really contain some bridge-like structures.

Category
1 training sample 25 training sample

StructInd GaborF StructInd GaborF

Airport 53.39 12.72 82.31 39.93
Bridge 40.45 7.73 83.42 27.57

Commercial 48.74 23.17 82.02 43.06
Forest 80.94 42.54 94.62 74.45

Industrial 42.93 20.11 78.37 37.75
Meadow 75.06 35.08 95.45 55.01
Parking 68.74 10.58 81.92 24.89

Pond 63.96 29.91 82.95 48.09
Port 50.93 12.79 73.80 26.66

Residence 32.17 19.04 48.87 40.07
River 60.23 27.28 88.66 49.79

Viaduct 64.19 13.24 86.76 23.78

Table 1: Average classification rate (%) of Structural indexes (us-

ing StructInd for short) and Gabor Features (using GaborF for

short) on each category of the database, with the number of train-

ing samples as 1 and 25, respectively.
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(a) retrieval performance (b) classification performance

Figure 5: Average retrieval (a) and classification (b) performance.

Figure 6: A retrieval result of the bridge category obtained by using the proposed indexing scheme. The query image is in the first

position and the 49 most similar samples follow, ordered by their matching scores. The false samples are framed in red.

5 CONCLUSION

In this paper, we have developed some structural features for in-

dexing high-resolution satellite image, based on the topographic

map and under the shape-based image indexing framework. The

experimental analysis shows that the indexes can balance the struc-

tures and textures information in high-resolution satellite images

and provide impressive image recognition performances.

However, we should observe that we simply adopted the nearest-

neighbor classifier for classification. The recognition performance,

of course, benefits from some more powerful classification scheme,

e.g. SVM.
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