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ABSTRACT

A fundamental principle of systems biology is its perpetual need for new technologies
that can solve challenging biological questions. This precept will continue to drive

the development of novel analytical tools. The virtuous cycle of biological progress can
therefore only exist when experts from different disciplines including biology, chemistry,
computer science, engineering, mathematics, and medicine collaborate. General opin-
ion is however that one of the challenges facing the systems biology community is the
lag in the development of such technologies.

The topic of structural identifiability in particular has been of interest to the systems
biology community. This is because researchers in this field often face experimental
limitations. These limitations, combined with the fact that systems biology models can
contain vast numbers of unknown parameters, necessitate an identifiablity analysis. In
reality, analysing the structural identifiability of systems biology models, even when they
contain only a few states and system parameters, may be challenging. As these models
increase in size and complexity, this difficulty is exasperated, and one becomes limited
to only a few methods capable of analysing large ordinary differential equation models.
In this thesis I study the use of a computationally efficient algorithm, well suited to the
analysis of large models, in the model development process.

The three related objectives of this thesis are: 1) develop an accurate method to asses
the structural identifiability of large possibly nonlinear ordinary differential models, 2)
implement this method in the preliminary design of experiments, and 3) use the method
to address the topic of structural unidentifiability.

To improve the method’s accuracy, I systematically study the role of individual fac-
tors, such as the number of experimentally measured sensors, on the sharpness of re-
sults. Based on the findings, I propose measures that can improve numerical accuracy.

To address the second objective, I introduce an iterative identifiability algorithm that
can determine minimal sets of outputs that need to be measured to ensure a model’s lo-
cal structural identifiability. I also illustrate how one could potentially reduce the com-
putational demand of the algorithm, enabling a user to detect minimal output sets of
large ordinary differential equation models within minutes.

For the last objective, I investigate the role of initial conditions in a model’s struc-
tural unidentifiability. I show that the method can detect problematic values for large
ordinary differential equation models. I illustrate its role in reinstating the local struc-
tural identifiability of a model by identifying problematic initial conditions.

v
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I also show that the method can provide theoretical suggestions for the reparam-
eterisation of structurally unidentifiable models. The novelty of this work is that the
algorithm allows for unknown initial conditions to be parameterised and accordingly,
repameterisations requiring the transformation of states, associated with unidentifiable
initial conditions, can easily be obtained. The computational efficiency of the method
allows for the reparameterisation of large ordinary differential equation models in par-
ticular.

To conclude, in this thesis I introduce an method that can be used during the model
development process in an array of useful applications. These include: 1) determining
minimal output sets, 2) reparameterising structurally unidentifiable models and 3) de-
tecting problematic initial conditions. Each of these application can be implemented
before any experiments are conducted and can play a potential role in the optimisation of
the modelling process.

Keywords: Structural identifiability, minimal output sets, experimental design, repa-
rameterization, ordinary differential equations, nonlinear systems, systems biology, sin-
gular value decomposition.
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1
GENERAL INTRODUCTION

Dominique JOUBERT

The lack of real contact between mathematics and biology is either a tragedy, a scandal or

a challenge, it is hard to decide which.

(Gian-Carlo Rota, 1932-1999)
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O UR aspirations for in depth knowledge continue to drive us toward the interface be-
tween different scientific disciplines. This is evident in fields such as finance, which

requires both financial and mathematical expertise, and also in systems biology, where
biological knowledge meets mathematical topics such as optimisation and integration.
These “knowledge interfaces” allow for rapid scientific progress and in the future, will be
the norm rather than the exception.

The work covered in this thesis is located at such an interface, with mathematics and
engineering complementing biology. The aim is to provide model developers with prac-
tical tools that can be used during both experimental design and parameter estimation.
More concisely, we study a fast algorithm that can be used to analyse a model’s local
structural identifiability and due to its computational efficiency, we extend its use to the
design of experiments.

In this general introduction, the reader is guided through a series of topics that cul-
minates in the discussion on the main subject of this thesis, structural identifiability.
These include a general discussion on the subject of systems biology, the importance
of dynamic modelling and a glimpse into the iterative process involved in creating a
reliable dynamic model. The topic of identifiability is formally introduced after which
selected challenges facing the structural identifiability (SI) community are highlighted.
These lead to the formal definition of the objectives of this thesis.

1.1. SYSTEMS BIOLOGY

Although the study of life dates back millennia, our understanding of the different mech-
anisms operating within living organisms was limited until the 1950s. During this period,
the field of molecular biology began to offer more detailed descriptions of networks be-
tween interacting molecules. These descriptions were made possible due to the tiny
spacial scales at which molecular processes could be observed during experiments, lead-
ing to a reductionist modelling approach, where scientists aimed to describe individual
molecules [1].

Improvements in experimental techniques at the beginning of the 21st century, set
the stage for a shift in this modelling perspective. The emergence of high-throughput
approaches allowed experimental researchers to observe the behaviour of large groups
of distinct molecular species simultaneously. A catalyst for these developments was the
sequencing of the human genome, of which the first draft appeared in 2000. Conse-
quently, modern research is driven by experiments that reveal the behaviour of entire
molecular systems, describing the interrelations and interactions within the contexts of
time, space, and physiology [2]. This is known as systems biology [1].

Today, systems biology is a well established and interdisciplinary field that draws
from various scientific disciplines including mathematics, bioinformatics, computer sci-
ence, and engineering [3–6]. A general opinion is that one of the main challenges in sys-
tems biology research, is the development of technologies required to analyse models.
Examples of such technologies are mathematical theories and algorithms that allow for
the efficient analysis of nonlinear models, and sophisticated software that facilitates the
examination and integration of large amounts of data [2].
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1.2. DYNAMIC MATHEMATICAL MODELLING
Modelling and simulation enable us to integrate and summarise information, perform
in silico experiments, and generate predictions and hypotheses that can increase our
understanding of complex systems [7]. Despite the fact that these simulations can never
replace laboratory experiments, they are useful. For example, they can be used to ex-
amine a system’s behaviour in ways that would not be attainable in a lab. In addition,
they can be carried out quickly and in contrast with actual experiments, incur no signif-
icant costs [1]. Ordinary differential equation (ODE) models enable us to describe most
dynamic systems. Due to advances in experimental procedures, high quality time-series

data can be collected from which these models can be calibrated. Consequently, ODE
models have become the models of choice in various biomedical research fields [8] and
as such, these models will be analysed in this thesis.

1.2.1. ORDINARY DIFFERENTIAL EQUATIONS
ODE models are used in disciplines ranging from electrical and chemical engineering, to
biology and medicine. The majority of the models analysed in this thesis comprise the
following components: state variables and their initial conditions, system parameters,
and outputs. Selected models in chapter 5 also contain inputs. State variables describe
the states of individual components within a model. The collection of states describes
the condition of the system as a whole at any given time. Parameters characterise in-
teractions among the different states and their values can either be known or unknown.
Given that parameters can usually not be measured directly, values for unknown param-
eters need to be inferred from observed data and this is known as parameter estimation
or calibration. Experimentally measurable states/sensors are defined as outputs. An in-

put is the controlled part of a system that helps it achieve a specific output.
Once values for the unknown system parameters have been calculated, questions

regarding their accuracy and whether their values are unique may arise. The issue of
parameter uniqueness is referred to as identifiability. Because the quantitative descrip-
tions of molecular interactions typically invoke the laws of physics and chemistry and
many of these relationships are nonlinear, nearly all systems are nonlinear in nature
[9]. This nonlinearity, in conjunction with the increasing size of modern models, sig-
nificantly complicates the calibration of ODE models.

1.2.2. MODELLING PROCESS
The modelling process necessitates a critical evaluation of the underlying mechanisms
of a system. A model is the construct of our current understanding of a system and its
results can be useful in numerous ways. For example, they can help in the design of
experiments by indicating promising avenues for investigation. They may also reveal in-
consistencies between our understanding of a system (encapsulated in the model) and
experimental observations. The presence of these inconsistencies is one of the main
advantageous of modelling in the sense that outcomes that do not reflect experimen-
tal observations can be regarded as a falsification of the original hypotheses and so, our
understanding of certain mechanisms may be updated. This leads to the refinement of
hypotheses and an updated model structure, which can in turn be tested against addi-
tional experiments. This iterative process, the so-called “modelling” or virtuous cycle,
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results in the continuous improvement of a model [1].

Figure 1.1 is a representation of such a cycle. The topics covered in this thesis, and
where they fit into this cycle are also indicated. In the coming chapters, the importance
of a preliminary evaluation of one’s model is emphasised and this leads us to a formal
discussion of a priori or structural identifiability analysis.

Figure 1.1: Model development process. The so-called “modelling” or virtuous cycle results in the continuous
improvement of a model. The stages of the cycle are shown on the left. The different topics covered in this
thesis, and where they fit into this cycle are indicated on the right.

1.3. STRUCTURAL IDENTIFIABILITY
The question regarding the uniqueness of inferred parameter estimates can be answered
by performing an identifiability analysis. A model’s identifiability is determined by either
its structure, in which case one refers to a priori or structural identifiability, or the rich-
ness of experimental data, referred to as practical identifiability.
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The topic of structural identifiability has been of particular interest to the systems
biology community. This is because researchers in this field often face experimental
limitations [10]. These limitations, combined with the fact that systems biology models
can contain vast numbers of unknown parameters, necessitate an identifiablity analysis
at an early stage. From figure 1.1 one sees that an a priori or structural analysis of a
model can be done before entering the experimental phase. This step is vital in ensuring
that accurate parameter estimates can be calculated.

In reality, analysing the structural identifiability of systems biology models, even
when they contain only a few states and system parameters, may be challenging. As
these models increase in size and complexity, this difficulty is exasperated and one be-
comes limited to only a few methods capable of analysing large ODE models.

1.3.1. A SIMPLE BIOLOGICAL PROBLEM

Consider an experimental setup involving a batch reactor filled with a homogeneous
mixture of Lactobacillus cells, of concentration l , and nutrients, of concentration n. The
aim is to develop a model that describes the growth of these bacterial cells over the
course of time. Accordingly, we use an ODE system.

Both the nutrient and Lactobacillus cell concentrations are modelled as states with
initial values, n(0) and l (0), respectively. We assume that these initial concentrations are
unknown and as such, they can be regarded as additional parameters that need to be
inferred from experimental data. Furthermore, we use the well know Monod equation
to describe the concentrations of both the cells and the nutrients. The model therefore
has 5 unknown parameters in total. Three system parameters, µ,φ, and γ, related to the
growth dynamics, and the 2 unknown initial conditions, l (0) and n(0). The measured
output, denoted as y = n, indicates that we can only measure the nutrient concentration
experimentally. This model can be written in the standard state-space form:

l̇ (t ) = l (t )
µn(t )

φ+n(t )
, (1.1)

ṅ(t ) =−
1

γ
l (t )

µn(t )

φ+n(t )
, (1.2)

l (0) = l0,n(0) = n0, (1.3)

y(t ) = n(t ). (1.4)

The evaluation of whether or not it is possible to find unique estimates for the 2 initial
conditions, l (0) and n(0), given the properties of the output structure, is known as an
observability analysis. This concept can be extended to allow for the analysis of whether
unique estimates for all the unknown parameters, θ = [µ,φ,γ, l (0),n(0)], can be found
from the measured output, y . This is known as a structural identifiability (SI) analysis.

Due to its structural properties, SI can be analysed without the availability of any ex-
perimental data. Knowing a priori whether there is any chance of uniquely estimating
all unknown parameters may potentially save on both experimental time and expenses.
Therefore, the structural identifiability of a model should ideally be checked before col-
lecting data [11].
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1.3.2. DEFINITIONS
In this section, formal definitions for some of the terms in this thesis are given.

Definition 1: Indistinguishability. Let M be a model with state x and measurable
output y . Let yx0(t ) denote the time evolution of the model output when started from
an initial state x0 at t0. Two states x1 and x2 are indistinguishable if yx1(t ) = yx2(t ) for all
t ≥ t0. The set of states that are indistinguishable from x1 is denoted by I (x1) [10].

Definition 2: Observability. A model M is observable at x0 if I (x0) = x0 [12]. This
property implies that the initial state of the system can be deduced from observing the
output y .

To understand how one assesses a system’s observability, first consider the following
linear time invariant (LTI) model, MLT I :

ẋ(t ) = A(θ)x(t ), (1.5)

y(t ) =C (θ)x(t ), (1.6)

x0 = x(t0,θ), (1.7)

where θ ∈ Rp is the parameter vector, x(t ) ∈ Rn the state vector, and y(t ) ∈ Rm the
output vector. A(θ) and C (θ) are constant matrices of dimensions n ×n and m ×n, re-
spectively.

One way of assessing the observability of MLT I is to check for the so-called observ-
ability rank condition (ORC). The rank of the observability matrix, defined as O = (C |C .A|
C .A2| C .A3| . . . |C .A(n−1)|)T , is calculated and if the rank(O ) = n, model MLT I is observ-
able. This is summarised in the following theorem:

Theorem 1: Linear Observability Rank Condition. For the LTI model MLT I , defined
in 1.5-1.7, a necessary and sufficient condition for MLT I to be classified as observable is
that rank(O ) = n [13], where:

O =

















C

C .A

C .A2

...
C .An−1

















=
∂

∂x

















y(t )
ẏ(t )
ÿ(t )

...
y n−1(t )

















. (1.8)

Now consider a nonlinear system, MN L :

ẋ(t ) = f (t , x(t ),θ), (1.9)

y(t ) = h(x(t ),θ), (1.10)

x0 = x(t0,θ). (1.11)

State variables are contained in the vector x(t ) (dim x = n), and model parameters
in vector θ (dim θ = p). The output or measured states/sensors are contained in vector
y(t ) (dim y = m). Function f denotes a dynamic model structure and h is the output or
observation function and both these are assumed to be analytic functions and can either
be rational or irrational.
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Obtaining the observability matrix for nonlinear models requires the computation of
Lie derivatives. A Lie derivative, denoted as L f h(x), is the directional derivative of the
smooth function, h(x), with respect to the vector field, f (x), which describes the model
dynamics. It is defined as [10]:

L f h(x) =
∂h(x)

∂x
f (x), (1.12)

with higher order derivatives computed consecutively as:

L
i
f h(x) =

∂L
i−1
f

h(x)

∂x
f (x). (1.13)

Accordingly, the nonlinear observability matrix can be computed by calculating suc-
cessive Lie derivatives:

O (x(0)) =





































∂

∂x
y(t )

∂

∂x
ẏ(t )

∂

∂x
ÿ(t )

...
∂

∂x
y n−1(t )





































=





































∂h(x)

∂x

∂

∂x
(L f h(x))

∂

∂x
(L 2

f
h(x))

...
∂

∂x
(L n−1

f
h(x))





































. (1.14)

Theorem 2: Nonlinear Observability Rank Condition. For a nonlinear model MN L ,
as defined in 1.9-1.11, if the rank of the observability matrix, as defined in 1.14 is n, then
MN L is locally observable around x(0) [14, 15].

Let us expand on the concept of observability by including system parameters to our
analyses. We start with a formal definition of identifiability:

Definition 3: Identifiability. The dynamic system defined in 1.9-1.11 is identifiable if
all the parameters defined in θ can uniquely be determined from the measurable output
y(t ), assumed to be noise-free and continuous in time [16]. Otherwise, it is classified as
unidentifiable [8].
Ljung and Glad distinguish between locally identifiable and globally identifiable systems
[17].

Definition 4: Local structural identifiability. A model MN L , given in 1.9-1.11, is
structurally locally identifiable (s.l.i.) if for almost any parameter vector θ∗ ∈Rp , there is
a neighbourhood N (θ∗) such that the following property holds [17]:

θ ∈N (θ∗) and h(x(t ),θ) = h(x(t ),θ∗) ⇒ θ = θ∗, (1.15)

for t ≥ t0.
Definition 5: Globally structural identifiability. A model MN L , given in 1.9-1.11, is

structurally globally identifiable (s.g.i.) if all its parameters can be uniquely determined
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from the system output, that is for almost any parameter vector θ∗ ∈ Rp , the following
property holds [17]:

h(x(t ),θ) = h(x(t ),θ∗) ⇒ θ = θ∗, (1.16)

for t ≥ t0. At this point, one arrives at a junction in terms of how to go about combining
the concepts of structural identifiability and observability. On the one hand, parameters
can be regarded as special model states with zero dynamics, in which case the nonlinear
observability rank condition would reveal the observability of both initial conditions of
states and system parameters [10, 12, 18–20]. Alternatively, one can parameterise model
states and regard them as additional system parameters, in which case a structural iden-
tifiability analysis would reveal the identifiability of both system parameters and the ini-
tial conditions of model states [21]. In this thesis, we adopt the latter approach and de-
scribe this process in great detail in the coming chapters. For completion, we discuss the
concept of augmenting the state vector in this general introduction.

By regarding parameters as special model states with zero dynamics, the state vec-
tor can be augmented as follows: x̃ = [x ,θ] (di m(x̃) = n + p). This allows us to define
structural identifiability as a special case of observability [10]. Because the nonlinear
observability theorem holds for local conditions only, one can only analyse local struc-
tural identifiablity using this approach. The augmented observability matrix is defined
as [19]:

O (x̃(0)) =O (x0,θ) =





































∂

∂x̃
y(t )

∂

∂x̃
ẏ(t )

∂

∂x̃
ÿ(t )

...
∂

∂x̃
y n+p−1(t )





































=





































∂h(x̃)

∂x̃

∂

∂x̃
(L f h(x̃))

∂

∂x̃
(L 2

f
h(x̃))

...
∂

∂x̃
(L

n+p−1
f

h(x̃))





































. (1.17)

This matrix can be calculated symbolically using software implemented in e.g. Math-
ematica.

Theorem 3: Nonlinear Identifiability-Observability Rank Condition. For a nonlin-
ear model MN L as defined in 1.9-1.11, if the augmented observability matrix, as defined
in 1.17 has rank n + p, then MN L is locally observable and structurally identifiable in a
neighbourhood N (x̃(0)) of x̃(0) [10].

If 1.17 is of full rank, all parameters and initial conditions are structurally locally iden-
tifiable and if this matrix is rank deficient, the parameter space is divided between struc-
turally identifiable and structurally unidentifiable parameters.

1.3.3. HISTORY AND CURRENT TRENDS

The concept of observability for linear time-invariant systems was introduced by Kalman
in 1960 [13, 22]. The demand for analysing nonlinear models soon led to the develop-



1.3. STRUCTURAL IDENTIFIABILITY

1

9

ment of several methods [14, 23–26]. Addressing the interest in parameter identifiability,
Bellman and Åström introduced the concept of structural identifiability for linear mod-
els in 1970 [27]. They suggested using a Laplace transform to analyse models. In 1982
Tunali and Tarn extended this concept for nonlinear models [20]. Even though there are
a number of methods available for the analysis of nonlinear models, no single method is
amenable to all models. Refer to [7, 8] for a review of the methods available. Structural
identifiablity methods can in general be divided into the following classes:

• Series expansion: This includes approaches using Taylor series expansion and the
power series method for linear models [28]. Taylor series methods are described in
papers by Margaria et. al. [29] and Vajda [30]. Authors using the power series ap-
proach include: Pohjanpalo [28], Walter and Pronzato [16] and Chis et. al. with the
package GENSII [31, 32]. August and Papachristodoulou use symbolic calculations
to calculate an augmented observability matrix for the analysis of local identifia-
bility for smaller systems [19]. The package STRIKE-GOLDD is in principle suited
for large models [33].

• Differential algebra (Global structural identifiability): These approaches can be di-
vided in two groups. One group treats parameters as functions with zero deriva-
tives and uses differential elimination [34]. Ljung and Glad apply this to small sys-
tems [17]. The second group treats parameters as elements of the field of coeffi-
cients and produce so-called input-output equations. This approach is followed in
the packages COMBOS [35] and DAISY [36, 37]. Other contributions include those
from Diop and Fliess [38], Carra [39], and Ollivier [40].

• Differential geometry (Local structural identifiability): This approach is implemented
by, amongst others, Isidori [41], Sontag [42] and Vidyasagar [15]. It is based on the
Inverse Function Theorem from calculus.

• Semi-numerical: Karlsson et. al. [43] and Sedoglavic [18] implement semi-numerical
methods in their papers.

• Numerical (Local structural identifiability): Numerical methods are used by amongst
others Raue et. al. [44]. For rational systems, the Exact Arithmetic Rank (EAR)
method is a numerical rank calculating method [43], based on the algorithm intro-
duced by Sedoglavic in 2002 [18]. Other authors also use the correlation method
[45], principle component analysis (PCA) [46], the orthogonal method [47], and
the eigenvalue method [48] to analyse the calculated sensitivity matrix.

• Other: A direct test, both analytical [49] and numerical [50]. Walter and Lecourtier
introduced a similarity transform method for linear models [51]. Vadja and Ra-
bitz [52], Vajda et. al. [53] and Chappel and Godfrey [54] extended this similar-
ity transform approach to nonlinear models. This method requires the system to
be both observable and controllable. Xia and Moog proposed another method
based on the Implicit Function Theorem [55]. Wu et al. [56] further extended this
method. Stigter and Molenaar introduced a hybrid method incorporating a sensi-
tivity based method [57] that uses singular value decomposition (SVD) to calculate
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the rank of a sensitivity matrix, and a subsequent series expansion method based
on Pohjanpalo’s power series expansion.

The hybrid method of Stigter and Molenaar [57] is used in this thesis. It has been
chosen due to its computational efficiency, allowing for it to be used in applications
complementary to straight forward identifiability analyses. In addition, its numerical
results are easy to interpret and decrease the computational demand of the subsequent
symbolic calculations. This attribute makes the method well-suited for the analysis of
large systems biology type of models.

1.4. PROBLEM STATEMENT
Our problem statement is defined by looking toward the future. Given the growing inter-
est in the field of systems biology, increasing amounts of generated data, and the never-
ending consolidation of our knowledge, it is evident that in the future, models will con-
tinue to increase in size and complexity. As Kolczyk recently stated, “Answering new and
even more complex biomedical questions require models of complete cells, organs or
even organisms” [58]. This trend necessitates the development of software that is capa-
ble of handling such systems and this remains a challenging open problem. As Ghosh et.

al. summarises it: “Understanding complex biological systems requires extensive sup-
port from software tools. Such tools are needed at each step of a systems biology com-
putational workflow, which typically consists of data handling, network inference, deep
curation, dynamical simulation and model analysis. In addition, there are now efforts
to develop integrated software platforms, so that tools that are used at different stages
of the workflow and by different researchers can easily be used together” [59]. In the
identifiability context, the aim is to facilitate the accurate analysis of large systems. This
leads to the definition of the general aim of this thesis: Provide an easy to use structural

identifiability method that can be applied to a wide range of systems. It should ideally
be capable of analysing both rational and irrational model functions.

In [10] it is stated: “If a set of parameters is found to be structurally unidentifiable,
a question naturally arises: is it possible to reformulate the model by combining such
parameters in an identifiable quantity? The answer to this question entails character-
ising the way the structurally unidentifiable parameters are correlated. Many methods
for structural identifiability analysis are capable of addressing this problem to a certain
extent; however, no generally applicable and automatic procedure exists”. This leads
to the definition of our second goal: in the event of structural unidentifiability, model
developers should be well-informed as to the different avenues available to reinstate a
particular model’s identifiability. An easy to implement method should assist model

developers with the reparameterisation of their structurally unidentifiable models.
Ideally, it should be capable of identifying and eliminating the redundant parameters of
large ODE models.

The third goal is closely related to the notion of giving model developers different op-
tions when addressing structural unidentifiability. “It happens frequently in the global
identifiability applications that the property holds only generically, i.e. except for a “thin”
set of initial conditions. In these situations the system is (incorrectly but forgivably) nev-
ertheless declared to be (global) identifiable, excluding certain subsets of initial states”
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[60]. Our method should be able to detect certain problematic initial conditions that,

if changed, would reinstate a model’s structural identifiability.

Given that a model can be analysed prior to the experimental phase of a model’s
development, structural identifiability algorithms can in principle be implemented in a
early experimental design capacity. This may entail detecting which outputs should be
measured to ensure a model’s structural identifiability. Anguelova has the following to
say regarding the minimal output set problem: “This problem has not received much
attention previously, possibly due to the difficulty of testing structural identifiability in
the first place” [61]. Given the increase in the number of experiments conducted and the
costs incurred during such experiments, there is a need for optimally-designed experi-
ments. This includes factors such as how many experimental measurements should be
taken, at which time points should these be taken and which sensors should be mea-

sured to ensure a model’s structural identifiability?

Finally, light should be shed on the numerical methods used for local structural iden-
tifiability analyses. Evans states that “Numerical analysis is heavily dependent on no-
tional values for the parameters (that are to be estimated), and involves applying a sam-
pling rate to the output. These results are therefore affected by a number of factors that
one would wish to understand the individual effect of - for example, is a model over-
parameterised regardless of the number and timing of samples taken” [62]. To sum-
marise, a better understanding of the factors that influence numerical identifiability

results is required.

1.5. OBJECTIVES AND THESIS OUTLINE
Given: 1) the open research questions that exist within the identifiability community, 2)
the lack of interaction between different scientific disciplines, and 3) the limited amount
of software tools capable of addressing the problems that arise during model develop-
ment, the following objectives have been earmarked for this thesis. Figure 1.1 shows
where they fit into the model development process.

1. Identifiability software is implemented in the preliminary design of experiments.
Here, the minimal sets of outputs that need to be measured to ensure a model’s
structural identifiability are determined. This is covered in Chapter 2: Determin-

ing minimal output sets that ensure structural identifiability.

2. Address the topic of structural unidentifiability. The different options available
to reinstate structural identifiability are discussed and the process of model repa-
rameterisation is shown in detail. In addition, model reparameterisation involving
state transformations of large ODE models is also shown. Chapter 3: An efficient

procedure to reparameterise structurally unidentifiable models.

3. Identify the key factors that influence the numerical structural identifiablity results.
The motivation for this objective is that a good understanding of these factors will
enable the us to apply our method to a wide range of models. Chapter 4: Sen-

sitivity of the sensitivity analysis: Understanding factors that influence numerical

results.
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4. Continuing on the theme of reinstating structural identifiability, we introduce a

fast method that can accurately detect sets of problematic initial conditions of large

ODE models. Here, the effect of initial conditions on a model’s structural identi-
fiability is shown. Chapter 5: Assessing the role of initial conditions in the local

structural identifiability of large nonlinear dynamical models.

5. A general discussion of the achieved results is given in this chapter. Conclusions
are drawn and finally, possible future applications of the method are discussed.
Chapter 6: General discussion.
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APPENDIX

Table 1.1: Summary of the models analysed in this thesis.

Name States
System
Parameters

Total
unknowns

Chapter

A chemical reaction system [63] 11 6 17 2
NF-κB model [64] 15 28 43 2
JAK/STAT model [61, 65] 31 51 82 2, 4
Ligand binding model [66] 6 8 14 2
Simplified glycolytic
reaction model [67]

10 13 23 2

Goldbeter model [68] 5 17 22 2
Reparameterised JAK/STAT
model with specific model output

14 20 21 2

Irrational JAK/STAT model with
specific model output

14 20 21 2

Immunological model for
mastitis in dairy cows [69]

2 5 7 3

Microbial growth model [70] 2 4 6 3
JAK/STAT model [71] 14 22 23 3, 4, 5
Lung cancer model [72, 73] 21 54 75 3, 4
Chinese Hamster model [74] 34 117 151 4
Novak Tyson model [75] 13 39 52 4
Model with 20 states [76] 20 22 42 4
Pollution model [77, 78] 20 25 45 4
Small benchmark model [79] 2 3 3 5
Model with multiple sets of
problematic initial conditions

2 1 3 5

Benchmark model
with input [60]

2 4 4 5

Model describing a
simple biochemical network [80]

3 3 6 5

Three-phase industrial
batch reactor [81]

7 5 5 5
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ABSTRACT

T HE process of inferring parameter values from experimental data can be a cumber-
some task. In addition, the collection of experimental data can be time consuming

and costly. This paper covers both these issues by addressing the following question:
“Which experimental outputs should be measured to ensure that unique model param-
eters can be calculated?". Stated formally, we examine the topic of minimal output sets
that guarantee a model’s structural identifiability. To that end, we introduce an algorithm
that guides a researcher as to which model outputs to measure. Our algorithm consists of
an iterative structural identifiability analysis and can determine multiple minimal out-
put sets of a model. This choice in different output sets offers researchers flexibility
during experimental design. Our method can determine minimal output sets of large
differential equation models within short computational times.
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2.1. INTRODUCTION
Mathematical models are powerful tools that enable the scientific community to under-
stand processes otherwise immeasurable by predicting outcomes of numerous physical
properties. The field of systems biology often utilises ordinary differential equations to
model dynamic systems. These models can comprise large systems of differential equa-
tions that contain vast numbers of unknown parameters [2]. Despite improvements in
the quality of experimental sensors and therefore both the quality and quantity of exper-
imental data, the process of parameter estimation remains cumbersome. This may be
due to noisy data or due to the inherent structure of the model (structural unidentifia-
bility) [3]. A structurally unidentifiable model implies that certain parameters are totally
correlated, also referred to as ’aliased’, and have confidence intervals that span the inter-
val (−∞,∞). Uncertainty in inferred parameter values calls into question the validity of
the entire model and therefore it is imperative to address these uncertainties upfront by
conducting identifiability analyses.

We will focus on ensuring structural identifiability and since this property can be
analysed before conducting experiments, our analysis can be utilised in preliminary ex-
perimental design. An experimental researcher may wish to know: “Which of the pre-
defined model outputs/sensors do I at least need to measure to ensure that I can infer
unique parameter values?". The answer is addressed by the topic of minimal output
sets, where a minimal output set is defined as: Measuring a minimal set of model out-

puts ensures that a model is structurally identifiable. Due to its complexity, the topic of
minimal output sets has received little attention [4]. Scientists often rely on intuitive
experimental design, which may easily result in redundant or insufficient experimental
measurements.

In this paper we present an algorithm to determine minimal output sets by identify-
ing sets of totally correlated parameters using an iterative structural identifiability analy-
sis. This algorithm offers insight into which sensors should be measured, thereby aiding
intuitive experimental design. A particular model may have multiple minimal output
sets. This offers great flexibility to the experimental researcher as he/she can decide
which output set to measure taking factors such as time, cost and physical constraints
into account.

This structural identifiability issue has been considered in a few previous papers [4–
7], which we will briefly describe. The first paper, published in 2009, introduces a min-
imisation algorithm to determine which parameters are identifiable [5]. Three simple
examples are included and due to its computational complexity the author states that
defining minimal output sets for medium sized models is still too hard using this algo-
rithm. In a paper published in 2012, the authors present an algorithm tasked with iden-
tifying symmetries, i.e. sets of totally correlated parameters, in a system of differential
equations [4]. Once these symmetries have been identified, the states and parameters
that destroy these symmetries are included into minimal output sets. Minimal output
sets of the well-known NF-κB and JAK/STAT models are determined assuming that all
model parameters and states can potentially be measured. The final step in their algo-
rithm is doing a symbolic computation to test for structural identifiability and identify
any remaining symmetries. Other papers address observability [6, 7]. Identifiability can
be regarded as a special case of observability [8]. In [6], the authors introduce a graph-
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ical method and illustrate its key concepts using nonlinear models. They construct a
directed graph from the so-called adjacency matrix and inspect it to identify strongly
connected components and more specifically root strongly connected components. A
directed graph is a graphical representation of an ODE system and depicts the connec-
tivity between individual states. Two nodes are classified as strongly connected if they
are reachable from each other [9]. Root strongly connected components are strongly
connected components with no outgoing edges. Minimum output sets are identified
from the different elements in these root strongly connected components. A different
approach is followed by Letellier and co-authors [7]. They use a symbolically computed
Jacobi matrix to compute the output sets that ensure observability. An interesting exten-
sion of minimal output sets in the preliminary experimental design phase, could be to
determine these sets taking measurement noise into account, thereby establishing prac-
tical identifiability. To this end, Docherty and co-authors present a graphical method to
identify such sets [10].

Our minimal output set algorithm is different from the existing techniques as it nu-
merically identifies sets of unidentifiable parameters. Through a number of computa-
tional experiments, we provide evidence (but not a complete mathematical proof) that
our proposed algorithm has the following attributes:

• It can calculate the minimal output sets of large models.

• It can easily be adjusted to allow for cases in which only a limited subset of pre-
defined outputs are measurable. This is illustrated in example 7 in the results and
discussion section.

• Irrational models can also be analysed as shown in example 8 in the results and
discussion section.

The numerical findings are validated in a second step using symbolic computations
as explained in [11]. This paper is divided into the following sections: Section 2.2 covers
the underlying theory and concepts of our algorithm. Section 2.3 showcases the algo-
rithm using 8 examples and the final section contains concluding remarks.

2.2. MATERIALS AND METHODS

BACKGROUND THEORY
Many dynamic systems biology phenomena are described in terms of differential equa-
tion models. These models can often be written in the standard state-space form [12]:

ẋ(t ) = f (t , x(t ),θ), (2.1)

x(0) = x0, (2.2)

y(t ) = h(x(t ),θ). (2.3)

State variables are contained in a vector x(t ) (dim x = n), model parameters are con-
tained in vector θ, (dim θ = p) and the output signals or measured variables are con-
tained in vector y(t ) (dim y = m). Function f denotes a dynamic model structure and h

is the output or observation function. Our approach allows for functions f and h to be
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either rational or irrational. Unknown initial conditions of model states in vector x0, can
be regarded as additional unknown parameters and can accordingly be included into θ.
If all initial conditions are unknown, θ contains p +n elements.

The identifiability analysis method used in this paper was first proposed in [11]. In
essence, this method relies on the singular value decomposition (SVD) of an output sen-
sitivity matrix. Reid introduced the concept of sensitivity based identifiability analysis
for linear models [13]. In his paper, he defines a sensitivity matrix as S = ∂y/∂θ, with its
elements describing the sensitivities of the model output with respect to model param-
eters. These partial derivatives are evaluated for nominal parameter values θ0. Let ∆θ
denote a small perturbation of the nominal vector θ0, so θ = θ0 +∆θ. This perturbation
will result in a corresponding perturbation in the model output, y(θ) = y(θ0)+∆y . A first
order Taylor series approximation can be used to relate these perturbations [14, 15]:

y(θ)− y(θ0) ≈ S · (θ−θ0) or ∆y ≈ S ·∆θ. (2.4)

To solve ∆θ from the measured ∆y uniquely, ST S should be nonsingular [16–18] and
therefore S should be of full rank [19, 20]. For nonlinear models, the individual sensitiv-
ities are obtained by deriving the model (2.1)-(2.3) with respect to θ, thereby obtaining
the system:

d

d t

(

∂x

∂θ

)

=
∂ f

∂x

∂x

∂θ
+
∂ f

∂θ
, (2.5)

∂y

∂θ
=

∂h

∂x

∂x

∂θ
+
∂h

∂θ
. (2.6)

To obtain the output sensitivity matrix S, the matrix function ∂y/∂θ is evaluated over
a discretised finite time grid, [t0, . . . , tN ], and the obtained matrices at each time point are
vertically concatenated [11]. It is advantageous to normalise S to adjust for sensitivities
measured in different units [21]. We emphasise that working with normalised matrix el-
ements might be numerically attractive but not essential. The normalised matrix Snor m

is given as:
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If all the initial conditions of model states are unknown, matrix Snor m (and also S)
has dimensions M×(p +n), with M = m×(N +1). To determine the rank of Snor m (and
also S), the numerical rank test using an SVD reads as [16]:

Snor m =UΣV T . (2.8)

The 2 matrices of importance are, the diagonal matrix, Σ (dim M×(p +n)), and V (dim
(p + n)×(p + n)). The singular values in Σ, σi , i = 1, . . . , p + n, are used to determine
whether or not Snor m (or S) is of full rank. The rank of Snor m (or S) is the number of
nonzero singular values and this can be expressed as follows [16]:

If σ1 ≥ . . . ≥σq >σq+1 = . . . =σp+n = 0,then rank (Snor m) = q. (2.9)

In practice, singular values are never exactly vanishing due to numerical rounding
errors. That is why one uses as practical definition: zero-valued singular values are val-
ues that fall beyond a significant gap in the spectrum of singular values [22]. In this
paper we consider a gap larger than 3 decades on the log scale as significant. Once struc-
tural unidentifiability has been established, the nonzero entries of the singular vectors
of matrix V , related to vanishing singular values beyond this gap, allude to which model
parameters and initial conditions may be unidentifiable. The singular values and the
unidentifiable parameters are graphically illustrated in a so-called identifiability signa-
ture [23].

To illustrate our approach, we use the NF-κB model, also analysed in Section 3. It
has 15 states and 28 model parameters and if all the initial conditions of the individual
model states are considered to be unknown, it has a total of 43 parameters [4]. Measur-
ing ymax = [x1, . . . , x15] as model output, we observe no gap in the singular values (see
Fig 2.1). This confirms that there are no vanishing singular values and therefore the sen-
sitivity matrix, Snor m , is of full rank and the model is structurally identifiable for this
particular choice of output sensors.

However, if we omit state x4 from the output ymax , we observe from Fig 2.2 that
matrix Snor m is now rank deficient. This is apparent from the clear gap in the singular
values and the vanishing singular value of σ43 = 7.8×10−16.

We can now examine the columns of V , corresponding to vanishing singular values,
for suggestions as to which model parameters may be unidentifiable. Fig 2.2 reveals
only 1 vanishing singular value and therefore it suffices to consider only the last column
vector, v 43, corresponding to σ43. The nonzero entries in Fig 2.3 reveal that parameters
θ2,θ3,θ27 and the initial condition x4(0), are both totally correlated and unidentifiable.
To ensure the model’s structural identifiability, the omitted state, x4, has to be measured
and so is included into any minimal output set. In contrast, omitting state x3 from the
output set does not change this model’s identifiability and therefore can be omitted from
a minimal output set.

MINIMAL OUTPUT SET ALGORITHM
Here, we present our algorithm to detect minimal output sets. We first outline the ideas
underlying the algorithm and then discuss the subsequent steps. It is important to re-
alise that the parameters to be identified may comprise both system parameters θ j , j =
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Figure 2.1: NF-κB model: Singular values of the output sensitivity matrix, Snor m , if we measure all states,

{x1, . . . , x15}, as model output. Singular values, arranged in descending order, reveal no gap. This suggests that
the sensitivity matrix is of full rank and therefore the model is structurally identifiable.
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Figure 2.2: NF-κB model: Singular values of the output sensitivity matrix, Snor m , if we measure all states

apart from x4. Singular values, arranged in descending order reveal a clear gap with σ43 = 7.8×10−16. This
indicates that the sensitivity matrix is rank deficient and so the model is structurally unidentifiable.

1, .., p, and initial values of the states, x j (0), j = 1, . . . ,n. We assume that the numerical
values assigned to the elements in both θ and x(0) are regular points, where it is known
that the rank of the sensitivity matrix does not change in the neighbourhood of a regular
point. To ensure that this assumption holds, it may be useful to repeat the algorithm
for a different values in the vicinity of a chosen regular point. Furthermore, system pa-
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Figure 2.3: NF-κB model: Entries in the last right singular vector corresponding to the vanishing singular

value, σ43, in Fig 2.2. The corresponding nontrivial null-space indicates that parameters θ2, θ3, θ27 and initial
condition x4(0) are totally correlated.

rameters are to be inferred from measurements of model outputs and so are usually not
regarded as measurable outputs. For the time being, we assume that the predefined
measurable outputs y j , j = 1, . . . ,m, also referred to as sensors, are identical to the states
x j , j = 1, . . . ,n, and therefore m = n. Later on we show that this assumption can easily be
relaxed. We may also take for granted that the system is identifiable when all sensors are
measured. If this would not be the case, searching for minimal output sets would clearly
not be possible.

The main idea of the algorithm is to systematically omit elements from the set of
all available states/sensors, thereby searching for essential sensors that absolutely can
not be omitted to keep the system identifiable. As explained above, unidentifiability is
detected by inspecting the calculated singular vales of the sensitivity matrix in (2.7). If
these singular values show a gap of 3 decades or larger, we conclude unidentifiability and
subsequently proceed to identify the essential states/sensors that need to be included
into a model’s minimal output sets.

Let y max be the set of all available states/sensors with set-cardinality |y max | = m.
The algorithm involves an iterative identifiability analyses in which sensors are omitted
step-wise from the maximum starting set y max . Systematically more and more sensors
are left out as to find all essential sensors that are needed for a minimal output set (MOS).

Let k be the number of sensors to be omitted from a set of available sensors, y k .
Starting with k = 1, we leave out one-sensor-at-a-time from the initial set of all avail-

able sensors, y 1 := y max . Each time measuring with a different set of sensors from y 1,
we conduct

( m
m−1

)

= m identifiability analyses for k = 1. If a lack of identifiability is de-
tected, the unidentifiable parameters are stored in a set φ1 and the corresponding omit-
ted sensors that cause unidentifiability are stored in a set ψ1. Continuing this way, we
get unidentifiable parameter sets {φi , i = 1, . . . , l1}, and the corresponding omitted sen-
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sor sets {ψi , i = 1, . . . , l1} that cause a lack of identifiability. Here, l1 is the total number
of unidentifiable parameter sets identified for the case of omitting one-sensor-at-a-time
(k = 1). The unidentifiable parameter sets φi can be found by inspecting the nonzero en-
tries in the singular vectors of the matrix V corresponding with the zero-valued singular
values (as can be seen from the identifiability signature).

To ensure structural identifiability, the essential sensor form each {ψi , i = 1, . . . , l1}
must be included into any minimal output set. Having checked all possibilities of leav-
ing out one-sensor-at-a-time, we can now define a new set of available sensors, say y 2,
that is created by excluding the previously found sensors in the sets {ψi , i = 1, . . . , l1} from
the set y 1. Since we know for sure that these excluded sensors are needed for a model’s
structural identifiability, they are permanently included into all sensor sets that are mea-
sured from now on. Hence, the case k = 1 reduces the number of candidate sensors to
choose from in the next iteration from m to m′ = m − l1.

Next, we leave out two-sensors-at-a-time (the case k = 2) from y 2 and check for iden-

tifiability. Since set cardinality |y 2| now equals m′ ≤ m, we have
( m′

m′−2

)

choices for omit-
ting 2 sensors from this set. If unidentifiability is detected, a new set of unidentifiable
parameters is compiled from the identifiability signature and stored in φl1+1, and the 2
corresponding left-out sensors are stored in ψl1+1. Proceeding this way, the total num-
ber of unidentifiable sets that can be found for k = 2 are collected in the sets {φi , i =
l1 +1, . . . , l1 + l2} and the corresponding omitted sensor sets, {ψi , i = l1 +1, . . . , l1 + l2}.

Assume now that for the case of leaving out two-sensors-at-a-time (k = 2), we have
found an unidentifiable parameter set φi . Apparently, this new set φi , only occurs when 2

particular sensors, recorded in the corresponding set ψi , are missing and therefore either
1 of these 2 essential sensors must be included in a MOS. Hence, the available sensor
sets for the case k = 3 branch out into two sets, namely y 3,1 and y 3,2. When leaving
out three-sensors-at-a-time in the next iteration of our algorithm (case k = 3), we have
to iterate both of these available sensor sets to find more unidentifiable parameter sets
{φi , i = l1 + l2 + 1, . . . , l1 + l2 + l3}. Continuing in this way for k = 3,4, . . ., we complete
our search for essential sensors when leaving out k sensors at a time. At the same time
guaranteeing that the sensors that are needed for the identifiability of a model, identified
in earlier iterations k −1,k −2, . . . ,1, are included in each new measured output.

Clearly, for large models the output, y max , will contain a large number of sensors
and in these cases an exhaustive search will be computationally demanding. The com-
putational burden may however be substantially reduced by randomly selecting outputs
from an intermediate set of available sensors y k (for a certain iteration step k) using a
series of Bernoulli trial experiments. The number of sensors to include into each sen-
sor set can then be chosen in such a way that the chance of successfully detecting an
unidentifiable set of parameters is more than 99.5% (refer to supplementary S9 File in
the appendix).

We further note that in practice our experience shows that the values k = 1,2,3 al-
ready summarise the majority of possible unidentifiable parameter sets φi . More im-
portantly, once we have established a few required sensors on basis of lower k values,
one can perform an additional check for a lack of identifiability when using only the re-

quired sensors that have already been determined for the lower k values. Such a test will
immediately reveal additional correlations that still need to be found for larger k values,
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but these correlations are not yet neatly separated in a systematic way. This check does,
however, demonstrate whether we need to continue our search for larger k values (e.g.
k = 4,5, . . .), yes or no or whether one can already define minimal outputs sets from the
already identified essential sensors.

Finally, in reality the output, y max , is not always identical to the states x . For ex-
ample, one could have y max = [x1 + x3 + x4,θ16(x3 + x4 + x5 + x12),θ17(x4 + x5)]. Our al-
gorithm allows for the user to define these more complex outputs in a straightforward
manner: Instead of omitting states {xi , i = 1, . . . ,n}, we now systematically omit outputs

{y j , j = 1, . . . ,m} to find the essential sensors needed in a MOS.

2.3. RESULTS AND DISCUSSION

EXAMPLE 1: A CHEMICAL REACTION SYSTEM

This model was used by Liu and co-authors to illustrate their method ensuring observ-
ability based on the graphical analysis of a model’s structure [6]. It contains 11 states and
6 model parameters and potentially has 17 unknown parameters. Examining the struc-
ture of the model by evaluating its adjacency/Jacobi matrix, the authors detected 3 root
strongly connected components and identified 6 minimal output sets.

These observability results were confirmed using our algorithm. Additionally, we
expanded the scope of the problem to define minimal output sets that guarantee this
model’s structural identifiability. We found that the minimal output sets that ensure
observability also ensure identifiability and these are: {x4, x6, x7}, {x4, x6, x8}, {x4, x6, x9},
{x5, x6, x7}, {x5, x6, x8} and {x5, x6, x9}. These results were obtained in 6 minutes and 35
seconds using a Intel Core i7 processor with 8GB RAM (see S1 File in the appendix for
details).

Using our algorithm, we detected 3 different sets of unidentifiable parameters, {φ1,φ2,
φ3} (see S1 File for a graphical illustration of the branching of this analysis). Each of these
sets can be verified symbolically, which also allows for the identification of different to-
tally correlated sets of parameters within each set, φi (see supplementary S8 file in the
appendix for the symbolic verification of all 3 unidentifiable sets). The results obtained
for the different values of k are summarised in Table 2.1.

Figs 2.4 and 2.5 indicate the identifiability signature obtained when measuring the
output, {x1, x2, x3, x6, x7, x8, x9, x10, x11}, here k = 2. The 4 zero-valued singular values
indicate that the model is unidentifiable when measuring this output. The unidentifi-
able parameters can be identified by looking at the nonzero entries in the last 4 columns
of matrix V , each corresponding to a singular value beyond the gap. Fig 2.5 reveals
the unidentifiable parameter set, φ2 = {θ2,θ3, x4(0), x5(0)} and accordingly, the essen-
tial sensors are ψ2 = {x4, x5}. The symbolic verification of this set yields a nontrivial

null-space with 4 base vectors: N

(

dG

dθuni d (θ)
)

= {1,0,0,0} , {0,1,0,0} , {0,0,1,0} , {0,0,0,1},

where θuni d = {θ2,θ3, x4(0), x5(0)}.

EXAMPLE 2: NF-κB MODEL

This model describes the two-feedback-loop regulatory module of nuclear factor NF-κB
signalling pathway. It involves two-compartment kinetics of the activators IκB (IKK) and
NF-κB, the inhibitors, A20 and IκBα, and their complexes. In response to extra-cellular
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Table 2.1: Results obtained during an exhaustive analysis of the chemical reaction model.

k
Number
of sets

Unidentifiable parameters sets Omitted sensors
Computational
time (sec)

1 1 φ1 = {x6(0)} ψ1 = {x6} 4.5
2 1 φ2 = {θ2,θ3, x4(0), x5(0)} ψ2 = {x4, x5} 14.6
3 1 φ3 = {θ4,θ5, x7(0), x8(0), x9(0)} ψ3 = {x7, x8, x9} 53.6
4 0 53.5
5 0 112.3
6 0 90.4
7 0 48.7
8 0 17.1
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Figure 2.4: Example 1: Structural identifiability results of a chemical reaction system: Singular values of

the output sensitivity matrix, Snor m , when measuring the output {x1 . . . , x11} omitting sensors x4 and x5.

Singular values, arranged in descending order, reveal a clear gap. This gap, in conjunction with the smallest
singular value, σ17 = 2.4×10−17, indicate that the model is structurally unidentifiable when measuring this
output.

signals such as tumour necrosis factor, the activation of IKK ultimately stimulates the
release of the main activator NF-κB, which enters the nucleus and triggers transcription
of the inhibitors and numerous other genes [24] (See supplementary S2 File in the ap-
pendix for a model description). The model contains 15 states and 28 model parameters
and assuming the initial state conditions to be unknown, it has 43 unknown parameters
in total.

A minimal output set for this model was first identified by Anguelova and co-authors
[4]. We found the model structural identifiable when measuring all states, ymax = {x1, . . . ,
x15}. Our algorithm identified 5 different sets of unidentifiable parameters: φ1 = {θ2,θ3,
θ27, x4(0)}, φ2 = {θ5,θ6,θ18, x5(0)}, φ3 = {θ8,θ9,θ10, x6(0)}, φ4 = {θ19,θ27, x10(0)} and φ5 =
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Figure 2.5: Example 1: Structural identifiability results of a chemical reaction system: Nonzero entries in

the last 4 columns of matrix V . These indicate that initial conditions x4(0) and x5(0) and model parameters
θ2 and θ3 are unidentifiable. Since x4 and x5 are simultaneously omitted from ymax , both of these sensors are
essential.

{x12(0)}. The corresponding sets of essential sensors are: ψ1 = {x4}, ψ2 = {x5}, ψ3 = {x6},
ψ4 = {x10} and ψ5 = {x12} and these results were obtained in 29.5 seconds. Analysing
the model for all the different values of k took 8 minutes and 20 seconds. The resulting
minimal output set, {x4, x5, x6, x10, x12}, is identical to the minimal output set defined by
Anguelova et. al. [4].

Figs 2.2 and 2.3 show the identifiability signature obtained when sensor x4 is omitted
from ymax . The symbolic verification of the unidentifiable set shown in Fig 2.3 yields the

nontrivial null-space: N

(

dG

dθuni d (θ)
)

= {θ2/x4(0),−θ3/x4(0),−θ27/x4(0),1}, were θuni d =
{θ2,θ3,θ27, x4(0)}. Refer to the supplementary S8 File for symbolic verification of the re-
maining 4 sets of unidentifiable parameters.

EXAMPLE 3: JAK/STAT MODEL

This model aims to describe the interaction of the suppressor cytokine signaling-1
(SOCS1), Janus kinase (JAK) and the transcription (STAT) signal transduction pathway
[25] (S3 File in the appendix). It contains 31 model states and 51 model parameters and
so the potential total number of unknown parameters is 82. This model was structurally
identifiable when measuring all states, ymax = {x1, . . . , x31}. Applying our method, we
identified 2 sets of unidentifiable parameters: φ1 = {x31(0)} with corresponding omitted
sensor set ψ1 = {x31}, and φ2 = {θ14,θ51, x10(0), x11(0)} with corresponding omitted sen-
sor set ψ2 = {x10, x11}. These results were obtained in 3 minutes and 2 seconds with sets
ψ1 and ψ2 identified using iterative Bernoulli trails. Measuring either x10 or x11, the 2
identified minimal output sets of the JAK/STAT model {x10, x31} or {x11, x31}, are identi-
cal to the findings of Anguelova and co-authors [4].
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The identifiability signature obtained when states x10 and x11 are simultaneously
omitted from the model’s output is illustrated in Figs 2.6 and 2.7. The unidentifiable set
illustrated in Fig 2.7, was confirmed by the symbolically computed nontrivial null-space:

N

(

dG

dθuni d (θ)
)

= {θ14/x11(0),−θ51/x11(0), x10/x11(0),1}. Here θuni d is set φ2.
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Figure 2.6: Example 3: JAK/STAT model: Singular values of the output sensitivity matrix, Snor m , when mea-

suring the model output {x1, , . . . , x31}, omitting sensors x10 and x11. Singular values reveal a clear gap and
this, in conjunction with the smallest singular value of σ82 = 7.3×10−16, indicates that Snor m is not of full rank
and therefore the model is structurally unidentifiable.

EXAMPLE 4: LIGAND BINDING MODEL

Next, we consider a Ligand binding model, previously analysed for structural identifi-
ability [26]. This model describes the dynamic behaviour of the ligand (Epo) and its
receptor (EpoR) in erythroid progenitor cells. In these cells, the dynamic characteris-
tics of the Epo receptor (EpoR) determine how signals are encoded, in the presence of
Epo, and processed at receptor level. These processed signals activate downstream sig-
nalling cascades such as the JAK2-STAT5 pathway which in turn lead to responses such
as differentiation and proliferation of erythrocytes [26]. The model consists of 6 states
and assuming their initial states are unknown, it contains 14 unknown parameters (see
supplementary S4 File in the appendix).

The minimal output set ensuring the observability of this model, {x5, x6}, was deter-
mined by Liu and co-authors using their graphical approach [6]. This set also ensures
the structural identifiability of the model and this result was obtained in 12 seconds.
Two sets of unidentifiable parameters were detected: φ1 = {x5(0)} and φ2 = {x6(0)}. Set
φ2, shown in Fig 2.8, is indicated by the nonzero entry in the last right singular vector
corresponding to the smallest singular value calculated to be precisely zero.
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Figure 2.7: Example 3: JAK/STAT model: Entries in the last right singular vector corresponding to the vanish-

ing singular value, σ82, in Fig 2.6. The corresponding nontrivial null-space indicates that system parameters
θ14, θ51 and initial conditions x10(0) and x11(0) are totally correlated and so the model is not identifiable when
model states x10 and x11 are simultaneously omitted from the model’s output.
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Figure 2.8: Example 4: Ligand binding model: Entries in the last right singular vector corresponding to the

smallest singular value of precisely zero, calculated for the measured output {x1, x2, x3, x4, x6}. The nontriv-
ial null-space indicates that the initial condition of state x5 is unidentifiable when this state is not measured.
Accordingly, x5 should be included into the model’s minimal output set.

EXAMPLE 5: SIMPLIFIED GLYCOLYTIC REACTION MODEL

The simplified glycolytic reaction map consists of 10 chemical species: glucose, ADP,
glucose 6-phosphate, ATP, glucose 1-phosphate, AMP, fructose 6-phosphate, fructose 2,
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6-biphosphate, triose phosphate and pyruvate. The interaction between these chemi-
cals are described by 9 reactions [27] (see supplementary S5 File in the appendix). This
model’s minimal output set for observability was defined by Liu and co-authors as {x10}
[6]. Our algorithm confirmed that this minimal set also ensures the model’s structural
identifiability. This result was obtained after 2 minutes and 43 seconds. The set of
unidentifiable parameters, φ1 = {θ13, x10(0)}, corresponding with the omitted sensor set,
ψ1 = {x10}, is indicated in Fig 2.9.
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Figure 2.9: Example 5: Simplified glycolytic reaction model: Entries in the right singular vectors corre-

sponding to 2 vanishing singular values. The nonzero values indicate that the initial condition x10(0) and
parameter θ13 are unidentifiable when state x10 is not measured.

EXAMPLE 6: GOLDBETER MODEL

Consider a model describing the circadian oscillations in the Drosophila period protein
(PER) [28]. It is based on both multiple phosphorylation of PER and on the negative feed-
back exerted by PER on the transcription of the period (per) gene. It provides a molecular
basis for circadian oscillations of the limit cycle type in which the peak in per mRNA pre-
cedes the peak in total PER protein.

This model was analysed by Sedoglavic in 1995, in which he identified only 1 set of
totally correlated parameters [29]. It contains 5 states and 17 system parameters and as-
suming that initial conditions are unknown, the total number of unknown parameters is
22. Measuring the output, {x2, x3, x4, x5}, our algorithm also found only the 1 totally cor-
related set, φ1 = {θ1,θ3,θ4,θ5, x1(0)}, with its elements indicated by the nonzero values
in Fig 2.10. The minimal output set of this model, {x1}, was calculated in 12 seconds.
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Figure 2.10: Example 6: Goldbeter model: Entries in the last right singular vector corresponding to a single

vanishing singular value calculated. The nonzero values indicate that parameters θ1,θ3,θ4,θ5 and initial
condition x1(0) are unidentifiable when state x1 is not measured.

EXAMPLE 7: REPARAMETERISED JAK/STAT MODEL WITH SPECIFIC MODEL

OUTPUT
In this example, we illustrate how our method can be used to identify minimal output
sets from a set of more complex model outputs. These outputs do not simply consist
of single model states and in this example, also include additional unknown model pa-
rameters. We consider a reparameterised JAK/STAT model, with the original unidenti-
fiable model described by Raia and co-authors [30]. The constitutive activation of the
JAK (Janus kinase)/STAT signalling pathway forms part of both the primary mediasti-
nal B-cell lymphoma (PMBL) and the classical Hodgkin lymphoma (cHL). Raue and co-
authors investigated the identifiability of this benchmark model using three different
approaches [2].

The model definition also contains a specific set of initial conditions for model states,
x(0) = {1.3,θ21,0,1,0,2.8,0,165,0,0,0.34,0,0,0}. These initial conditions, in conjunction
with the predetermined set of model outputs, result in the model’s structural unidenti-
fiability. Structural identifiability can be reinstated by reparameterising the model (See
supplementary S7 file for the structurally identifiable version of this JAK/STAT model).
The reparameterised model contains 14 states and 21 parameters, with only the initial
condition of state x2 assumed to be unknown.

Considering the reparameterised model output, y max = [x1+x3+x4,θ16(x3+x4+x5+
x12),θ17(x4 + x5),θ18x7,θ19x10,θ20x14, x13, x9], our algorithm can now be implemented
to determine the model’s minimal output sets. Setting k = 1, already revealed 6 essen-
tial sensors. The unidentifiable parameters obtained were: φ1 = {θ12,θ16}, when sen-
sor ψ1 = {θ16(x3 + x4 + x5 + x12)} was not measured, φ2 = {θ17}, when ψ2 = {θ17(x4 + x5)}
was not measured, φ3 = {θ18}, when ψ3 = {θ18x7} was not measured, φ4 = {θ19}, when
ψ4 = {θ19x10} was not measured, φ5 = {θ20}, when ψ5 = {θ20x14} was not measured, and
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φ6 = {θ8,θ13} when state ψ6 = {x13} was not measured. All these sensors are essential
and the resulting minimal output set, obtained after 18 seconds, is: {θ16(x3 + x4 + x5 +
x12),θ17(x4 +x5),θ18x7,θ19x10,θ20x14, x13}.

Figs 2.11 and 2.12 reveal the identifiability signature obtained when sensor θ17(x4 +
x5) was not measured. From this, one can see that parameter θ17 is unidentifiable.
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Figure 2.11: Example 7: JAK/STAT model with specific model output: Singular values of the output sensitiv-

ity matrix, S, when omitting sensor θ17(x4 +x5) from ymax . Singular values, arranged in descending order,
reveal a clear gap. This gap in conjunction with the smallest singular value of 4×10−18, indicate that S is rank
deficient.

EXAMPLE 8: IRRATIONAL JAK/STAT MODEL WITH SPECIFIC MODEL OUT-
PUT

In this final example, we show that our method can be used to analyse irrational models.
Consider a irrational version of the JAK/STAT model in example 7:

ẋ1 = θ1c1u1x1 −θ2xπ
1 +θ3x2, (2.10)

ẋ2 = θ2x1 −θ3x2, (2.11)

ẋ3 = θ1c1u1x1 −θ4x3x7, (2.12)

ẋ4 = θ4x3x7 −θ5x4, (2.13)

ẋ5 = θ5x4 −θ6x5, (2.14)

ẋ6 =−
θ7x3x6

1+θ8x13
−

θ7x4x
p

2
6

1+θ8x13
+ c2θ9x7, (2.15)

ẋ7 =
θ7x3x6

1+θ8x13
+

θ7x4x
p

2
6

1+θ8x13
− c2θ9x7, (2.16)

ẋ8 =−θ10x8x7 + c2θ11x9, (2.17)
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Figure 2.12: Example 7: JAK/STAT model with specific model output: Entries in the last right singular vector

corresponding to the vanishing singular value in Fig 2.11. The nontrivial null-space indicates that model
parameter θ17 is not identifiable when sensor θ17(x4 +x5) is not measured.

ẋ9 = θ10x8x7 − c2θ11x9, (2.18)

ẋ10 = x9, (2.19)

ẋ11 =−θ12c1u1x11, (2.20)

ẋ12 = θ12c1u1x11, (2.21)

ẋ13 =
θ13 sin(x10)

θ14 +x10
−θ15x13, (2.22)

ẋ14 = x9. (2.23)

Analysing this model, we find the results identical to those obtained in example 7 and
therefore conclude that the predefined outputs, x1 + x3 + x4 and x9, do not have to be
measured to ensure this model’s identifiability.

Model descriptions can be found in the supplementary material (see supplementary
files S1 File to S7 file). The symbolic verification of the individual unidentifiable sets in
φ can be found in the supplementary S8 File. The MATLAB code of our algorithm can be
found at: https://sourceforge.net/u/djoubert-wur/profile.

2.4. CONCLUSIONS
In this paper we introduced an algorithm that can find minimal output sets for a wide
range of models in a short time. It is not limited by any specific model structure. Propos-
ing multiple plausible minimal output sets to experimental researchers enables them to
select model outputs based on factors such as measurement cost and complexity. Of-
fering measurement flexibility whilst ensuring structural identifiability is a useful tool to
scientists and our algorithm could propose these minimal sets within a couple of min-



REFERENCES

2

37

utes.
In the future we intent to increase the numerical accuracy of our method, potentially

making use of the increased integration accuracy obtained by using complex derivatives
to compute matrices ∂ f /∂x and ∂ f /∂θ. This step could increase the tolerance of the ele-
ments of the output sensitivity matrix to 10−20 [31]. In addition, we are investigating the
added advantages of concatenating the sensitivity matrix for different sets of the model
parameter values. Preliminary results indicate that this can have a dramatic effect on the
accuracy in our computations [23].
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S1 File. A chemical reaction system description. 
A description of model kinetics and all model states and parameters. 
Model kinetics: 

dx1/dt = -θ1*x1*x2*x3; 
dx2/dt = -θ1*x1*x2*x3; 
dx3/dt = -θ1*x1*x2*x3; 
dx4/dt = θ1*x1*x2*x3 - θ2*x4 + θ3*x5; 
dx5/dt = θ2*x4 - θ3*x5; 
dx6/dt = θ1*x1*x2*x3; 
dx7/dt = θ4*x8*x9 - θ5*x7 + θ6*x10*x11; 
dx8/dt = -θ4*x8*x9 + θ5*x7 + θ6*x10*x11; 
dx9/dt = -θ4*x8*x9 + θ5*x7; 
dx10/dt = θ1*x1*x2*x3 - θ6*x10*x11; 
dx11/dt = -θ6*x10*x11 

 

Initial conditions as additional model parameters:  𝜃7 𝑥1(0) 𝜃8 𝑥2(0) 𝜃9 𝑥3(0) 𝜃10 𝑥4(0) 𝜃11 𝑥5(0) 𝜃12 𝑥6(0) 𝜃13 𝑥7(0) 𝜃14 𝑥8(0) 𝜃15 𝑥9(0) 𝜃16 𝑥10(0) 𝜃17 𝑥11(0) 

 

Model output containing all measurable outputs:  

ymax = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11 ] 
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MINIMAL OUTPUT SET ALGORITHM – BRANCHING OF ANALYSIS ILLUSTRATED GRAPHICALLY 

 

For k=4,...,8 - 6 different branches, with an output always containing the essential sensors indicated in the 

graph, has to be analysed.  

 

S2 File. NF-κB model description.  

A description of model kinetics and all model states and parameters. 

Model kinetics: 

    dx1/dt= -θ1*x1*x2+((1/333)*(-θ14*x1+θ15*x9)); 
    dx2/dt= -θ1*x1*x2+(1/333)*(θ13*x8); 
    dx3/dt= θ1*x1*x2-(1/333)*(θ11*x3); 
    dx4/dt= θ3+θ2*x2-θ4*x4; 
    dx5/dt= θ6+θ5*x2-θ7*x5; 
    dx6/dt= θ9+θ8*x2-θ10*x6; 
    dx7/dt= (10/16667)*10*θ11*x3-θ21*x7+θ1*x8*x9-θ28*x7*x11; 
    dx8/dt= θ21*x7-(10/16667)*θ13*x8-θ1*x8*x9+θ26*x15; 
    dx9/dt= θ18*x5-θ23*x9-θ1*x8*x9+(10/16667)*(θ14*x1-θ15*x9)-θ25*x9*x11; 
    dx10/dt= θ27*x4-θ24*x10; 
    dx11/dt= -θ12*x11-θ16*x11-θ28*x7*x11-θ25*x9*x11-θ19*x10*x11+θ17*x13+... 
    θ22*x14+θ26*x15; 
    dx12/dt= θ16*x11+θ19*x10*x11-θ12*x12; 
    dx13/dt= θ25*x9*x11-θ17*x13; 
    dx14/dt= θ20-θ12*x14-θ22*x14; 
    dx15/dt= θ28*x7*x11-θ26*x15 
 



Initial conditions as additional model parameters:  𝜃29 𝑥1(0) 𝜃30 𝑥2(0) 𝜃31 𝑥3(0) 𝜃32 𝑥4(0) 𝜃33 𝑥5(0) 𝜃34 𝑥6(0) 𝜃35 𝑥7(0) 𝜃36 𝑥8(0) 𝜃37 𝑥9(0) 𝜃38 𝑥10(0) 𝜃39 𝑥11(0) 𝜃40 𝑥12(0) 𝜃41 𝑥13(0) 𝜃42 𝑥14(0) 𝜃43 𝑥15(0) 

Model output containing all measurable outputs: 

ym = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7,  𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15] 

 
S3 File. JAK-STAT model description. 
A description of model kinetics and all model states and parameters. 
Model kinetics:  
dx1/dt = -2*(x1*x1*θ1 - x2*θ2) - x1*x4*θ4 + x6*θ5 - x1*x5*θ7 + x7*θ8; 
dx2/dt = x1*x1*θ1 - x2*θ2 + x3*θ3 - x2*x4*θ9 + x8*θ10; 
dx3/dt = -x3*θ3 + x14*x14*θ23 - x3*θ24 - x3*x16*θ30 + x27*θ31; 
dx4/dt = -x1*x4*θ4 + x6*θ5 + x6*θ6 - x2*x4*θ9 + x8*θ10 + x8*θ11; 
dx5/dt = x6*θ6 - x1*x5*θ7 + x7*θ8 - x5*θ12; 
dx6/dt = x1*x4*θ4 - x6*θ5 - x6*θ6; 
dx7/dt = x1*x5*θ7 - x7*θ8 + x8*θ11; 
dx8/dt = x2*x4*θ9 - x8*θ10 - x8*θ11; 
dx9/dt = x5*θ12 - x9*x14*θ16 + x15*θ17 - x9*x22*θ19 + x23*θ20 - x9*x20*θ21 + x21*θ22 + 
x25*θ29 + x26*θ47; 
dx10/dt = -x10*θ13 + (x2*θ14)/(x2 + θ15); 
dx11/dt = x10*θ13 - x11*θ50; 
dx12/dt = -x12*x29*θ41 + x30*θ42; 
dx13/dt = -x13*x20*θ25 + x22*θ26 + x26*θ47 - x13*θ48 + x11*θ51; 



dx14/dt = -x9*x14*θ16 + x15*θ17- 2*(x14*x14*θ23 - x3*θ24) + x21*θ27 - x14*x20*θ33 + 
x24*θ34 - x14*x16*θ35 + x25*θ36; 
dx15/dt = x9*x14*θ16 - x15*θ17 + x27*θ28; 
dx16/dt = x27*θ28 + x25*θ29 - x3*x16*θ30 + x27*θ31 - x14*x16*θ35 + x25*θ36; 
dx17/dt = -x17*θ18 + x18*x20*θ39 - x17*θ40; 
dx18/dt = x17*θ18 - x18*x20*θ39 + x17*θ40 - x18*x23*θ45 + x26*θ46* + x26*θ47; 
dx19/dt = x17*θ18 - x19*θ32 + x28*x28*θ37 - x19*θ38 + x26*θ47; 
dx20/dt = -x9*x20*θ21 + x21*θ22 - x13*x20*θ25 + x22*θ26 + x21*θ27 + x19*θ32 - x14*x20*θ33 
+ x24*θ34 - x18*x20*θ39 + x17*θ40; 
dx21/dt = x9*x20*θ21 - x21*θ22 - x21*θ27; 
dx22/dt = -x9*x22*θ19 + x23*θ20 + x13*x20*θ25 - x22*θ26; 
dx23/dt = x9*x22*θ19 - x23*θ20 - x18*x23*θ45 + x26*θ46; 
dx24/dt = x14*x20*θ33 - x24*θ34; 
dx25/dt = -x25*θ29 + x14*x16*θ35 - x25*θ36; 
dx26/dt = x18*x23*θ45 - x26*θ46 - x26*θ47 - x26*θ49; 
dx27/dt = -x27*θ28 + x3*x16*θ30 - x27*θ31; 
dx28/dt = -2*(x28*x28*θ37 - x19*θ38) + x30*θ43 - x28*θ44; 
dx29/dt = -x12*x29*θ41 + x30*θ42; 
dx30/dt = x12*x29*θ41 - x30*θ42 - x30*θ43 + x28*θ44; 
dx31/dt = x26*θ49 
 

Additional model parameters: 𝜃52, … , 𝜃82 = 𝑥1(0), … , 𝑥31(0) 
Model output: ym = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7,  𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16, 𝑥17, 𝑥18, 𝑥19, 𝑥20, 𝑥21,𝑥22, 𝑥23, 𝑥24, 𝑥25, 𝑥26, 𝑥27, 𝑥28, 𝑥29, 𝑥30, 𝑥31] 

 



S4 File. Ligand binding model description. 
A description of model kinetics and all model states and parameters. 
Model kinetics: 

dx1/dt = -θ1*x1*x2 + θ1*θ2*x3 + θ5*x4; 
dx2/dt = -θ1*x1*x2 + θ1*θ2*x3 + θ3*θ8 - θ3*x2 + θ5*x4; 
dx3/dt = θ1*x1*x2 - θ1*θ2*x3 - θ4*x3; 
dx4/dt = θ4*x3 - θ5*x4 - θ6*x4 - θ7*x4; 
dx5/dt = θ6*x4; 
dx6/dt = θ7*x4   

 

Model parameters: 𝜃1 kon 𝜃9 𝑥1(0) Epo 𝜃2 kD 𝜃10 𝑥2(0) EpoR 𝜃3 kt 𝜃11 𝑥3(0) Epo_EpoR 𝜃4 ke 𝜃12 𝑥4(0) Epo_EpoR_i 𝜃5 kex 𝜃13 𝑥5(0) Epo_i 𝜃6 kdi 𝜃14 𝑥6(0) Epo_e 𝜃7 kde    𝜃8 Bmax    

 

Model output: 

ymax = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] 

 

S5 File. Simplified glycolytic model description. 
A description of model kinetics and all model states and parameters. 
Model kinetics: 

dx1/dt = -θ1*x1*x4 + θ12; 
dx2/dt = θ1*x1*x4 + θ4*x4*x6 - θ5*x2*x2 + θ7*x4*x7 + θ9*x4*x7 + θ10*x4 - θ11*x2*x2*x9; 
dx3/dt = θ1*x1*x4 - θ2*x3 + θ3*x5 - θ6*x3; 
dx4/dt = -θ1*x1*x4 - θ4*x4*x6 + θ5*x2*x2 - θ7*x4*x7 - θ9*x4*x7 - θ10*x4 + θ11*x2*x2*x9; 
dx5/dt = θ2*x3 - θ3*x5; 
dx6/dt = -θ4*x4*x6 + θ5*x2*x2; 
dx7/dt = θ6*x3 - θ7*x4*x7 + θ8*x8 - θ9*x4*x7; 
dx8/dt = θ7*x4*x7 - θ8*x8; 
dx9/dt = θ9*x4*x7 - θ11*x2*x2*x9; 
dx10/dt = θ11*x2*x2*x9 - θ13*x10 
 

 

 



Additional model parameters:  𝜃12 C1 𝜃14 𝑥1(0) glucose 𝜃13 C2 𝜃15 𝑥2(0) ADP 

  𝜃16 𝑥3(0) G6P 

  𝜃17 𝑥4(0) ATP 

  𝜃18 𝑥5(0) G1P 

  𝜃19 𝑥6(0) AMP 

  𝜃20 𝑥7(0) F6P 

  𝜃21 𝑥8(0) F2-6BP 

  𝜃22 𝑥9(0) TP 

  𝜃23 𝑥10(0) Pyr 

 

Model output: 

ym = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10] 

 



S6 File. Goldbeter model with specific model output description. 
A description of model kinetics and all model states and parameters. 
Model kinetics: 

dx1/dt = (th1*th2^4)/(th2^4+x5^4) - (th3*x1)/(th4+x1); 
dx2/dt = th5*x1-(th6*x2)/(th7+x2)+(th8*x3)/(th9+x3); 
dx3/dt = (th6*x2)/(th7+x2)+(th10*x4)/(th11+x4)-x3*((th8)/(th9+x3)+(th12)/(th13+x3)); 
dx4/dt = (th12*x3)/(th13+x3)-x4*((th10)/(th11+x4)+th14+(th15)/(th16+x4))+th17*x5; 
dx5/dt = th14*x4-th17*x5 
 

Initial conditions as additional model parameters: 𝜃18 𝑥1(0) M 𝜃19 𝑥2(0) P0 𝜃20 𝑥3(0) P1 𝜃21 𝑥4(0) P2 𝜃22 𝑥5(0) PN 

 

Defined model parameters: 𝜃1 vs 𝜃2 KI 𝜃3 vm 𝜃4 Km 𝜃5 ks 𝜃6 V1 𝜃7 K1 𝜃8 V2 𝜃9 K2 𝜃10 V4 𝜃11 K4 𝜃12 V3 𝜃13 K3 



𝜃14 k1 𝜃15 vd 𝜃16 Kd 𝜃17 k2 

 

Model output containing all measurable outputs: 

ym = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11 ] 
 
S7 File. Re-parametrised JAK-STAT model description. 
A description of model kinetics and all model states and parameters. 
 

Model kinetics: 

dx1/dt = θ1*c1*u1*x1-θ2*x1+θ3*x2; 
dx2/dt = θ2*x1-θ3*x2; 
dx3/dt = θ1*c1*u1*x1-θ4*x3*x7; 
dx4/dt = θ4*x3*x7-θ5*x4; 
dx5/dt = θ5*x4-θ6*x5; 
dx6/dt = -θ7*x3*x6/(1+θ8*x13)-θ7*x4*x6/(1+θ8*x13)+c2*θ9*x7; 
dx7/dt = θ7*x3*x6/(1+θ8*x13)+θ7*x4*x6/(1+θ8*x13)-c2*θ9*x7; 
dx8/dt = -θ10*x8*x7+c2*θ11*x9; 
dx9/dt = θ10*x8*x7-c2*θ11*x9; 
dx10/dt = x9; 
dx11/dt = -θ12*c1*u1*x11; 
dx12/dt = θ12*c1*u1*x11; 
dx13/dt = θ13*x10/(θ14+x10)-θ15*x13; 
dx14/dt = x9; 

Constants: 

c1=2.265; 
c2=1; 
u1=4; 
 

Model parameters and initial conditions:  

 Initial 

conditions 𝑥1(0) 1.3 𝑥2(0) 𝜃21 𝑥3(0) 0 𝑥4(0) 1 



𝑥5(0) 0 𝑥6(0) 2.8 𝑥7(0) 0 𝑥8(0) 165 𝑥9(0) 0 𝑥10(0) 0 𝑥11(0) 0.34 𝑥12(0) 0 𝑥13(0) 0 𝑥14(0) 0 

 

Model output: 

ym =  [ x1+x3+x4; 
      θ16*(x3+x4+x5+x12); 
      θ17*(x4+x5); 
      θ18*x7; 
      θ19*x10; 
      θ20*x14; 
      x13; 

      x9] 



Determining the minimal output sets that ensure the

structural identifiability of a model

S8 File. Symbolically verified sets of correlated

parameters.

This document contains symbolic verification of some of the totally correlated

parameter sets identified in this paper. Refer to Stigter and Molenaar for details

regarding these computations [1].

Example 1: A chemical reaction system

• When state x6 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}. Here x̃
unid

0
= {x6(0)}

• When states x4 and x5 are not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {1, 0, 0, 0} , {0, 1, 0, 0} , {0, 0, 1, 0} , {0, 0, 0, 1}. Here

x̃
unid

0
= {θ2, θ3, x4(0), x5(0)}.

• When states x7, x8 and x9 are not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

=

{1, 0, 0, 0, 0} , {0, 1, 0, 0, 0} , {0, 0, 1, 0, 0} , {0, 0, 0, 1, 0} , {0, 0, 0, 0, 1}. Here

x̃
unid

0
= {θ4, θ5, x7(0), x8(0), x9(0)}.

Example 2: NF-κB model

• When state x4 is not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {θ2/x4(0),−θ3/x4(0),−θ27/x4(0), 1}, were

x̃
unid

0
= {θ2, θ3, θ27, x4(0)}.
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• When state x5 is not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {θ5/x5(0), θ6/x5(0),−θ18/x5(0), 1}, were

x̃
unid

0
= {θ5, θ6, θ18, x5(0)}.

• When state x6 is not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {0, 0, 0, 1} , {0, 0, 1, 0} , {0, 1, 0, 0} , {1, 0, 0, 0}, were

x̃
unid

0
= {θ8, θ9, θ10, x6(0)}.

• When state x10 is not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {−θ19/x10(0), θ27/x10(0)}, were x̃
unid

0
= {θ19, θ27, x10(0)}.

• When state x12 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}, were x̃
unid

0
= {x12(0)}.

Example 3: JAK/STAT model

• When state x31 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}. Here x̃
unid

0
= {x31(0)}

• When states x10 and x11 are not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {θ14/x11(0),−θ51/x11(0), θ10/x11(0), 1}. Here

x̃
unid

0
= {θ14, θ51, x10(0), x11(0)}.

Example 4: Ligand binding model

• When state x5 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}. Here x̃
unid

0
= {x5(0)}

• When state x6 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}. Here x̃
unid

0
= {x6(0)}.

Example 5: Simplified glycolytic reaction model

• When state x10 is not measured
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Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1, 0}{0, 1}. Here

x̃
unid

0
= {θ13, x10(0)}.

Example 6: Goldbeter model

• When state x4 is not measured

Non-trivial null-space computed:

N
(

J(x̃unid

0
)
)

= {θ1/x1(0), θ3/x1(0), θ4/x1(0),−θ5/x1(0), 1}, were

x̃
unid

0
= {θ1, θ3, θ4, θ5, x1(0)}.

Example 7: JAK-STAT model with specific model output

• When output θ16(x3 + x4 + x5 + x12) is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {θ12, 0}{0, θ16}, were

x̃
unid

0
= {θ12, θ16}.

• When output θ17(x4 + x5) is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}, were x̃
unid

0
= {θ17}.

• When output θ18x7 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}, were x̃
unid

0
= {θ18}.

• When output θ19x10 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}, were x̃
unid

0
= {θ19}.

• When output θ20x14 is not measured

Non-trivial null-space computed: N
(

J(x̃unid

0
)
)

= {1}, were x̃
unid

0
= {θ20}.

• When output x13 is not measured

Non-trivial null8-space computed: N
(

J(x̃unid

0
)
)

= {1, 0}{0, 1}, were

x̃
unid

0
= {θ12, θ13}.
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Determining the minimal output sets that ensure the

structural identifiability of a model

S9 File. Bernoulli trials: how to ensure that a set of

unidentifiable parameters is identified with 99.5%

certainty.

In our algorithm we mention that an exhaustive search (ER) for the different sets of

essential sensors of large models may be computationally demanding. In such cases, we

suggest using a process of randomly omitting sensors from an output (RS) to detect

these sets. The advantage of this strategy is that it significantly reduces the number of

identifiability iterations required to detect a set of essential sensors, while the probability

of finding this set is almost equal to one. We use the JAK/STAT model as an example.

Assume our set of available sensors y, contains N elements. We can think of the K

sensors that cause a lack of identifiability as K red marbles in an urn with a total of N

marbles (K red and (N −K) blue ones). We now draw, without replacement, n

marbles from the urn (corresponding to n missing sensors from the available sensor set

y, n ≥ K). The probability that we select k out of the K sensors that cause a lack of

identifiability clearly follows a hyper geometric distribution, i.e.

P (X = k) =

(

K

k

)(

N−K

n−k

)

(

N

n

) , (S1)

Since lack of identifiability is only detected in case all K sensors are missing from the

sensor set, and not just a sub-set of them, the probability of successfully detecting the

complete set of K sensors is

P (X = K) =

(

K

K

)(

N−K

n−K

)

(

N

n

) =

(

N−K

n−K

)

(

N

n

) , (S2)

Having established a probability of successfully detecting the sensor set ψ that causes a
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lack of identifiability, we now repeat the experiment of leaving out n sensors (from the

set y) R times. The probability P̄det of not detecting the particular sensor set ψ is

given by

P̄det = (1− P (X = K))R (S3)

When performing repeated random experiments, there are essentially two variables that

can be manipulated by the user, namely (i) the number of missing sensors in each

random trial (n), and (ii) the number of repetitions of the Bernoulli trial (R).

As an example, consider the JAK/STAT model, which has 31 states that are

assumed to be measured directly and are all available in ymax. Assume now that we

have to search for an essential sensor set ψ that contains exactly K = 10 sensors. The

probability of detecting this set when omitting 10 sensors from ymax (case n = 10) is

only 2.25× 10−8 (P (X = 10) =
(1010)(

31−10

10−10)
(3110)

), whilst the probability of identifying the set

for n = 21 equals 7.95× 10−3 (P (X = 10) =
(1010)(

31−10

21−10)
(3121)

). The probability of detecting

this particular set can further be increased by repeated random selection of sensors from

ymax, of course each time omitting 21 sensors from the available set.

More specifically, say we want do identify the set of 10 sensors with a large

probability, e.g. Pdet = 1− P̄det = 0.995. An exhaustive search would require more than

44 million iterations, since
(

31

31−10

)

= 44352165. By choosing n = 21, we already found a

successful detection to occur with a probability of 7.95× 10−3 for one trial. Based on

equation (S3), we now find that if we repeat the experiment of randomly omitting 21

sensors for a total of 644 times, then the sensor set that causes a lack of identifiability is

detected with a probability of 99.5%. This, of course, is a tremendous difference in

comparison with an exhaustive search.
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ABSTRACT

A N efficient method to reparameterise structurally unidentifiable models is introduced.
It significantly reduces computational demand by combining both numerical and

symbolic identifiability calculations. This hybrid approach facilitates the reparameter-
isation of: 1) large unidentifiable ordinary differential equation models and, 2) models
where state transformations are required. A model is first assessed numerically. This is
done to establish which parameters might be unidentifiable and to better understand
the nature of the correlation between these redundant parameters. The numerical re-
sults are then used in symbolic calculations, tasked with computing viable reparame-
terisations that will ensure a model’s structural identifiability. The use of the preceding
numerical results notably reduces the number of symbolic calculations required. We il-
lustrate our procedure and the reparameterisation process in detail in 4 examples: 1)
an immunological model with 2 states and 7 unknown parameters 2) a batch reactor
model with 2 states and 6 unknown parameters 3) a JAK/STAT model with 14 states and
23 unknown parameters and 4) a lung cancer model with 21 states and 75 unknown pa-
rameters. In addition to reparameterising these unidentifiable models, we also present
modellers with alternative options available to obtain structural identifiability.
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3.1. INTRODUCTION
System biology models often utilise ordinary differential equations to describe physical
phenomena. These models may contain large numbers of parameters and at times also
initial conditions that need to be inferred from experimental data. However, in some
cases the statistical inference fails. This may be due to insufficient or low quality data,
which is referred to as practical unidentifiability, or due to the inherent structure of the
model, referred to as structural unidentifiability [1]. One way to characterise structurally
unidentifiability is to say that at least 1 parameter has a confidence interval that spans
the interval (−∞,∞). Any form of unidentifiability, also referred to as aliasing, calls into
question the predictive capacity of a model and urges its user to interpret all results with
caution.

If a model is classified as structurally unidentifiable, a modeller may wish to know
“how can this model be made identifiable?” In this paper, we present a method that
can answer this question also for large models, in an efficient way. The central concept
underpinning this paper is that unidentifiable parameters may be divided into different

subsets of totally correlated or aliased parameters [2]. Structural identifiability can only
be obtained if the correlation between parameters in each of these sets is destroyed. This
can be done in different ways:

1. Measure additional model outputs. There may be some practical restrictions to
this approach, yet a good understanding of a model’s minimal output sets may
result in easily obtainable structural identifiability [3]. For example, if a model has
1 set of totally correlated parameters that includes a certain state’s unknown initial
condition, measuring this initial condition as additional output will destroy the
correlation and result in identifiability of all parameters.

2. Deduce the values of one or more unidentifiable parameters from other sources.
If the value of one of the unknown parameters in a totally correlated set is known,
this correlation is destroyed. To destroy all correlations, the value of one parame-
ter from each of the different totally correlated sets must be known. A parameter
value can either be obtained from literature or determined in a separate experi-
ment. It should however be noted that even if parameter values are obtained from
literature, they may still require re-calibration with experimental data and so this
should always be done with caution [4].

3. Reparametrise the model to remove redundant parameters. In this approach, one
parameter is eliminated from each of the different totally correlated sets. For ex-
ample, if a model has P parameters and M(< P ) sets of totally correlated parame-
ters, the reparametrised, structurally identifiable model will have P −M parame-
ters.

4. Start an experiment from different initial conditions. It might be that the initial val-
ues are taken from a thin set of singular points that give rise to structural uniden-
tifiability [5]. In such a case, it may be possible to regain structural identifiability
by changing the initial experimental conditions.
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In this paper, we introduce a method related to point 3. As side note and to comple-
ment the discussion on dealing with structural unidentifiability, points 1, 2 and 4 are also
raised when relevant. The novelty of the work presented here is that we can reparame-
terise large ODE models and, because our calculations allow for the inclusion of initial
conditions of model states as additional unknown parameters, the obtained results may
also reveal the required state transformations and so, no further complex analyses are
required. For better understanding, we show the reparameterisation process in detail.

Although this topic has been covered to some extent in the past, the reparameteri-
sation including state transformations of large models have remained elusive. Previous
work on this topic includes: a) symbolic methods based on exhaustive summary [1, 6, 7]
and examples including state transformations [8, 9], b) numerical methods involving the
Fisher Information Matrix and profile likelihood [10] and c) hybrid methods where a Ja-
cobi matrix is symbolically calculated and analysed numerically [1] and where a sensitiv-
ity matrix is computed numerically and analysed using a singular value decomposition
(SVD) [11]. The unidentifiable parameters are subsequently fixed at nominal values and
so the redundant model structure remains unchanged [11].

It should be mentioned that the reparameterisation process is never unique, and that
it is up to the modeller to decide which redundant parameters to eliminate from a model.
Caution should always be taken, as not all reparameterisations are biologically relevant
[12].

This paper is divided as follows: section 3.2 covers the topics of structural identifia-
bility and the identification of sets of totally correlated parameters. Section 3.3 contains
4 examples that illustrate how information regarding totally correlated parameter sets
can be implemented to reparameterise models. Concluding remarks are given in sec-
tion 3.4.

3.2. METHODS

MODEL DEFINITION

We begin with the definition of a typical ordinary differential equation model, regularly
used in systems biology. These models often describe mass balances of certain cellu-
lar constituents and can be very detailed, containing numerous model states and vast
numbers of unknown parameters which need to be inferred from experimental data. In
this paper, we analyse dynamic models which can be written in the standard state-space
form:

ẋ(t ) = f (t , x(t ),θ), (3.1)

x(0) = x0, (3.2)

y(t ) = h(x(t ),θ), (3.3)

where f denotes a dynamic model structure and h the output or observation func-
tion. State variables are contained in vector x(t ) (dim(x) = n), parameters in vector θ

(dim(θ) = p) and model outputs in vector y(t ) (dim(y) = m). Initial values of the model
states can also be unknown and in such cases we regard them as additional unknown
parameters and the resulting parameter vector, θ, then has dim(θ)= p +n.
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STRUCTURAL IDENTIFIABILITY

The following sections describe how to find suitable model reparametrisations based
on the structure of the model defined in (3.1)− (3.3). This is achieved by assessing the
model’s structural identifiability both numerically and symbolically. The reparameter-
isation process involves the following steps: Step 1: numerical identifiability analysis,
Step 2: symbolic identifiability calculations, Step 3: substitute obtained reparameterisa-
tions into the original model, and Step 4: re-evaluate the identifiability of the reparame-
terised model.

STEP 1: NUMERICAL IDENTIFIABILITY ANALYSIS

The numerical identifiability method we apply uses sensitivity based calculations of model
outputs with respect to model parameters [13, 14]. Reid introduced the concept of sen-
sitivity based identifiability analysis for linear models [15]. In his paper, he defines a
sensitivity matrix, S, with elements depicting the sensitivities of the model output with
respect to model parameters, ∂y/∂θ. For nonlinear models, the sensitivities of model
outputs to individual model parameters can be calculated from the following equations:

d

d t

(

∂x

∂θ

)

=
∂ f

∂x

∂x

∂θ
+
∂ f

∂θ
, (3.4)

∂y

∂θ
=

∂h

∂x

∂x

∂θ
+
∂h

∂θ
. (3.5)

One obtains ∂y/∂θ as a function of time by integrating equation 3.4 and substituting the
solution into 3.5. By calculating these sensitivities at discrete time points on an interval
[t0, . . . , tN ], one can construct a sensitivity matrix, S. If any of the initial values of model
states are unknown, their identifiability can easily be assessed by regarding them as ad-
ditional parameters. In such cases, S may have up to p +n columns, each related to a
specific parameter, θi , i = 1, . . . , p +n.

S =
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. (3.6)

Our numerical method tests for local structural identifiability since it requires a known
set of nominal parameter and initial values at which to compute these sensitivities. A full
ranked matrix S, is a sufficient condition for local structural identifiability [16, 17]. Rank
deficiency of S can be attributed to 2 factors: 1) a model output may be insensitive to a
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specific parameter and in this instance, the parameter is classified as unidentifiable and
2) a model output may be sensitive to a particular parameter, but this sensitivity is coun-
teracted by the sensitivity of the model output to one or more other parameters. This
implies that these parameters are totally correlated and unidentifiable [18]. The rank of
a sensitivity matrix is numerically determined using an SVD:

S =UΣV T . (3.7)

If S has p +n columns, matrixΣwill have p +n singular values on its diagonal and these
are arranged in descending order. The rank of S is the number of nonzero singular values
and conversely rank-deficiency is indicated by the presence of zero-valued singular val-
ues [19]. Due to numerical rounding errors, singular values are rarely exactly zero and so
one uses as practical definition: Zero-valued singular values are values that fall beyond a
distinct gap in the spectrum of singular values [20]. Once possible unidentifiability based
on the presence of zero-valued singular values has been established, unidentifiable pa-
rameters are recognised as the nonzero entries in the columns of the matrix V , related to
these vanishing singular values. Both the singular values and the unidentifiable param-
eters can graphically be illustrated in an easy to interpret identifiability signature [14].

As an example, consider the identifiability signature of the JAK/STAT model in figures
3.1 and 3.2. Defined in section 3.3, the model contains 23 unknown parameters and so
there are 23 singular values. Seen in figure 3.1, the 2 singular values beyond the gap
suggest that the model is rank deficient and that there are 2 sets of totally correlated
parameters. Figure 3.2 shows the elements in the last 2 columns of the V matrix. These
corresponds to the 2 singular values beyond the gap in figure 3.1. The nonzero entries in
figure 3.2 suggest that parameters θ11,θ15,θ17,θ21 and θ22 are structurally unidentifiable.
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Figure 3.1: Singular values of the JAK/STAT model - The 2 singular values beyond the gap suggest that the
model is unidentifiable, with these numerically zero-valued singular values alluding to rank deficiency of the
sensitivity matrix. These also suggest that there are 2 sets of totally correlated parameters.

To determine which subsets of parameters are totally correlated, we remove a col-
umn related to one of the unidentifiable parameters from S and repeat the SVD analysis.
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Figure 3.2: Last 2 columns of the right singular matrix of the JAK/STAT model - These columns are re-
lated to the 2 singular values beyond the gap in figure 3.1. The nonzero elements indicate that parameters
θ11,θ15,θ17,θ21 and θ22 might be unidentifiable.

This destroys the correlation between parameters in a specific subset and so, only 1 to-
tally correlated set remains. Figure 3.3 shows the last column of the right singular vector,
related to the only remaining singular value beyond the gap when column 11, related
to parameter θ11, is omitted. The nonzero entries of this column reveal that parameters
θ17 and θ22 remain unidentifiable and therefore are totally correlated. The remaining
subset thus contains totally correlated parameters θ11,θ15 and θ21. These results can be
now be used in the symbolic calculations to: 1) verify the unidentifiability results ob-
tained in step 1, and 2) obtain suggestions for redefined parameters that can be used to
reparameterise this model.
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Figure 3.3: Last column of the right singular matrix of the JAK/STAT model, calculated after the column

related to parameter θ11 was removed from S. - The nonzero elements reveal that parameters θ17 and θ22
belong to a totally correlated or aliased set.



3

62
3. AN EFFICIENT PROCEDURE TO REPARAMETERISE STRUCTURALLY UNIDENTIFIABLE

MODELS

STEP 2: SYMBOLIC IDENTIFIABILITY CALCULATIONS

Symbolic calculations can be preformed using information obtained in step 1. The the-
oretical characterisation of the identifiability problem for nonlinear systems was already
described in the 1970s [21]. The work of Fliess [22] and Tunali and Tarn [23] further
made it possible to analyse nonlinear systems symbolically. The Jacobi matrix of a model
as defined in (3.1)-(3.3) can be computed using Lie derivatives, where a Lie derivative,
L f h(x), is the directional derivative of the smooth function, h(x), with respect to the
vector field, f (x), which describes the model dynamics. A Lie derivative is defined as
[24]:

L f h(x) =
∂h(x)

∂x
f (x), (3.8)

with higher order derivatives computed consecutively as:

L
i
f h(x) =

∂L
i−1
f

h(x)

∂x
f (x). (3.9)

By parameterising the unknown initial conditions and therefore regarding them as addi-
tional parameters, the Jacobi matrix may have up to p+n columns [25]. The augmented
parameter vector is defined as, θ =

(

θ
x0

)

, and the Jacobi matrix is given by:

∂G

∂θ
(θ) =































∂h

∂θ1
. . .

∂h

∂θp+n
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∂θ1
. . .
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∂θp+n

∂L
2
f

h

∂θ1
. . .

∂L
2
f

h

∂θp+n

... . . .
...































. (3.10)

For identifiability, it is sufficient for ∂G
∂θ (θ) to have rank p +n, implying that all ini-

tial values and system parameters can uniquely be determined [26]. It is known from
linear algebra that rank deficiency of a matrix is equivalent to it having a nontrivial null-
space [27]. Like Anguelova and co-authors, we directly calculate the null-space of the
Jacobi matrix [3]. The elements in such a nontrivial null-space reveal the nature of the
correlation between the individual unknown parameters. What makes our approach at-
tractive, is that the Jacobi matrix is computed using the preceding numerical results, and
so one only has to compute derivatives of the Lie derivatives with respect to the param-
eters that were suggested to be unidentifiable in step 1. This significantly reduces the
computational demand typically associated with symbolic identifiability analyses.

As an example, consider the unidentifiable JAK/STAT model, alluded to in the pre-
vious section. The Jacobi matrix now only has 5 columns (instead of 23), each pertain-
ing to an unidentifiable parameter in figure 3.2. The symbolically calculated nontrivial
null-space confirms the results in figures 3.1 and 3.2. Using set {θ11,θ15,θ17,θ21,θ22} as
possible unidentifiable parameters, we find 2 sets of totally correlated parameters, one
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of which is show in figure 3.3. These are verified by the 2 base vectors spanning the null-

space: N

(

dG

dθuni d (θ)
)

= {0,0,−θ17/θ22,0,1}{−θ11/θ21,−θ15/θ21,0,1,0}, whereθuni d = {θ11,

θ15,θ17,θ21,θ22}.
The correlation within these 2 sets of parameters is described by 2 partial differential

equations (PDEs) for the variables φ1 =φ1(θ17,θ22) and φ2 =φ2(θ11,θ15,θ21):

−
θ17

θ22

∂φ1

∂θ17
+

∂φ1

∂θ22
= 0, (3.11)

−
θ11

θ21

∂φ2

∂θ11
−
θ15

θ21

∂φ2

∂θ15
+

∂φ2

∂θ21
= 0. (3.12)

Symbolically obtained solutions to these equations offer suggestions for reparameteri-
sations that will ensure this model’s local structural identifiability [12]. Since no unique
solutions to these equations exist, solutions can be expressed in terms of different pa-
rameters and consequently, biologically relevant reparameterisations should be identi-
fied.

Steps 3 and 4 of our reparameterisation schedule will be explained in the context of
individual examples in the next section. The reparameterised JAK/STAT model contains
21 parameters in stead of 23. This is related to the fact that there are 2 sets of totally
correlated parameters.

3.3. RESULTS

EXAMPLE 1: IMMUNOLOGICAL MODEL FOR MASTITIS IN DAIRY COWS (2
STATES, 7 PARAMETERS)
We first consider a small model to show how the transformation of a model state ensures
local structural identifiability. We show that because the initial conditions of states can
be regarded as additional parameters, θ =

(

θ
x0

)

, the required state transformation is im-
plicitly included in the results. This nonlinear immunological model, describing mastitis
in dairy cows, has 2 states and 5 system parameters [28, 29]:

ẋ1 = θ1x1 −θ2x1x2, (3.13)

ẋ2 = θ3x2(1−θ4x2)+θ5x1x2. (3.14)

If the initial conditions of the model states, x1(0) and x2(0), are unknown, the model
has 7 unknown parameters. This model was found to be unidentifiable measuring the
defined model output, y = {x1}, with parameters θ2,θ4 and the initial condition x2(0)
classified as both unknown and totally correlated [6, 29]. We apply the method outlined
in Section 2 and take the following steps: Step 1: The calculated singular values of this
model are shown in figure 3.4. The singular value beyond the gap suggests that the null-
space of the sensitivity matrix contains 1 base vector and consequently there may only
be 1 set of totally correlated parameters. Figure 3.5 reveals the elements of this set as
θuni d = {θ2,θ4, x2(0)}. A reparameterised model will therefore have 6 unknown parame-
ters instead of 7.

To check whether these findings are correct and find plausible new parameters, we
perform Step 2: The computed Jacobi matrix now has 3 columns only, corresponding to
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Figure 3.4: Identifiability signature for the Immunological model - One numerically zero-valued singular
value suggests the rank deficiency of the sensitivity matrix. This singular value falls beyond a gap larger than 3
decades and indicates that there is 1 set of totally correlated parameters.
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Figure 3.5: Components of the last column of the right singular vector corresponding to the smallest sin-

gular value in figure 3.4 - The nonzero elements in this column indicate that parameters θ2,θ4 and initial
condition x2(0) may be totally correlated and consequently unidentifiable.

the 3 unidentifiable parameters. The nontrivial null-space of the Jacobi matrix confirms

the numerical findings in step 1. This null-space is spanned by the vector N

(

dG

dθuni d (θ)
)

=
{−θ2/x2(0),−θ4/x2(0),1}. The linear dependence between the relevant columns of the
Jacobi matrix is described by the following PDE for some function φ{θ2,θ4, x2(0)}:

−
θ2

x2(0)

∂φ

∂θ2
−

θ4

x2(0)

∂φ

∂θ4
+

∂φ

∂x2(0)
= 0, (3.15)

where the coefficients are the elements in the calculated base vector of the null-space.
Possible solutions to this partial differential equation are φ1 = θ4/θ2 and φ2 = θ2x2(0).
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Since we now know that this model is structurally unidentifiable, we may pause to
think about the different options we have at our disposal to reinstate this model’s iden-
tifiability. Recall, that the aim is to destroy the total correlation between the correlated
parameters. First, the model will become identifiable if the output set is expanded to in-
clude the direct measurement of one of the parameters θ2, θ4 or x2(0). Alternatively, the
value of one of these unknown parameters can be assumed as known. If none of these
options are viable, we may need to reparameterise the model. Step 3: In this example,
we choose to eliminate system parameter θ2 from the model. Substituting θ4 =φ1θ2 and
x2(0) =φ2/θ2 into the original model, we can identify the state transformation required
to eliminate θ2 from the model as x̃2 = θ2x2. Notice, that the state transformation is
apparent from our identifiability analysis and accordingly we do not require any addi-
tional calculations to obtain this transformation. Consider the model equations, with
the substituted parameters highlighted for convenience:

ẋ1 = θ1x1 −θ2x2x1, (3.16)

ẋ2 = θ3x2(1−φ1θ2x2)+θ5x1x2. (3.17)

The initial conditions should now be taken as x1(0) and x2(0) =φ2/θ2 respectively. Mul-
tiplying equation 3.17 by θ2, yields the final form of the reparameterised identifiable
model, now with 6 parameters instead of 7 (θ1, θ3, θ5, φ1, x1(0), φ2):

ẋ1 = θ1x1 −x1x̃2, (3.18)

˙̃x2 = θ3x̃2(1−φ1x̃2)+θ5x1x̃2, (3.19)

with x1(0) and x̃2(0) =φ2. In the supplementary material, we show that the original and
reparameterised models have the same solutions and that the reparameterised model is
structurally identifiable.

EXAMPLE 2: MICROBIAL GROWTH MODEL (2 STATES, 6 PARAMETERS)
In this example we consider a benchmark model that also requires a state transformation
to obtain an identifiable reparametrisation [9]. Here, we illustrate how an unidentifiable
initial condition of one of the model states is eliminated. This model describes the mi-
crobial growth in a batch reactor and has 2 states and 6 parameters [30]:

ẋ =
µxs

Ks + s
−Kd x, (3.20)

ṡ =−
µxs

Y (Ks + s)
, (3.21)

with unknown initial conditions x(0) and s(0). This model is unidentifiable measuring
the output y = {x}, with parameters Ks ,Y and the initial condition of state s(0) not es-
timable [9]. Step 1: The calculated singular values seen in figure 3.6, show a single sin-
gular value beyond the gap. This suggests that the null-space of the sensitivity matrix
contains only one base vector and so all unidentifiable parameters are also totally corre-
lated. The parameters in this set, θuni d = {Ks ,Y , s(0)}, can be deduced from figure 3.7.

To confirm these results, we continue with Step 2: Using the results from step 1, the
calculated Jacobi matrix now only has 3 columns. The nontrivial null-space of this ma-

trix is calculated as N

(

dG

dθuni d (θ)
)

= {Ks /s(0),−Y /s(0),1}, and so the number of model
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Figure 3.6: Identifiability signature for the Microbial growth model - One zero-valued singular value suggests
the rank deficiency of the sensitivity matrix. This singular value falls beyond a gap larger than 3 decades and
suggests that there is 1 set with totally correlated parameters.
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Figure 3.7: Components of the last column of the right singular vector corresponding to the smallest sin-

gular value in figure 3.6 - The nonzero elements in this column indicate that parameters Ks ,Y and initial
condition s(0) might be totally correlated and therefore unidentifiable.

parameters has to be reduced from 6 to 5. This leads to the following PDE for some func-
tion φ{Ks ,Y , s(0)}:

Ks

s(0)

∂φ

∂Ks
−

Y

s(0)

∂φ

∂Y
+

∂φ

∂s(0)
= 0. (3.22)

Possible solutions to this equation are φ1 = Ks /s(0), and φ2 = Y s(0). This model
could be made structurally identifiability if its measured output is expanded to include
one of the unidentifiable parameters, for example y = {x, s}, or by assuming the value of
one of these unknowns as known. Here, we choose to reparameterise the model. Choos-
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ing to eliminate the unidentifiable initial condition, s(0), from the model requires the
substitution of parameters Ks and Y . After rearranging the solutions to 3.22, one obtains
suitable substitutions for these parameters, Ks = φ1s(0) and Y = φ2/s(0). Step 3: After
substitution and multiplying 3.21 by 1/s(0), some re-arranging reveals the state transfor-
mation required to ensure the model’s structural identifiability as s̃ = s/s(0):

ẋ =
µxs

φ1s(0)+ s
−Kd x =

µx1
s

s(0)

φ1 +
s

s(0)

−Kd x, (3.23)

1

s(0)
ṡ =−

1

s(0)

µxs

φ2

s(0)
(φ1s(0)+ s)

=−
µx

s

s(0)

φ2(φ1 +
s

s(0)
)

. (3.24)

The final model contains 5 parameters instead of 6 (µ,Kd ,φ1,φ2 and x(0)). The initial
condition of s is now known since s̃(0) = 1. We arrive at the reparameterisation that has
been reported by Evans and Chappell [9].

ẋ =
µxs̃

φ1 + s̃
−Kd x, (3.25)

˙̃s =−
µxs̃

φ2(φ1 + s̃)
. (3.26)

In the supplementary material we show that the original and new models have ex-
actly the same solutions.

It might be the case that the system defined in 3.25 and 3.26 is not biologically rel-
evant, necessitating an alternative reparameterisation. Substituting Ks = φ1s(0) and
Y = φ2/s(0) into equations 3.20 and 3.21 and multiplying the both equations 3.27 and
3.28 by Y , reveals a state transformation that might be biologically relevant as s̃ = Y s:

ẋ = (
Y

Y
)

µxs

φ1s(0)+ s
−Kd x =

µxY s

φ2

s(0)
φ1s(0)+Y s

−Kd x, (3.27)

Y ṡ =−Y
µxs

(Y Ks +Y s)
=−

µxY s

(
φ2

s(0)
φ1s(0)+Y s)

. (3.28)

The reparameterised model has 5 unknown parameters (µ,Kd ,φ1,φ2 and x(0)) and re-
duces to:

ẋ =
µxs̃

φ2φ1 + s̃
−Kd x, (3.29)

˙̃s =−
µx1s̃

φ2φ1 + s̃
, (3.30)

with initial conditions now defied as x(0) and s̃(0) =φ2 respectively.
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EXAMPLE 3: JAK/STAT MODEL (14 STATES, 23 PARAMETERS)
Let us now consider a large model, for which the reparameterisation process requires
2 state transformations. The constitutive activation of the JAK (Janus kinase)/STAT sig-
nalling pathway forms part of both the primary mediastinal B-cell lymphoma (PMBL)
and the classical Hodgkin lymphoma (cHL) [31]. Raue et al. investigated the identifia-
bility of this benchmark model using three different approaches and concluded that the
model is unidentifiable [32]. The initial value of state x2 is unknown and regarded as an
additional parameter and so in total, 23 parameters need to be inferred [32, 33]:

ẋ1 =−θ1u1c1x1 −θ5x1 +θ6x2, (3.31)

ẋ2 = θ5x1 −θ6x2, (3.32)

ẋ3 = θ1u1c1x1 −θ2x3x7, (3.33)

ẋ4 = θ2x3x7 −θ3x4, (3.34)

ẋ5 = θ3x4 −θ4x5, (3.35)

ẋ6 =−
θ7x3x6

(1+θ13x13)
−

θ7x4x6

(1+θ13x13)
+θ8c2x7, (3.36)

ẋ7 =
θ7x3x6

(1+θ13x13)
+

θ7x4x6

(1+θ13x13)
−θ8c2x7, (3.37)

ẋ8 =−θ9x8x7 + c2θ10x9, (3.38)

ẋ9 = θ9x8x7 − c2θ10x9, (3.39)

ẋ10 = θ11x9, (3.40)

ẋ11 =−θ12c1u1x11, (3.41)

ẋ12 = θ12c1u1x11, (3.42)

ẋ13 =
θ14x10

(θ15 +x10)
−θ16x13, (3.43)

ẋ14 = θ17x9. (3.44)

The model output contains 5 additional parameters:

y1 = x1 +x3 +x4, (3.45)

y2 = θ18(x3 +x4 +x5 +x12), (3.46)

y3 = θ19(x4 +x5), (3.47)

y4 = θ20x7, (3.48)

y5 = θ21x10, (3.49)

y6 = θ22x14, (3.50)

y7 = x13, (3.51)

y8 = x9. (3.52)

The initial values of the individual model states are x(0) = {1.3,θ23,0,0,0,2.8,0,
165,0,0,0.34,0,0,0} [32]. The constants c1,c2 and model input u1 are known. Step 1:

Some initial conditions are defined as zero, so we calculate the sensitivity matrix S. The
model’s unidentifiability is evident from the large gap between the singular values seen
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in figure 3.1. The 2 singular values beyond the gap suggest that the null-space contains
2 base vectors and so there are 2 sets of totally correlated parameters. The union of the
elements in these 2 sets, θuni d = {θ11,θ15,θ17,θ21,θ22}, can be identified as the nonzero
elements in figure 3.2. This is in agreement with the findings of previous authors [32]. To
determine which parameters are totally correlated, a column of S, related to an uniden-
tifiable parameter, is omitted. Figure 3.3 reveals that parameters θ17 and θ22 remain
unidentifiable when the column related to parameter θ11 is removed and so we con-
clude that they belong to the same totally correlated set. The remaining parameters,
θ11,θ15 and θ21, apparently form the second set of totally correlated parameters. The
total number of parameters will therefore have to be reduced from 23 to 21.

Step 2: The calculated Jacobi matrix now only has 5 columns, each corresponding
to an unidentifiable parameter in figure 3.2. The computed nontrivial null-space of this

Jacobian confirms the findings in step 1. This null-space N

(

dG

dθuni d (θ)
)

is spanned by

the vectors {0,0,−θ17/θ22,0,1},{−θ11/θ21,−θ15/θ21,0,1,0}. The corresponding PDEs are
given in equations 3.11 and 3.12 respectively. Possible solutions to these equations in-
clude: φ1,1 = θ17θ22 as a solution to 3.11, and φ2,1 = θ15/θ11 and φ2,2 = θ11θ21 as solutions
to 3.12.

Before reparameterising this model, let us first reflect on the different options avail-
able to obtain its structural identifiability. These include: 1) adding sensors to the model’s
output, thereby addressing the topic of minimal outputs sets. For example, if parameters
θ17 and θ21 were to be added as measured sensors, the model would become identifi-
able. 2) alternatively, one can explore the possibility of assuming the value of one of the
unidentifiable parameters in each set as known. 3) interestingly, this model’s unidenti-
fiability can also be attributed to its predefined initial conditions [5]. All 3 these options
may however be unrealistic and in such cases, reparameterisation is needed.

Step 3: The mentioned solutions to 3.11 and 3.12 lead to the following possible para-
metric substitutions: θ22 =φ1,1/θ17,θ15 = θ11φ2,1 and θ21 =φ2,2/θ11. Choosing to elimi-
nate θ11 and θ17 reveals the 2 required state transformations as x̃10 = x10/θ11 and x̃14 =
x14/θ17 respectively. The substituted parameters are highlighted for clarity:

ẋ10

θ11
= x9, (3.53)

ẋ13 =
θ14x10

θ11φ2,1 +x10
−θ16x13 =

θ14x10

θ11(φ2,1 +
x10

θ11
)
−θ16x13, (3.54)

ẋ14

θ17
= x9, (3.55)

Substituting θ21 and θ22 into the relevant model outputs, yields:

y5 =
φ2,2

θ11
x10, (3.56)

y6 =
φ1,1

θ17
x14. (3.57)

We refer to the supplementary material for the final model structure, the accompa-
nying structural identifiability results and conformation that the 2 models have the same
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solutions.

EXAMPLE 4: LUNG CANCER MODEL (21 STATES, 75 PARAMETERS)
In this example we apply our method to a large system of ordinary differential equations.
In addition, we illustrate the process of model analysis that we think should be followed
when analysing a model’s identifiability. The model in question, uses a systems biology
approach to understand the biology of the Epidermal Growth Factor Receptor (EGFR)
and type 1 Insulin-like Growth Factor (IGF1R) pathways in non-small cell lung cancer
(NSCLC) [34, 35]. The authors present a detailed in silico ordinary differential equation
model, which consists of 21 states and 54 system parameters. In the original paper, the
values of all but 5 of these parameters values are assumed known and are taken from
literature. To analyse this model’s structural identifiability, we assume that the values of
all 54 system parameters and the 21 initial conditions of the model states are unknown.
We also assume that only certain individual model states are measurable sensors.

A good starting point in the identifiability analysis of a model is to look at its directed
graph. A directed graph is a graphical representation of an ODE system and depicts the
connectivity between individual states. This gives us a visual cue as to the interaction
between model states as well as hinting towards states/sensors that need to be mea-
sured to ensure structural identifiability. As models get larger, this visual analysis be-
comes cumbersome and so one has to proceed with a more theoretical approach. We
know that sensors x1 and x9, related to EGFRactive and IGFRactive respectively, are both
root strongly connected components and so need to be measured to ensure the model’s
structural identifiability. To illustrate our reparameterisation procedure, we will assume
that these key states cannot be measured and so we analyse the model measuring as
output, y = [x2, x3, x4, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21].

Step 1: The model is structurally unidentifiable measuring y . In figure 3.8 we observe
2 singular values beyond the gap, suggesting that the null-space spans 2 base vectors and
so there are 2 sets of totally correlated parameters. Furthermore, this tells us that if we
wish to reparameterise this model, the total number of unknown parameters will have
to be reduced by 2. The unidentifiable parameters, θuni d = {θ6,θ17,θ20,θ23, x1(0), x9(0)},
can be deducted from figure 3.9. The full model is given in the supplementary material.
Here, we only give the equations containing the possibly unidentifiable parameters:

ẋ1 =−θ5x1, (3.58)

ẋ2 =−
θ6x1x

θ7
2

θ
θ7
8 −x

θ7
2

+
x21θ14x

θ15
3

θ
θ15
16 +x

θ15
3

−
θ17x9x

θ18
2

θ
θ18
19 +x

θ18
2

, (3.59)

ẋ3 =
θ6x1x

θ7
2

θ
θ7
8 −x

θ7
2

−
x21θ14x

θ15
3

θ
θ15
16 +x

θ15
3

+
θ17x9x

θ18
2

θ
θ18
19 +x

θ18
2

, (3.60)

ẋ9 =−θ1x9, (3.61)

ẋ10 =−
x9θ20x

θ21
10

θ
θ21
22 +x

θ21
10

−
x2

1θ23x
θ24
10

θ
θ24
25 +x

θ24
10

−
x5θ33x

θ34
10

θ
θ34
35 +x

θ34
10

+θ2x11, (3.62)
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ẋ11 =
x9θ20x

θ21
10

θ
θ21
22 +x

θ21
10

+
x2

1θ23x
θ24
10

θ
θ24
25 +x

θ24
10

+
x5θ33x

θ34
10

θ
θ34
35 +x

θ34
10

−θ2x11. (3.63)
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Figure 3.8: Identifiability signature for the Lung cancer model - Two vanishing singular values suggest the
rank deficiency of the sensitivity matrix and that there may be 2 sets of totally correlated parameters.
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Figure 3.9: Components of the 2 last columns of the right singular vector corresponding to the 2 vanishing

singular values in figure 3.8 - The nonzero elements in this column suggest that parameters θ6,θ17,θ20,θ23
and initial conditions x1(0) and x9(0) are structurally unidentifiable.

As seen before, we can determine which sets of unidentifiable parameters are to-
tally correlated by removing one of the columns from the sensitivity matrix, related to an
unidentifiable parameter. For example, figure 3.10 reveals that parameters θ17,θ20 and
x9(0) remain unidentifiable when we remove the column related to θ6 and so we can
conclude that these parameters are totally correlated. The remaining parameters, θ6,θ23

and x1(0), belong to a second set of totally correlated parameters.
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Figure 3.10: Components of the last column of the right singular vector corresponding to one vanishing

singular value. - If we remove the column of the sensitivity matrix pertaining to parameter θ6 and re-evaluate
the SVD, the nonzero elements in this column suggest that parameters θ17,θ20 and initial condition x9(0) are
totally correlated.

Step 2: The Jacobi matrix now only contains 6 columns, each related to an unidenti-
fiable parameter identified in step 1. If we were to omit step 1, we would have to calcu-
late this matrix with 75 columns instead. As expected, the symbolically calculated null-
space of the Jacobian is spanned by 2 base vectors, confirming our findings in step 1:

N

(

dG

dθuni d (θ)
)

= {0,−θ17/x9(0),−θ20/x9(0),0,0,1}{−θ6/x1(0),0,0,−2θ23/x1(0),1,0}. The

correlation between these parameters is described by the 2 PDEs for the variables φ1 =
φ1(θ17,θ20, x9(0)) and φ2 =φ2(θ6,θ23, x1(0)):

−
θ17

x9(0)

∂φ1

∂θ17
−

θ20

x9(0)

∂φ1

∂θ20
+

∂φ1

∂x9(0)
= 0, (3.64)

−
θ6

x1(0)

∂φ2

∂θ6
−2

θ23

x1(0)

∂φ2

∂θ23
+

∂φ2

∂x1(0)
= 0. (3.65)

Solutions include: φ1,1 = θ20/θ17 and φ1,2 = θ17x9(0) as solutions to 3.64 and φ2,1 =
θ23/θ2

6 and φ2,2 = θ6x1(0) as solutions to 3.65. Available options to address this model’s
unidentifiability include: 1) assume the values of at least one of the parameters in each of
the totally correlated sets as known. For example, if the values of θ6 and x9(0) are known,
the model will be structurally identifiable. 2) Both the directed graph and a minimal out-
put set analysis reveal that if x1 and x9 are also measured, this model will be identifiable.
3) If these options cannot be implemented one will have to reparameterise the model.

Step 3: In this example, we choose to eliminate parameters θ6 and θ17 from the
model, but as always, it is up to a modeller’s discretion which parameters to elliminate.
The unidentifiable parameters are now defined as θ20 = φ1,1θ17, x9(0) = φ1,2/θ17,θ23 =
φ2,1θ

2
6 and x1(0) =φ2,2/θ6 and substituted. This reveals the 2 required state transforma-

tions as: x̃1 = θ6x1 and x̃9 = θ17x9:
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θ6ẋ1 =−θ5θ6x1, (3.66)

ẋ2 =−
θ6x1x

θ7
2

θ
θ7
8 −x

θ7
2

+
x21θ14x

θ15
3

θ
θ15
16 +x

θ15
3

−
θ17x9x

θ18
2

θ
θ18
19 +x

θ18
2

, (3.67)

ẋ3 =
θ6x1x

θ7
2

θ
θ7
8 −x

θ7
2

−
x21θ14x

θ15
3

θ
θ15
16 +x

θ15
3

+
θ17x9x

θ18
2

θ
θ18
19 +x

θ18
2

, (3.68)

θ17ẋ9 =−θ1θ17x9, (3.69)

ẋ10 =−
x9φ1,1θ17x

θ21
10

θ
θ21
22 +x

θ21
10

−
x2

1φ2,1θ
2
6 x

θ24
10

θ
θ24
25 +x

θ24
10

−
x5θ33x

θ34
10

θ
θ34
35 +x

θ34
10

+θ2x11, (3.70)

ẋ11 =
x9φ1,1θ17x

θ21
10

θ
θ21
22 +x

θ21
10

+
x2

1φ2,1θ
2
6 x

θ24
10

θ
θ24
25 +x

θ24
10

+
x5θ33x

θ34
10

θ
θ34
35 +x

θ34
10

−θ2x11. (3.71)

The unknown initial conditions are now defined as x̃1(0) = x1(0)θ6 = φ2,2 and x̃9(0) =
x9(0)θ17 = φ1,2 respectively. Refer to the supplementary material for the final model
structure.

3.4. CONCLUSIONS

In this paper, we introduce an efficient method to reparameterise large structurally uniden-
tifiable models. Our hybrid method starts with a numerical identifiability analysis. This
analysis is tasked with spotting possible unidentifiable parameters and detecting both
the number of totally correlated sets as well as which parameters belong to each of the
individual sets. These numerical results are used in subsequent symbolic calculations.
Traditionally, these calculations are computationally demanding, sometimes requiring
days to obtain the relevant results. However, applying the numerical results allows us to
calculate a much smaller Jacobi matrix. This reduced matrix now only contains columns
related to unidentifiable parameters and this enables us to analyse large systems biology
models within minutes. Symbolic calculations allow for the verification of numerical
results and yield suitable suggestions for new parameters to be used in model reparam-
eterisation. As seen, this reparameterisation process may include the redefinition of cer-
tain model states by means of state transformations. For some examples, these transfor-
mations may immediately be apparent due to the fact that initial conditions can easily
be incorporated into a model’s analysis by regarding them as additional parameters.

From the examples in section 3.3, we can conclude that not only does our new ap-
proach yield the correct results, since they are identical to outcomes obtained in a classi-
cal way, but importantly, its computational efficiency allows for extensions into address-
ing unidentifiability issues of large ODE models. In doing so, modellers can potentially
save time and effort in the model development process.
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Supplementary material:

An efficient procedure to reparameterise structurally

unidentifiable models ✩

D. Jouberta,, J.D. Stigtera, J. Molenaara

aWageningen University & Research, Biometris, Mathematical and Statistical Methods Group,

Wageningen, The Netherlands.

1. Results

Example 1: Immunological model for mastitis in dairy cows

The reparameterised model contains 6 parameters instead of 7 (θ1, θ3, θ5, φ1, x1(0),
φ2):

ẋ1 = θ1x1 − x1x̃2, (1)

˙̃x2 = θ3x̃2(1− φ1x̃2) + θ5x1x̃2. (2)

With x1(0) and x̃2(0) = φ2.
This model is identifiable. This is shown in Figure 1, where we observe that none of

the singular values are zero. In addition, Figure 2 shows that the reparameterised model
and the original model predict the same output for state x1.
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Figure 1: Identifiability signature’s singular values for the reparameterised Immunological
model - Singular values indicate that the model is identifiable since there is no zero-valued singular

values and so the sensitivity matrix is of full rank. There are only 6 singular values since the total number

of model parameters was reduced by 1, corresponding with the fact that there was only 1 set of correlated

parameters in the original model.
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Figure 2: Predicted model output of the original unidentifiable model and the reparame-
terised Immunological model - solid line depicts the original model’s output and ∗ depicts the new

model’s output. These graphs are perfectly aligned demonstrating that the 2 models predict similar

outcomes.



Example 2: Microbial growth model

The reparameterised model contains 5 parameters instead of 6 (µ,Kd, φ1, φ2 and x(0)).
The initial condition related to s(0) now regarded as known, s̃(0) = 1.

ẋ =
µxs̃

φ1 + s̃
−Kdx, (3)

˙̃s = −

µxs̃

φ2(φ1 + s̃)
. (4)

This model is identifiable. This is shown in Figure 3, where we observe that none of
the singular values are zero. In addition, Figure 4 shows that the reparameterised model
and the original model predict the same output for state x.
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Figure 3: Identifiability signature’s singular values for the reparameterised Microbial growth
model - Singular values indicate that the model is identifiable since there is no zero-valued singular

values and so the sensitivity matrix is of full rank.

The alternative model reparametrisation, were Y is removed from the model is also
identifiable. The 5 unknown parameters of this reparameterisation are: µ,Kd, φ1, φ2 = s(0)
and x(0). The model:

ẋ =
µxs̃

φ2φ1 + s̃
−Kdx, (5)

˙̃s = −

µx1s̃

φ2φ1 + s̃
, (6)

with initial conditions defied as x(0) and s̃(0) = φ2 respectively. Newly computed
singular values can be seen in figure 5.
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Figure 4: Predicted model output of the original unidentifiable model and the reparame-
terised Microbial growth model - solid line depicts the original model’s output and ∗ depicts the

new model’s output. These graphs are perfectly aligned demonstrating that the 2 models predict similar

outcomes.
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Figure 5: Identifiability signature’s singular values for the reparameterised Microbial growth
model - Version 2 - Singular values indicate that the model is identifiable since there is no zero-valued

singular values and so the sensitivity matrix is of full rank.

Example 3: JAK/STAT model

The reparameterised model contains 21 parameters instead of 23 (θ1, θ2, θ3, θ4, θ5, θ6, θ7,
θ8, θ9, θ10, θ12, θ13, θ14, θ16, θ18, θ19, θ20, φ1,1, φ2,1, φ2,2 and x2(0) = θ23) and reads as:
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Figure 6: Predicted model output of the original unidentifiable model and the reparame-
terised Microbial growth model - Version 2 - These graphs are perfectly aligned demonstrating

that the 2 models predict similar outcomes.

ẋ1 = −θ1u1c1x1 − θ5x1 + θ6x2, (7)

ẋ2 = θ5x1 − θ6x2, (8)

ẋ3 = θ1u1c1x1 − θ2x3x7, (9)

ẋ4 = θ2x3x7 − θ3x4, (10)

ẋ5 = θ3x4 − θ4x5, (11)

ẋ6 = −

θ7x3x6

(1 + θ13x13)
−

θ7x4x6

(1 + θ13x13)
+ θ8c2x7, (12)

ẋ7 =
θ7x3x6

(1 + θ13x13)
+

θ7x4x6

(1 + θ13x13)
− θ8c2x7, (13)

ẋ8 = −θ9x8x7 + c2θ10x9, (14)

ẋ9 = θ9x8x7 − c2θ10x9, (15)

˙̃x10 = x9, (16)

ẋ11 = −θ12c1u1x11, (17)

ẋ12 = θ12c1u1x11, (18)

ẋ13 =
θ14x̃10

(φ2,1 + x̃10)
− θ16x13, (19)

˙̃x14 = x9. (20)



The model output contains 5 additional parameters:

y1 = x1 + x3 + x4, (21)

y2 = θ18(x3 + x4 + x5 + x12), (22)

y3 = θ19(x4 + x5), (23)

y4 = θ20x7, (24)

y5 = φ2,2x̃10, (25)

y6 = φ1,1x̃14, (26)

y7 = x13, (27)

y8 = x9. (28)

In Figure 7 we show that this model has no gap between in singular values. Figure 8
shows that the reparameterised model and the original model yield identical outputs.
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Figure 7: Identifiability signature’s singular values for the reparameterised JAK/STAT
model - Singular values indicate that the reparameterised model is identifiable since there is no zero-

valued singular values and so the sensitivity matrix is of full rank.

Example 4: Lung cancer model

The original Lung cancer model:



d(EGFR_active)/dt = (-gamma_EGFR*EGFR_active) 

d(D_SOS)/dt = (-k_SOS_E*EGFR_active*power(D_SOS,n_SOS)/(power(KM_SOS_E,n_SOS)+power(D_SOS,n_SOS)) + 

P90Rsk_Active*k_D_SOS_P90Rsk*power(A_SOS,n_D_SOS)/(power(KM_D_SOS_P90Rsk,n_D_SOS)+power(A_SOS,n_D_SOS)) - 

IGFR_active*k_A_SOS_I*power(D_SOS,n_A_SOS_I)/(power(KM_A_SOS_I,n_A_SOS_I)+power(D_SOS,n_A_SOS_I))) 

d(A_SOS)/dt = (k_SOS_E*EGFR_active*power(D_SOS,n_SOS)/(power(KM_SOS_E,n_SOS)+power(D_SOS,n_SOS)) - 

P90Rsk_Active*k_D_SOS_P90Rsk*power(A_SOS,n_D_SOS)/(power(KM_D_SOS_P90Rsk,n_D_SOS)+power(A_SOS,n_D_SOS)) 

+ IGFR_active*k_A_SOS_I*power(D_SOS,n_A_SOS_I)/(power(KM_A_SOS_I,n_A_SOS_I)+power(D_SOS,n_A_SOS_I))) 

d(Raf)/dt = (-Ras_active*k_Raf_RasActive*power(Raf,n_Raf_RasActive)/(KM_Raf_RasActive+power(Raf,n_Raf_RasActive))  + 

AKT_active*k_Raf_AKT*power(Raf_active,n_Raf_AKT)/(power(KM_Raf_AKT,n_Raf_AKT)+power(Raf_active,n_Raf_AKT)) + 

RafPP*k_RasActive_RafPP*power(Raf_active,n_RasActive_RafPP)/(power(KM_RasActive_RafPP,n_RasActive_RafPP) 

+power(Raf_active,n_RasActive_RafPP))) 

d(Ras_active)/dt = (A_SOS*k_Ras_SOS*power(Ras,n_Ras_SOS)/(power(KM_Ras_SOS,n_Ras_SOS)+power(Ras,n_Ras_SOS)) - 

RasGapActive*k_RasActiveRasGap*power(Ras_active,n_RasActiveRasGap)/(power(KM_RasActiveRasGap,n_RasActiveRasGap

)+power(Ras_active,n_RasActiveRasGap))) 

d(Mek_active)/dt = 

(Raf_active*k_Mek_PP2A*power(Mek,n_Mek_PP2A)/(power(KM_MekPP2A,n_Mek_PP2A)+power(Mek,n_Mek_PP2A))  - 

PP2A*k_MekActivePP2A*power(Mek_active,n_MekActivePP2A)/(power(KM_MekActivePP2A,n_MekActivePP2A)+power(Me

k_active,n_MekActivePP2A))) 

d(ERK)/dt = (-Mek_active*k_ERK_MekActive*ERK/(KM_ERK_MekActive+ERK) + 

PP2A*k_ERKactive_PP2A*power(ERK_active,n_ERKactive_PP2A)/(power(KM_ERKactive_PP2A,n_ERKactive_PP2A)+power(ER

K_active,n_ERKactive_PP2A))) 

d(ERK_active)/dt = (Mek_active*k_ERK_MekActive*ERK/(KM_ERK_MekActive+ERK) - 

PP2A*k_ERKactive_PP2A*power(ERK_active,n_ERKactive_PP2A)/(power(KM_ERKactive_PP2A,n_ERKactive_PP2A)+power(ER

K_active,n_ERKactive_PP2A))) 

d(IGFR_active)/dt = (-gamma_IGFR*IGFR_active) 

d(PI3KCA)/dt = (-

IGFR_active*k_PI3K_IGF1R*power(PI3KCA,n_PI3K_I)/(power(KM_PI3K_IGF1R,n_PI3K_I)+power(PI3KCA,n_PI3K_I)) - 

EGFR_active*k_PI3K_EGF1R*EGFR_active*power(PI3KCA,n_PI3K_E)/(power(KM_PI3K_EGF1R,n_PI3K_E)+power(PI3KCA,n_PI

3K_E)) - Ras_active*k_PI3K_Ras*power(PI3KCA,n_PI3K_Ras)/(power(KM_PI3K_Ras,n_PI3K_Ras)+power(PI3KCA,n_PI3K_Ras)) 

+ kd_PI3K_a*PI3KCA_active) 

d(PI3KCA_active)/dt = 

(IGFR_active*k_PI3K_IGF1R*power(PI3KCA,n_PI3K_I)/(power(KM_PI3K_IGF1R,n_PI3K_I)+power(PI3KCA,n_PI3K_I)) + 

EGFR_active*k_PI3K_EGF1R*EGFR_active*power(PI3KCA,n_PI3K_E)/(power(KM_PI3K_EGF1R,n_PI3K_E)+power(PI3KCA,n_PI

3K_E)) + 

Ras_active*k_PI3K_Ras*power(PI3KCA,n_PI3K_Ras)/(power(KM_PI3K_Ras,n_PI3K_Ras)+power(PI3KCA,n_PI3K_Ras)) - 

kd_PI3K_a*PI3KCA_active) 

d(AKT_active)/dt = 

(PI3KCA_active*k_AKT_PI3K*power(AKT,n_AKT_PI3K)/(power(KM_AKT_PI3K,n_AKT_PI3K)+power(AKT,n_AKT_PI3K)) - 

kd_AKT*AKT_active) 

d(AKT)/dt = (-

PI3KCA_active*k_AKT_PI3K*power(AKT,n_AKT_PI3K)/(power(KM_AKT_PI3K,n_AKT_PI3K)+power(AKT,n_AKT_PI3K)) + 

kd_AKT*AKT_active) 



d(PP2A)/dt =0 

d(Ras)/dt = (-A_SOS*k_Ras_SOS*power(Ras,n_Ras_SOS)/(power(KM_Ras_SOS,n_Ras_SOS)+power(Ras,n_Ras_SOS)) + 

RasGapActive*k_RasActiveRasGap*power(Ras_active,n_RasActiveRasGap)/(power(KM_RasActiveRasGap,n_RasActiveRasGap

)+power(Ras_active,n_RasActiveRasGap))) 

d(Raf_active)/dt = 

(Ras_active*k_Raf_RasActive*power(Raf,n_Raf_RasActive)/(KM_Raf_RasActive+power(Raf,n_Raf_RasActive)) - 

AKT_active*k_Raf_AKT*power(Raf_active,n_Raf_AKT)/(power(KM_Raf_AKT,n_Raf_AKT)+power(Raf_active,n_Raf_AKT)) - 

RafPP*k_RasActive_RafPP*power(Raf_active,n_RasActive_RafPP)/(power(KM_RasActive_RafPP,n_RasActive_RafPP)+power(

Raf_active,n_RasActive_RafPP))) 

d(Mek)/dt = (-

Raf_active*k_Mek_PP2A*power(Mek,n_Mek_PP2A)/(power(KM_MekPP2A,n_Mek_PP2A)+power(Mek,n_Mek_PP2A)) + 

PP2A*k_MekActivePP2A*power(Mek_active,n_MekActivePP2A)/(power(KM_MekActivePP2A,n_MekActivePP2A)+power(Me

k_active,n_MekActivePP2A))) 

d(RasGapActive)/dt=0 

d(RafPP)/dt=0 

d(P90RskInactive)/dt = (-ERK_active*k_P90Rsk_ERKActive*P90RskInactive/(KM_P90Rsk_ERKActive+P90RskInactive) + 

kd_P90Rsk*P90Rsk_Active) 

d(P90Rsk_Active)/dt = (ERK_active*k_P90Rsk_ERKActive*P90RskInactive/(KM_P90Rsk_ERKActive+P90RskInactive) - 

kd_P90Rsk*P90Rsk_Active) 

 

We re-write this model in terms of x (for model states) and th (for system parameters): 

State name Symbol 

EGFR_active  x1 

D_SOS  x2 

A_SOS x3 

Raf x4 

Ras_active x5 

Mek_active x6 

ERK x7 

ERK_active x8 

IGFR_active x9 

PI3KCA x10 

PI3KCA_active x11 

AKT_active x12 

AKT x13 

PP2A x14 

Ras x15 

Raf_active x16 

Mek x17 

RasGapActive x18 

RafPP x19 

P90RskInactive x20 

P90Rsk_Active x21 

 



Parameter name Symbol 

gamma_IGFR th1 

kd_PI3K_a th2 

k_P90Rsk_ERKActive th3 

KM_P90Rsk_ERKActive th4 

gamma_EGFR th5 

k_SOS_E th6 

n_SOS th7 

KM_SOS_E th8 

k_Ras_SOS th9 

n_Ras_SOS th10 

KM_Ras_SOS th11 

k_ERK_MekActive th12 

KM_ERK_MekActive th13 

k_D_SOS_P90Rsk th14 

n_D_SOS th15 

KM_D_SOS_P90Rsk th16 

k_A_SOS_I th17 

n_A_SOS_I th18 

KM_A_SOS_I th19 

k_PI3K_IGF1R th20 

n_PI3K_I th21 

KM_PI3K_IGF1R th22 

k_PI3K_EGF1R th23 

n_PI3K_E th24 

KM_PI3K_EGF1R th25 

k_AKT_PI3K th26 

n_AKT_PI3K th27 

KM_AKT_PI3K th28 

kd_AKT th29 

k_ERKactive_PP2A th30 

n_ERKactive_PP2A th31 

KM_ERKactive_PP2A th32 

k_PI3K_Ras th33 

n_PI3K_Ras th34 

KM_PI3K_Ras th35 

k_Raf_RasActive th36 

n_Raf_RasActive th37 

KM_Raf_RasActive th38 

k_Mek_PP2A th39 

n_Mek_PP2A th40 

KM_MekPP2A th41 

k_Raf_AKT th42 

n_Raf_AKT th43 

KM_Raf_AKT th44 

k_RasActiveRasGap th45 

n_RasActiveRasGap th46 

KM_RasActiveRasGap th47 

k_MekActivePP2A th48 

n_MekActivePP2A th49 

KM_MekActivePP2A th50 



k_RasActive_RafPP th51 

n_RasActive_RafPP th52 

KM_RasActive_RafPP th53 

kd_P90Rsk th54 

 

Old unidentifiable model: 

d(x1)/dt = -th5*x1 

d(x2)/dt = -th6*x1*x2^th7/(th8^th7+x2^th7) + x21*th14*x3^th15/(th16^th15+x3^th15) - 

x9*th17*x2^th18/(th19^th18+x2^th18) 

d(x3)/dt = th6*x1*x2^th7/(th8^th7+x2^th7) - x21*th14*x3^th15/(th16^th15+x3^th15) + 

x9*th17*x2^th18/(th19^th18+x2^th18) 

d(x4)/dt = -x5*th36*x4^th37/(th38+x4^th37) + x12*th42* x16^th43/(th44^th43+ x16^th43) + x19*th51* 

x16^th52/(th53^th52+ x16^th52) 

d(x5)/dt = x3*th9* x15^th10/(th11^th10+ x15^th10) – x18*th45*x5^th46/(th47^th46+x5^th46) 

d(x6)/dt = (x16*th39* x17^th40/(th41^th40+ x17^th40) - x14*th48*x6^th49/(th50^th49+ x6^th49)) 

d(x7)/dt = x14*th30* x8^th31/(th32^th31+x8^th31)-(x6*th12*x7)/(th13+x7) 

d(x8)/dt = (x6*th12*x7)/(th13+x7)- x14*th30*x8^th31/(th32^th31+ x8^th31) 

d(x9)/dt = -th1*x9 

d(x10)/dt = (-x9*th20* x10^th21/(th22^th21+ x10^th21) - x1*th23*x1*x10^th24/(th25^th24+ x10^th24) - x5*th33* 

x10^th34/(th35^th34+ x10^th34) + th2*x11) 

d(x11)/dt = (x9*th20* x10^th21/(th22^th21+ x10^th21) + x1*th23*x1*x10^th24/( th25^th24+ x10^th24) + x5*th33* 

x10^th34/(th35^th34+ x10^th34) – th2*x11) 

d(x12)/dt = (x11*th26*x13^th27/(th28^th27+x13^th27) – th29*x12) 

d(x13)/dt = (-x11*th26*x13^th27/(th28^th27+ x13^th27) + th29*x12) 

d(x14)/dt=0 

d(x15)/dt = (-x3*th9* x15^th10/(th11^th10+ x15^th10) + x18*th45*x5^th46/(th47^th46+x5^th46)) 

d(x16)/dt = (x5*th36* x4^th37/(th38+x4^th37) - x12*th42* x16^th43/(th44^th43+ x16^th43) - x19*th51* 

x16^th52/(th53^th52+ x16^th52)) 

d(x17)/dt = (-x16*th39* x17^th40/(th41^th40+ x17^th40) + x14*th48* x6^th49/(th50^th49+ x6^th49)) 

d(x18)/dt=0 

d(x19)/dt=0 

d(x20)/dt = (-x8*th3* x20/(th4+ x20) + th54*x21) 

d(x21)/dt = (x8*th3* x20/(th4+ x20) – th54*x21) 

 

 

 



 

The reparameterized identifiable model contains 73 parameters: 

(th1, th2, th3, th4, th5, th7, th8, th9, th10, th11, th12, th13, th14, th15, th16, th18, th19, th21, th22, th24, th25, th26, th27, 

th28, th29, th30, th31, th32, th33, th34, th35, th36, th37, th38, th39, th40, th41, th42, th43, th44, th45, th46, th47, th48, 

th49, th50, th51, th52, th53, th54, ∅1,1, ∅2,1, and initial conditions ∅2,2, x2(0), x3(0), x4(0), x5(0), x6(0), x7(0), x8(0), ∅1,2, 

x10(0), x11(0), x12(0), x13(0), x14(0), x15(0), x16(0), x17(0), x18(0), x19(0), x20(0), x21(0)) 

d(�̃�1)/dt = -th5*�̃�1 

d(x2)/dt = -�̃�1*x2^th7/(th8^th7+x2^th7) + x21*th14*x3^th15/(th16^th15+x3^th15) - �̃�9*x2^th18/(th19^th18+x2^th18) 

d(x3)/dt = �̃�1*x2^th7/(th8^th7+x2^th7) - x21*th14*x3^th15/(th16^t``h15+x3^th15) + �̃�9*x2^th18/(th19^th18+x2^th18) 

d(x4)/dt = -x5*th36*x4^th37/(th38+x4^th37) + x12*th42* x16^th43/(th44^th43+ x16^th43) + x19*th51* 

x16^th52/(th53^th52+ x16^th52) 

d(x5)/dt = x3*th9* x15^th10/(th11^th10+ x15^th10) – x18*th45*x5^th46/(th47^th46+x5^th46) 

d(x6)/dt = (x16*th39* x17^th40/(th41^th40+ x17^th40) - x14*th48*x6^th49/(th50^th49+ x6^th49)) 

d(x7)/dt = x14*th30* x8^th31/(th32^th31+x8^th31)-(x6*th12*x7)/(th13+x7) 

d(x8)/dt = (x6*th12*x7)/(th13+x7)- x14*th30*x8^th31/(th32^th31+ x8^th31) 

d(�̃�9)/dt = -th1�̃�9 

d(x10)/dt = (-�̃�9*∅1,1* x10^th21/(th22^th21+ x10^th21) - �̃�1*∅2,1*�̃�1*x10^th24/(th25^th24+ x10^th24) - x5*th33* 

x10^th34/(th35^th34+ x10^th34) + th2*x11) 

d(x11)/dt = (�̃�9*∅1,1* x10^th21/(th22^th21+ x10^th21) + �̃�1*∅2,1*�̃�1*x10^th24/( th25^th24+ x10^th24) + x5*th33* 

x10^th34/(th35^th34+ x10^th34) – th2*x11) 

d(x12)/dt = (x11*th26*x13^th27/(th28^th27+x13^th27) – th29*x12) 

d(x13)/dt = (-x11*th26*x13^th27/(th28^th27+ x13^th27) + th29*x12) 

d(x14)/dt=0 

d(x15)/dt = (-x3*th9* x15^th10/(th11^th10+ x15^th10) + x18*th45*x5^th46/(th47^th46+x5^th46)) 

d(x16)/dt = (x5*th36* x4^th37/(th38+x4^th37) - x12*th42* x16^th43/(th44^th43+ x16^th43) - x19*th51* 

x16^th52/(th53^th52+ x16^th52)) 

d(x17)/dt = (-x16*th39* x17^th40/(th41^th40+ x17^th40) + x14*th48* x6^th49/(th50^th49+ x6^th49)) 

d(x18)/dt=0 

d(x19)/dt=0 

d(x20)/dt = (-x8*th3* x20/(th4+ x20) + th54*x21) 

d(x21)/dt = (x8*th3* x20/(th4+ x20) – th54*x21) 
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Figure 8: Outputs of the original unidentifiable model and the reparameterised JAK/STAT
model - solid lines depict the original model’s outputs and ∗ depict the new model’s outputs. These

graphs are perfectly aligned demonstrating that the 2 models predict similar outcomes.

This model is identifiable. This is shown in Figure 9, where we observe that none of
the singular values are zero. In addition, Figure 10 and 11 show that the reparameterised
model and the original model predict the same output.
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Figure 9: Identifiability signature’s singular values for the reparameterised Lung cancer
model - Singular values indicate that the reparameterised model is identifiable since there is no zero-

valued singular values and so the sensitivity matrix is of full rank.
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Lung cancer model - solid lines depict the original model’s outputs and ∗ depict the new model’s

outputs. These graphs are perfectly aligned demonstrating that the 2 models predict similar outcomes.
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Figure 11: Outputs of the original unidentifiable model and the reparameterised Lung cancer
model - solid lines depict the original model’s outputs and ∗ depict the new model’s outputs. These

graphs are perfectly aligned demonstrating that the 2 models predict similar outcomes.
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NUMERICAL SENSITIVITY OF THE

LOCAL STRUCTURAL

IDENTIFIABILITY ALGORITHM

Dominique JOUBERT, Hans STIGTER, Jaap MOLENAAR

Despite the interest in knowing a priori whether there is any chance of uniquely

estimating all model unknown parameters, the structural identifiability analysis for

general nonlinear dynamic models is still an open question.

There is no method amenable to every model...

(Chis, Banga, and Balsa-Canto, 2011)
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ABSTRACT

T HE increase in the number of large and complex ODE models in the field of systems
biology continues to drive the development of fast and user friendly methods that

are capable of analysing these models. In chapters 2 and 3 we saw that our hybrid SVD
approach is efficient in terms of computation time and therefore lends itself to addi-
tional model analyses such as, determining minimal output sets. In this chapter, we pin
down some standard settings that can be used in future software implementations of the
algorithm. Since there exists no single method that is amenable to every model, the aim
is to have a robust method at one’s disposal, capable of analysing a wide range of models.
Here, we show that our algorithm is capable of this.

In this chapter, the sensitivity of the identifiability results with respect to user ad-
justable settings is methodically investigated. Results show that parameter and initial

values, in particular, are influential. In addition, a model’s size dictates whether sym-

bolic or numerical matrices, ∂ f
∂x

and ∂ f
∂θ , can be computed and this may influence the

sharpness results for some models. A third important factor is the length of the output
vector. Finally, we show that the vertical concatenation of different sensitivity matrices
considerably reduces the influence of both parameter values and output vector length.
The robustness of our method is investigated analysing seven examples, and we find
that for the majority of models, the implementation of standard settings yield accurate
results.

Highlights include: 1) the introduction of rule of thumb settings that can be imple-
mented when first analysing a model and, 2) illustrating the advantage of vertically con-
catenating different sensitivity matrices in obtaining decisive unidentifiability results.
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4.1. INTRODUCTION
The drive to incorporate vast amounts of knowledge into a single model will in the future
be reflected in large numbers of complex mathematical systems. In the field of systems
biology, a model may for example predict the movement of a certain cancer drug into
a target cell and therefore focus on a very specific process. In such cases, models can
be small. Alternatively, a set of smaller models can be incorporated into a larger, more
holistic model. These larger models may be tasked with describing a cell in its entirety.
Given the potential applications of systems biology models in the medical field, model
accuracy may indeed be the defining factor between life or death. Consequently, there
is a need for tools that can analyse the accuracy of large models in particular.

Structural identifiability is the starting point when analysing a model’s predictive
power. It determines, a priori, whether the model’s structure will allow for the calcu-
lation of unique parameter values. This property is traditionally analysed symbolically,
but with the surge of larger models, numerical identifiability methods seem to be a log-
ical step towards addressing this problem. Yet, questions regarding these methods do
exist and in this chapter we aim to address some of these questions.

The motivation for writing this chapter is summarised in the following quote:

“Numerical analysis is heavily dependent on notional values for the parameter (that are to

be estimated), and involves applying sampling rate to the output. These results are there-

fore affected by a number of factors that one would wish to understand the individual

effect of – for example, is a model over-parameterised regardless of the number and timing

of samples taken” (Evans, Cheung, Yates, 2018) [1].

In the following sections, we will analyse the different factors that influence numerical
identifiability results. This analysis can be framed as an investigation into the robustness
of the method used in this thesis. The aim of this chapter is to understand the influence
these factors have on two important properties: 1) the size of the gap in singular values.
The larger this gap, the more decisive the unidentifiability result, and 2) numerical inte-
gration times, with shorter times allowing for more diverse applications of the method.
The obtained outcomes in the future play an important role in the development of a
software application, and will ensure that users obtain reliable numerical identifiability
results. The results of this work will be a number of guidelines for analysis settings, in
other words, a set of rules of thumb.

4.2. METHOD DESCRIPTION
The models analysed here are nonlinear autonomous ODE systems of the form:

ẋ(t ) = f (x(t ),θ), (4.1)

x(0) = x0, (4.2)

y(t ) = h(x(t ),θ). (4.3)

Function f denotes a dynamic model structure and h the output or observation func-
tion. State variables are contained in vector x(t ) (dim(x) = n), parameters in vector θ

(dim(θ) = p) and model outputs, also described as measured sensors, in vector y(t )
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(dim(y) = m). Initial values of the model states can also be unknown and in such in-
stances we regard them as additional unknown parameters. In which case a parameter
vector has dim(θ)= p +n.

Sensitivity functions are obtained calculating the sensitivity of elements in the out-
put vector, y , with respect to individual parameters in θ. These sensitivities are calcu-
lated by differentiating equations 4.1 and 4.3 with respect to x and θ and, numerically
integrating the newly defined equation 4.4 with respect to time:

d

d t

(

∂x

∂θ

)

=
∂ f

∂x

∂x

∂θ
+
∂ f

∂θ
, (4.4)

∂y

∂θ
=

∂h

∂x

∂x

∂θ
+
∂h

∂θ
. (4.5)

Individual sensitivities, calculated at discretized time points on a finite time interval
[0, tN ], are vertically concatenated to form the so-called sensitivity matrix, S. If the ini-
tial conditions of model states are also unknown, S has p+n columns, each related to an
unknown parameter.

S =















































∂y1

∂θ1
(t0) . . .

∂y1

∂θp+n
(t0)

...
. . .

...
∂ym

∂θ1
(t0) . . .

∂ym

∂θp+n
(t0)

...
...

∂y1

∂θ1
(tN ) . . .

∂y1

∂θp+n
(tN )

...
. . .

...
∂ym

∂θ1
(tN ) . . .

∂ym

∂θp+n
(tN )















































. (4.6)

Rows and columns in this matrix can be normalised without changing its rank. This is
typically done to reduce the effect of scaling differences on the numerical results. The
normalised matrix used in this thesis is:

Snor m =

















































θ1

y1(t0)

∂y1

∂θ1
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θp+n

y1(t0)
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∂θp+n
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...
. . .

...
θ1
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∂ym

∂θ1
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θp+n
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∂ym
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θ1
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∂θ1
(tN ) . . .

θp+n

y1(tN )

∂y1
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∂ym

∂θp+n
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. (4.7)
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Sensitivities are calculated for a particular set of parameter and initial values. To ensure
that the model is analysed in multiple parameter trajectories, analyses are done for dif-
ferent sets of θi , where i = 1, ..,k. This results in k different sensitivity matrices, S i or
S i

nor m . These matrices can be vertically concatenated, resulting in a sensitivity matrix of
the form:

Sal l =













S1

S2

...
Sk













, (4.8)

or

Sal l ,nor m =













S1
nor m

S2
nor m

...
Sk

nor m













. (4.9)

The process of vertical concatenation is discussed in section 4.7. In our approach,
an SVD is applied to any of the matrices described above (4.6, 4.7, 4.8 or 4.9). For exam-
ple, if S is used, this matrix is decomposed as S = UΣV , and we use matrices Σ and V

in our analysis. Σ contains singular values on its diagonal and these are used to deter-
mine the rank of the sensitivity matrix, with rank-deficiency indicated by the presence
of zero-valued singular values [2]. Due to numerical rounding errors, singular values
are rarely exactly zero and accordingly, we use the following practical definition: Zero-
valued singular values fall beyond a distinct gap in the spectrum of singular values [3]. In
this thesis, we regard a gap larger than 3 decades as significant. A model’s unidentifiabil-
ity is indicated by a rank deficient sensitivity matrix and once possible unidentifiability
has been established, unidentifiable parameters are recognised as the nonzero entries
in the columns of the matrix V , related to these vanishing singular values.

All numerical results are verified symbolically. However, the computational demand
of these symbolic computations is significantly reduced by the fact that the Jacobi matrix
only has to be computed for the unidentifiable parameters suggested by the numerical
analysis. In the symbolic approach we make use of the Jacobi matrix in equation 4.12,
with a nontrivial null-space of the Jacobi matrix indicating model unidentifiability. It
contains the partial derivatives of the separate terms in the generating series of h with
respect to θ. The individual terms of this series are calculated by computing successive
Lie derivatives of the vector function h along the vector field, f [4]. The Lie derivative
and its higher order derivatives are defined in equations 4.10 and 4.11 respectively [5].

L f h(x) =
∂h(x)

∂x
f (x), (4.10)

L
i
f h(x) =

∂L
i−1
f

h(x)

∂x
f (x). (4.11)
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∂G

∂θ
(θ) =
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∂θ
∂

∂θ
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∂θ
(L 2

f
h(θ))

...
∂

∂θ
(L

p+n−1
f

h(θ))





























. (4.12)

In this chapter we answer a number of questions regarding our numerical approach
to the identifiablity problem:

1. Which integration interval, [0, tN ], should be used?

2. Which numerical integration method is sufficient?

3. Which sampling frequency, translated as the time grid discretization, N , should be
used when integrating? N stipulates the number of points in the interval [0, tN ].

4. Which of the sensitivity matrices defined in 4.6-4.9, should be analysed?

5. Which parameter values and initial conditions should be used?

6. What potential effect does the length of the output vector, y , and its contents have
on results? The length of this vector is determined by the number of states/sensors
measured.

This chapter is divided into the following sections. Potential problems that might be
encountered when using the algorithm are mentioned in section 4.3. Factors that a user
can adjust are listed in section 4.4. Detailed results are given in section 4.5 and the topic
of matrix concatenation is covered in section 4.7. Concluding remarks can be found in
the last section.

4.3. POTENTIAL PROBLEMS
In this section, we present some pitfalls that one might encounter when analysing a
model. In addition, we suggest some practical tips for avoiding these instances.

4.3.1. SCALING
Pitfall: Results may be affected by the choice of parameter and initial values. To illus-
trate this, consider the identifiability analysis of a small ODE model with 1 state equa-
tion and 2 unknown system parameters. The model structure comprises the well-known
Michealis-Menten equation [6, 7]:

ẋ =
Vmax x

KM +x
. (4.13)

Unknown parameters, θ = [Vmax ,KM , x(0)], need to be estimated from the measured dy-
namic output, y = x. We start by randomly generating values for Vmax ,KM and x(0) in the
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interval [0.5,1.5]. With this choice, numerical results reveal that the model is structurally
identifiable, with no significant gap between the singular values (figure 4.1). These re-
sults are confirmed by a symbolically calculated trivial null-space.
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Figure 4.1: Calculated singular values for the Michealis-Menten model defined in 4.13: When parameter
values are chosen in the interval [0.5,1.5], no significant gap between the singular values is detected and the
model is classified as structurally identifiable.

However, when the value of KM is chosen much larger than that of Vmax or x(0), the
obtained results differ significantly. When Vmax = 1, x(0) = 1 and KM = 104 for example,
the largest gap size is 10.7 decades on the log scale, as seen in figure 4.2. There are 2 sin-
gular values beyond a gap larger than 3 and these urge us to look at the nonzero entries
of the last 2 columns of the right singular matrix, V , which are related to these 2 vanish-
ing singular values. These 2 columns are shown in 4.14, and the first and second entries
in each column suggest that both Vmax and KM are unidentifiable.

V =





−0.7071 0.7071
0.7071 0.7071

0 0



 . (4.14)

To establish the identifiability of the model symbolically, the Jacobi matrix in equa-
tion 4.15 is calculated for all 3 parameters and up to the second Lie derivative using
Mathematica.

dG

dθ
(θ) =











0 0 1

x(0)
(KM+x(0)) − Vmax x(0)

(KM+x(0))2 − Vmax x(0)
(KM+x(0))2 + Vmax

KM+x(0)

2Vmax KM x(0)
(KM+x(0))3 − 3V 2

max KM x(0)
(KM+x(0))4 + V 2

max x(0)
(KM+x(0))3 − 3V 2

max KM x(0)
(KM+x(0))4 + V 2

max KM

(KM+x(0))3 .











. (4.15)

The determinant of this matrix is:

Det (
dG

dθ
(θ)) =−

4V 4
max K 2

M x(0)4

(KM +x(0))10
, (4.16)
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Figure 4.2: Calculated singular values for the Michealis-Menten model defined in 4.13 when the parameter

value for KM is much larger than that of Vmax and x(0): For parameter values Vmax = 1, KM = 104 and
x(0) = 1, there are 2 singular values beyond a gap larger than 3 decades and therefore the model is incorrectly
classified as structurally unidentifiable.

and substituting positive parameter values into equation 4.16, results in a nonzero
determinant. This proves that the model is structurally identifiable as long as the pa-
rameter values are nonzero.

Practical tips:

1. Cautiously choose parameter values. Although unidentifiability is a model prop-
erty that, except for special cases, does not depend on the parameter values used,
numerical inaccuracy may blur this property. We recommend using values in the
same order of magnitude. For example, randomly generated values between 0.5
and 1.5.

2. Pay special attention when models contain particularly large or small constants.

3. Verify all numerical results symbolically. In general, this does not require a great
deal of computation, since we only need to analyse the identifiability of a reduced
set of parameters. For this example, one would only need to verify the identifiabil-
ity of parameters Vmax and KM symbolically.

4. The sensitivity matrix could be normalised. However, for this example this appears
to be insufficient and accordingly, results should always be verified symbolically. If
some of the initial conditions are zero, normalisation is even not possible (as seen
in equation 4.7).

5. Repeat the analysis for multiple parameter trajectories.
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4.3.2. STIFF ODE SYSTEMS

Pitfall: Stiff ordinary differential equations are often encountered in models that contain
chemical reactions. In general, a problem is stiff if it contains widely varying time scales
where, for example, some states decay much more rapidly than others. In these cases,
numerical integration methods must take small steps to obtain satisfactory results and
this increases both computational cost and time. In addition, longer integration times
are required to ensure that all the model dynamics is captured.

As an example, consider the stiff Robertson ODE model with 3 state equations [8]:

d x1

d t
=−θ1x1 +θ2x2x3, (4.17)

d x2

d t
= θ1x1 −θ2x2x3 −θ3x2

2 , (4.18)

d x3

d t
= θ3x2

2 . (4.19)

Parameter values are taken as θ1 = 0.04,θ2 = 104 and θ3 = 3×107 respectively. Randomly
generating values between 0.5 and 1.5 for the 3 initial conditions, and substituting both

sets of values into the symbolically calculated Jacobi matrix, ∂ f
∂x

, the calculated real parts
of the eigenvalues of this Jacobi matrix are:





−9.1524×107

−1.5254×104

1.1362×10−10



 . (4.20)

The span in these eigenvalues indicate that this system is stiff and strongly suggests
that one component evolves much slower than the others. Accordingly, one would re-
quire a long integration interval, roughly estimated as tN = 1

|λM ax | =
1

1.1362×10−10 = 8.801×
109, to capture all the relevant dynamics. A specialised numerical integrator, for exam-
ple ODE15s or ODE23s in MATLAB, determines the optimal size and number of sub-
intervals into which the integration interval should be divided. These methods allow for
non-equidistant interval lengths.

Before we discuss what can be done to address this stiffness in the context of our
algorithm, we first consider what the algorithm requires in terms of numerical results
and the integration process:

1. It is important to realise that we do not need to integrate until a steady state so-
lution is obtained. The required integration time should only be long enough to
observe all the relevant model dynamics. Figure 4.3 is an example of the dynam-
ics of this stiff system, where state x1 evolves much slower than the other 2 states.
By increasing the integration time, we can ensure that all the system dynamics is
observed. Figure 4.4 shows the dynamics of x1 when tN is increased from 0.5 to
10000. The dynamics in figure 4.4 is ideal for the analysis of a model even though
104 < 109. Keep in mind that some states may already be in steady state at time
t = 0, and so increasing the integration time will not result in an increase in ob-
served dynamics.



4

102 4. NUMERICAL SENSITIVITY OF THE LOCAL STRUCTURAL IDENTIFIABILITY ALGORITHM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [min]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
b
s
e
rv

a
ti
o
n
s

x
1

x
2

x
3

Figure 4.3: Typical dynamics of the stiff Robertson problem over a short integration interval: Over this short
integration interval, the time evolution of state x1 is much slower than that of the other model states.
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Figure 4.4: Typical dynamics of the stiff Robertson problem over a long integration interval: Integrating the
model over a longer time interval reveals the model dynamics of all three model states. These dynamics are
ideal for the identifiability analysis of a model.

2. The numerical integrator should compute the solution within seconds. Only then
can the identifiability algorithm be used in applications where multiple iterations
are required.

Practical tips:

1. First analyse the model using a set of randomly generated parameter and initial
values. If numerical integration becomes computationally demanding, a set of
optimised parameter values could be obtained by minimising an objective func-

tion that essentially is based on the condition number of the Jacobi matrix, ∂ f
∂x

.
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The condition number of a matrix is the ratio of the largest and the smallest sin-
gular values. A value of 1 indicates a well conditioned system. This initial step will
give the user a general impression of the structural identifiability of model his/her
model.

2. If the user wishes to analyse the model for specific initial conditions, these values
should be used in the second round of model analysis.

3. If no dynamics is observed over a period [t0, tN ], investigate whether there is really
a steady state present or whether there are states with different time scales.

4. Select a numerical integrator suitable for the analysis of stiff ODE systems. ODE15s
and ODE23s are both MATLAB-based methods suited to the analysis of such mod-
els.

5. Verify results symbolically.

4.3.3. NUMBER OF MEASURED SENSORS

In this section, the effect of the number of states/sensors measured on the gap size is
studied. We use the JAK/STAT model as example, for which it is known that when states
x10 and x11 are not measured, the model is structurally unidentifiable with both x10(0)
and x11(0) not identifiable [9].
Pitfall: The gap size between the singular values may not be significant if a model is
analysed measuring an output that contains too few of states/sensors.

Figure 4.5 shows the effect of the number of states/sensors measured on the gap
size. It indicates that for small output sets, the gap size reduces to 0.62. Also notice that
when we measure as little as 8 of the 29 possible states, a clear gap of 4 decades already
emerges.

Practical tips: Due to our method’s efficient computation times, some additional
analyses can be done to determine key states/sensors whose omission affect the model’s
identifiability. For example, if a researcher can only measure states x1 and x31, and
wishes to know whether the model is identifiable or not, the following strategy should
be followed:

1. First analyse the model for the user defined output.

2. Apply the minimal output set (MOS) algorithm developed in chapter 2 to iden-
tify key states/sensors whose omission from the output will result in structural
unidentifiability. In chapter 2, we discussed the random omission of states/sensors
from an output, and we used the Bernoulli equation to compute the number of it-
erations required to identify indispensable sensors with a 99.5% probability.

3. Verify whether the states/sensors identified in the MOS algorithm, are present in
the defined output. If they are not, the model will be classified as structurally
unidentifiable, regardless of the gap size obtained in 1. Because the researcher in
this example does not measure states x10 or x11, the model is structurally uniden-
tifiable despite a gap size of 0.62.
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Figure 4.5: Gap between the singular values as a function of the number of states/sensors measured (length

of the output vector, y). The gap size is reduced below our chosen threshold of 3 decades when only 2 or 3
states are measured. The full model has 31 states and we gradually include more states into the measured
output. To force the model to be unidentifiable, we always omit states x10 and x11. As shown in chapter 2,
x31 is the only other state that influences structural identifiability results and accordingly, this state is included
into all measured output sets so as to not introduce additional unidentifiable parameter sets.

4. To determine which parameters are unidentifiable measuring a small output, a
model can subsequently be analysed using a concatenated sensitivity matrix. This
will be discussed in section 4.7.

5. Results should be verified symbolically.

4.4. USER SPECIFIED FACTORS THAT CAN BE ADJUSTED
Given that our method relies on both integration and differentiation, the following ad-
justable factors will influence numerical results:

1. θ - The parameter and initial values.

2. tN - The integration time interval.

3. N - The number of discretized points in the time interval. N = nθ indicates that
the number of points is equal to the number of unknown parameters.

4. Integr - The integration method used.

5. y - The length and components of the model’s output vector.

6. Tol - The numerical integration tolerance specified.

7. Norm – Whether or not a normalised sensitivity matrix is used. Note that normal-
isation is not possible if certain initial conditions are zero.

8. S/N - Whether the matrices in equation 4.4, ∂ f
∂x

and ∂ f
∂θ , are calculated symbolically

or numerically.
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9. Exp - The number of parameter sets to analyse which is equivalent to the number
of sensitivity matrices to vertically concatenate. For more on this topic, refer to
section 4.7.

The adjustable factors are summarised in figure 4.6. In the following section, the sen-
sitivity of the results to each of these factors is investigated for a number of very different
examples. The metrics used to measure their influence on the numerical method are:
1) the size of the gap between the singular values (a large gap makes unidentifiability re-
sults easy to interpret. In this thesis we assume that a gap larger than 3 decades warrants
a symbolic analysis) and, 2) numerical integration times.

Figure 4.6: Potential factors that will influence identifiability results. These could affect both gap size and
computation times.

A model is always first analysed using rule of thumb (R.O.T) settings, and these are:

Settings: θ = 0.5+ r and [0, 1] (all parameter values are randomly generated in the
interval [0.5,1.5]), tN = 0.5 (the initial integration interval length), N = nθ (the number
of points on the integration interval equals the number of unknown parameters. This
ensures that the sensitivity matrix is at least square when only 1 state/sensor is mea-
sured), ODE 45 (numerical integration method - this is a builtin MATLAB function),
Tol = 10−15, (absolute tolerance of integration method), Non normalised (analysis us-

ing a non normalised sensitivity matrix), S ( ∂ f
∂x

and ∂ f
∂θ are generated symbolically, using

MATLAB’s symbolic toolbox. Alternatively, these matrices can be calculated numerically
using the built-in function in MATLAB’s Simbiology toolbox, which uses complex-step
approximation to calculate sensitivities [10]), E x p = 1 (no matrix concatenation and so
a model is analysed for a single set of parameter and initial values).

In the following examples, the sensitivity of the results related to each of these factors
is investigated.

4.5. EXAMPLES

EXAMPLE 1: JAK/STAT MODEL WITH 31 STATES

We start by analysing a relatively large ODE model, well-known to the identifiability com-
munity [9]. The aim is to identify key factors that influence both the gap size and compu-
tation times. This JAK/STAT model has 51 system parameters, 31 states and for this ex-
ample, we choose to analyse its identifiability measuring 18 states: y = [x1, x2, x3, x4, x5,
x6, x7, x8, x9, x12, x13, x14, x15, x16, x17, x18, x19, x31]. Notice that states x10 and x11 are omit-
ted from the measured output and we therefore know beforehand that the model is
structurally unidentifiable [9].
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RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.
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Figure 4.7: JAK/STAT model: Gap size of 6.34 is obtained using the rule of thumb settings. This indicates that
the model is structurally unidentifiable when states x10 and x11 are not measured.

Using the R.O.T settings, the calculated gap size is 6.34 (figure 4.7) and time required
for numerical integration is 0.66 seconds. With only 1 singular value beyond a gap of 3
decades, we expect that the 4 unidentifiable parameters are totally correlated. This re-

sult is confirmed by the symbolically computed nontrivial null-space: N

(

dG

dθuni d (θ)
)

=
{θ14/x11(0), −θ51/x11(0), x10(0)/x11(0),1}, where θuni d = {θ14,θ51, x10(0), x11(0)}. This ini-
tial analysis shows that the algorithm gives satisfactory results when using the R.O.T set-
tings. Let us now take a closer look at the influence of individual factors on results.

1. THE EFFECT OF PARAMETER VALUES, θ
In this analysis, values for both system parameters and initial conditions are randomly
generated from a uniform distribution in MATLAB. Here, we investigate the sensitivity of
the gap size to these generated values in two different analyses. For convenience, we will
refer to the entire set of system parameters and initial conditions as “parameter values”.
We first look at the influence of the parameter values on the gap size and then at the
effect of the magnitude of difference between the parameter values.
Settings: tN = 0.5, N = nθ , ODE45, Tol = 10−15, Not normalised, S, E xp = 1.
In the first experiment, values are generated by adding a randomly chosen value between
0 and 1 to a constant value, which in this analysis, is systematically increased from 0.1
to 10. This is described by (∗)+ r and [0,1], where ∗ = 0.1, . . . ,10. This implies that the
maximum difference between individual parameters is 1.

Figure 4.8 reveals a slight increase in the gap size as the parameter values increase.
These larger gap sizes do however come at a price, with the accompanying computa-
tion times increasing significantly (figure 4.9). A compromise must therefore be struck
between the gap size and time. Importantly, the identifiability results are in principle
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Figure 4.8: JAK/STAT model: Gap sizes calculated for randomly generated parameter values. Parameter values
are calculated as (∗)+ r and [0,1], where ∗ is systematically increased from 0.1 to 10. Analysed parameter sets
therefore range from [0.1,1.1] to [10,11].
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Figure 4.9: JAK/STAT model: Integration times associated with the randomly generated parameters values in
figure 4.8. These are calculated as (∗)+ r and [0,1], where ∗ is systematically increased from 0.1 to 10.

insensitive to parameter values. This is confirmed by a gap larger than 5 decades main-
tained for all parameter sets.

In the second analysis we systematically increase the span between the randomly
generated values and add them to a constant value of 0.5. This is described by (0.5)+
r and [0,∗], where ∗ = 1, . . . ,10. For example, when ∗ = 10, the maximum difference be-
tween parameter values is 10. Figure 4.10 reveals no sensitivity to the span between
parameters. We therefore use 0.5+r and [0,1] as a R.O.T for generating values for the sys-
tem parameters and initial conditions, since these lower values also reduce integration
times.
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Figure 4.10: JAK/STAT model: Gap size for the values of randomly generated parameters. These are calculated
as (0.5)+ r and [0,∗], where ∗ is systematically increased from 1 to 10.

2. EFFECT OF THE CHOICE OF INTEGRATION INTERVAL, tN

Settings: θ = 0.5+ r and [0,1], N = nθ , ODE45, Tol = 10−15, Non normalised, S, E xp = 1.
In this section, we investigate the effect of the length of the integration interval on both
gap size and computation time. Keep in mind that the integration time, tN , should be
long enough to allow for the observation of model dynamics. The suggested integration
time for a set of randomly generated parameter values from the interval [0.5,1.5] is 0.087
(the largest eigenvalue of the Jacobi matrix is λM ax = 11.49, and so tN = 1/11.49 = 0.087).
The system is nonstiff for these particular parameter values and suggests that the rule of
thumb interval, [0,0.5], is sufficient.

Figures 4.11 and 4.12 show the relationship between tN and the gap sizes and com-
putation times, respectively. Despite the small theoretically required integration length
of 0.087, results are sensitive to smaller times. As expected, there is an upper limit to
the obtainable gap size as errors associated with longer integration times influence nu-
merical accuracy. With tN = 0.5, the calculated gap of 6.34 is sufficient and therefore we
suggest using this as R.O.T.

3. EFFECT OF THE CHOICE OF INTEGRATION DISCRETIZATION, N

Settings: θ+0.5+ r and [0,1], tN = 0.5, ODE45, Tol = 10−15, Non normalised, S, E xp = 1.
The lower limit of N is determined by the number of states/sensors in the output

vector to ensure that the sensitivity matrix is at least square. Figure 4.13 shows that the
number of grid points on the integration interval do not effect the size of the gap. Nor
does it influence integration times. We suggest using N = nθ , the number of unknown
parameters that need to be inferred from measured data.

4. EFFECT OF THE CHOICE OF INTEGRATION METHOD

Settings: θ+0.5+ r and [0,1], tN = 0.5, N = Nθ, Tol = 10−15, Non normalised, S, E xp = 1.
The relatively small required integration length that follows from the largest eigenvalue

of the Jacobi matrix, ∂ f
∂x

, tN = 1
|λM ax | = 0.087, suggests that the system is nonstiff for the
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Figure 4.11: JAK/STAT model: Gap size obtained for the different integration times, tN . For tN = 0.5, a gap of
6.34 is calculated, which strongly suggests that this integration interval is sufficient in allowing for an adequate
amount of observed model dynamics.
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Figure 4.12: JAK/STAT model: Integration times for the different values of tN . As tN increases, there is almost
a linear increase in the associated integration times.

randomised parameter values. Given the efficient integration times of approximately 0.6
seconds, ODE45 is used as the default integration method.

5. EFFECT OF THE MEASURED OUTPUT SIZE AND COMPOSITION, y

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ , ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

Figure 4.5 on page 104 shows the effect of the length of the output vector on the cal-
culated gap size. We therefore know that measuring more states/sensors usually results
in sharper identifiability results. This is clearly an important factor.

In section 4.3.3 it was mentioned that performing the MOS algorithm can be very
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Figure 4.13: JAK/STAT model: Gap size obtained for different numbers of grid points, N , on the integration
interval.

informative. Here, it can be used to limit the impact of this factor on results by system-
atically identifying important states/sensors who’s omission result in unidentifiability.

6. EFFECT OF THE CHOICE OF INTEGRATION TOLERANCE

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Non normalised, S, E xp = 1.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Absolute tolerance (10
*
)

2

3

4

5

6

7

8

G
a
p
 i
n
 S

in
g
u
la

r 
V

a
lu

e
s

Figure 4.14: JAK/STAT model: Gap size obtained for different absolute tolerance values of the numerical inte-
grator. Here, by substituting *, values range between 10−1 to 10−20.

From figure 4.14 we know that for this example, this factor does not influence results
and the R.O.T setting of 10−15 is used.

7. EFFECT OF USING A NORMALISED SENSITIVITY MATRIX

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, S, E xp = 1.
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Table 4.1: Influence of normalising the sensitivity matrix on the gap size in the singular values

Type Gap size
Normalised 6.0959
Non normalised 6.139

Normalising the sensitivity matrix does not improve results and so non-normalised
matrices are used.

8. EFFECT OF GENERATING MATRICES
∂ f
∂x

AND
∂ f
∂θ SYMBOLICALLY OR NUMERICALLY

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ , ODE45, Tol = 10−15, Not normalised,
E xp = 1.

As stated earlier, these matrices can be calculated numerically using MATLAB’s Sim-
biology toolbox. This is particularly useful for large ODE models, for which the use of
symbolic calculations can be laborious. Here, we look at the effect on the gap sizes when
calculating these matrices numerically as opposed to symbolically. From table 4.2 we

conclude that computing ∂ f
∂x

and ∂ f
∂θ numerically, significantly affects the results. The

user is therefore urged, if the size of the model permits it, to calculate these matrices
symbolically.

Table 4.2: Influence of the method used to calculate matrices
∂ f
∂x

and
∂ f
∂θ

, on both integration times and the
gap size.

Type Time (s) Gap size
Symbolic 0.6486 6.0959
Numerical 0.484987 1.8644

EXAMPLE 2: JAK/STAT MODEL WITH 14 STATES

This model has 14 states, 22 system parameters and 8 observed outputs [11].

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ , ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

It has several zero initial conditions, x3(0) = x5(0) = x7(0) = x9(0) = x10(0) = x12(0) =
x13(0) = x14(0) = 0. Unidentifiable results are indicated by a gap of 11.35 and numerical
integration was completed in 1.39 seconds. For this model, R.O.T settings are sufficient
and the numerical results are confirmed by the symbolically calculated nontrivial null-

space, N
(

dG

dθuni d (θ)
)

= {0,0,−θ17/θ22,0,1}, {−θ11/θ21,−θ15/θ21,0,1,0}, whereθuni d = {θ11,

θ15,θ17,θ21, θ22}.

EXAMPLE 3: CHINESE HAMSTER MODEL

Let us now analyse a very large ODE model. It has 117 system parameters, 34 states
and 13 observed states/sensors, y = [x1, x2, x3, x4, x5, x11, x13, x15, x21, x27, x29, x30, x32] [5,
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12]. It does not have a predefined set of initial conditions and so values for both system
parameters and initial conditions have to be chosen.

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

For this example, not all rule of thumb settings apply since the model size does not

allow for the symbolic calculation of the matrices, ∂ f
∂x

and ∂ f
∂θ , in acceptable times. As a

result, the settings are adjusted to allow for the numerical computation of these matrices.
Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, N ,
E xp = 1.

The calculated gap size is 7.57, with numerical integration completed in 1.18 seconds
(figure 4.15). These result were confirmed by the symbolically computed nontrivial null-

space: N

(

dG

dθuni d (θ)
)

= {1,1,0,0}{0,0,1,1}, where θuni d = {θ47,θ48,θ55,θ57}.

In the following sections we investigate the influence of different adjustable factors
when using the numerical approach implemented in the Simbiology toolbox.

50 100 150

Singular values in descending order

-16

-14

-12

-10

-8

-6

-4

-2

0

2

L
o
g

1
0
(S

in
g
u
la

r 
V

a
lu

e
s
)

Figure 4.15: Chinese Hamster model: A gap size of 7.57 is obtained by numerically calculating matrices
∂ f
∂x

and
∂ f
∂θ

.

1. THE EFFECT OF THE SET OF PARAMETER VALUES, θ
Settings: tN = 0.5, N = nθ , ODE45, Tol = 10−15, Non normalised, N , E xp = 1.

Table 4.3 shows the gap sizes computed for 2 different parameter vectors, θ1 and θ2

respectively. As parameter values increase, the gap size decreases and the integration
times increase. For values in the interval [4,5] and larger, the gap disappears. Given
that for R.O.T settings, large gap sizes are obtained, parameter values generated in the
interval [0.5,1.5] are sufficient.

From the results in table 4.3 we can conclude that the method is sensitive to param-
eter values for this example. Later we will see that vertically concatenating individual
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sensitivity matrices, each analysed for a different parameter trajectory considerably im-
proves results and makes the algorithm more robust to parameter values.

Table 4.3: Influence of randomised parameter values on the gap size in the singular values. Values are system-
atically increased by substituting * with the values in column 1.

θ1 θ2

(∗)+ r and [0,1] Gap Gap Integr time (s)
∗= 0.05 Only 1 singular value 6.11 1.18
∗= 0.1 4.7449 Only 1 singular value 1.07
∗= 0.3 4.0386 5.28 1.19
∗= 0.5 7.8166 4.744 1.73
∗= 0.7 3.5399 Only 1 singular value 1.18
∗= 1 3.3171 Only 1 singular value 1.18
∗= 2 0.873 1.455 3.36
∗= 3 1.31 1.143 7

2. EFFECT OF THE CHOICE OF INTEGRATION INTERVAL, tN

Settings: θ = 0.5+ r and [0,1], N = nθ, ODE45, Tol = 10−15, Non normalised, N , E xp = 1.
The method is sensitive to the length of the integration interval, with longer times

introducing numerical round-off errors that obscure the gap. Figure 4.16 shows results
for integration intervals between 0.2 and 2. These all result in a clear gap. This range of
integration intervals investigated, allows for the observation of sufficient dynamics and
so, for this example the R.O.T setting of tN = 0.5 suffices.
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Figure 4.16: Chinese Hamster model: Gap size obtained for the different integration intervals, tN . Intervals
between 0.2 and 2, allow for the observation of sufficient model dynamics and keep numerical errors within
bounds to allow for the observation of a gap larger than 5 decades.

3. EFFECT OF THE CHOICE OF INTEGRATION DISCRETIZATION, N

Settings: θ = 0.5+r and [0,1], tN = 0.5, ODE45, Tol = 10−15, Non normalised, N , E xp = 1.
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Figure 4.17 reveals the insignificant role the number of grid points on the integration
interval, [0,0.5], has on numerical accuracy. This corresponds to the result observed for
the JAK/STAT model in example 1 and so the method is robust to different discretization
scenarios.
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Figure 4.17: Chinese Hamster model: Gap size obtained for different number of grid points, N , on the integra-
tion interval. The increased sampling rate of a particular set of measured states/sensors does not significantly
affect numerical results.

4. EFFECT OF THE CHOICE OF INTEGRATION METHOD

Settings: θ = 0.5+r and [0,1], tN = 0.5, N = nθ, Tol = 10−15, Non normalised, N , E xp = 1.

Using ODE45, numerical integration requires more than a second for completion.
In a bid to improve efficiency, the model is also analysed using ODE15s. This integra-
tion method does not improve calculation times and we conclude that using ODE45 is
sufficient.

Table 4.4: Influence of the integration method used on integration time and the gap size.

Type Time (s) Gap size
ODE45 1.157 5.7861
ODE15s 1.087 5.7861

5. EFFECT OF THE MEASURED OUTPUT SIZE, y

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, N ,
E xp = 1.

We see from figure 4.18 that unidentifiability is only detected if the number of states/
sensors is larger than 5. As we saw with the JAK/STAT model in figure 4.18, there is a
maximum obtainable gap size where measuring additional states/sensors does not con-
tribute to numerical accuracy.



4.5. EXAMPLES

4

115

0 5 10 15 20 25 30 35

Number of sensors measured

0

1

2

3

4

5

6

7

G
a
p
 i
n
 S

in
g
u
la

r 
V

a
lu

e
s

Figure 4.18: Chinese Hamster model: Gap size obtained as a function of the number of states/sensors mea-
sured.

6. EFFECT OF THE CHOICE OF INTEGRATION TOLERANCE

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Non normalised, N , E xp = 1.
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Figure 4.19: Chinese model results: Gap size obtained for different absolute tolerance values of the numerical
integrator. The tolerance is varied in the range [10−20,10−2].

Tolerances are typically adjusted to limit the local discretization error. More specifi-
cally, the absolute tolerance determines the accuracy when solutions approach zero and
so we adjust this value in a bid to obtain sharper results. From figure 4.19 we see that
setting the absolute tolerance to 10−15 is sufficient for generating a clear gap, and that as
this tolerance is relaxed, the gap becomes insignificant.

7. EFFECT OF THE CHOICE OF USING A NORMALISED SENSITIVITY MATRIX

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, N , E xp = 1.
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Table 4.5: Influence of normalising the sensitivity matrix on the gap size

Type Gap size
Normalised 5.5396
Non normalised 5.0358

In table 4.5, we see no significant difference in the calculated gap sizes and so we opt
to not normalise values, thereby enabling the analysis of model with initial conditions of
zero.

EXAMPLE 4: NOVAK TYSON MODEL

x1

x2

x3 x4

x5 x6x7

x8x9

x10

x11

x12

x13

Figure 4.20: Novak Tyson model structure: Applying Liu et. al.’s root strongly connected components principle
[13], the directed graph does not suggest that state x13 should be included into the model’s minimal output
sets. However, our analysis reveals that if this state is not measured, the model is structurally unidentifiable.

This model has 39 system parameters and 13 states [14]. The initial conditions of all
these states are assumed to be unknown. Analysing its directed graph in figure 4.20 and
applying the root strongly connected components principle for Liu et. al. [13], it is ap-
parent that states x6, x7, x11 and x12 should be measured to ensure the model’s structural
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identifiability. Here, the model is analysed to see if additional important states/sensors
can be identified and to determine whether standard settings are sufficient. We find that
state x13 should also be measured.

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ , ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

Implementing our minimal output set algorithm to identify essential sensor sets, the
first round of analysis entails the omission of single states/sensors from the measured
output. Measuring the output y = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12], thus omit-
ting state x13, a gap size of 9.1 was calculated using R.O.T settings (figure 4.21). This
numerical result was confirmed by the symbolically computed nontrivial null-space:

N

(

dG

dθuni d (θ)
)

= {−θ9/x13(0),1}, where θuni d = {θ9, x13(0)}.
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Figure 4.21: Novak Tyson model: If all states but x13 are measured, a gap of 9.1 is obtained using the rule of
thumb settings.

EXAMPLE 5: MODEL WITH 20 STATES

We now investigate a model analysed by Saccomani et. al. in 2010 [15]. It has 20 states
and 22 system parameters. We assume that all initial conditions are unknown.

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ , ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

We implement our minimal output set algorithm to identify potential important states/
sensors. Not measuring x20 and using R.O.T settings, the calculated gap of 12.9 is shown
in figure 4.22. This result was confirmed by the symbolically computed nontrivial null-

space: N

(

dG

dθuni d (θ)
)

= {1,0}{0,1}, where θuni d = {θ22, x20(0)}.
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Figure 4.22: Model with 20 states: If all states but x20 are measured, a gap of 12.9 is obtained using the rule of
thumb settings.

EXAMPLE 6: POLLUTION MODEL
Here, we analyse a stiff ODE system with 20 states and 25 systems parameters [8, 16]. The
following states have zero-initial conditions: x1(0), x3(0), x5(0), x6(0), x10(0), x11(0), x12(0),
x13(0), x14(0), x15(0), x16(0), x18(0), x19(0) and x20(0).

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

Measuring as output all states except x20, a gap of 10.7 is calculated. This result

was confirmed by the symbolically computed nontrivial null-space: N

(

dG

dθuni d (θ)
)

= {1},

where θuni d = {x12(0)}. By generating parameter values in the interval, [0.5,1.5], numeri-
cal integration was completed in 0.57 seconds using ODE45. Sufficient model dynamics
are observed on the interval [0,0.5] and finally, the sensitivity matrix could not be nor-
malised due to the fact that some of the observed initial conditions are zero.

EXAMPLE 7: LUNG CANCER MODEL
The final model analysed in this chapter contains 21 states and 54 system parameters
[17, 18].

RESULTS USING RULE OF THUMB SETTINGS

Settings: θ = 0.5+ r and [0,1], tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

From the directed graph of the model, one can observe that states x1 and x9 are
root strongly connected components and therefore need to be measured to ensure the
model’s structural identifiability. A description of the model and its directed graph is
given in chapter 3. Measuring all but states x1 and x9, no clear unidentifiability result is
found analysing the model using R.O.T settings. We now investigate the effect of individ-
ual factors on this result.
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Figure 4.23: Pollution model results: Measuring all but state x20, a gap size of 10.7 was obtained using the rule
of thumb settings.

1. THE EFFECT OF THE SET OF PARAMETER VALUES, θ
Settings: tN = 0.5, N = nθ, ODE45, Tol = 10−15, Non normalised, S, E xp = 1.
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Figure 4.24: Lung cancer model: Gap size as a function of randomly generated parameter values, (∗) +
r and [0,1], where ∗ ranges from 0.1 to 4.

Figure 4.24 reveals that a gap emerges as parameter values increase. This shows the
method’s sensitivity to parameter values. There are two singular values beyond this gap

and this is confirmed by the symbolically computed nontrivial null-space: N

(

dG

dθuni d (θ)
)

=
{0,−θ17/x9(0),−θ20/x9(0), 0,0,1}{−θ6/x1(0),0, 0,−2θ23/x1(0), 1,0}, whereθuni d = {θ6,θ17,
θ20, θ23, x1(0), x9(0)}. Ideally, one wishes to implement standardised settings, and so we
continue with our analysis by keeping θ = 0.5+ r and [0,1] and search for additional fac-
tors that might sharpen results.
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2. EFFECT OF THE CHOICE OF INTEGRATION INTERVAL, tN

Settings: θ = 0.5+ r and [0,1], N = nθ , ODE45, Tol = 10−15, Non normalised, S, E xp = 1.
From figure 4.25 we see that the integration time interval plays a vital role in whether

or not a gap is evident. Obtaining sharp numerical results therefore require longer inte-
gration intervals to capture more dynamics of the system. We saw previously that these
sharper results come at a price as is evident in the accompanying required integration
times in figure 4.26. We suggest using slightly longer integration intervals when the span

between the eigenvalues of ∂ f
∂x

is large, keeping figure 4.26 and the potential numerical
round-off errors associated with larger integration intervals in mind.
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Figure 4.25: Lung cancer model: Gap size obtained for different integration interval times, tN .
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Figure 4.26: Lung cancer model: Required integration times for the different integration intervals, tN .

3. EFFECT OF THE CHOICE OF INTEGRATION DISCRETIZATION, N

Settings: θ = 0.5+ r and [0,1], tN = 5, ODE45, Tol = 10−15, Non normalised, S, E xp = 1.
For this model, the method is insensitive to the choice of the discretization, N . From

figure 4.27 we do however witness a lower threshold and therefore we use N = nθ as
R.O.T setting.



4.5. EXAMPLES

4

121

0 20 40 60 80 100 120

N

0

1

2

3

4

5

6

7

G
a

p
 i
n

 S
in

g
u

la
r 

V
a

lu
e

s

Figure 4.27: Lung cancer model: Gap size obtained for different number of grid points on the integration
interval, N .

4. EFFECT OF THE CHOICE OF INTEGRATION METHOD

Settings: θ = 0.5+ r and [0,1], tN = 5, N = nθ, Tol = 10−15, Non normalised, S, E xp = 1.

Table 4.6: Influence of integration method used on integration time and the gap size.

Type Time (s) Gap size
ODE45 0.58 6.466
ODE15s 13.66 6.466

Table 4.6 suggests that there is no difference in gap sizes for the different integra-
tion methods and that ODE45 is superior in terms of computation times. Accordingly,
ODE45 is the preferred integration method.

5. EFFECT OF THE MEASURED OUTPUT SIZE, y

Settings: θ = 0.5+ r and [0,1], tN = 5, N = nθ, ODE45, Tol = 10−15, Non normalised, S,
E xp = 1.

From figure 4.28 it is apparent that a gap already becomes visible when as little as
five states/sensors are measured.

6. EFFECT OF THE CHOICE OF INTEGRATION TOLERANCE

Settings: θ = 0.5+ r and [0,1], tN = 5, N = nθ, ODE45, Non normalised, S, E xp = 1.

The choice of the absolute tolerance for the numerical integration method hardly
affects the gap size (figure 4.29).

7. EFFECT OF THE CHOICE OF USING A NORMALISED SENSITIVITY MATRIX

Settings: θ = 0.5+ r and [0,1], tN = 5, N = nθ, ODE45, Tol = 10−15, S, E xp = 1.

Table 4.7 shows that normalising the sensitivity matrix does not improve results.
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Figure 4.28: Lung cancer model: Gap size obtained as a function of the number of states/sensors in the output
vector. In this example states, x1 and x9 are omitted from these measured output.
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Figure 4.29: Lung cancer results: Gap size obtained for different absolute tolerance values ranging from 10−20

to 10−2.

Table 4.7: Influence of normalising the sensitivity matrix on the gap size.

Type Gap size
Normalised 6.448
Non normalised 6.47

8. EFFECT OF OF GENERATING MATRICES
∂ f
∂x

AND
∂ f
∂θ SYMBOLICALLY OR NUMERICALLY

Settings: θ = 0.5 + r and [0,1], tN = 5, N = nθ , ODE45, Tol = 10−15, Non normalised,
E xp = 1.

Table 4.8 shows that for this example, symbolically calculated matrices, ∂ f
∂x

and ∂ f
∂θ ,

offer superior results.



4.6. SUMMARY OF RESULTS

4

123

Table 4.8: Influence of method used to calculate matrices
∂ f
∂x

and
∂ f
∂θ

, on integration times and the gap size.

Type Time (s) Gap size
Symbolic 0.58 6.47
Numerical 0.14 0.9

4.6. SUMMARY OF RESULTS

Table 4.9: Summary of the structural identifiability results for the models analysed in this chapter. X indicates
that the model is correctly classified as unidentifiable using the R.O.T settings. The most important factors
when R.O.T settings do not apply, indicated by ×, are given in the last column.

Model States Parms Output Gap ROT Different from R.O.T
Long Jak/Stat 31 51 18 6.34 X

Short Jak/Stat 14 22 8 11.35 X

Chinese Hamster 34 117 13 7.57 × N

Novak Tyson 13 39 12 9.1 X

High dimensional 20 22 19 12.9 X

Pollution 20 25 19 10.7 X

Lung Cancer 21 54 19 6.47 × θ or tN

4.7. MATRIX CONCATENATION
Table 4.9 reveals that for most examples, the rules of thumb are sufficient in offering
clear unidentifiability results, with all the gaps larger than 6 decades. Two of the most
influential factors are the parameter values and the length of the output vector. In this
section, we introduce a concept aimed at reducing their influence on numerical results.
It involves the vertical concatenation of different sensitivity matrices, each evaluated for
a particular parameter set, corresponding to a specific trajectory in the state space. The
result is a large sensitivity matrix as defined in equation 4.8.

We start this discussion by illustrating the advantage of this multiple trajectory ap-
proach. Consider the JAK/STAT model with 31 states as example. For the measured out-
put, y = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x12, x13, x14, x15, x16, x17, x18, x19, x31], (so states x10

and x11 are not measured). Table 4.10 compares the gap size obtained analysing a single
parameter trajectory, versus the gap computed using multiple parameter trajectories.
Concatenation significantly improves the sharpness of the numerical results.

Table 4.10: Effect of analysing a concatenated sensitivity matrix on the gap size. No concatenation - only 1
parameter trajectory analysed. 10 matrices concatenated - 10 different parameter trajectories analysed.

Gap size
No concatenation 6.34
Concatenating (10 matrices) 9.85

We know from Anguelova et. al. [9] that simultaneously omitting states x10 and x11

from the model’s output results in the unidentifiability of 4 parameters. In the context
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of the sensitivity matrix, this unidentifiability can be described as the linear dependence
between 4 columns of this matrix. For this example, this relation reads as:

θ14

x11(0)

∂y

∂θ14
−

θ51

x11(0)

∂y

∂θ51
+

x10(0)

x11(0)

∂y

∂x10(0)
+

∂y

∂x11(0)
= 0. (4.21)

In general, equation 4.21 can be written as:

c1
∂y

∂θ14
+ c2

∂y

∂θ51
+ c3

∂y

∂x10(0)
+ c4

∂y

∂x11(0)
= 0. (4.22)

The main idea behind the vertical concatenation of multiple sensitivity matrices is in-
creasing the number of rows of a sensitivity matrix. More specifically, increasing the
number of rows by adding matrices, each evaluated in different parameter trajectories,
decreases the numerical error of the calculated singular values. This should however be
done in such a way so as to preserve the values of the coefficients c1,c2,c3 and c4 in 4.22.
This implies that all parameter values related to these 4 columns must be kept constant,
and that all other parameter values may be changed.

Matrix concatenation comprises the following steps:

1. First observe potential unidentifiable parameters. For this example, these are θ14,
θ51, x10(0) and x11(0). This can be done by analysing the model with the minimal
output set algorithm.

2. Repeat the identifiability method k times, each time calculating a different sensi-
tivity matrix. Importantly, the values of the potentially unidentifiable parameters
identified in step 1, θ14,θ51, x10(0) and x11(0), are kept constant to preserve the
constants defined in equation 4.21.

3. Vertically concatenate the k different sensitivity matrices, S i , to generate a matrix
Sal l as defined in 4.8.

4. Perform an SVD analysis on the concatenated matrix.

Table 4.10 indicated the potential role concatenation could play in making the method
robust to parameter values. Let us now consider its potential benefit in making the al-
gorithm less susceptible to output vector sizes. Figure 4.30 shows the results obtained
when measuring less than half of the states measured for the results in table 4.10. Mea-
suring only seven states, y = [x1, x2, x3, x4, x5, x6, x31], and evaluating one set of parame-
ter values reveals no gap. However, a gap can be seen when evaluating a concatenated
sensitivity matrix, comprising of ten different sensitivity matrices in figure 4.31. This in-
dicates that by implementing concatenation, we can reduce the algorithm’s sensitivity
to the length of the output vector.

Finally, we perform an analysis to determine the influence of the number of con-
catenated matrices on the gap size. Figure 4.32 shows the gap size as a function of the
number of vertically concatenated matrices, measuring two different output sets. For
one of these sets, we reduce the number of states measured to 2 and so y 1 = [x1, x31].
This is indicated in blue in figure 4.32. The second contains the seven states measured
in figures 4.30 and 4.31, y 2 = [x1, x2, x3, x4, x5, x6, x31] and is indicated in red. Figure 4.32
shows that concatenating as little as 4 matrices results in clear gap sizes measuring either
y 1 or y 2. We also see that there is a numerical threshold of 9 decades.
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Figure 4.30: Large Jak/Stat: Singular values calculated whilst measuring the reduced output, y =
[x1, x2, x3, x4, x5, x6, x31], and evaluating the model for only one set of parameter values.
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Figure 4.31: Large Jak/Stat: Gap size obtained measuring reduced output, y = [x1, x2, x3, x4, x5, x6, x31], im-
plementing rule of thumb settings and concatenating 10 sensitivity matrices. This is in stark contrast to the set
of singular values generated using the non concatenated matrix in figure 4.30.

4.8. CONCLUSION
This chapter we investigated the robustness of the identifiability method studied in this
thesis. Due to its numerical nature, several questions regarding the influence of factors
such as parameter values, the rate of sampling, and the number of sensors measured
had to be answered. Here, we methodically analysed the effect of each of these factors
on 2 quantitative metrics, the gap size in the singular values and the time required for
numerical integration. The motivation for writing this chapter was to gain a better un-
derstanding of the influence of individual factors on results, with the intended purpose
of developing a structural identifiability software package.

To summarise, the most influential factors are parameter values and the length and
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Figure 4.32: Large Jak/Stat : Gap size obtained for different numbers of concatenated matrices. The measured
outputs are, y1 = [x1, x31] (blue) and y2 = [x1, x2, x3, x4, x5, x6, x31] (red), respectively. The gap size increases
as the number of concatenated matrices increases. Also note that he difference in the number of matrices
required increases as the length of the output vector decreases.

composition of the output vector. For certain models, the length of the integration in-
terval, tN , may also be influential. Because the output vector is often defined my the
modeller, we looked for potential ways to make our algorithm less sensitive to both pa-
rameter values and the number of measured sensors. We found that by vertically con-
catenating different sensitivity matrices, this sensitivity can be mitigated.
Having analysed several models, we propose the following rule of thumb settings:

• Generate values for both systems parameters and initial conditions in the interval
[0.5,1.5] - by choosing all these values all in this narrow range, one avoids potential
scaling problems,

• Use ODE45 as numerical integrator,

• Set the absolute numerical tolerance to 10−15,

• For most models, if parameter values are generated on the interval [0.5,1.5], there
is no need to normalise the sensitivity matrix,

• Take as integration interval [0,0.5],

• The number of points on this interval should equal the number of unknown pa-
rameters,

• Supply the numerical integrator with symbolically generated matrices, ∂ f
∂x

and ∂ f
∂θ ,

if possible.

After quantifying the sensitivity of results using numerous well-known models, we
conclude that using our method and implementing standard settings is sufficient for
most models. The only exceptions being the Chinese Hamster model, where the size of
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the model necessitates the numerical calculation of matrices, ∂ f
∂x

and ∂ f
∂θ , and the Lung

cancer model, where longer integration times are required. To that end, it might be use-

ful to consider the span between the eigenvalues of the Jacobi matrix, ∂ f
∂x

, as these could
indicate that longer integration intervals are required.

Given the increase in the number of large and complex ODE systems in a field such as
systems biology, there is a need for fast and user friendly methods, capable of analysing
these models. From the previous chapters, we already know that our method is effi-
cient in terms of computation times. Here, we pinned down user settings that make this
method reliable and we also indicated how these settings could be adjusted if needed.

REFERENCES
[1] N. Evans, S. Cheung, and J. Yates, Structural identifiability for mathematical

pharmacology: models of myelosuppression, J Pharmacokinet Pharmacodyn 45, 70
(2018).

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. (The Johns Hopkins
University Press, 2013).

[3] G. Quintana-Ortí and E. S. Quintana-Ortí, Parallel codes for computing the numeri-

cal rank, Linear Algebra and its Applications 275-276, 451 (1998).

[4] H. Pohjanpalo, Systems identifiability based on the power series expansion of the so-

lution, Mathematical Biosciences 41, 21 (1978).

[5] A. F. Villaverde, A. Barreiro, and A. Papachristodoulou, Structural identifiability of

dynamic systems biology models, PLOS Computational Biology 20, 1 (2016).

[6] L. Michaelis and M. Menten, Die kinetik der invertinwirkung, Biochemische
Zeitschrift , 333 (1913).

[7] K. A. Johnson and R. S. Goody, The original michaelis constant: Translation of the

1913 michaelis-menten paper, Biochemistry 39, 8264–8269 (2011).

[8] Dipartimento di Matematica, University of Bari, Test set for initial value problem

solvers, http://www.dm.uniba.it/~testset (2012), accessed: 2018-06-15.

[9] M. Anguelova, J. Karlsson, and M. Jirstrand, Minimal output sets for identifiability,

Mathematical Biosciences 239, 139 (2012).

[10] J. Martins, I. Kroo, and J. Alonso, An automated method for sensitivity anal-

ysis using complex variables, in 38th Aerospace Sciences Meeting and Exhibit,
https://arc.aiaa.org/doi/pdf/10.2514/6.2000-689 .

[11] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, and J. Timmer, Comparison of

approaches for parameter identifiability analysis of biological systems, Bioinformat-
ics 30, 1440–1448 (2014).

[12] D. Joubert, J. Stigter, and J. Molenaar, Determining minimal output sets that ensure

structural identifiability, PLoS One 13, e0207334 (2018).

http://dx.doi.org/ 10.1007/s10928-018-9569-x
http://dx.doi.org/ 10.1007/s10928-018-9569-x
http://dx.doi.org/ 10.1016/S0024-3795(97)10032-5
http://dx.doi.org/10.1371/journal.pcbi.1005153
http://dx.doi.org/10.1021/bi201284u
http://www.dm.uniba.it/~testset
http://dx.doi.org/doi.org/10.1016/j.mbs.2012.04.005
http://dx.doi.org/10.2514/6.2000-689
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2000-689
http://dx.doi.org/ doi.org/10.1093/bioinformatics/btu006
http://dx.doi.org/ doi.org/10.1093/bioinformatics/btu006
https://doi.org/10.1371/journal.pone.0207334


4

128 REFERENCES

[13] Y. Liu, J. Slotine, and B. A.L., Observability of complex systems, Proc Natl Acad Sci
10, 2460 (2013).

[14] C. Letellier, I. Sendiña Nadal, E. Bianco-Martinez, and M. Baptista, A symbolic

network-based nonlinear theory for dynamical systems observability, Sci Rep 8, 1
(2018).

[15] M. P. Saccomani, S. Audoly, G. Bellu, and L. D’Angió, Examples of testing global

identifiability of biological and biomedical models with the daisy software, Com-
puters in Biology and Medicine 40, 402–407 (2010).

[16] F. Mazzia, J. R.Cash, and K. Soetaert, A test set for stiff initial value problem solvers in

the open source software r: Package detestset, Journal of Computational and Applied
Mathematics 236, 4119 (2012).

[17] F. Bianconi, E. Baldelli, V. Ludovini, L. Crinó, A. Flacco, and P. Valigi, Computational

model of egfr and igf1r pathways in lung cancer: a systems biology approach for

translational oncology, Biotechnol Adv Jan-Feb, 142 (2012).

[18] F. Bianconi, E. Baldelli, V. Ludovini, L. Crinó, A. Flacco, and P. Valigi, Egfr and Igf1r

pathway in lung cancer, (2012).

http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1038/s41598-018-21967-w
http://dx.doi.org/10.1038/s41598-018-21967-w
http://dx.doi.org/10.1016/j.compbiomed.2010.02.004
http://dx.doi.org/10.1016/j.compbiomed.2010.02.004
http://dx.doi.org/10.1016/j.cam.2012.03.014
http://dx.doi.org/10.1016/j.cam.2012.03.014
http://dx.doi.org/10.1016/j.biotechadv.2011.05.010
https://www.ebi.ac.uk/biomodels/BIOMD0000000427#History
https://www.ebi.ac.uk/biomodels/BIOMD0000000427#History


5
ASSESSING THE ROLE OF INITIAL

CONDITIONS IN THE LOCAL

STRUCTURAL IDENTIFIABILITY OF

LARGE NONLINEAR DYNAMICAL

MODELS

Dominique JOUBERT, Hans STIGTER, Jaap MOLENAAR

It happens frequently in the global identifiability applications that the property holds

only generically, i.e. except for a “thin” set of initial conditions. In these situations the

system is (incorrectly but forgivably) nevertheless declared to be (global) identifiable,

excluding certain subsets of initial states.

(Saccomani, Audoly, D’Angi’o, 2003)

Based on: D. Joubert, J.D. Stigter and J. Molenaar, Assessing the role of initial conditions in the local structural

identifiability of large nonlinear dynamical models - (under review)

129



5

130
5. ASSESSING THE ROLE OF INITIAL CONDITIONS IN THE LOCAL STRUCTURAL

IDENTIFIABILITY OF LARGE NONLINEAR DYNAMICAL MODELS

ABSTRACT

M ANY papers have been written on the topic of structural identifiability. Collectively,
these contribute to the narrative that stresses the importance of this a priori anal-

ysis in the model development process. However, in many of these papers the story ends
with a structurally unidentifiable model. This leaves a researcher, unfamiliar with the
underlying theory, with no clear strategy on how to address this potential problem. In
this chapter, we continue on this journey by identifying the source of a model’s uniden-
tifiability. It is well-understood that certain sets of initial conditions may result in local
structural unidentifiability. We show that our algorithm is capable of detecting problem-
atic initial conditions that, if changed, would reinstate a model’s structural identifiability.
This chapter comprises 6 examples, with the first, a well-known 2-state model chosen for
illustrative reasons. The second example contains an input function. Example 3 illus-
trates that a model may posses multiple sets of problematic initial conditions and shows
that ideally, these values need to be chosen so that they result in informative dynamics.
In this example, the problematic initial values result in steady state conditions. In the
fourth example, the importance of informative dynamics in further stressed and in ex-
amples 5 and 6 we identify the problematic initial conditions of relatively large systems
to show that our approach is capable of doing this in an efficient way.
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5.1. INTRODUCTION
Mathematical models can be used to describe features of a system. These models may
contain unknown parameters that cannot be measured directly and therefore need to be
estimated from experimental data. Whilst estimating the values of parameters, model
developers often encounter numerous practical difficulties, including ill-conditioned
matrices, large computer memory requirements, and insufficient time and money to
perform the required number of experiments to develop full mechanistic models [1]. In
this chapter, we focus on one of the major challenges in parameter estimation, the issue
of identifiability. In particular, we look at the role of initial conditions in identifiability.

Parameter identifiability answers the question of whether or not it is possible to esti-
mate unique parameter values from the collected input-output data. Factors such as
the sensors measured, the model’s structure and measurement errors all play a role.
There are two types of identifiability. The first is based on the structure of the model
and is know as structural or a priori identifiability. This is a binary property and assumes
that all experimental measurements are perfect. It is a prerequisite for the second type,
i.e. practical identifiability, which describes the ability to estimate parameters from ob-
served data. It takes both the amount and the quality of the data into account [2].

One major aspect of structural identifiability is that it can be analysed prior to the ex-
perimental phase and therefore offers a unique opportunity for the preliminary design of
experiments. More concisely, the conditions that result in the structural unidentifiability
of a model can be identified and addressed before any expenses on wasteful experiments
are incurred. To emphasise the importance of this assessment, we quote (Marc Russel
Birtwistle, 2008) “We conclude that poorly designed experiments are not only wasteful,
but can also be harmful to parameter identifiability.” These conditions include: 1) which
sensors should at least be measured to ensure identifiability (addressed in chapter 2),
and 2) which initial conditions should be avoided, if possible, to ensure a model’s struc-
tural identifiability. The latter issue is addressed in this chapter and offers a modeller the
possibility to make his/her model structurally identifiable by simply choosing alterna-
tive initial conditions.

THE ROLE OF INITIAL CONDITIONS

Before we can discus the potential influence of initial conditions on a model’s structural
identifiability, we first need to define some classical system-theoretic properties of dy-
namical models. In particular, controllability and reachability. These topics are impor-
tant in the context of this discussion since they have often been mentioned in publica-
tions on the loss of structural identifiability for special sets of initial conditions.

The problem of reachability is to find the set of all final states at a time tN , denoted
as x(tN ), that can be reached from a given initial state x(0), in a finite time [0, tN ]. In
contrast, the controllability problem is to find the set of all initial states, x(0), that can be
driven to a final fixed state, x(tN ), over the finite interval [0, tN ]. For nonlinear systems,
reaching a particular state is also known as accessibility [3].

Developing dynamic models not only requires the formulation of differential and/or
algebraic equations, but also the specification of realistic initial and/or boundary con-
ditions. It is well known that a model’s structural identifiability can be affected by the
values of initial conditions [3–5]. Therefore, when a system evolves from a “problematic
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set of initial conditions”, it may be impossible to estimate certain of its parameters.

Denis-Vidal and co-authors alluded to the importance of initial conditions in the
identifiability analysis of uncontrolled models [4]. Saccomani et. al. confirmed the im-
portance of initial conditions by looking at their role in controlled models [5]. In their
paper, the authors look at the role of accessibility/reachability in a model’s structural
identifiability. They state that it happens frequently in global identifiability analyses that
the property only holds generically, i.e. except for a “thin” set of initial conditions. In
these situations the system is (incorrectly but forgivably) declared to be (global) identifi-
able [5].

In their 2017 paper, Villaverde and Banga list the methods capable of detecting these
problematic initial conditions, and suggest a comprehensive analysis strategy based on a
differential geometry approach. The methods that can detect the local loss of structural
identifiability for specific initial conditions include [3]:

1. Exact Arithmetic Rank method (EAR) - Proposed by Karlsson et. al. [6]. This
method allows for the specification of initial conditions and uses these values in
an efficient numerical procedure. This approach only works for rational systems.

2. DAISY - This differential algebra method is also designed for rational systems, and
allows for the specification and analysis of initial conditions [7].

3. STRIKE-GOLDD - Meant for local structural identifiability analysis, it adopts a dif-
ferential geometry approach to symbolically evaluate the Observability Condition
and entails the successive computation of Lie derivatives [8]. It can also test partic-
ular initial conditions by changing the generic x in the Observability-Identifiability
matrix to a set of particular initial conditions, x0 [3].

To summarise, initial conditions form an inherent part of system’s structure and may
therefore influence its structural identifiability [4]. Accordingly, it is important to take

initial conditions into consideration when analysing the identifiability of nonlinear sys-

tems.

In section 5.3 we show that our method can be added to the above mentioned list of
methods capable of detecting the local structural unidentifiability of models evaluated
for specific sets of initial conditions. Moreover, our method is unique since it can detect
problematic values of large ODE systems within very short computation times. Experi-
mental researchers can therefore make realistic choices on how to go about reinstating
a model’s identifiability, taking experimental limitations into account.

5.2. THEORY AND METHOD

MODEL DEFINITION

We begin with the definition of a typical ordinary differential equation model. These
models often describe mass balances and can be very detailed, containing numerous
model states and vast numbers of unknown parameters. Such dynamic models can in
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most cases be written in the standard state-space form [9]:

ẋ(t ) = f 0(x(t ),θ)+
k
∑

i=1

ui (t ) f i (x(t ),θ), (5.1)

x(0) = x0, (5.2)

y(t ) = h(x(t ),θ). (5.3)

The state vector, x , evolves on a manifold V in Rn . Functions f i , where i = 0, . . . ,k, and
h are assumed to be analytical on V and C∞ functions and so, their partial derivatives
of any order exist and are continuous [10]. A model’s input functions are contained in
vector u(t ) ≡ {u1, . . . ,uk }. State variables are contained in vector x(t ) (dim(x) = n), sys-
tem parameters in vector θ (dim(θ) = p) and measured model outputs in vector y(t )
(dim(y) = m). Initial values of the model states may also be unknown and in such cases,
the initial condition vector may be parameterised through some additional parameters
that then become part of the identification problem. The resulting unknown parameter
vector, θ, then has dim(θ)= p +n [11].

LOCAL STRUCTURAL IDENTIFIABILITY ANALYSIS

Structural identifiability analyses assume noise-free data. The identifiability method im-
plemented here uses the sensitivity of model outputs with respect to individual model
parameters [12, 13]. The numerically obtained sensitivity results are subsequently used
in symbolic structural identifiability calculations, and the combination of these approaches
enables us to analyse large ODE models. Sensitivities are calculated from the following
equations:

d

d t

(

∂x

∂θ

)

=
∂ f 0

∂x

∂x

∂θ
+
∂ f 0

∂θ
+

k
∑

i=1

(

∂ f i

∂x

∂x

∂θ
+
∂ f i

∂θ

)

ui , (5.4)

∂y

∂θ
=

∂h

∂x

∂x

∂θ
+
∂h

∂θ
. (5.5)

One obtains the matrix function, ∂y/∂θ, as function of time by integrating equations 5.1
and 5.4 and substituting the solution into 5.5. By calculating these sensitivities at discrete
time points on an interval [t0, . . . , tN ], for specific parameter and initial values, one can
construct a sensitivity matrix, S. If any of the initial values of model states are unknown,
their identifiability can easily be assessed by regarding them as additional parameters.
In such cases, S has up to p +n columns, each related to a specific parameter, θi , i =
1, . . . , p + n. The sensitivity matrix calculated for a single set of parameter and initial
values is:
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. (5.6)

As was mentioned in chapter 4, the sensitivity matrix can also be normalised, gener-
ating the matrix Snor m . Alternatively, individual sensitivity matrices, calculated for dif-
ferent sets of parameter and initial values, can be vertically concatenated. A full ranked
matrix S, is a sufficient condition for local structural identifiability [14, 15]. Rank defi-
ciency of S can be attributed to two factors: 1) a model output may be insensitive to a
specific parameter and in this instance, all the entries in the sensitivity matrix pertain-
ing to this parameter are zero and the parameter is classified as unidentifiable, and 2)
a model output may be sensitive to a particular parameter, but this sensitivity is coun-
teracted by the sensitivity of the output to one or more other parameters. As a result,
different columns of the sensitivity matrix are linearly dependent and this implies that
these parameters are totally correlated and unidentifiable [16]. We determine the rank
of the sensitivity matrix numerically using SVD, expressed as:

S =UΣV T . (5.7)

If S has p +n columns, matrixΣwill have p +n singular values on its diagonal and these
are arranged in descending order. The rank of S is the number of nonzero singular val-
ues and, conversely, rank-deficiency is indicated by the presence of zero-valued singular
values [17]. Due to numerical rounding errors, singular values are seldom exactly zero
and so one uses as practical definition: Zero-valued singular values are values that fall
beyond a distinct gap in the spectrum of singular values [18]. Once possible uniden-
tifiability, based on the presence of zero-valued singular values has been established,
unidentifiable parameters are recognised as the nonzero entries in the columns of the
matrix V , related to these vanishing singular values. Both the singular values and the
unidentifiable parameters can graphically be illustrated in an easy to interpret identifia-
bility signature [13].

SYMBOLIC STRUCTURAL IDENTIFIABILITY ANALYSIS
Next, the numerical results are verified using symbolic calculations. This requires the
symbolic calculation of a so-called Jacobi matrix. The computational demand often
associated with computing this matrix is reduced by utilising the preceding numerical
results. Concretely, one only has to compute derivatives of the Lie derivatives with re-
spect to the parameters that were suggested to be unidentifiable from the SVD analysis.



5.2. THEORY AND METHOD

5

135

These are combined in a set, θuni d , and can contain both system parameters and initial
conditions. We subsequently use the rank condition for local structural identifiability
presented by Tunali and Tarn [19].

The Jacobi matrix of a model with no control input can be computed using Lie deriva-
tives. A Lie derivative, mathematically defined as L f 0

h, is the directional derivative of
the smooth function, h, with respect to the drift vector field, f 0, which describes the
model dynamics and is defined as:

L f 0
h =

∂h

∂x
f 0. (5.8)

Successive Lie derivatives are computed as:

L
i
f 0

h =
∂L

i−1
f 0

h

∂x
f 0. (5.9)

We use a symbolic algebra package, Kwatny’s ProPac add-on for Mathematica, to cal-
culate the Lie derivatives [11]. In a generating series expansion, successive Lie deriva-
tives of the vector h are calculated. When analysing models with no control vectors, i.e.
with ui (t ) ≡ 0 (i = 1, . . . ,k) in 5.1, the generating series expansion reduces to a Taylor se-
ries of the output vector function h at the initial time t = 0 [12]. By parameterising the
unknown initial conditions and therefore regarding them as additional parameters, the
Jacobi matrix may also have up to p +n columns. The augmented parameter vector is
defined as, θ =

(

θ
x0

)

, and the Jacobi matrix calculated by taking the partial derivatives of
the constants in the generating series with respect to the unknown parameters in θ is
given by:

∂G

∂θ
(θ) =
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. (5.10)

For models of the form defined in 5.1-5.3, the individual input functions should be
incorporated into calculations [9, 20]. An output can be expanded in a Fliess series [19]
with respect to time and inputs, and the coefficients of this series are h(x(0),θ) and:

L f j0
. . .L f jq

h(x(t ),θ)|0, (5.11)

where f j0 , . . . , f jq represent all possible combinations of the vector fields { f j , j = 0, . . . ,k}
[9, 12]. The notation |0 indicates that this matrix is evaluated in the point x(0). For ex-
ample, the Jacobi matrix associated with the full model in 5.1 if k = 1, calculated with
respect to the unknown parameters in the augmented parameter vector θ is [12]:
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, (5.12)

where j0, j1, . . . , jq ∈ [0,1]. For structural identifiability, it is sufficient for ∂G
∂θ (θ) to

have rank p +n, implying that all initial values and system parameters can uniquely be
determined. It is known from linear algebra that rank deficiency of a matrix is equiva-
lent to it having a nontrivial null-space [21]. The elements in such a nontrivial null-space
reveal the nature of the correlation between the individual unknown parameters. Exam-
ples of this will be shown in the following section.

5.3. EXAMPLES

5.3.1. SMALL BENCHMARK MODEL
This small model, first published by Denis-Vidal et. al., shows the role initial conditions
play in the the structural identifiability of models with no control input [4]. It comprises
2 state equations:

d x1

d t
= θ1x2

1 +θ2x1x2, (5.13)

d x2

d t
= θ3x2

1 +x1x2. (5.14)

State x1 is measured directly and so y = x1. The unknown parameter vector is θ =
[θ1,θ2, θ3]. A numerical analysis reveals that the model is structurally unidentifiable



5.3. EXAMPLES

5

137

when x2(0) = 0. This is indicated by the distinct gap between the second and third sin-
gular values in figure 5.1.
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Figure 5.1: Singular values of the Denis-Vidal model: When x2(0) = 0 and state x1 measured, the model is
structurally unidentifiable. The distinct gap between the second and third singular values suggests that the
sensitivity matrix is rank deficient and that there is 1 set of totally correlated parameters.

Denis-Vidal et. al. [4] observed that parameters θ2 and θ3 are structurally unidenti-
fiable. This result is confirmed in figure 5.2, where the nonzero entries in the last col-
umn of the V matrix, that relates to the single singular value beyond the gap in fig-
ure 5.1, indicate that both these parameters are unidentifiable. This result is verified
by the symbolically calculated nontrivial null-space, where the Jacobi matrix is com-
puted by only taking partial derivatives with respect to θ2 and θ3. The null-space is

N

(

dG

dθuni d (θ)
)

= {− θ2
θ3

,1}, where θuni d = {θ2,θ3}.
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Figure 5.2: Entries in the last column of the right singular matrix of the Denis-Vidal model: Nonzero entries
indicate that parameters θ2 and θ3 are structurally unidentifiable when y = x1 and x2(0) = 0.
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5.3.2. BENCHMARK MODEL WITH INPUT

This benchmark model was introduced by Saccomani et. al. to investigate the possible
connection between a model’s structural identifiability and its accessibility [5]. In our
analysis, we investigate the structural identifiability of 4 system parametersθ = [p0, p1, p2,
p3].

d x1

d t
=−p0u −p2x1 −p3x2, (5.15)

d x2

d t
= p3x1x2 −p1x1. (5.16)

State x1 is measured and so, y = x1. Saccomani et. al. showed that when the initial con-
dition x2(0) = p1/p3, parameter p3 becomes structurally unidentifiable. Our numerical
results corroborate this result.

For this example, we perform the SVD analysis on the concatenated matrix in 5.17.
We change the value of the input u for each sensitivity matrix, S i , i = 1, . . . ,k.

Sal l =













S1

S2

...
Sk













. (5.17)
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Figure 5.3: Entries in the last column of the right singular matrix for the benchmark model with input: When
x2(0) = p1/p3 and state x1 measured, parameter p3 is structurally unidentifiable and the smallest calculated
singular value is exactly zero.

Figure 5.3 shows entries of the last vector of the right singular matrix, related to the
last singular value of exactly zero. It indicates that parameter p3 is unidentifiable. This
result is verified symbolically. We begin by computing a set of Fliess series coefficient us-
ing equation 5.11 as: G(x(0),θ) = {x1(0),−p2x1(0)−p3x2(0),−p0p2,−p0p2

2 +p0p3(−p1 +
p3x2(0))}. Calculating partial derivatives of the individual elements in this series to the
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unknown parameters in θ, and substituting the initial condition, x2(0) = p1/p3, the 4×4
Jacobi matrix, where each individual column is related to an unknown parameter is:

dG

dθ
(θ) =





















0 0 0 0

0 −1 −1 0

−p2 0 −p0 0

−p2
2 0 −2p0p2 0





















. (5.18)

The fourth column of 5.18 contains only zeros and so parameter p3 is structurally

unidentifiable. Accordingly, the calculated nontrivial null-space of 5.18 is N

(

dG
dθ

(θ)
)

=
{0,0,0,1}, and this confirms the numerical results in figure 5.3.

5.3.3. MODEL WITH MULTIPLE SETS OF POTENTIAL PROBLEMATIC INITIAL

CONDITIONS

A model may have multiple sets of problematic initial conditions and these are not al-
ways restricted to zero values. In addition, the choice of parameter values in combina-
tion with initial values may also render a model unidentifiable. Consider the following
2 dimensional model, with 1 system parameter and 2 unknown initial conditions, x1(0)
and x2(0).

d x1

d t
= θ1x1 −x2, (5.19)

d x2

d t
=−θ1x1 +x2. (5.20)

We will see that for certain values of x1(0) and x2(0), the model is in steady state, gen-
erating no model dynamics and so rendering the model structurally unidentifiable. We
analyse this model measuring the output y = x1 and take the unknown parameter vector
as θ = [θ1, x1(0), x2(0)].

Figure 5.4 shows the smallest singular values of individual sensitivity matrices, each
computed on the log scale for different values of x1(0) and x2(0) and θ1 = 1. This figure
suggests that the model is structurally unidentifiable when x1(0) = x2(0), with shades of
blue alluding to singular values of the order 10−14 and smaller. The model is unidenti-
fiable even for negative values of x1(0) and x2(0). Gap sizes dramatically reduce when
x1(0) 6= x2(0), indicating that a model’s structural identifiablity can easily be reinstated if
certain initial values are changed.

Figure 5.5 shows the numerical result obtained at the point [2,2] on the grid and
shows that the smallest singular value is numerically equivalent to zero, implying that
the sensitivity matrix is rank deficient by 1. The unidentifiable parameters are indicated
as nonzero entries in the last column of the right singular matrix, V , in figure 5.6.

These results can be verified symbolically by computing the determinant of the 3×3
Jacobi matrix, where each column of this matrix is related to an unknown parameter in
θ, θ1, x1(0) and x2(0) respectively. The Jacobi matrix is:
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Figure 5.4: Model with multiple sets of problematic initial conditions: The small values of the logarithm of
the minimum singular values, each calculated as a function of x1(0) and x2(0) respectively, suggest that this
model has multiple singular points. If we set the initial system parameter value to θ1 = 1, the model is locally
structurally unidentifiable when x1(0) = x2(0).

1 2 3

Singular values in descending order

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

1
0
(S

in
g
u
la

r 
V

a
lu

e
s
)

Figure 5.5: Singular values of the model with multiple sets of problematic initial conditions: Taking the
initial estimate for θ1 as 1 and x1(0) = x2(0) = 2, and measuring y = x1, the significant gap in the singular
values strongly suggest that the sensitivity matrix is rank deficient.

dG

dθ
(θ) =













0 1 0

x1(0) θ1 −1

θ1x1(0)+x1(0)(1+θ1)−x2(0) θ1(1+θ1) −1−θ1













. (5.21)

Substituting θ1 = 1, into 5.21, its determinant is:
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Figure 5.6: Entries in the last column of the right singular matrix of the model with multiple sets of prob-

lematic initial conditions: Nonzero entries indicate that θ1 and x2(0) may be structurally unidentifiable.

Det

[

dG

dθ
(θ)

]

= (x1(0)−x2(0))2. (5.22)

This indicates that the model will be structurally identifiable when x1(0) 6= x2(0).
This model, although small and academic, illustrates that models can potentially pos-
sess multiple problematic initial conditions and that these may go beyond the obvious
[0,0] point.

5.3.4. MODEL DESCRIBING A SIMPLE BIOCHEMICAL NETWORK
In this, the last of the small benchmark models, we consider the 3 state model presented
by Villaverde and Banga [3]. The authors show a loss of local structural identifiability
for certain initial values. Here, we show that our method is capable of detecting these
problematic values and we further consider the notion that problematic values may be
associated with steady state conditions. This model describes a simple biochemical net-
work which can be described by the following equations [3, 22]:

d x1

d t
=−x1x2 +p2(10−x2), x1(0) = 0, (5.23)

d x2

d t
=−x1x2 + (p2 +p3)(10−x2), x2(0) = 10, (5.24)

d x3

d t
=−p1x3 +p3(10−x2), x3(0) = x3(0). (5.25)

Measuring y = [x1, x3] as output, our numerical results reveal that the model might be
structurally unidentifiable when analysed using initial conditions x1(0) = 0 and x2(0) =
10. This result was reported by Villaverde and Banga [3]. This possible loss of local struc-
tural unidentifiability is indicated in figure 5.7, where there are 2 singular values beyond
a large gap. Figure 5.8 depicts the entries in the last 2 columns of the V matrix, related to
the 2 singular values. It suggests that parameters p2 and p3 are unidentifiable.
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Figure 5.7: Singular values of the identifiability analysis: Taking x1(0) = 0 and x2(0) = 10 and measuring the
output y = [x1, x3], the distinct gap in the singular values suggests that the sensitivity matrix is rank deficient
and that there may be structurally unidentifiable parameters.
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Figure 5.8: Entries in the last 2 columns of the right singular matrix: Nonzero entries indicate that parameters
p2 and p3 are unidentifiable.
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Figure 5.9: Dynamics observed: measuring y = [x1, x2, x3] as output, one observes that due to the initial con-
ditions of both x1(0) and x2(0), 2 of the observed states remain in steady state. The lack of observed dynamics
implies that these initial conditions are contributing to the model’s local structural unidentifiability.
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This result is confirmed by the nontrivial null-space: N

(

dG

θuni d (θ)
)

= {1,0}{0,1}, where

θuni d = {p2, p3}.

This loss of identifiability can be remedied by choosing different values for either
x1(0) or x2(0). However, it cannot be addressed by measuring state x2 additionally. Fig-
ure 5.9 depicts the observed dynamics when measuring all 3 measurement sensors, y =
[x1, x2, x3]. It shows that for this special set of initial conditions, no dynamics for either
state x1 or x2 are observed. This further supports the notion that there is a high probabil-
ity that models in steady state are structurally unidentifiable and that initial conditions
corresponding to a steady states are likely to be problematic.

5.3.5. THREE-PHASE INDUSTRIAL BATCH REACTOR

Here, we consider a model previously used to showcase different reparameterisation and
parameter estimation procedures [23, 24]. It comprises the following chemical transfor-
mations that are described by 5 reactions, RMT ,r1,r2,r3 and r4 [24]:

As → Al , RMT

Al +B →C +D, r1

B +C → E +D, r2

B +E → F +D, r3

B +F → P +D. r4

The first expression describes the dissolution of a solid A, and is governed by the reaction
rate RMT . Reactions r1 to r4, describe the subsequent steps involved in producing the
product P . These reactions are carried out under laboratory conditions and allow for
the fast removal of component D . Accordingly, the reverse reactions involving D can be
neglected.

These reactions result in the following 7 ODEs [24], with table 5.1 describing the re-
lationships between individual chemical compounds and their mathematical notations:

d x1

d t
=−(θ0MWA)1/3(x1MWA)2/3 θ1

ρRpo
(n

eq

l
−x2), (5.26)

d x2

d t
= (θ0MWA)1/3(x1MWA)2/3 θ1

ρRpo
(n

eq

l
−x2)−

θ2x3x4

V 2
V , (5.27)

d x3

d t
= (−

θ2x3x4

V 2
−
θ3x3x4

V 2
−
θ4x3x5

V 2
−
θ5x3x6

V 2
)V , (5.28)

d x4

d t
= (

θ2x3x4

V 2
−
θ3x3x4

V 2
)V , (5.29)

d x5

d t
= (

θ3x3x4

V 2
−
θ4x3x5

V 2
)V , (5.30)

d x6

d t
= (

θ4x3x5

V 2
−
θ5x3x6

V 2
)V , (5.31)

d x7

d t
=

θ5x3x7

V 2
V. (5.32)
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Table 5.1: Molar definition of individual chemical compounds and their mathematical notation.

Symbol Mathematical substitution
nAs x1

nAl x2

nB x3

nC x4

nE x5

nF x6

nP x7

Parameter θ0 represents the initial condition of state x1. The constants MWA ,ρ,Rpo ,

n
eq

l
and V and initial conditions, x1(0), . . . , x7(0), are assumed to be known and so, the

identifiability of the 5 remaining parameters, θ = [θ1,θ2,θ3,θ4,θ5], is analysed. All initial
values, except for x1(0) and x3(0), are taken as zero. The measured output defined by
Graciano et. al. is y = [x3, x7] [24].

We start by examining the model’s directed graph. A directed graph is a graphical rep-
resentation of an ODE system and depicts the connectivity between individual states.
Figure 5.10 shows that the large number of zero-valued initial conditions significantly
disrupts the flow of information between the different states. For example, x5 is com-
pletely isolated and if its initial condition was unknown and needed to be estimated, we
would have to measure x5 directly.

x1

x2

x3 x4 x5 x6 x7

Figure 5.10: Directed graph of the three-phase industrial batch reactor model: Assuming that initial condi-
tions x2(0) = x4(0) = x5(0) = x6(0) = x7(0) = 0, various connections between individual model states, depicted
as nodes, are destroyed.

Measuring y = [x3, x7], the model is found to be structurally unidentifiable. In this
extreme case, all 5 singular values are zero and so the entries in all of the columns of V

are considered. The nonzero entries reveal that all parameters are unidentifiable (figure
5.11).

These numerical unidentifiability results were confirmed by the symbolic nontriv-

ial null-space: N

(

dG
dθ

(x(0),θ)
)

= {1,0,0,0,0}{0,1,0,0,0}{0,0,1,0,0}{0,0,0,1,0}{0,0,0,0,1},

where θ = {θ1,θ2,θ3,θ4,θ5}.
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Figure 5.11: Elements of the right singular matrix, V , of the three-phase industrial batch reactor model:

Considering the entries of all 5 columns of the matrix, each related to a singular value of exactly zero, we see
that all unknown parameters are structurally unidentifiable.

To see if the model’s structural identifiability can be reinstated by changing certain
initial conditions, we now proceed with an iterative analysis of the model. First, we as-
sume that all states are measured to determine whether the model’s structural unidenti-
fiability is rooted in the measurement of inadequate states/sensors.
Analysis 1: User defined initial conditions measuring all states as output.

Taking x2(0) = x4(0) = x5(0) = x6(0) = x7(0) = 0 and measuring the output y = [x1, x2, x3,
x4, x5, x6, x7], the model remains structurally unidentifiable, now with 4 singular values
of exactly zero (figure 5.12). The symbolically calculated nontrivial null-space:

N

(

dG
dθ

(x(0),θ)
)

= {0,1,0,0,0}{0,0,1,0,0}{0,0,0,1,0}{0,0,0,0,1}, whereθ = {θ1, θ2,θ3,θ4,θ5},

confirms the numerical results in figures 5.12 and 5.13. This suggests that the source of
this model’s structural unidentifiability might be its initial conditions and this leads to
the second analysis.
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Figure 5.12: Singular values of the three-phase industrial batch reactor model: Measuring the output y =
[x1, x2, x3, x4, x5, x6, x7], and assuming initial conditions as x2(0) = x4(0) = x5(0) = x6(0) = x7(0) = 0, the model
remains structurally unidentifiable with 4 singular values beyond the gap.
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Figure 5.13: Elements of the last four columns of the right singular matrix, V , for the three-phase industrial

batch reactor model: Each column is related to a singular value beyond the gap in figure 5.12. The nonzero
elements suggest that parameters θ2,θ3,θ4 and θ5 are structurally unidentifiable.

Analysis 2: All initial conditions are nonzero and measuring y = [x3, x7] as output.

Taking all initial values as nonzero, we find that the model still remains structurally
unidentifiable, with 1 singular value of exactly zero. The symbolically calculated non-

trivial null-space is: N

(

dG
dθ

(x(0),θ)
)

= {1,0,0,0,0}, where θ = {θ1, θ2,θ3,θ4,θ5}.

These results suggest that to reinstate this model’s structural identifiability, one must
measure more sensors and change initial conditions. For this example, following just
one approach is insufficient and in the final analysis, we assume that all states are mea-
sured, and proceed by identifying the problematic initial conditions.

Analysis 3: Measuring all states and taking more nonzero initial conditions.

Measuring y = [x1, x2, x3, x4, x5, x6, x7], the model becomes structurally identifiable when
the initial condition of state x4, along with the original states x1(0) and x3(0) are nonzero.
To understand this, notice the change in architecture of the model’s directed graph in fig-
ure 5.14 when x4(0) 6= 0. It results in an increase in the number of connections between
the different states.

Table 5.2: Identifiability results following the extensive analysis of the three-phase industrial batch reactor

model: X indicates experimental conditions under which the model is structural identifiability. × indicates ex-
perimental conditions which result in the model’s structural unidentifiability, with unidentifiable parameters
indicated between brackets.

Analysis
nonzero

Initial Conditions
Output, y Structurally Identifiable?

Original x1(0), x3(0) [x3, x7] ×(θ1,θ2,θ3,θ4,θ5)

Analysis 1 x1(0), x3(0) [x1, x2, x3, x4, x5, x6, x7] ×(θ2,θ3,θ4,θ5)

Analysis 2 x1(0), . . . , x7(0) [x3, x7] ×(θ1)

Analysis 3 x1(0), x3(0), x4(0) [x1, x2, x3, x4, x5, x6, x7] X
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Figure 5.14: Directed graph of the three-phase industrial batch reactor model with x4(0) 6= 0: In addition,
x1(0) = x3(0) 6= 0. When the initial condition of state x4 is no longer zero, various connections between indi-
vidual model states are reinstated (compare this to figure 5.10). Consequently, there is an increase in the flow
of information between the different state equations.

5.3.6. JAK/STAT MODEL

As a final example, we consider the structural properties of the well-known unidentifi-
able JAK/STAT model. No literature has been published on possible remedies for this. In
chapter 3, we presented an efficient method for reparameterising this model. Here, in a
bid to offer alternative avenues to obtain its structural identifiability, we identify the ori-
gin of its unidentifiability by investigating the model’s initial conditions. The constitutive
activation of the JAK (Janus kinase)/STAT signalling pathway forms part of both the pri-
mary mediastinal B-cell lymphoma (PMBL) and the classical Hodgkin lymphoma (cHL)
[25]. Raue et al. investigated the identifiability of this benchmark model using three dif-
ferent approaches and concluded that the model is unidentifiable [26]. The initial value
of state x2 is unknown and regarded as an additional parameter and so 23 parameters
need to be inferred [26, 27]:

ẋ1 =−θ1u1c1x1 −θ5x1 +θ6x2, (5.33)

ẋ2 = θ5x1 −θ6x2, (5.34)

ẋ3 = θ1u1c1x1 −θ2x3x7, (5.35)

ẋ4 = θ2x3x7 −θ3x4, (5.36)

ẋ5 = θ3x4 −θ4x5, (5.37)

ẋ6 =−
θ7x3x6

(1+θ13x13)
−

θ7x4x6

(1+θ13x13)
+θ8c2x7, (5.38)

ẋ7 =
θ7x3x6

(1+θ13x13)
+

θ7x4x6

(1+θ13x13)
−θ8c2x7, (5.39)
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ẋ8 =−θ9x8x7 + c2θ10x9, (5.40)

ẋ9 = θ9x8x7 − c2θ10x9, (5.41)

ẋ10 = θ11x9, (5.42)

ẋ11 =−θ12c1u1x11, (5.43)

ẋ12 = θ12c1u1x11, (5.44)

ẋ13 =
θ14x10

(θ15 +x10)
−θ16x13, (5.45)

ẋ14 = θ17x9. (5.46)

The model output contains 5 additional unknown parameters:

y1 = x1 +x3 +x4, (5.47)

y2 = θ18(x3 +x4 +x5 +x12), (5.48)

y3 = θ19(x4 +x5), (5.49)

y4 = θ20x7, (5.50)

y5 = θ21x10, (5.51)

y6 = θ22x14, (5.52)

y7 = x13, (5.53)

y8 = x9. (5.54)

The initial values of the individual model states are x(0) = {1.3,θ23,0,0,0,2.8,0,165,0,
0,0.34,0,0,0} [26]. The constants c1,c2 and model input u1 are known and regarded as
constant. Let us start by considering the directed graph of the model structure related
to this particular set of initial conditions. If one takes a nonzero value for the unknown
initial condition x2(0), the model structure is shown in figure 5.15.

The SVD of the sensitivity matrix reveals that the model is indeed structurally uniden-
tifiable. This is evident from the large gap between the singular values seen in figure 5.16.

The 2 singular values beyond the gap suggest that the null-space contains 2 base
vectors and so there are 2 sets of totally correlated parameters. The union of the ele-
ments in these 2 sets, θuni d = {θ11,θ15,θ17,θ21,θ22}, follows from the nonzero elements
in figure 5.17. The symbolically calculated nontrivial null-space confirms the results in
figures 5.16 and 5.17. Analysing the potential unidentifiability of these parameters sym-

bolically, we calculate the 2 base vectors spanning the null-space as: N

(

dG

dθuni d (θ)
)

=
{0,0,−θ17/θ22,0,1} {−θ11/θ21,−θ15/θ21,0,1,0}, where θuni d

0 = {θ11,θ15,θ17,θ21,θ22}.
We now proceed with an analysis of this model to establish which initial experimen-

tal conditions result in the model’s structural unidentifiability. If changing the identified
problematic initial conditions is experimentally viable, the model’s structural identifia-
bility can easily be re-established. If not, the modeller can consider the alternative op-
tions listed in chapter 3.

Analysis 1: Measuring all states as output.

Adding additional states to the measured output therefore measuring, y = [x1, x2, x3, x4,
x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x1+x3+x4,θ18(x3+x4+x5+x12),θ19(x4+x5),θ20x7,
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Figure 5.15: Directed graph of the JAK/STAT model: This graph is generated for the initial conditions: x3(0) =
x4(0) = x5(0) = x7(0) = x9(0) = x10 = x12(0) = x13(0) = x14(0) = 0.
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Figure 5.16: Singular values of the JAK/STAT model: The 2 singular values beyond the gap suggest that the
model is structurally unidentifiable. These values also suggest that there are 2 sets of totally correlated param-
eters.

θ21x10,θ22x14], the model turns out to be structurally identifiable. This result indicates
that this model’s lack of identifiability could be addressed by measuring additional states/
sensors. These states can be determined using our minimal output set algorithm pre-
sented in chapter 2. It is important to keep in mind that measuring additional states/
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Figure 5.17: Last 2 columns of the right singular matrix of the JAK/STAT model: These columns are re-
lated to the 2 singular values beyond the gap in figure 5.16. The nonzero elements indicate that parameters
θ11,θ15,θ17,θ21 and θ22 might be structurally unidentifiable.

sensors may have practical experimental limitations.

Let us now investigate the potential role of the model’s initial conditions in its uniden-
tifiability.

Analysis 2: Nonzero initial conditions measuring as output, y = [x1+x3+x4,θ18(x3+x4+
x5 +x12),θ19(x4 +x5),θ20x7,θ21x10,θ22x14, x13, x9].
When all initial conditions are nonzero, the model also turns out to be structurally iden-
tifiable even when measuring the output defined in Raue et. al. [26]. This shows that
the model’s unidentifiability can also be attributed to its initial conditions and urges us
to look for the initial conditions that cause the identifiablity problem.

Analysis 3: Determining which zero initial conditions to avoid.

By performing an exhaustive search and selecting different combinations of nonzero ini-
tial values, we are able to identify individual or groups of problematic initial conditions.
We find that if x10(0) and x14(0), along with the original states x1(0), x2(0), x6(0) and x8(0)
are nonzero, the model turns out to be structurally identifiable when measuring the de-
fined output y = [x9, x13, x1+x3+x4,θ18(x3+x4+x5+x12),θ19(x4+x5),θ20x7,θ21x10,θ22x14].

For some smaller models, one may identify certain problematic initial conditions by
looking at a model’s state equations and/or directed graph (see figures 5.10 and 5.14 for
example). However, the problematic initial conditions of large models cannot be iden-
tified by merely looking at the model’s state equations and/or directed graph. For this
model, there is no change in the structure of the directed graph when x10(0) = x14(0) 6=
0. One therefore requires a method capable of detecting these initial conditions for
large models in an computationally efficient way. The results of these analyses are sum-
marised in table 5.3.
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Table 5.3: Identifiability results following the extensive analysis of the JAK/STAT model: X indicates initial
conditions for which the model is structural identifiability. × indicates conditions which result in structural
unidentifiability, with unidentifiable parameters indicated between brackets.

Analysis
Nonzero

Initial Conditions
Output, y Identifiable?

Original
x1(0), x2(0), x6(0),

x8(0), x11(0)

[x1 +x3 +x4,
θ18(x3 +x4 +x5 +x12),
θ19(x4 +x5),θ20x7,

θ21x10,θ22x14, x13, x9]

×(θ11,θ15,θ17,θ21,θ22)

Analysis 1
x1(0), x2(0), x6(0),

x8(0), x11(0)

[x1, x2, x3, x4, x5,
x6, x7, x8, x9, x10, x11,

x1 +x3 +x4,
θ18(x3 +x4 +x5 +x12),
θ19(x4 +x5),θ20x7,

θ21x10,θ22x14, x13, x9]

X

Analysis 2 x1(0), . . . , x14(0)

[x1 +x3 +x4,
θ18(x3 +x4 +x5 +x12),
θ19(x4 +x5),θ20x7,

θ21x10,θ22x14, x13, x9]

X

Analysis 3

x1(0), x2(0), x6(0),
x8(0),x10(0), x11(0),

x14(0)

[x1 +x3 +x4,
θ18(x3 +x4 +x5 +x12),
θ19(x4 +x5),θ20x7,

θ21x10,θ22x14, x13, x9]

X

5.4. CONCLUSIONS

This chapter offers a modeller the possibility to make his/her model structurally identi-
fiable simply by choosing alternative initial conditions. In the last example, we showed
that problematic initial conditions cannot merely be found by regarding a model’s di-
rected graph and state equations. This is particularly true for large ODE models and so,
one requires an efficient method capable of detecting these problematic values.

We showed that our sensitivity based method, which numerically assesses the local
structural identifiability of a model, correctly and efficiently identifies problematic ini-
tial conditions. Our method can do this analysis within seconds, and in doing so, we go
one step further than the general identifiability methods, in the sense that we are capa-
ble of detecting the cause of a model’s unidentifiability. This is useful to experimental
modellers wishing to address the structural unidentifiability of their models.

The key findings of this chapter can be summarised as: 1) a model may have multiple
sets of problematic initial conditions, 2) problematic initial conditions are not restricted
to zero values, and 3) certain initial conditions may result in steady state conditions.
Moreover, we saw that there is a high probability that models in steady state are struc-
turally unidentifiable and so initial conditions corresponding to a steady state are likely
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GENERAL DISCUSSION

Dominique JOUBERT

Some of the big challenges that we face, both societal and scientific, are just not solvable

by people sitting in their single-discipline silos – bringing those disciplines together in the

long term is what provides the big, big breakthroughs.

(Kedar Pandya, 2011)
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6.1. INTRODUCTION

In this thesis, I endeavoured to address the following quote...

“The lack of real contact between mathematics and biology is either a tragedy, a scan-
dal or a challenge, it is hard to decide which.” (Gian-Carlo Rota, 1932-1999)

It was briefly mentioned in chapter 1 that advances in the field of systems biology
may be stifled by the lack of development in technologies that are required to analyse
models from this field [1]. The job at hand is clear, scientists require easy to imple-
ment methods to help them strengthen their scientific outcomes. Ideally, these methods
should ease the computational burden often associated with reaching these outcomes.
The solution lies in an interdisciplinary approach, and the work presented in this thesis
bridges this gap by drawing from both mathematics and control engineering.

Before using a model, its identifiability should first be analysed. This analysis can be
divided into two categories, structural and practical, with the former inspected before
any experiments are conducted. Structural identifiability is important since predictions
regarding states and inputs of unidentifiable models may be incorrect. These significant
consequences are even more poignant in the context of systems biology, where inac-
curate predictions involving medical and pharmaceutical models, can lead to incorrect
diagnoses and treatment regimens [2].

Structural identifiability and the need for efficient methods to analyse it is the main
theme of this thesis and the silver thread connecting the individual chapters. I systemat-
ically showed how researchers can use the hybrid structural identifiability method, de-
veloped by Stigter and Molenaar [3], in an array of complimentary applications. These
range from the preliminary design of experiments, to practical examples of how one is
to go about eliminating redundant parameters from a model. I chose to use this method
since it efficiently assesses a model’s identifiability by first analysing it numerically, and
then uses the numerical results in subsequent symbolic calculations. This significantly
reduces the computational demand often associated with symbolic analyses. In this
chapter, I highlight my contributions to both the systems biology and structural iden-
tifiability communities.

THE MODEL DEVELOPMENT PROCESS

The role and location of a structural identifiability analysis in the model development
process is shown in figure 1.1, with an alternative structure given in [4]. Ideally, this anal-
ysis should always be performed since its conclusions have significant repercussions on
the rest of the virtuous cycle. In the worst case scenario, a practical identifiability anal-
ysis may reveal that certain parameters cannot be estimated uniquely. Moreover, some
parameters may be totally correlated. The source of this problem may however not be
understood. Consequently, a modeller can be left with very little to show after spending
significant time, effort and money on the development of his/her model. Despite its im-
portance, numerous misconceptions and challenges regarding structural identifiability
remain and these include:
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1. Ignoring structural identifiability analysis.

Systems biology models are occasionally published without any mention of a struc-
tural identifiability analysis. For these models, practical identifiability results might
reveal that the degree of correlation between individual parameters is admissible
and so, a model can be adopted. However, if this is not the case, the discovery of
totally correlated parameters within a model then only comes after incurring costs
related to experimental measurements.

An example of such a model is a recently published respiratory mechanics
model [5]. In their paper, the authors conclude that the model is indeed practi-
cally unidentifiable. They suggest that a possible remedy to this is to include a
procedure which limits a patient’s air supply and so, additional experiments are
required. A structural identifiability analysis of this model might be insightful and
avoid the fact that in the future, additional experiments may again be needed.

A structural identifiability analysis was also omitted in the development of a
biodiesel model by Price et. al. [6] and the subsequent paper written on the topic
of experimental design by Yu et. al. [7]. In both of these papers, the practical iden-
tifiability of the model is analysed and the authors conclude that only 10 of the 20
system parameters can be estimated accurately. However, a structural identifiabil-
ity analysis would reveal that when the initial condition of x15 [7] is zero, the model
is structurally unidentifiable. Crucially, the experimental initial value of this chem-
ical constituent is 0.0000097165 and given the model’s sensitivity to small values of
this particular state’s initial condition, this small value is most probably the cause
of this model’s practical identifiability issues. Given this insight, experimental de-
sign strategies might initially be focused only on changing the initial value of the
chemical compound related to x15. This step might be sufficient in addressing the
model’s practical identifiability issues.

2. Structurally unidentifiable, now what?

Papers that do cover the topic of structural identifiability, and so acknowledge its
importance in the model development process, often finish with an unidentifi-
able conclusion. With this abrupt end to the story, these papers all play a vital
yet limited role in the model development process and the issue of solving the
“problem” still remains. Conversely, examples of publications that mention pos-
sible strategies to regain a model’s structural identifiability include: Anguelova et.

al. [8] (determining minimal output sets), Saccomani et. al. [9] (determining the
role of initial conditions in a model’s local structural identifiability), Villaverde et.

al. [10]. In the work done by Chappell and Gunn [11] and Evans and Chappell
[12], the authors identify identifiable parameter combinations and reparameterise
unidentifiable models.

3. A model is too large or contains irrational functions.

The number of software applications capable of analysing large nonlinear ODE
models is limited. Villaverde et. al. commented on this by stating that a structural
identifiability analysis is seldom performed since the computational demand pro-
hibits the analysis of large models [10]. The methods currently available for the
analysis of large systems are: 1) a semi-numerical Exact Arithmetic Rank approach
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proposed in 2012 by Karlsson et. al. [13] 2) STRIKE-GOLDD [10] 3) Profile likeli-
hood approach [14] and 4) the hybrid method by Stigter et. al., where large models
were analysed in [15]. Methods (1)-(3) are computationally demanding, and so the
method in (4) may be preferable when analysing certain large models.

Methods are often also restricted to the analysis of rational models. An example
of a model not analysed for its structural properties due to the fact that it contains
irrational functions is the gastrointestinal stromal tumor (GIST) metastasis to the
liver model [16]. In their publication, the authors explicitly mention the fact that
they could not analyse the model’s structural identifiability since most methods
only facilitate the analysis of rational models. For these cases, the method in (4)
may be of use.

4. Simplicity and availability of methods.

Finally, a possible reason for failing to analyse a model’s structural identifiability
might be the limited number of readily available software applications. The avail-
able open-source software toolboxes include COMBOS [17], DAISY [18], EAR [13],
STRIKE-GOLDD [10] and GenSSI 2.0 [19]. According to Ligon et. al. [19], one
of the shortcomings associated with some of these methods is the fact that they
do not support community standards, i.e. the Systems Biology Markup Language
(SBML), and only support the analysis of individual experimental conditions. A
method should therefore be capable of analysing ODE models in both SBML and
general formats. Some of the above mentioned methods also only allow for the
analysis of small rational ODE models and this further contributes to the fact that
some of these cannot be used by the systems biology community.

6.2. HIGHLIGHTS OF RESULTS
The highlights of the results obtained in this thesis include:

1. Ignoring structural identifiability analysis - A missed opportunity.
Structural identifiability is a prerequisite for practical identifiability and so it is al-
ways good modelling practice to conduct this analysis. The structural analysis of a
model can ensure that no experimental effort is lost by ensuring that all parame-
ters can be estimated. By failing to conduct such an analysis, one misses out on the
opportunity of preliminary designing experiments. More concisely, in chapters 2
and 5 we showed that our method can be used to determine which states/sensors
should be measured and which experimental initial conditions should be avoided.

2. Structurally unidentifiable, here’s what?

Offering modellers insight into the source of their model’s unidentifiability and in-
dicating how they are to go about reinstating it is a prominent theme in this thesis.
In chapter 3 for example, we addressed the topic of reparameterising structurally
unidentifiable models and in chapter 5 we showed that our method is capable of
detecting problematic initial conditions for large ODE models.

3. Large models and/or irrational functions.

The hybrid nature of our method allows for the analysis of large ODE models. Ex-
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amples of these can be found in chapter 4 where we analysed, amongst others, the
large Chinese Hamster model. Moreover, in chapter 2 we determined the MOS of
an irrational model (example 8).

4. A simple and accessible method - preparation.

The final important contribution of this thesis is the work done in a bid to under-
stand the main factors that influence our numerical results. The insights gained in
chapter 4 will, in the future, help us develop an easy-to-use open-source software
application that will be able to analyse a plethora of different models from various
disciplines. It will include, but not be limited to, the SBML markup language.

6.3. DISCUSSION

MINIMAL OUTPUT SETS

This application of our method addressed the first objective listed in chapter 1, identify-
ing the minimal sets of outputs that need to be measured to ensure a model’s structural
identifiability. Minimal output sets form an integral part of our structural identifiability
method. As presented in chapter 2, it can be used in the optimal design of experimen-
tal measurement sets. This ensures that a scientist knows exactly which sensors he/she
should measure to ensure that the model in question remains structurally identifiable.
This can indeed be a valuable insight especially when numerous of these sets exist, in
which case he/she can take physical constraints such as experimental cost and time into
account.

A second important application of the minimal output set algorithm is in the struc-
tural identifiability method itself. This was alluded to in chapter 4, where potential prob-
lems that may be encountered when using our method were mentioned (section 4.3.3).
We showed that when a model is analysed measuring only a small number of states/
sensors in proportion to the total number of states of the model, the numerical accuracy
of our method may be compromised. In these instances a model should be analysed
thoroughly, with the explicit aim of determining both which states/sensors are impor-
tant and whether or not they are present in the defined measured output. To this end,
our MOS algorithm developed in chapter 2 should be used.

Even when a model is found to be structurally unidentifiable, performing a MOS
analysis can be valuable in identifying the potential cause of this unidentifiability. A
good understanding of a model’s minimal output sets can help a scientist make a well-
informed decision on how to reinstate the model’s identifiability by providing a list of
possible states/sensors that should be measured.

The final important point to raise in this concluding discussion is the matter of im-
proving the efficiency of the MOS algorithm itself. The aim is to reduce the number of
analyses that are required during an exhaustive search for a model’s minimal output sets.
In the supplementary file S9 in the Appendix of chapter 2, we introduced the concept of
randomly omitting states/sensors from an output. We subsequently showed that by re-
peating this process, one can significantly reduce the number of analyses required to
detect all the states/sensors that should be included into a measured set, whilst main-
taining a 99.5% probability of detecting such an important set. The equation used to
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compute the number of Bernoulli trials required, R, is:

P̄det = (1−P (X = K ))R , (6.1)

where P̄det is the probability of not detecting a set of states/sensors that should be in-
cluded into a model’s minimal sensor set. This value should be small and we used 0.5%
as a benchmark. P (X = K ) indicates the probability of successfully detecting a set that
consists of K important states/sensors that, if not measured, result in unidentifiability.
R is the required number of Bernoulli trials. The novelty of the work presented in this
chapter is that one could determine the sets of important sensors, even for large systems
biology models within a matter of minutes.

REPARAMETERISING UNIDENTIFIABLE MODELS
This addressed the second objective listed in chapter 1. In chapter 3 we set out to present
a method that could provide theoretical suggestions for the reparameterisation of struc-
turally unidentifiable models. The limited number of detailed publications on this topic
have, thus far, only included small models comprising 2 or 3 state equations as examples.
These include the work of authors such as Neil Evans and Mike Chappell and Nicolette
Meshkat and Marisa Eisenberg, [11, 12, 17, 20].

We obtained reparameterisations for large ODE models due to two prominent fea-
tures of our hybrid method. The first is that unknown initial conditions can be treated
on the same footing as parameters. Accordingly, repameterisations involving uniden-
tifiable initial conditions could easily be obtained. The second is the fact that the nu-
merical analysis of a model filters out suspected unidentifiable parameters. This sig-
nificantly reduces the number of subsequent symbolic calculations that are required to
obtain suitable solutions to the partial differential equations describing the linear de-
pendence between the columns of the Jacobi matrix. For example, we reparameterised
the lung cancer model with 21 states and 75 system parameters in hardly any time. This
reparameterisation necessitated the transformation of certain states.

THE ROLE OF INITIAL CONDITIONS
In chapter 5 we addressed the third thesis objective, i.e. detecting sets of problematic
initial conditions. We showed that our algorithm can be added to a list of 3 software
packages capable of detecting these problematic values and that it can do so for large
ODE models. This is novel since previous publications on this topic have only included
small 2 state models as examples.

The numerical characteristics of our method, which requires the definition of both
system and initial values, enabled us to search for potential sets of initial conditions lead-
ing to a model’s structural unidentifiability. This was done by performing an exhaustive
search and ultimately, a model’s identifiability could be reinstated by changing the val-
ues of the identified culprits.

The ability to efficiently detect problematic initial conditions could also complement
the preliminary experimental design phase, by allowing for the compilation of a list of
initial conditions that should ideally be avoided. As we saw in chapter 5, these values can
be zero or nonzero or combinations of initial and parameters values, and that a model
may have multiple sets of these problematic values. An important point that became
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clear in this discussion was that models in steady state have a great chance to be struc-
turally unidentifiable.

A ROBUST NUMERICAL METHOD

Ultimately, the aim is to achieve the above mentioned functionally for a wide range of
ODE models. Our method should therefore be robust. In chapter 4 we addressed the
final remaining objective defined in chapter 1, identify key factors that influence the
numerical structural identifiablity results. We performed a sensitivity analysis of our
sensitivity based method to determine which factors where the most influential on the
numerical accuracy.

We identified: a. parameter and initial values and, b. the composition of the mea-
sured output vector as 2 factors that had a significant effect on results. When analysing
a model under specific experimental conditions, both these factors can be fixed. This
implies that a researcher may wish to analyse his/her model for a specific set of initial
conditions, and/or a specific measured output. We therefore required a strategy to miti-
gate this sensitivity.

To this end, we introduced the concept of vertically concatenating numerous sensi-
tivity matrices. Each of these matrices are evaluated for a different set of parameter and
initial values, keeping key user defined values and the values of possible unidentifiable
parameters unchanged. Here the MOS algorithm plays a crucial role, since it can be used
to first detect possible unidentifiable parameter sets. Accordingly, the MOS algorithm
can significantly contribute to the robustness of our identifiability method.

6.4. CONCLUSION AND FUTURE WORK

To conclude, in this thesis I introduced an algorithm that can be used in an array of
useful applications during the model development process. These include: 1) determin-
ing minimal output sets, 2) reparameterising structurally unidentifiable models and 3)
detecting problematic initial conditions. Each of these can be implemented before any

experiments are conducted and can play a potential role in the optimisation of the mod-
elling process.

Future developments in the field of systems biology will continue to drive and define
the direction of development of the co-disciplinary research fields that support it. In the
structural identifiability context, the need for numerous advances remains, the first of
which is the development of a database that contains models of different sizes. This can
in turn be referred to when testing and developing new structural identifiability meth-
ods. Large amounts of time can often be spent on finding relevant ODE models with well
defined initial conditions and measured outputs and this small step might help. It may
also contribute to the standardisation of results, with newly published methods includ-
ing some benchmark examples that allow for comparison with pre-existing methods.

A second major contribution that remains to be made is that of easy-to-use open-
source software. The availability of such tools will allow model developers to analyse
their respective models under different experimental conditions as well as offer them
the opportunity of implementing the 3 different applications presented in this thesis.
The hope is that making this software readily available will increase the number of mod-
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els analysed and that these will not be limited to systems biology applications since nu-
merous other fields such as engineering and economics also use ODE equations. This
software should facilitate the analysis of models both in SBML and ODE formats.

Another interesting topic that should be explored in greater detail is the structural
identifiability analysis of large controlled ODE systems. There has been very little pub-
lished on this topic and our numerical method can assist in reducing the computational
demand associated with these analyses.

The final two future applications stretch beyond the scope of structural identifia-
bility. The general consensus is that the analysis of nonlinear models is difficult. Fur-
thermore, identifiability, observability and controllability are all structural properties of
a model that describe the relationships between the state, input, and output variables
[21]. Since controllability is the dual problem of observability, a possible application of
our method is analysing the controllability of a model. This was alluded to by Stigter et.

al. in their 2018 conference paper [21] in which they illustrate how to evaluate the local
controllability of an ODE model. Similar to the efficiency of the structural identifiability
method observed in this thesis, this extension naturally lends itself to the controllability
analysis of large ODE models.

Finally, the numerically calculated sensitivity matrix, denoted as S, can play a role in
practical identifiability analyses [3, 22]. The practical identifiability problem is based on
noisy measurements of the dynamics of a measured output over a range of discrete time
points. The set of these measured outputs can be denoted by z and defined as [23]:

z(t j ) = y(t j ,θ)+e(t j ), (6.2)

where t j = 0, . . . , tN and the error term, e(t j ), is assumed to belong to some distribution.
In short, the confidence region of the individual unknown parameters in θ can be ap-
proximated, a priori, from the Fisher information matrix [23]. The Fisher information
matrix can easily be calculated using the sensitivity matrix as [24, 25]:

F = ST S. (6.3)

This matrix is often used in experimental design applications, with the aim of reducing
the confidence intervals of the respective parameters. Examples of factors that can be
optimised are: 1) the external control inputs, u(t ), 2) the experiment’s duration, tN , and
3) sampling times, ti . The message here is that our method can easily be used in further
experimental design applications [26]. Having already calculated a sensitivity matrix, we
can easily design other features of an experiment.
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ACRONYM LIST

ODE Ordinary differential equation
SI Structural identifiability
LTI Linear time invariant
ORC Observability rank condition
s.l.i Structurally locally identifiable
s.g.i Structurally globally identifiable
SVD Singular value decomposition
MOS Minimal output sets
SBML Systems Biology Markup Language
R.O.T Rule of thumb
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SUMMARY

A fundamental principle of systems biology is that it will always require new technolo-
gies to solve challenging biological questions. This precept will continue to drive the de-
velopment of novel analytical tools, and so the virtuous cycle of biological progress can
only exists when experts from different disciplines including biology, chemistry, com-
puter science, engineering, mathematics, physics, and medicine collaborate. General
opinion is however that one of the challenges facing the systems biology community is
the lag in the development of such technologies.

The research conducted in this thesis aimed to provide systems biologists with a tool
that can be used to: 1) assess the structural identifiability of their models, 2) obtain a
clear strategy on how to address structural unidentifiability, and 3) preliminary design
experiments.

The hybrid property of the algorithm presented here, which combines both numer-
ical and symbolic identifiability calculations, allowed for a significant reduction in the
computational demand often associated with identifiability calculations. This enabled
us to analyse large ODE models for which certain analyses would be computationally
intractable.

In Chapter 2, I introduced an iterative identifiability algorithm that could determine
minimal sets of outputs that need to be measured to ensure a model’s local structural
identifiability. I proposed that in the future this algorithm could be used in the prelim-
inary design of experiments and that this would give scientists valuable insight into ex-
actly which sensors they needed to measure to ensure that the unknown parameters of
a model could in principle be estimated. I also illustrated how one could potentially re-
duce the computational demand of the algorithm by randomly omitting states/sensors
from the measured output each time it is repeated.

The novelty of the work presented in this chapter is that one could determine the
sets of important sensors, even for large systems biology models within a matter of min-
utes.

In Chapter 3, I addressed the topic of structural unidentifiability. I presented a method
that could provide theoretical suggestions for the reparameterisation of structurally uniden-
tifiable models. The novelty of this work is that the algorithm allowed for unknown initial
conditions to be parameterised and accordingly, repameterisations requiring the trans-
formations of states associated with unidentifiable initial conditions could easily be ob-
tained. In addition, the computational efficiency of the method allowed for the repa-
rameterisation of large ODE models.
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In Chapter 4, I investigated potential ways in which numerical accuracy could be
improved. I preformed a sensitivity analysis of our sensitivity based method to deter-
mine which factors where the most influential. I started off by mentioning the pitfalls
of the algorithm: 1) accuracy issues due to scaling, 2) problems integrating stiff systems,
and 3) the potential effect of number of sensors measured. I concluded that parame-
ter and initial values and the composition of the measured output vector had the most
significant impact on numerical results. To this end, I showed that numerical accuracy
could be improved by vertically concatenating sensitivity matrices.

In Chapter 5, I revisited the topic of structural unidentifiability, this time investigat-
ing the role of initial conditions in a model’s structural unidentifiability. I showed that
the algorithm can be added to a list of 3 software packages capable of detecting prob-
lematic initial conditions and that it is capable of detecting these values even for large
ODE models. This novel since previous publications on this topic only included small 2
state models as examples.

The method has potential roles in both addressing structural unidentifiability and
preliminary experimental design, since the efficiency of the method allows for the de-
tection of problematic initial conditions using an exhaustive search. I showed that prob-
lematic initial conditions can be zero or nonzero values or combinations of specific sets
of initial and parameters values, and that a model may have multiple sets of these prob-
lematic values. A final point raised was that models in steady state might be structurally
unidentifiable.

In the General Discussion in Chapter 6, I discussed the results obtained in the dif-
ferent chapters and highlighted the important concepts that emerged from each of the
chapters. I continued to discuss future work that needs to be done in the context of pro-
viding easy-to-use tools to the systems biology community. The main features being the
development of an online tool that could be used to analyse models. Ultimately, newly
developed technologies need to be advertised and to this end a lot of work remains to be
done.
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1. Due to its solid numerical approach, the identifiability algorithm analysed in this

thesis allows for the analyses of models that could otherwise never be examined.

(this thesis)

2. When analysing local observability for a given dynamical system, the only role for

a Lie algebra, imposed by its associated Lie-bracket operator on the given vector

fields, is to verify numerical results.

(this thesis)

3. Due to sloppy reporting, many model predictions in the literature are irrepro-

ducible and therefore useless.

4. Science will never solve all our problems nor will it answer all our questions.

5. The narrative that quantifies human progress in terms of economic growth is de-

structive.

6. The solution to global warming lies in the commoditization of oxygen.

7. The current relationship between Africa and China can be described as colonisa-

tion version 2.0.

Propositions belong to the thesis entitled,

Structural Identifiability of large Systems Biology models

Dominique Joubert

Wageningen, 21 October 2019
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