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~1.. . INTRODUCTION Experiments are performed for identification purposes,

i.e. to identify the values of unknown paprameters from data. In the event

that one or more parameters can not be identified, the cause could be the

result of a varlety of problems: insuffcient or infrequent sampling, random

_ar nonrandom disturbances, numerical ill-conditioning and etc. The input-

output codfiguration may also be the cause of non-identifiability. 1In other

words, even if the sampling and numerical procedure could be carried out
... under: the most. ideal conditions, certain parameters may not be identifiable
. because these parameters are not uniquely contained in the transfer §unction,

_..in which case these parameters are said to be not structurally identifiable

[t1.

During the past decade a variety of criteria have been established in
order to test the structural identifiability properties of parametets for a
general compartmental system. (See [2-9] and references therein.)  These tests
are:analyticai, requiring‘only the model, the set of unknown parameters
and%the input~output configuration. Since actual data is not required, these

structural idenfifiability tests should be- performed prior to the planned

‘ experiment in order to determine if identifiability is at 1east possible. in

ther words, the most anpropriate time to consider structural identifiability
is during'the‘planning stages of the experiment.
With the advent of the better sampling techniques, sophisticated
computer technology; and:impio§éd’ﬁumériéél procedures, biological models are
becoming increasingly larger and more complex. However, the analytical

methods (by themselves) become computationally unfeasible as the structure



to be examined increases in complexity. The problems arising from large
oyotems are becoming a major issue in the theory of structural identifiability.
“One approach to this problem t8 computerisation of the existing methods [2,3].
HAnother approach is to decompose the large system int6 smaller systems [4,5].
This paper uses the latter approach Of course, there are a multitude of

‘ ways of decomposing a system into subsystems and a variety of techniques can
»be employed to take advantage of the decomposition

- The basic idea, to be presented here, is to represent the system as

two systems in series (Figure 1) or as two subsystems in: patallel (Figure 2).
Inloither case the transfer function: ¢ 18 a combination (a product or a sum)
‘of“thé transfer‘functions (1) (i =1 ,2) of the constituent subsystems.

So the problem {s to obtain necessary and sufficient conditions for struc-
turally identifying the constituent transfer functions. Of course the con-

stitugnt subsystems may be further decomposed
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Figure 2. Subsystems in parallel: ¢ = ¢(11 + @(2).



The main purpose of this paper ig to formulate criteria for decompos-

ing a large system into subsystems in such ways as to be able to determine
the identifiability properties of parameteré, with respect to the large
system, by their identifiability praperties; with respect to the subsystem
in which they are contained. Thesge criterié will be illustrated by apply~-
ing them to the model which is used to deécribe the kinetics of Very low
Density Lipoprotein friglycerides.

Being primarily concerned with applications to tracer and drug studies,
we use the nomonclature from compartmental analysis however the results

apply in generalit? to the class of 1ineathime-invariant systems.

2. Problem statement, definitione, and preliminary results

A. Concept from systems theory and compartmental analysis
We consider arfirét—order perturbatioﬁ experiment with 0, test

inputs u, and né measurement outputs Vo OO an n-compartmental sys-

tem in a constant steady state. The set of equations representing the dyna~

mics of the deviation X of the generic 1 th compartment from its

i,

steady-state value and of the relations between such deviations and measure-

meits is linear and time-invariant [10]:

n
1 B
.x‘=f )z -+ Z a x + z b U (isl 2,0-1,“)‘
4 303i1 qep M3 e M
n
Yy = 121 cni®y (m=l,2,...,nc),

or, in the usual system-theory matrix form,

k = Ax + By, x(0) = 0, y = Cx, ' 2.1)



where x 1s the state vector formed by the n varlables X u 1is the

input vector formed by the ng inputs (including instantaneous (delta

function) inputs), y 1s the output vector formed by the nC experimen-

tal measurements, B is the nxn,, input matrix of elements bit’ ¢ 1is

" the 1. xn outp&t matrix of elements Cong ® and A is the nxn compartmental

" matrix of fractional transfer coefficients, a (i+j), and a,, = - z a,
. 19 3137 Tyh %
14
(

aOj denotes the fractional transfer from J] to the environment).

The dynamical system (2.1) is characterized by its transfer‘function (matrix),

8(s) = C(sl-A) 18, O @.)

where & 1s the Laplace transform variable and I generically denotes an

jdentity matrix. An ldentity which is useful in connection with the transfer

function is [11]

(s1-0) " = R(8)/0(s), | 2.3)
where
_ -1 . n n-1 n~2
A(s) = det(sT-A) =g <+ sn—ls + Sn_zs +...+ 60.
, (2.4)
is the characteristic polynomial and
a 7 nli ) S n-2 . n=3;
R(8) (s +6 8 +'°'+5n-1)1 + (s THSq8 T4
£ 5 A +.. .4 (548 yat=2 4 anl (2.5)
n-1 cr 1

Premultiplying and ppspmultiplying in (2.5) by C and B, respectively,

 we obtain
¥(8) = P(s)/a(8), (2.6)

where



P{s) = CR(s)B. : (2.7)
Fach entry in the tranéfer function is a ratio of polynomials,.

byy(8) = 2y ()/0(8). (2.8)

1f  A(s). has a monomial factor which is a common factor of all Pij(s)’
1= 1,2,.00,05 § = 1,2,...,ny, then 0(s) 1is reducible; otherwise it is
irreducible. The system (2.1) is reducible or irreducible according to

whether or not its transfer function is reducible or irreducible.

Examgie’Z;l Tﬁe'system in Figure 5, Section 5 arises from decomposing
the larger system, Figure 3. The transfer function corresponding to Figure
5 (see Example 4.1) is

8,99,%%9%10 911

P(538) = Toro ) (a40,) (540,) (40, )(840 ) * 830,

2.9

(6 = (Baﬁ5’96’67’98’89’816’611) ig the parametrization vector.)
The characteristic polynomial, A(s;8), is the product of the six monomials
appearing in (2.9). Let ¢q(s;8) be the least common multiple of these

monomials., Then ¢ = 4 41f and only if .
611 # 8k, k’- &;?gagggioi (5010,

Thus cogditianr(z.la) {8 necessary and sufficient for irreducibility.

Remark 2.1  The irreducib;lity conditions (2.10) are satisfied at all points
_in_the eight dimensional parameter space except on the lower dimensional

hyperplanes, 611 = ek’ k = 6,?,8,9,10. Thus ¢(s;8) is irreducible almost

everywhere, This fact is deduced more easily from input-output connectability
and related criteria [7,8]. We shall say more about the almost everywhere

property in Remark 3.1.



The system (2.1) is CC (completely controllable) if its controllability

matrix Y ='[B,AB,..;,An~l

B] is of full rank ({.e. UU' is nonsingular)

4t is CO(completely observable) if its observability matrix V = fct,atct,

...,(A’)n”lc'] (" ' " means transpose) has full rank. We will require the

following well-known result (1213131, 161y,

Lemma 2.1 A system is irreducible if and only 1f it is both CC and CO.

Example 2.2 The system in Figure 4 arises from decomposing the larger

pystem, Figure 3. 1In this case

cAB = (1,0, |"@at0ye*0 )_gl],(é],
0, 1

which gives det U = 8,4 det V = 91. Since 8, 8, are nonzero parameters
this system 18 irreducible.
The matrices which appear in P(8) (formulas (2.7), (2.5)) are the
n, X fy ‘matrices
M, = ca¥s, k = 0,1,... . (2.11)

They are called the Markov matrices, or the Markov parameters in the case

ot

n, = ng = 1. The Following result is well known [6].
Lemma 2.2 All the Markov matrices (2.11) are uniquely determined from the
transfer function. Conversely, the Markov matrices, Mﬁ;gk;a~0,l,..,,2n -1

(the first 2n suffice) uniquely determine. the transfer function.

8. Structural Identifications

Ve cdnsidéf a planned experiment. We know, a priori, that (for a non-

resoriant system) §he transfer function will have the form [6]

r
§(s) = [ D /(stm)s (2.12)
=
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whete the Dy and the ™, are estimable from input-output data, without regard

to system parameters. We call the functlon definéﬂwﬁy formula (2.12) the measgur

trapsfer_function* On the other hand, azkormal éxbression for the transfer
function is_cbtained from formula (2.2); hbﬁevef;'ﬁﬁe;mhtficea which appear
{n this formula are given in terms of a parameter vector B8, and so the

parameterized transfer function is

5(830) = C(0) (sI-A(8)) TB(9). C(2.13)

The structural identifiability problem consists of establishing whether or
' ndt’-g}v 6t a single parameter 0, can be determined from the relation-

ship
@(é;g} = $(8). (2.14)

By a single parameter, we mean a constituent Gi of 6 of a lumped combi-

nation of the Bi. The dimension of § 18 agsumed minimal; there are no

relations between the Bi.
There are several useful definitions of structural identifiability,
each carries a particular poiat of view [9]. Some of these are glven

below.

(1) Unique identifiability (also called global  identifiability). The single

parameter, 0, 1is sald to be uniquely iﬁentifiable (from the transfer func-

tion) if there exists a unique solution for 8 Msatisfying equaﬁiqnc(Zflﬁ).
If all‘componénﬁa 8£ of the pérameter:vecgqg ,Q_Vare'uniquely.identifiable

then the model is sald to be parameter identifiable.

Example 272_‘§opmula (2.13), applied to- the dystem in Example 2.2, yields

o(a;8) = (s+0,)/1s +(sl+ez+c)s+slg}, (2.15)



;D2/(3+w2) {the ™

" ity ‘between sets: {ﬁﬁ

o

where o= 63.+ 65

(Example 2.2) the measurable transfer function hag the form &¢(s) = D1(8+ﬂ1) +

+ 65. Since the 2-compartmental system is irreducible

i

81 = Dlﬂz + Bzﬁl, Bl + 62 + g = ™y + Ty elc = MyT,. Consequently, 61,82,

and o are uniquely identifiable.

" are distinct (see [14])). Equation (2.14) yields,

(11) 1Identifiability (also called local identifiability). 1f there does not

exist a dnique golution for aiparticular parameter but there is at most

fiﬂiteiy mahy éolutions, as iB:Example 2.4 (below), then it may still be

possible to ascertain the appropriate solution, say, from a priori knowledge

of the parametei's réﬁge. Therefore, the following definition is useful.

The single parameter © 18 said to be identifiable 1if there exists at most

finitely many solutions for @ satisfying equation (2.14). 1f all 9i are

tdentifiable the model is said to be system identifiable.

Example 2.4 We return to Example 2.1. Assuming irreducibility (it will be
éhown later that this condition is not necessary) the measurable transfer func-
tion has the f;rm, t({g) = E/(s+ﬂ3)(s+n4}(é+ﬁ5)(a+n6)(s+n7) + Df(8+ﬂ8).
Equating this expression to expressilon (2.9) obtains 611 =Ty and the equal-

,67,88,69,610} = {ﬂ3,ﬁ&[j5,n6,ﬂz}. Each Bk, except

has five possible solutions; thus Gk is identifiable but it is not

uniguely identifiable, while 811 ias uniquelyridentifiable. Finally, 84

is identifilable and 95 1s uniquely identifiable from the relationships:

”BéAn E/(666?8869610), 65 = D/911 (the Bi are nonzero.parameters).

It is interesting that this system is identifiable whether or not the

-irreducibility condition (2.10) is satisfied (see: Example 4.2). The example

is among many examples which show that irreducibility is not necessary for

{dentifiability [6].
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(iii) identifiability from a constituent function. Suppose that the

(méasurableeuuiparameterizeé} forms of the transfer function is expressed

2,1 4 m e 4 @

in terms of two other funcfions, e.g., ¢ =0 + 77,

as depicted in Figures 1 and 2. The relationship is denoted by
#(s) = F(£(s),g(s)), 0(8;6) = F(f(s;8),g(s38)). (2.17)

A constituent function, £, of the transfer function is.éaid to be ldenti-
fiable (resp. uniquely ifdentifiable) if there exiaﬁ atrﬁoet finitely many
. solutiona (resp. a unigue solution) for f frgn;the-relationghip $(s:8) = o(8).

. The single parameter 6 is said to be identifiable (resp. Qniquely
identifiable) from the constituent function, £, 1if theré are at most finite-
ly many (resp. a unique sclution) for © from the relatioﬁship,krf(s;g) = f(a).

The following results should be apparent from the above definitions.

Lemma 2.3 Suppose that a constituent function, £, is identifiable (resp.
uniquely iéentifiabie) and that a single parameter 6 is identifiable (resp.

uniquely identifiable) from £, then 6 is identifiable (resp. uniquely iden-

tifiable),

écnltitute the transfer function as givan in formula (2.6)) are both uniquely

{dentifiable constituent functions, provided that the system {s irreducible.

3. :Systems in series In this section we consider a system whose flow dia-

gram is depicted in Figure 1. To be precise we need to distinguieh compart-

ments in terms of the input—output_relations. Conasider the dynamical equa-

tions, (2.1). A compartment k 1is said to be an input compartment if

bkj # 0 for at least one index J; it is said to be an output compartment
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if 4 0 for at least one index 1. We also distinguish the compart-

Cik

ments in terms of the direction of flow within the system. A compartmental

system is sald to admit a T-R {transmitterureceiver) decomposition if the

compartments can be separated into disjoint sets, T, the transmitters

and, R, the receiver, such that

B, = 0, t €T, r €R. (3.1)

The system (2.1) ie said to be in series if it admits a T-R decomposition

such that no transmitter compartment is an output compartment, i.e.,

e ™ 0, t€T, 1= 1,2,.,‘,nc, (3.2)
and no receiver compartment is an input compartment, i.e.,
(3.3)

b . =0, r€ER, } = 1,2,...,nB.

rj
In other words, a system is in series if and only 1f the compartments
. can be numbered in such a way that the matrices A, B, and C can be parti-

tioned:

y , (L) o
Aa B 0(2} T I E},c(ﬂ. (3.4)
g a®@ 0

Here "0" generically denotes a matrix of zero entries, A(l) (resp. A(Z))
ig the n(l) x n(l) (resp. n(z) X n(2)) compartmental métrix whoge elements are
the fractional transfer coefficients from transmitter to transmitters (resp.

‘receivers to receivers), E 18 the n(z) x n(l) matrix whose elements are

the fractional transfer coefficients from transmitters to receivers, B(l)
is an n(i) ® ng (jnpgt) matrix and 8(2) i8 an nC X n(z) {output)

matrix.

Lemma 3.1 1f a system {8 in series then the transfer function is a product

of constituent transfer functions, i.e., it is expressible in the form:
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0(a) = %) oV (ay, (3.5)
where

00 (g) o ¢ (groa ()10 gy (3.6)

Proof. Substituting (3.4) into (2.2) obtainsg
$(8) = C(z)(sI~A(2))hlE(sI—A(l))-lﬁ(l). : (3.7)

The representation (3.5) ~ (3.6) results from factoring E,

E = B(Z)C(l). N (3.8)

(Such a factoring always exists, say by taking one &f'lhe factors to be
the identity matrix.)

From the point of view of structurial identification, the representa~
tion (3.5)15 (3.6) 18 not of interest unless the constituent transfer func-
tione are identifiable. For this reason we consider the case where the di-

(1) (2) 1)

mensions of B(z) and C are n %1 and 1 xn , respectively,

in which case
v . (1) (1) o{ )., (2) (2) (2)
C [C %&)}, b b .,bn(g)] , (3.9

o) {¢(1) 1

(1) (2) (2) (2) (2),'
Gy heesd n, I, o = [o7%8,%5..008 77, (3.10)
: 2y, (1 -
¢ij A ¢j , rl,2,...,nc, 1= 1,2,... 0. (3.11)

(1)
?

» iy - 3

The question can be considered in parts by writing formula (2.8) in the form

- Now the question is, does ¢ identify each of its factors, ¢(2) and ¢

¢ij(s) = Yijeij(s)/A(s) (3.12)
. where eij(s) (and also A(8)) 183 a monic polynomial, i.e. the leading

coefficient is unity, and v

1] # 0. Similarly,
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08 = 1P @ n®@, e

(k
2

(3:13) dnto (3.11) yields the identities:

where eék)(s) is monic and v ) # 0, k = 1,2, Substituting (3.12) and

Yy viz)vjm, (3.14)
Eij(S) - e£2}(s}e§1)(s), ‘ | »(3.15)
ae) = 8D @My, (3.16)

(1)

(2) and Y1 in

Conaider the problem of solving for the factors vy

“terms of the Yij from the relations (3.14). 1In general, this problem is

not solvable. However, if just one of the n,  + n-'constants.nyiz) and

B C
(2)

1 .
Y§ ) is known, then the remaining constants are solvable. In fact if Y,

y(l) = /Y(Z) 4= 1,2,...4n,5. Now fixing J, say

nown th 2
is known then so are 1 Yuj b B

3 = 1, the remaining Yiz) are cobtained from Yil) = Yil/Yil)‘ A similar

argument applies if one of the ygi) is known. Now suppose that one of the
“entries of the matrix C(Z)B(Z) is nonzero, say it is the uth entry, T
.}t is clear from formulas (2.5) - (2.7) thatA T, is the leading coefficient

of ¢£2){s), i.e. Tu = y£2}. Thus if one of the entries of 6(2)3(2) is

nogzern and it is known then all of the g + n. constants, y§2) and Ygl),

grersolvable from relatioﬁs (3.14), This is -also true if one of the entries

of C(I)B(l) {8 nonzero and known. The above observations are stated formally

in Lemma 3.2.

(2} (1)

Lemma 3.2  The o, + n, constants yg and vy are uniquely identi-
fiable 1if either (1) one of the entries of C(I)B(l) is nonzero and it is

a priori known or (i1} one of the entries of C(Z)B(z) is nonzero and it is

a priori known.
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Lemma 3.3 Suppose that the system {8 irreducible, then the Ry +\hC + 2

polynomials, ﬁ(k?ia); eék)(s)g are identifiable.

Proof. Since the system is irreducible, A(g) and Pij(s), 1 i.i-g‘nc,
1< < ny, are uniquely identifiable (Lemma 2.4). Let n§1) " be a root

of 8 (s). Then, from (3.16), ﬁil) is a root of A(s); thus there are
finitely many solutions for ﬂ§1). This being true for each root of 5(1)(3),

2 (g) 1s identifiable.

Similar arguments show that &(2)(5) and the polynomials eék)(a)

are identifiable (recall that Pij(s) and eij(s) -have identical roots).

Lemma 3.4  Suppose that there is a compartment f, called the first receiver,

guch that [ € R and B 0 whenevér r€ER~-f and t €T. It is assumed,

without loss of generality, that £ ig numbered first among the receivers.

Then the matrices inm (3.9) are:

ot e, (01 8 = [1,0,...,01". (317

= {afl’afz"”

Proof. The hypothesis states that zll rows of E are zero except for the
2
first row, which is {afl,afz,s..,afn(l)}ﬁ Clearly, E = al )C(l), where

¢ and 8} gre defined in '(3.17).

_ Egggéle 3.1 ﬁa_eeﬁsiittAtha_systgm in Figure 5(b) (Section 5). The systen
_has a T - R ;éecompesiticn where T« {10} and R = {11,12,13,14}. The

matrices in formula (3.4) are

(1)
}gsé' - E-36}!

E(.l) = {64}9 ,C{Z} = Egbgygﬁe}()



o) [0,] and 32 « [1,0,0,0]1'. By Lemma 3.4, @

15

o e .
66 : f 87 0
gal Y1, R 8, - 0 .
0 0 8p ~ By
LO,L B 0 O 69-81QL
The system has a first receiver f = 11, and so E = B(Z)C(l), where

= ¢(2)¢(1), where

'"¢(l)(a) = 8466/(S+66)’ Now the receiver constituent is also a system in
" series with a first receiver. In fact, Lemma 3.4 can be applied in succession

" 'té obtain

(3.18)
©8(0) = [9,8/(o¥0,) 110,/ (5+0,) 18y (s¥0g) 110/ (6¥09) 1[0,/ (a4, ) 1.

where each term in brackets is a constituent transfer function. It is appar-

" ant from the form of (3.18) that the poles By k=6,7,8,9,10 are identi-

“fiable and so is the conatant G&a, where o 18 the product of the poles.

Since a is 1dentifiable, sols GA‘ Thus all six parameters are identifiable.

, Lemma 3.5 Suppose that there is a compartment, £, .called the last trans-

mitter, such that £ € T and a = 0 whenever r ER and t €T~ L, 1t

-+ #8 assumed, without loss of generality, that £ 1is numbered last among the

transmitters. - Then the matrices in (3.9) are:

6@ 2 10,00,0,11, BD) w laypiappieniimg(plte (3419)

Proof.. . The hypothesis states that all columns of E are zero except for

the last column, which is Llalﬁ,azz,...ﬂah(g)ﬂj’.. Clearly, E = 8(2)0(1)

:»where;:C(}) and B(Z) are defined in (3.19).

Example 3.2 We consider the syastem in Flgure 7 (Section 5). It is a sys-

tem in series with £ = 4 as the last transmitter. The system decomposes
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into a transmitter subsystem, Figure 4, and a receiver subsystem, Figure 5.

Proposition 3.1 Suppose that a system in series has the following properties.

1. There is either (a) a first receiver or (b) a last transmitter.
2. One of the conditions ({1) or (i1)) in Lemma 3.2 holds.
3. The system is irreducible.

Tﬁen the transfer function ¢ = ¢(2)®(l), where the constituent transfer
functions are glven in formulas (3.6), (3.4) and (3.17), fo; the first-
receiver case, or in formulas (3.6), (3.4), and (3.19), for/the last~transmitter

case. Moreover, the constituent transfer functions are identifiable.

(), (L)

Proof. The decomposition, ¢ = & follows from Lemma 3.1. To obtain
the first-receiver form, (3.17), we apply Lemma 3.4 and the last-transmitter
form, :(3.19), follows from Lemma 3.5. The fact that the constituent trans-

fer functions are identifiable is a consequence of 1l,emmas 3.2 and 3.3.

Example 3.3 We continue from Example 3.2. In the transmittetr subsysten,
:Figure A,Ithere i8 a single input and a single output and both occur in
compartment 4. Moreover, (151 . [1,01{1,0]" = 1, so that the

second condition in Proposition-3.1 1s satisfied. . Next we find the condi-
tions under which ¢.. is irreducible. We recall -that ¢, 1is (always) irre~
ducible (Example 2.2):gnd ¢2}ﬁis,irreducible under condition (2.10)(Example
2.1). Let condition (2.10) be satisfied, then ¢ is reducible 1f and

cnly 1f a zero of one of the constituent transfer functions coincides with
(1) (2) 18

a pole of the other, ‘Now ¢ ig givenn in' formula (2.15) and ¢

given in formula (Z.9). There are no cancellations between these functions
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if and only if:

8 # 8 k =6,7,8,9,10,11, S (2.29)
10 10 i
(0,418, sz) B, *+ 0.0, kfé(ekwi) $0,1=1,2, (3.2D)

where ﬂl “and “2 are the roots of

2Pl gy = % & (0,+0,+0.,+0,40,)8 + 8, (0+

2793+9,% 8,7 (2.22)

(1)

In conclusion, ¢ and é(z) are identifiable as long as the irreducibil-

ity conditions, (2.10), (3.20), and (3.21) are satisfied.

Remark 3.1 The irreducibility conditions may not be easily deriveable,

‘egpecially in large systems, and moreover, it may be difficult to determine,

‘ a priort, whether or not these conditions are satisfied. It is possible to
 avoid the issue by adopting the point of view that agtructural identifiable
almost everywhere is a sufficient criteria, because, in this case, the chances
of incurring a point at which the system is not structural identifiable (in an
‘actual experiment) is negligible [7,8]. Towards this point of ‘view,

. Proposition 3.1 may be modified to read as follows.

Progos ition 3.2 If hypothesis (3) of Proposition 3.1 ig changed to (3') the

* gystem is {rreducible almost everywhere, then the conclusions of that propo-

gition hold in the almost everywhere sense.

Mgreover:Virfeducible.almost everywhére'criteria are less difficuit to apply.
ﬁor iﬁétaﬁée, in all the examples discussed above,-éhéﬁsystem satisfiéé the
following conditions:

(1) Fvery compartment is input reachable.

(2) . Fvery .compartment. reaches at least one output.

(3)- -, The system is without traps..
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Systems satisfying these three conditions are irveducible almost every-

.where [7,8].

Remark 3.2  Even though one adopts the almost-everywhere point of view

the irredicibility conditions are still of significance. For instance,

 some computer programs assume irreducibility (explicitly or implicity [181).

In such cases, numerical difficulties can arise (in the estimation problem)

when in proximity to a point where irreducibility fails. . The numerical

difficulties become apparent when we expand the impulse response of the
o : 7 Tyt Myt n,t
compartmental system as the exponential sum Dle + D2e + ...+ Dne .

1f the order of the system is n then we expect to have n linearly inde-

pendent terms, f.e. (i) the = ate distinct and (i1) the D, are nonzero.

i i

A necessary and sufficient condition for condition (i) and (i1) to hold is that

the system 1s irreducible. As the parameter vector approaches a point where

the irreducible conditions are violated then either some of the T coalesce
or some of the Di tend to zero; elther one of these citcumstances is apt

to cause numetical difficulties in the parameter estimation problem.

4. Systems in parallel * In this gection we consider a syétem whose flow

diagram is depicted in Figure 2. and which is described below.

~ The system (2.1) is said to be in parallel if its cdmpartments can be
separated into two disjqint subsets, S(k}; k = 1,2, such that there is no
flow between these subsets, {i.e.,

1)

=0,1€87, J€ (2, (4.1)

&ij
In other wordé; 'a systems is in parallel if and only if the compart-

ments can be numbered in such a way that the compartmental matrix can be
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partitioned as

(4.2)

where A(I) and A(z) are gubmatrices of dimensions n, *xn, and- n, X n,,
regpectively. We also partition B and C as

I G RN G S C S D .3
where B(l), B(Z), C(1) and G(z) have respective dimensions n, X fg,
n, X g, n, % oa, and N X B,. By substituting (4.2) - (4.3) into (2.2)

we obtain the following result,

Lemmg 4.1 A system in para;lel has the property that its-transfer function

is expressible as a sum of constituent transfer functions,

5s) = o1 (a) + 8P (ay, (4.4)

where
08 () = ¢®) (g1-a)y=1g) o 2 g 9, (4.5)

Example 4.1 The system in Flgure 5 (Section 5) is in parallel. The constituent

subsystems are depicted in figures 5(a) and 5(b). The transfer function for

the "short" branch is w(z)(s) = § /(s+91 ). The other branch was discussed

5%11 1
earlier (Example 3.1); its transfer function is gilven in formula (3.18). The
transfer function is the sum of its constituent transfer function as given by
formula (2.9).

Certain concepts from the theory of directed graphs (e.g., see [15])
are needed. Let D denote the digraph (difebted graph) of a compartmental
matrix A, i.e., a directed arc is drawn from compartment § to (another)

compartment i 1f and only if éaij # 0. A sequence from (compartment) J

to 1

F: j = VO hd Vl**...’*\)z = i



"the number of compartments , 1in one constituent, say

exists in D 1f and only if the product

w(l') = a a, BRY + 0.
VoVt ViVa  Ve-1"z

The integer £ 1s the length of the sequence. A path is a sequence which

does not intersect itself, l.e., v_ ¢ Ve if 8 ¢ t,

Lemma 4.1 Let (A,B,C) be a system (as described in Section 1). Suppose
that p 18 a positive integer such that each path from an input compartment

to an output compartment has length > p. Then the Markov matrices,
e L .‘k' E .
Mk = CAB=20, k=20,1,...,p.

Proof. The (i j) entry of Mk is a sum of products of the form

c, a cee & For Mk # 0 there must be an input compartment

Vo Vo¥1  Vk-1k ij
Yo and an ocutput compartment Vi s guch that there is a sequence from vo
to Vi of length k. Certainly, there must exist a path from Vo to Vi

‘of length k. Comsequently, k > p, which is the desired result.

:Proposition 4.1 Suppose ‘that a system in parallel has the property that

2 (2) (2) 52) (2)),

W ()

x'is Eufficieﬁtly small so that each path in the other constituent, (A , .

C(l)), froﬁ ad;input compaitment to an output compartment has length

Zn(z) - 1.  Then each constituent transfer functlon is uniquely identifiable.

Proof. By the hypothesis and Lemma 4.1,

) o)Ak _ gy w0,1,...,20¢8) -1,

"

Since M, = cakp = ¢ @ | (aDyk 0 gL

0 (A(Z))k 3(2)
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oD Gk () @k @)y D) @)

) B Moo+ M
- 1. 1In view of

(1)

(2)

Mk - Mk is uniquely identifiable, k = 0,1,..,,2n(2)

Lemma 2.2, ¢(2) is uniquely identifiable and hence ¢(g) - —- ¢ is

alsdfuniqhely solvable.

~§§§mglé QLg_ let ® be the transfer function for the system in Figure 5.

The "short" branch has one compartment, l.e., n(Z) = 1, while the length
of the path (there”is only one} from the input compartment to tﬁé output
compartment in the larger branch is 4. By Propqgition 4.1, eaéh constituent
transfer function is uniquely identifiable from &. Noﬁ §(2)(§) ;‘65911/(s+911)
uniquely identifies 8, and B ’

5 11’

while,.64,6629?3?8,69{910 are identi-
fiable from oV (Example 3.1). Notice that all the parameters in ¢ are

identifiable from ¢, whether or not the irreducibility condition (2.10) is

satisfiled,

I

5. Very low deunslty 1ipoprotein triglycerides

A. Model description

The kinetics of the triglyceride (IG) molety of plasma very low density

“1lipoproteine (VLDL) in man, as discussed. by Zech et al [16], Berman [17]

and Beltz et al [18], may be summarized as follows: Radioactively labeled
glycerol 1s injected into the plasma to.serve as the glycefoi backbone of
the TG moiety; the resulting VLDL-TG tracer curve 1s observed for forty-

eight hours.  The compartmental model, Figure 3, may be described in parts.



nput 1o @ EH - @-@-@- B @ PO DG
4 e 07 08g B By Big T O3 T Oa T |
93 ' Figure 3 911/ aﬁ 817 8%!

Glycerol Conversion | VLDL-TG 22

Figure 3. VLDL-TG kinetics., The tracer is injected into compartment 4
{plasma). The observed VLDL-TG tracer curve is y = xl+x +x_ 4% 4x

7 78 721°
The free glycerol precursor subsystem, Figure 4, describes the
*
kinetics of intravenously injected glycerol in plasma. Labeled glycerol, G ,
entering the plasma (compartment 4) equiliberates with the glycerol pool

in a two-phase decay process involving extravascular (compartment 5) ex-

change.

-
e -

Figure 4. Free glycerol precursor sybsystem, Compartment &4 is observed

(indirectly, as a consequence of Lemma 3.5).

~Malmendier et el [19] found that about 90% of the glycerol leaving the

plasma could bg accounted for by canversioﬂ>to glucose and CO2 leaving
only a small gga;Fion for TG aynthesié.

The conversion of glycerol into tﬁe TG derivati#e is an esterification
reaction in which three fatty acids étéach to a glycerol.molecule with loss
of HZO' The incorporation of glycerol into TG follows two pathways as

shown in Figure 5. Synthesized TG then reacts with cholesterol and protein

to form plasma TG-VLDL.
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841
e——
G5 (G) % e -
inpuf b - {output)

Figure 5, Conversion subsystem: (a) slow conversion pathway, by
cfast conversion pathway. ¥ = 610“14 + Gllx?4 is observed (indirectly,

as a consequence of Lemmas 3.4 and 3.5).

Plasma VLDL-TG, Figure 6, consists of a delipidation chain (1,6,7,8)
and a single compartment (21}, which represents a more slowly catabolized
gubfraction of VLDL partiéles. The delipidation chain represents a spectrum
éf-dééfeasimg VLDL-TG particles. Of the triglyceride secreted with the
largest particles, a portion 18 removed during the delipidation, which
occurs as tﬁerparticle gets>smalle%; The remainder of the particle's TG
accompanies it to the next step of the catabolic cascade. The smallest
VLDL particles (compartment 8) leaving the delipidation are in the IDL range.
The portions removed during delipidation éonVert back to glycerol and fatty
acid. The converted glycerol may recycle through the system, but this re-
cycling ﬁas been foundrta have s negligible effect on the overall kinetics

[16] and it has been omitted in more recent discussions of the model [18].

input —
(BioX1a + O X24)

¥igure 6. VLDL-TG subsystem. VLDL-TG enters compartment 1. The VLDL-TG

curve y = x1+x6+x7+x8+x21 is observed.
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B, Structural {dentfification

It 18 interesting that the decompositioh of the total system, Figure 3,
- 'for the purpose of structural identification, recovers the same subsystems
that were used to construct the model in the first piace. The first step

of the decémpcsition 1s achieved b§ expressing the gystem in series, with
compartment 1 as the first receiver; The resulting receiver subsystem is the
iVLBL—TC subsystem, Figure 6, and the transmitter system is the synthesis sub-

system, Figure 7.

' n
|
o |
input=>(4)—(0)—(D—@— @)=
6y 6 ~ 8g T 8; T 6y T By — By

Figure 7. Synthesls subsystem. The input is into compartment 4 and
+ 8,.x is observed.

RAST LTI TLoN

The‘decémpcsitionvéf the synthesis subsystem, Figure 5, into constituents,
Figures 4, 5(a), and 5(b), has already been discuséed in Examples 3.2 and
4.1, and it was foundt(Example 3.35 tﬁaﬁfthe transfer function for the

Q(S), is a product of the constituent transfer func-

synthesis éﬁﬁsystem,
tions given in formulas (2.9) and (2.15). The transfer function for the

VLDL-TG subsystem is

o (e = L. 12 [? + 13

8+612+615+919 s+613+616

8 8,
+ E;giL- )} R A (5.1)
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The irreducibility condition for this subsystem is

}, 8,, # 8 (5.2)

By4%096:014917:%875 017 7 P1s-

We recall, from Example 3.3, that the synthesis subsystem is irreducible 1if

and only if conditions (2.

add the conditions which

{g+0 )(s+6

17116

#,g) (24,0 +

10), (3.20) and (3.21) are satisfied. To these we

prohibit coincidence between the roots of one con~-

_stituent transfer function with the zeros of the other; these are:

}4 17}(s+618)(s+820) + 9 (s+914 )(a

812 13(s+8 )(s+620) + 91201361a(s+820)

(8+913 16)(s+614+917)(8~t~618) f 0 -for
8=-8,,06 <k <11 or s =-m, 1= 1,2. | (5.3)
0, # 8,5 + 05+ 917, 84 + 00 614 * 917, Big 850" (5.4)

10 6
(a46,.)8, 16, + 9.8 I (s+9,) # 0 for
1 e k 611 oy k
- (505)
8= =0 =015 7 990 = 837 Oer 7 01y 7 Bygr 7 fyge T G0

(3.22), (5.3), (5.4), and

holds because

. Thua,;by%ggopositiqn_3.1,

6$5)  are identifiable.

Bk' 12 < k < 20,

NOMC R

Let us assume that all these irreducibility conditions, (2.10), (3.20),

(5.5) are satisfied. Condition (i) in Lemma 3.2

("v" refers tolthé VI.DL-TG subsystem}.

sV

the constituent transfer functions and

It is not difficult to show that the parameters
)

are identifiable from ¢ ; thus, these parameters

are identifiable (Lemma 2.3}).
Since ¢(S)

and ¢(C)

glycerol subasystem and "C" denotes the conversion subsystem) .

Now

is identifiable, its constituent transfer functions

¢

(G)

are identifiable as shown in Example 3.3 ("G" denotes the free
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Qk, 4 <k <11 are identifiable from ®(C) (Bxample 4.2). Moreover,

1,82, and 93 + 94 are identifiable from ®(G) {(Example 2.3). Since

0, ‘18 identiflable, so is ©

8
30 Thus, the system, Figure 3, is identifi-
able provided that the irreducibility conditions, given above, are satis-

fied.

C. Discussion

The main objective of structural identifiability analysis 1s to ascer-
tain the theoretical limits of the parameter estimation.probiem. In practice,
the ebtiﬁétion of twenty parametersvfrom a single trécer curve is not feasible,
even though the data might be free of ﬁoiae. Usually, thirteen relationships
between the parametérs are stipulated,ra priori, leaving only seven free
parameters to be estimated [18].

The irreducibility conditions, (2.10), (3.20), (3.21), (5.3), (5.4), and
(5.5), guarantee system identiflability (independent if whether or not a priori
relationships ate imposed). The fact that the irreducibility conditions are
satigfied almést everywhere (see Remark 2.1) may also be deduced from the
_critetia specified in Remark 3.1. Using“Proposition 3.2 in place of Propo-
aition 3.1, we obtain system identifiable in the alost-everywhere sense (with~-
. out regard to the irreducibilty conditions). The irreducibility conditions

may also pléy a role in the parameter estimation problem (see Remark 3.2).
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Figure Captions

IRCONeS

RGN CON

Subsystems in series: ¢
Subsystems in parallel: ¢

VLDLwTG.kinetics. The tracer 1s injected into compartment 4
(plasma). The observed VLDL-TG tracer curve is y =

x1+x6+x7+x8+x21,

Free glycerol percursor subsystem. Compartment 4 1is obgerved
(indirectly, as a consequence of Lemma 3.3).

Conversion subsystem: (a) slow conversion pathway, (b)
fast convergion pathway., y = 010“1& + OXIXZQ is observed
(indirectly, as a consequence of Lemmas 3.4 and 3.5).

VLDL-TC subsystem. VLDL-TG inputs into compartment 1 and

y = x1+x6+x7+x8+x21 18 observed.

Synthesis subsgystem. The input is into compartment 4 and
y = 0i0%14 + 01%y, is observed.
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