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ABSTRACT 

Bridges are critical components of highway networks, which provide mobility and 

economical vitality to a nation. Ensuring the safety and regular operation as well as accurate 

structural assessment of bridges is essential. Structural Identification (St-Id) can be utilized for 

better assessment of structures by integrating experimental and analytical technologies in support 

of decision-making. St-Id is defined as creating parametric or nonparametric models to 

characterize structural behavior based on structural health monitoring (SHM) data. In a recent 

study by the ASCE St-Id Committee, St-Id framework is given in six steps, including modeling, 

experimentation and ultimately decision making for estimating the performance and vulnerability 

of structural systems reliably through the improved simulations using monitoring data. In some 

St-Id applications, there can be challenges and considerations related to this six-step framework. 

For instance not all of the steps can be employed; thereby a subset of the six steps can be adapted 

for some cases based on the various limitations. In addition, each step has its own characteristics, 

challenges, and uncertainties due to the considerations such as time varying nature of civil 

structures, modeling and measurements. It is often discussed that even a calibrated model has 

limitations in fully representing an existing structure; therefore, a family of models may be well 

suited to represent the structure’s response and performance in a probabilistic manner. 

The principle objective of this dissertation is to investigate nonparametric and parametric 

St-Id approaches by considering uncertainties coming from different sources to better assess the 

structural condition for decision making. In the first part of the dissertation, a nonparametric St-

Id approach is employed without the use of an analytical model. The new methodology, which is 
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successfully demonstrated on both lab and real-life structures, can identify and locate the damage 

by tracking correlation coefficients between strain time histories and can locate the damage from 

the generated correlation matrices of different strain time histories. This methodology is found to 

be load independent, computationally efficient, easy to use, especially for handling large 

amounts of monitoring data, and capable of identifying the effectiveness of the maintenance. In 

the second part, a parametric St-Id approach is introduced by developing a family of models 

using Monte Carlo simulations and finite element analyses to explore the uncertainty effects on 

performance predictions in terms of load rating and structural reliability. The family of models is 

developed from a parent model, which is calibrated using monitoring data. In this dissertation, 

the calibration is carried out using artificial neural networks (ANNs) and the approach and 

results are demonstrated on a laboratory structure and a real-life movable bridge, where 

predictive analyses are carried out for performance decrease due to deterioration, damage, and 

traffic increase over time. In addition, a long-span bridge is investigated using the same approach 

when the bridge is retrofitted. The family of models for these structures is employed to determine 

the component and system reliability, as well as the load rating, with a distribution that 

incorporates various uncertainties that were defined and characterized. It is observed that the 

uncertainties play a considerable role even when compared to calibrated model-based predictions 

for reliability and load rating, especially when the structure is complex, deteriorated and aged, 

and subjected to variable environmental and operational conditions. It is recommended that a 

family-of-models approach is suitable for structures that have less redundancy, high operational 

importance, are deteriorated, and are performing under close capacity and demand levels. 
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CHAPTER 1.  
INTRODUCTION 

1.1. Structural Identification (St-Id) 

Structural identification (St-Id), which is adopted from system identification (Ljung 

1999), is the area of developing mathematical and/or geometric models from observations to 

characterize the input-output relationship based on experimental data for performance 

assessment of structures and decision making. Pioneering efforts on this important paradigm, 

which was presented to the engineering mechanics community by Hart and Yao (1977) and to 

the structural engineering community by Liu and Yao (1978), hitherto, inspired many researchers 

to explore different aspects of St-Id. Detailed overviews related to different aspects of St-Id 

research have been documented in various studies (Doebling et al. 1998; Sohn et al. 2004; Moon 

and Aktan 2006b; Catbas and Kijewski-Correa 2012). 

In a recent study by the ASCE SEI Committee on Structural Identification of Constructed 

Systems (Catbas et al. 2012d), St-Id framework is presented in six steps, which are described in 

detail with case studies in the next chapter of the dissertation. These steps are: 

 Drivers for Identification 

 A-Priori Modeling 

 Experimentation 

 Data Analysis 

 Model Calibration 

 Utilization 
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The aim of the St-Id framework is to link the gap between the model and the real 

structure for estimating the performance and vulnerability of structural systems reliably through 

improved simulations using experimental observations/data. To achieve this objective, 

parametric (physics-based or model-based) and nonparametric (non–physics-based or data-

driven) models can be employed. 

While parametric methods can be useful for better physical conceptualization, as well as 

for predicting future behavior, the level of expertise and time required to develop such models 

sometimes makes this approach difficult for researchers (Worden 1997; Laory et al. 2011). In the 

literature, the use of parametric-based St-Id approaches were investigated by several researchers 

to identify the civil infrastructure by addressing the boundary conditions, continuity conditions, 

equilibrium, and kinematics (Natke and Yao 1987; Aktan et al. 1997; Aktan et al. 1998b; 

Doebling et al. 1998; Farrar and Jaureguiz 1998; Brownjohn 2003; Brownjohn et al. 2003; 

Maeck and De Roeck 2003). The main advantage of using identified parametric models for the 

structures is to simulate the behavior under critical loading or damage conditions. Due to this 

advantage for simulating the behavior, parametric models can be utilized for diagnosing the 

causes of behavior changes and the impacts of these changes on the performance of the 

components and the overall system. Although several studies can be found on the use of 

nonlinear models, linear models are commonly employed for St-Id. 

On the other hand, the idea of nonparametric methods is that only training data from the 

normal operating condition of the structure or system is used to establish the diagnostics 

(Worden and Dulieu-Barton 2004). Different methods were utilized as nonparametric models for 

St-Id, including artificial neural networks (Masri et al. 1996; Nakamura et al. 1998; Masri et al. 
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2000; Chang et al. 2001; Zapico et al. 2003; Yun et al. 2009), wavelet decomposition (Gurley 

and Kareem 1999; Hou et al. 2000; Kijewski and Kareem 2003), and auto-regressive moving 

average vector models (Ghanem and Shinozuka 1995; Bodeux and Golinval 2001; Gul and 

Catbas 2011; Gul and Catbas 2012). Benefits of nonparametric approaches are automation, more 

efficient real-time St-Id, ease of continuous monitoring, and minimization of errors due to user 

interaction, practicality of use, and computational efficiency in handling large amounts of data 

due to its data-driven nature. However, it should be noted that data-driven methods can only 

identify whether a change in behavior has occurred and cannot identify the cause of the change 

or its effect on overall performance without physics-based models. 

Today, there are powerful parametric and nonparametric approaches that have the ability 

to identify local and global behavior of constructed systems, but the challenge in the 

performance evaluation of constructed systems is more than the adoption of more refined 

models. Although such refined models have the ability to identify behavior with more resolution, 

there is a need to mitigate the influences of uncertainties. While there has been a growing 

awareness of the importance of incorporating uncertainty within the St-Id process for constructed 

systems over the past decade, characterization of the uncertainties is not an easy task. As a result, 

the interest in this challenge has resulted in a growing recognition for the need to improve the 

monitoring design and model predictions with the consideration of uncertainties. 

1.2. Structural Health Monitoring (SHM) 

With the need to better evaluate new and existing structures and with the advances in 

information and sensing technologies, the interest for structural health monitoring (SHM) is 
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growing exponentially worldwide. As there is not a standard approach for SHM, there is not a 

unique, accepted definition. In this dissertation, the following definition is adopted: SHM is, the 

measurement of the operating and loading environment and the critical responses of a structure 

to track and evaluate the symptoms of operational incidents, anomalies, and/or deterioration or 

damage indicators that may affect operation, serviceability, or safety reliability (Aktan et al. 

2000a). With a properly designed and executed SHM, it may be possible to capture long-term 

structural behavior with continuous or discrete intervals of monitoring, also capturing seasonal 

and environmental changes that may not be easily extracted from intermittent or onetime 

structural tests, such as load tests or ambient vibration studies. 

Several research studies have been conducted in the SHM area. In addition, some of these 

studies were extended to existing structures to demonstrate the implementation with the issues 

and challenges for real-life structures. However, it is still an open question whether SHM is fully 

developed and standardized for routine use in real life, even with the major advances in 

supporting technologies. One major hurdle is that there are not many research studies that 

recognize “all aspects” or “challenges” in SHM applications. For example, while sensor 

technologies evolve, become less expensive, and provide us with large amounts of data, proper 

use of the data is still a major research subject. Some researchers focus on developing new 

technologies even though such work may not correspond to the immediate needs of 

infrastructure owners. As a result, organizational issues, fundamental studies, and advances in 

technology need to be interrelated, as presented in Figure 1, for successful and useful health 

monitoring applications (Catbas et al. 2004b). For real-life applications, infrastructure owners 

(end-users) would like to take advantage of health monitoring for efficient operation, timely 
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maintenance, reduced costs, and improved safety. In that respect, the areas of interest and 

expertise of the stakeholders, infrastructure owners, researchers, and industry need to intersect 

for SHM to be a routinely implemented technology for civil structures, just like the successful 

applications in automobile and aerospace industries. 

 

Figure 1: Main components of a health monitoring design (adapted from Catbas et al. (2004b)) 

Over the years, inspection, maintenance, and effective management of bridges have long 

been a concern to engineers, government officials, and researchers due to the fact that 

approximately 25% of a total 601,411 bridges in the United States are deemed structurally 

deficient or functionally obsolete (FHWA 2008). To develop and explore solutions for this 

Fundamental Knowledge Generation

(by University, Research Organization)

Organizational Issues and Considerations

(by State & Federal Agencies, Private Owners)

Technology

(Research and Development) 
and Marketing

(by Industry, Small Business)

Solution 

Domain

Experimental Methods

System Reliability

Life Cycle Engineering 

Fatigue Evaluation

Statistical Pattern Recognition

Time & Freq. Domain Analysis

…
.
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problem, new technologies have been used on several bridges, and several case studies can be 

found in the literature (Toksoy and Aktan 1994; Brownjohn et al. 1995; Aktan et al. 1996; 

Enright and Frangopol 1999; Lus et al. 1999; Farhey et al. 2000; Chang et al. 2001; Fujino 2002; 

Casas and Cruz 2003; Dyke et al. 2003; Maeck and De Roeck 2003; Masri et al. 2004; Ko and 

Ni 2005; Catbas et al. 2007; Catbas et al. 2011), but the wide-range and integrated 

implementation of these technologies still needs more attention. The concept of asset 

management is defined by the American Association of State Highway and Transportation 

Officials (AASHTO 2002) as “a systematic process of maintaining, upgrading, and operating 

physical assets cost effectively. It includes preservation, upgrading, and timely replacement of 

assets through cost-effective management, programming, and resource allocation decisions.” 

Infrastructure asset management includes decision making, long-term planning, optimum 

maintenance scheduling, and minimizing operating costs through a holistic approach with 

advanced management functions. As such, SHM can be expected to be an invaluable technology 

for successful asset management. 

Efficient asset management is possible with effective integration of technologies such as 

SHM to the current practice of inspecting and assessing bridges. An SHM system has the 

potential to provide comprehensive and objective data by means of sensors, data acquisition 

systems, assessment and evaluation algorithms, and data-based decision-making strategies. An 

integrated SHM system could be developed to link the structural monitoring data, environmental 

measurements, traffic, and operational inputs. With an integrated approach implemented to a 

network of structures, bridges can be operated with optimum performance, providing the best 
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utilization of their capacity. In addition, recording and analyzing the information from health 

monitoring data will lead to improvements in maintenance and structural design methods. 

For a complete structural health monitoring system, sensors, data acquisition systems, 

condition/damage assessment algorithms, and data-management procedures (storage, retrieval, 

presentation, sharing, data fusion, visualization, and correlation) have to be designed properly. 

With an SHM approach, global and local structural conditional parameters can be determined 

based on the analysis of data measured by a network of sensors deployed on a structure. For 

infrastructure owners, SHM technologies provide invaluable tools that can support maintenance 

and operation decisions and can diagnose pre- and post-hazard conditions for emergency 

management. 

A review of civil infrastructure SHM applications was presented by Brownjohn et al. 

(2004). A number of publications with emphasis on monitoring to bridges can be found in the 

literature, including structural identification (Aktan et al. 1998a; Huang et al. 1999; Brownjohn 

2003; Kijewski and Kareem 2003; Yang et al. 2004; Robert-Nicoud et al. 2005b; Catbas et al. 

2007; Soyoz and Feng 2009), damage identification (Hogue et al. 1991; Toksoy and Aktan 1994; 

Doebling et al. 1996; Worden et al. 2000; Sohn and Farrar 2001; Bernal 2002; Catbas and Aktan 

2002; Chang et al. 2003; Kao and Hung 2003; Giraldo and Dyke 2004; Lynch et al. 2004; 

Sanayei et al. 2006; Carden and Brownjohn 2008; Gul and Catbas 2009), structural reliability 

(Catbas et al. 2008b; Frangopol et al. 2008; Liu et al. 2009; Kwon and Frangopol 2010; Liu et al. 

2010), life cycle cost (Biondini and Frangopol 2009; Kim and Frangopol 2011a; Kim and 

Frangopol 2011b), and load rating (Boothby and Craig 1997; Chajes et al. 1997; Bhattacharya et 
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al. 2005; Garrett 2007; LeBeau and Wadia-Fascetti 2007; Gokce et al. 2011; Catbas et al. 2012c; 

Catbas et al. 2012e). 

1.3. Objective and Scope 

SHM is a multidisciplinary and broad research area and becomes more feasible with the 

recent technological advances and reduced cost of sensing technologies. In addition, SHM data, 

which is a crucial component of St-Id framework, can be utilized by means of parametric 

(model-based) or nonparametric (data-driven) approaches for effective management of civil 

infrastructure systems. The principle objective of this dissertation is to investigate parametric and 

nonparametric St-Id approaches by taking uncertainties into account to improve the robustness of 

decision making (see Figure 2). In an effort to illustrate the implementation of the St-Id frame, 

each step of the general framework is discussed and illustrated with real-life examples. Then, a 

novel nonparametric methodology is investigated for issues related to movable bridges that are 

of concern to maintenance engineers. This effective method can be implemented easily and 

employed effectively. For exploring and discussing the parametric approach, a family-of-models 

technique is presented to demonstrate the importance of continuous monitoring and model 

updating for performance predictions. Performance changes due to deterioration, damage, traffic 

increase, and retrofit are investigated for real-life structures within the St-Id framework by means 

of family-of-models approach. 
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Figure 2: Different approaches for St-Id 

1.4. Organization of the Dissertation 

The organization of the dissertation is as follows: 

In Chapter 2, steps of the general St-Id framework are described and exemplified with 

case studies. These steps include needs and drivers for identification, a-priori modeling, 

experimentation, data analysis, calibrated models, and utilization. To illustrate the drivers for 

identification, issues related to movable bridges are covered. Then, the nominal model and its 
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development are discussed for a particular movable bridge. Next, the implementation of the 

monitoring system and the execution of experimental studies are presented. Afterward, a strategy 

for calibration of the nominal model is presented along with the need for a family-of-models 

approach for the inclusion of possible uncertainties in the analyses. Finally, some representative 

performance metrics are introduced and obtained for decision-making purposes within the 

framework presented. 

Chapter 3 presents a new nonparametric (data-driven) approach for the identification and 

localization of structural changes due to damage as well as repair of structures to bring them to 

previous performance levels. In this approach, cross-correlation analyses between strain data sets 

are utilized for damage detection, whereas correlation matrices are employed for damage 

localization. This new methodology, which is first applied on a laboratory structure for 

verification and then on a real-life bridge for validation, is found to be simple, effective, and load 

independent. 

In Chapter 4, a family-of-models approach is introduced and demonstrated on a 

laboratory structure to explore the impact of uncertainty in predicting the system reliability 

obtained by a single calibrated finite element model (FEM) and a family of models that are 

continuously calibrated with SHM data. After discussing the laboratory structure, 

instrumentation plan, and experimentation plan, an artificial neural network (ANN) based FEM 

updating is illustrated for obtaining the parent (calibrated) model. The family of models, which 

includes parent and offspring models, is employed for system reliability calculations. Finally, a 

discussion for system reliability predictions obtained using a single model and a family of 

models is presented along with the results and interpretations. 
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Chapter 5 is dedicated mainly to the development and demonstration of the family of 

models for performance evaluation of a movable bridge as a real-life demonstration. After the 

calibration is completed for the movable bridge model, the performance due to deterioration of 

the sections, traffic load increase over years, and sudden damage are investigated, and the 

performance is predicted in terms of probabilistic load rating and system reliability. 

Chapter 6 contains the exploration of a family-of-models approach for a different case 

where performance increase is expected for a long-span cantilever truss bridge due to retrofit 

application. Although such retrofit applications are very common for these types of structures, 

load rating, component reliability, and system reliability changes due to the applications have not 

been explored in detail. In this chapter, load rating using a single model and load rating 

distributions from a family of models are compared for the fracture critical hanger element. In 

addition, the system reliability of the hanger assembly is compared before and after the retrofit 

application. 

Lastly, Chapter 7 provides the summary and presents the conclusions for the different St-

Id framework stages that are described in different chapters of the dissertation. General 

comments about the different St-Id framework procedures described in this dissertation are 

reviewed along with recommendations and possible directions for future research. The methods 

and approaches along with the significant results are discussed and evaluated. Based on the 

understanding from real-life needs and drivers, experimental and analytical technologies, and 

decision making, a general direction for future research is presented with specific 

recommendations for immediate follow-up studies.  
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CHAPTER 2.  
GENERAL FRAMEWORK FOR STRUCTURAL IDENTIFICATION 

The implementation of Structural Identification (St-Id) will be based on the six-step 

procedure which mainly includes establishing the needs and drivers, using experimental and 

analytical technologies, and finally utilization of the findings for decision making. This chapter 

will provide a more detailed discussion of the six-step procedure along with examples and case 

studies. 

2.1. Drivers for Identification 

2.1.1. General Remarks 

The initial requirement for successful St-Id implementation is to define the problem, 

address the issues, and identify the needs for St-Id. A major issue is to avoid any disconnections 

between these drivers and the technologies to be employed. As a result, the first step of the St-Id 

framework is getting familiar with the issues related to construction, operation, maintenance, or 

life-cycle asset management. These issues are to be well-defined and established before the 

execution of the St-Id program. These drivers can change from structure to structure (long-span 

bridges, movable bridges, etc.) and application to application (i.e., damage after an accident, 

deterioration due to aging, retrofit to increase reliability). 

Some examples that initiate the need for St-Id are the need to more objectively determine 

the load carrying capacity of buildings under wind and earthquake loadings or the load carrying 

capacity of bridges for load rating purposes to make decisions such as retrofit, strengthening, or 
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load restrictions. Moreover, design verification and construction quality control especially in 

new designs may also create a need to identify the current condition of the structure. On the other 

hand, there can be other drivers that necessitate an St-Id process for more accurate predictive 

analysis for future performance. As an illustration, it is possible to consider documenting the 

current structural characteristics and monitoring the structure over the long term in order to 

define a baseline for assessing any future changes due to deterioration, damage, or retrofit. 

While each of the specific issues above may appear distinct, the underlying driver in each 

case is the need to understand and address some fundamental engineering questions for decision 

making: (1) how constructed systems are actually loaded, (2) how they perform/behave, and (3) 

how they transfer forces through their members to their boundaries. These questions can be 

answered with an St-Id framework that utilizes monitoring data. In the following section, a case 

study is presented to illustrate such drivers for St-Id of movable bridges. 

2.1.2. Case Study: Description, Condition, and Issues of Movable Bridges 

In this section, movable bridges are covered to explain the drivers for identification. First, 

a general description of a movable bridge is presented along with movable bridge types. 

Secondly, the movable bridge population in Florida is analyzed for structural characteristics (i.e., 

age and span length) and condition ratings of different components. Thirdly, inspection reports 

of a smaller set of movable bridges are explored to find out the most problematic components, 

and the critical issues related to these components are presented. 

The fusion of mechanical and electrical components with structural elements creates a 

very unique type of structure called a movable bridge. These types of bridges are often referred 
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to as “kinematic architecture” and provide the flexibility to increase the usage of these structures 

with different configurations. The main advantage of this type of structure is that, because of its 

moving condition, the bridge can be constructed with little vertical clearance, avoiding the 

expense of high piers and long approaches. Moving components of these bridges are operated by 

various types of machinery to open the passageway for waterborne traffic. 

Movable bridges are a viable alternative to high fixed bridges over a waterway; however, 

they also present significant drawbacks and problems associated with operation and 

performance. Rapid deterioration is an issue since movable bridges are subject to harsh 

conditions as they are located over waterways and often close to the coast, which constitute 

conditions suitable for corrosion, causing section losses. Mechanical component failures due to 

friction and wear caused by the movement during opening and closings are deemed very critical 

by bridge owners. Even with regular maintenance, continuous downgrading of all parts of such 

complex bridges is inevitable, leading to breakdowns that cause problems for both land and 

maritime traffic. These problems result in high maintenance costs associated with the complex 

operation system and mechanical parts. In Florida, which has the second-highest number of 

movable bridges in the United States, it is estimated that the unit maintenance cost of a movable 

bridge can be up to 100 times that of a fixed bridge per square foot. 

Movable bridges have been used and their designs have been studied with the first 

handbook published as early as 1882 by Fränkel (1882). More documentation about the design of 

some early movable bridges can be found in Waddell (1895), Greene and McKeen (1938), 

Quade (1954), Hardesty et al. (1975a; 1975b), and Wengenroth (1975). In addition, replacement 

of movable spans (Fisher and Robitaille 2011) and kinematics of movable bridges (Wallner and 
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Pircher 2007) are retrieved for movable bridges. For bascule bridges, a brief review of the 

Chicago-type bascule bridge design (Ecale and Lu 1983) and full-scale testing of procedures for 

assembling trunnion-hub-girder interactions by Besterfield (2003) are found. Other than these, 

there are also three publications on lift bridges, mainly related to construction (Ramey 1983; 

Griggs 2006; Zhao et al. 2012). However, movable bridges, or more specifically bascule bridges, 

are not extensively documented in the literature as compared to steel or concrete bridges. 

Movable bridges can be seen in many parts of the world, especially close to the 

waterways and coastal topographical regions. In the United States, Florida has a large population 

number of movable bridges, most of which are owned by the Florida Department of 

Transportation (FDOT). As a result, the bridge population and specific cases presented from 

Florida are obtained from the inventory of 146 movable bridges, including three lift type, 133 

bascule type (the highest in the nation), and 10 swing type bridges (National Bridge Inventory 

2009) (shown in Figure 3). The majority of these movable bridges have main spans between 65 

and 365 ft (20 and 111 m) with a mean span length of about 131 ft (40 m). Almost half of this 

bridge population is 40 to 50 years old, with a mean of 43 years. Figure 4 presents the 

distribution of the movable bridges in terms of their type, span length, and year built. 

 

Figure 3: Main types of movable bridges 

 

Lift Swing Bascule
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Figure 4: Distribution of movable bridges in Florida 

On the other hand, the condition rating of the movable bridges has a mean of 6.54, 6.33, 

and 6.53 for the deck, superstructure, and substructure, respectively. Condition rating histograms 

of movable bridges with respect to the deck, superstructure, and substructure are shown in Figure 

5. As per the condition rating definition given in the National Bridge Inventory (NBI) Condition 

Guide (FHWA 1995), a rating of 6 corresponds to satisfactory conditions, or in other words, 

structural elements show some minor deterioration. Based on our interviews with bridge 

engineers, it is also expressed that the mechanical components interacting with structural 

components are more critical for day-to-day operation and maintenance of these bridges. 

 

Figure 5: Condition rating histograms of deck, superstructure, and substructure 

Inspection reports, which are generated with biennial inspections, include information 

ranging from the general characteristics of the bridge, such as, location, age, dimensions, type, 

and date of inspection, to element condition ratings. These notes are documented along with 

related pictures. Recommended actions are specified for each deficient element. Although it is 
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acknowledged that condition ratings given in bridge inspection reports are subjective and limited 

(Turner-Fairbank Highway Research Center 2005), analysis of current and past inspection 

reports can provide valuable representative information for the general condition and critical 

components of movable bridges. 

Consequently, a sample population of 51 movable bridges was analyzed by processing 

the data from the inspection reports to investigate the most common problems, the components 

that experience these problems, and the number of occurrences. Figure 6 illustrates the condition 

rating distribution of critical components obtained from the analysis of 51 bridges using the data 

that were made available for research studies. In this figure, the identified element types are 

shown as well as the percentage of bridges within each category with a condition rating less than 

or equal to 2, as per the FDOT condition rating. Best and worst conditions are given as “1” and 

“5”, respectively, as obtained from the inspection reports as per the rating system that is used by 

the state engineers and is different from NBI scales. 

 

Figure 6: Analysis results of the condition ratings for different components 
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Although the most common problems observed are related to steel girders, the highest 

maintenance costs are associated with the movable components. Movable components shown in 

Figure 6 include all mechanical parts and machinery that operate for opening and closing of the 

bridge, and their proper function is critical for the bridge operation, such as shafts, trunnions, 

gear boxes, and open gears. For these elements, 58% present a condition rating of 2 or worse and 

22% with condition rating of 3 or worse. As a result, a large portion of the bridge malfunctions is 

due to failure of these mechanical systems. 

Further analysis is conducted on the most commonly observed problems, which are then 

analyzed to identify the number of occurrences of these critical problems related to movable 

components. Based on this analysis, six common types of movable component problems are 

identified: missing fasteners, cracking, leakage, misalignment, section loss, and inadequate 

lubrication. For each mechanical component, the total number of occurrences of a particular type 

of problem is indicated, and leakage is found to be the most frequent issue for these components 

(Figure 7). 

This investigation of the inspection reports identifies the criticality of span locks for 

movable bridges from the condition ratings and the observed number of issues related to them 

from the number of occurrences figure. In Chapter 3, a new methodology is presented for 

identification of issues related to span lock shims, and this new methodology will help the 

movable bridge owners to reduce the maintenance costs by changing their preventive 

maintenance strategy into a predictive one. In addition, possible span lock failure effects on the 

performance of the structure are discussed later in Chapter 5. 
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Figure 7: Most commonly observed movable component issues and number of occurrences 
identified from the inspections reports of the studied sample set 

2.2. A-Priori Modeling 

2.2.1. General Remarks 

The development of an a-priori model within the St-Id framework serves to provide 

estimates of structural responses for the subsequent experimental steps. This model is then 

calibrated using monitoring data. Virtual reconstruction of the structure through computer-aided 

drafting (CAD) software can be considered as the early stage for the development of an a-priori 

model. 

The development and use of an a-priori model, relies on the attention and experience of 

the engineer or researcher. The actual modeling approach adopted is dependent on the objectives 

of the St-Id as well as the complexity of the structure being identified. As an illustration, simple 

models are sufficient for some cases for global assessment and characterization, whereas detailed 
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structural models or high-resolution finite element models may be necessary in other cases where 

global and local responses are needed in high spatial resolution. In all cases, the effect of 

modeling considerations should be examined through the comparison of several models or 

modeling approaches, and the sensitivity of parameters with significant uncertainty should be 

established to have a good command of model fidelity. These preliminary studies also serve to 

identify key structural responses and their bounds. In the following section, a-priori modeling of 

a movable bridge is presented as a case study. 

2.2.2. Case Study: A-priori Model of Sunrise Boulevard Bridge 

Sunrise Boulevard Bridge in Ft. Lauderdale, Florida is a bascule type movable bridge 

over Florida SR-838 constructed in 1989 (Figure 8). The bridge has double bascule leaves with a 

total span length of 117 ft (36 m) and a width of 53.5 ft (16.4 m) and carries three traffic lanes. 

The bridge can be opened every 30 minutes when requested. Depending on the boat traffic, the 

bridge usually opens about 10 to 15 times a day. Considerations for structural, mechanical, and 

electrical component monitoring and the SHM system are discussed in the following sections. 

 

Figure 8: Sunrise Boulevard Bridge in Ft. Lauderdale, FL 
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When modeling a structure, a thorough inspection and verification of the structural 

components and behavior is often crucial to ensure that the model represents the actual structure. 

As a result, construction plans and details of the Sunrise Boulevard Bridge are closely studied to 

ensure a proper modeling of the superstructure. Then, a 3-D CAD model of the bridge reflecting 

the structure according to geometric information provided in the design drawings is constructed 

(Figure 9). These 3-D CAD models can be imported into finite element analysis software and can 

be used as a basis for developing the finite element models (FEMs). 

A nominal FEM of the Sunrise Boulevard Bridge is constructed using commercial finite 

element software to characterize its behavior and conduct different simulations. Discretization, 

connections, and constraints of the structural elements are created considering the geometric 

requirements. Before the creation of the a-priori model, equivalent deck analysis for the 

orthotropic deck is conducted. More discussion about these studies can be found in Catbas et al. 

(2010). 

 

Figure 9: 3-D CAD model of the movable bridge 
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There are a number of bridge superstructure components that are critical for accurately 

modeling the global and local behavior of the bridge. The critical structural components of the 

movable bridge are the main girders, where boundary conditions are imposed at the trunnion, 

live load shoe, and span lock locations. The trunnion is modeled as a circular element connected 

to the main girders with rigid links. This rigid region representing the trunnion-hub-girder 

assembly is assumed to include the effects of the stiffeners at the trunnion. The connection 

between the two spans is also modeled using rigid links, transferring only shear forces between 

the two leaves, which is the desired function of the span lock (SL). The rigid links in this area are 

modeled with the assumption of no restraint in the axial direction considering the design 

specifications and investigations in the field. The live load shoe (LLS) is defined as pin supports, 

since the leaves rest on these elements only at the closed position. 

Floor beams, sidewalk brackets, and diagonal bracings are constructed using frame 

elements. These elements are connected to the main girders and with each other using rigid links 

at the centroids. Once all secondary beams are created, the deck of the bridge is constructed. The 

deck is modeled using four-node quadrilateral shell elements, and it is connected to the main 

girders and secondary beams using rigid links based on the preliminary equivalent deck analysis. 

Finally, solid elements are used to model the concrete counterweight. The FEM consists of 1,084 

frame elements, 720 shell elements, 32 solid elements, 963 links, and a total of 11,112 degrees of 

freedom (DOFs). In Figure 10, different views from the a-priori FEM are presented. 

It should be noted that users of these FEMs should be aware of the uncertainties in these 

models, because constructing these models requires considerable time, effort, and expertise even 

for an a-priori model. In addition, idealized assumptions (i.e., pin, roller boundary conditions) 
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may have profound impacts on the structural behavior. In Chapter 6, use of these a-priori models 

versus calibrated models with the consideration of uncertainties in the form of a family of 

models is presented in a comparative fashion. 

 

Figure 10: Different views of the Sunrise Boulevard Bridge a-priori FEM 
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systems. Now, civil engineers have many different technologies at their disposal for measuring 

strain, displacement, acceleration, velocity, tilt, etc. along with various non-destructive 

evaluation (NDE) methodologies for material- and element-level characterization. 

The fundamental challenge in structural testing and monitoring is to acquire the most 

meaningful data and minimize the uncertainties inherent in the data due to reasons such as sensor 

calibration, sensor mounting, and environmental effects. As a result, it is important to recognize 

and define the sources of uncertainties and minimize these with more detailed and better models 

calibrated with experimental data. 

The major constraints of an experimental program for characterizing and evaluating full-

scale performance of civil infrastructure can be summarized as follows: (1) defining expected 

data to be used for data analysis and/or modeling, (2) duration of the experiment, (3) structural 

attributes that will affect the quantity and types of instrumentation used, (4) environmental and 

operational constraints, and (5) logistics, budget, and accessibility of the structure. 

Moreover, the key components of experimental studies can be summarized as: (1) 

selection of inputs, their locations, and their measurement types, (2) selections of outputs, their 

locations, and their measurement types, (3) collecting and transferring the signals to data 

acquisition, (4) data storage on a local or remote computer, (5) data inspection/quality control by 

real time, and, if possible, (6) user interface and real-time alerting/reporting. 

Experimentation can be broadly categorized as static and dynamic measurements, and it 

is also a critical step toward developing more reliable analytical or numerical (finite element) 

models in the St-Id process. These models are used to evaluate and predict in-service structural 

performance and to support operational and maintenance decisions. It should be noted that the 
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ultimate success of any experiment will be heavily influenced by the experience, appropriate use 

of technologies, and effective analysis of the data by the experimental specialists. 

2.3.2. Case Study: Monitoring of Sunrise Boulevard Bridge 

The demonstration of the experimental studies on a real structure will be carried out with 

a particular movable bridge in Florida. The statistical data and analysis of inspection results 

discussed above serve as the basis for the selection of the representative movable bridge for 

monitoring design and demonstration. Although movable bridges vary widely in type, 

dimensions, condition, and geometry, a detailed investigation of a representative movable bridge 

for its monitoring design considerations will serve as a benchmark. According to the 

distributions presented above, bascule bridges constitute by far the majority of movable bridge 

types. Based on this analysis and interaction with FDOT structures and maintenance engineers, 

the bascule bridge over Florida SR-838, known as Sunrise Boulevard Bridge (see Figure 8), was 

selected as the representative bridge for monitoring applications, considering its type, span 

length, age, opening frequency, type of traffic, and accessibility. The selected representative 

movable span is the west-bound span of two parallel spans on Sunrise Boulevard in Ft. 

Lauderdale, Florida. 

Sunrise Boulevard Bridge is a common bascule type, with a rack-and-pinion mechanism. 

The bascule leaves are rotated at the point of the trunnions, which are the pivot points on the 

main girders. The counterweight of the main girder stays below the approach span deck in the 

closed position. The weight of the span is balanced with a cast-in-place concrete counterweight 

that minimizes the required torque to lift the leaf. When the bridge is opening, the leaves rotate 
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upward, and the counterweight goes down. The electrical motor generates the driving torque, 

which is then distributed to the drive shafts via the gear box. The gear box involves an assembly 

of gears operating similar to automobile differentials and provides equal lifting of both sides. 

The drive shafts transmit the torque to the final gear, called the pinion, which engages the rack 

assembly and is directly attached to the main girder. In the closed position, the girder rests on a 

support called “live load shoe” on the pier, and traffic loads are not transferred to the mechanical 

system. In addition, two-leaf bascule bridges have a locking device at the tips (span locks) and 

are arranged to act as cantilevers when closed. The span locks keep the ends of the leaves from 

bouncing as traffic passes over the bridge (Koglin 2003). The movable bridge also involves fixed 

components, such as reinforced concrete piers and approach spans. Issues with all of these 

structural, mechanical, and electrical components will be discussed in detail with measurement 

strategies in the following section. 

Operation of the movable bridges, the most common problems, the condition ratings of 

components, and the number of occurrences based on inspection reports were presented in 

previous sections. In this section, the inspection information is combined with the expert 

opinions of bridge engineers, FDOT officials, and consultants for specific issues and possible 

monitoring needs of a movable bridge. The kinematic behavior of a movable bridge is the main 

reason for significant drawbacks and problems associated with its operation and performance. 

These bridges have high maintenance costs associated with the complex operation system, 

mechanical parts requiring special expertise, and deterioration causing more extensive repair. In 

addition, the maintenance of the movable bridge is conducted by contractors, and the bridge 

owners would like to have a means to check if the maintenance is done properly and in a timely 
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fashion. Consequently, monitoring of components that require frequent inspection and 

maintenance becomes very critical. For static structures, monitoring of structural components is 

usually the only concern for maintenance, safety, and operations; however, for movable bridges, 

monitoring of the mechanical and electrical components is equally important. As a result, 

measurement needs can be identified based on the issues observed and discussed with experts. 

Figure 11, Figure 12, and Figure 13 provide an overview of some of the issues with 

corresponding instrumentation as identified from the inspection reports and expert opinions from 

several meetings and site visits. Data analysis methods and expected outcomes for structural, 

mechanical, and electrical components, as well as operational and environmental effects, are 

developed based on the issues and related measurement needs. With the expected outcomes 

outlined in these figures, it is anticipated that maintenance can be condition-based in a proactive 

manner, saving time as well as labor costs. It should be mentioned here that cost evaluation is 

beyond the scope of this dissertation. Finally, the root causes of the structural and mechanical 

problems can be determined, and future designs can be improved using the information 

generated by the monitoring system. 

 

Figure 11: SHM considerations for structural components of Sunrise Boulevard Bridge 
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Figure 12: SHM considerations for mechanical and electrical components of Sunrise Boulevard 
Bridge 
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Figure 13: SHM considerations for operational and environmental monitoring of Sunrise 
Boulevard Bridge 

In this monitoring application, the data acquisition equipment is installed in permanent 
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Figure 14: Sunrise Boulevard Bridge wireless communication scheme 
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The instrumentation plan is designed to monitor the most critical structural, mechanical, 

and electrical components. The current installation consists of an array of 160 sensors, which add 

more than 200 channels. It should be noted that the sensor count was finalized after a number of 

meetings and site visits with bridge engineers and researchers. The bridge engineers particularly 

requested extensive measurement at all critical parts. For instance, three out of six 

accelerometers on the gear box, two out of four accelerometers and two out of three ampmeters 

on the electrical motor can be considered as redundant. The detailed analysis of each sensor and 

sensor clusters will provide an optimum sensor count for future routine applications as all the 

data are processed from the monitoring system. A summary of the sensors used in the study is 

shown in Table 1. 

Table 1: Summary of the sensor installed on Sunrise Boulevard Bridge 

Sensor type Structural Sensors Mechanical and Electrical Sensors Total 

High-Speed Strain Gage 36 0 36 

Vibrating Wire Strain Gage 36 0 36 

Strain Rosette 6 16 22 

Tiltmeter 4 4 8 

Accelerometer 16 24 40 

Pressure Gage 0 4 4 

Microphone 0 6 6 

Infrared Temperature 0 2 2 

Video Camera 1 1 2 

Ampmeter 0 3 6 

Weather Station 1 0 1 

Total 100 60 160 
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In Figure 15, the detailed geometry of the main girder and the installed sensors are 

shown. 3-D overviews of the mechanical room with sensor locations of different components are 

given in Figure 16. It should be noted that main girders are the fracture critical elements of the 

movable bridge. Therefore, main girders have the top priority among the structural components 

from the instrumentation point of view. The uses of strain gages on these components are 

presented in more detail in Chapters 3 and 5. 

 

Figure 15: Sunrise Boulevard Bridge main girder and sensor locations 

 

Figure 16: Mechanical room overview, mechanical and electrical components with sensors 
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Installation of the monitoring system components is illustrated in Figure 17. A specific 

challenge in the implementation of an SHM system on the movable bridge is the coordination of 

fieldwork with infrastructure owners and the Coast Guard in such a way that the installation of 

the sensors and cables has minimal impact on land and maritime traffic. During normal 

operation, the movable bridge is opened every half and full hour if requested by the boat owners. 

Such interruptions increase the installation time and introduce additional delays. More details of 

the Sunrise Boulevard Bridge monitoring system can be found in Catbas et al. (2010). 

 

Figure 17: Field installation of the sensors, cabinets, and weather station 
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to routine operation such as opening-closing events and under daily traffic (Figure 20). It should 

be noted that a detailed discussion of all these tests can be found in Catbas et al. (2010). 

The load truck (see Figure 18), which has a total vehicle weight of 96.7 kips, was 

provided by FDOT Structures Laboratory in Tallahassee and operated by FDOT personnel. The 

data collection was carried out with the monitoring system that was already in place. Three 

separate load tests were performed (a static load test, a crawl speed load test, and a dynamic load 

test) in order to capture the bridge behavior in a comprehensive manner and to create a database 

for possible studies, such as influence line generation, dynamic allowance factors, and more 

reliable calibration of analytical models. The primary objectives of the static diagnostic load tests 

executed are to establish stress levels on various structural elements of the bridge and to validate 

and calibrate the FEM. In general terms, these tests are conducted by recording measurements of 

known loads, as well as their corresponding effects on critical bridge members, and comparing 

these measured load effects with values computed by an analytical model. 

 

Figure 18: Truck load test on Sunrise Boulevard Bridge 
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One of the important objectives of this monitoring application of a movable bridge is to 

collect data that would serve two purposes: (1) to better understand the operation environment of 

a movable bridge, and (2) to establish criteria for system-wide monitoring of a bridge population. 

Long-term monitoring of the bridge is conducted to determine the operating conditions of the 

critical structural, as well as mechanical and electrical components. Monitoring also serves to 

increase the understanding of the behavior of the movable bridge and the causes of this behavior. 

Damage tests were conducted to establish thresholds for conditions that are critical for the 

maintenance and operation of the bridge. In collaboration with FDOT engineers, some of the 

most common structural maintenance problems are identified and subsequently implemented on 

the movable bridge to simulate such damage conditions (Figure 19). In Chapter 3, some of these 

damage tests are utilized for damage identification and localization purposes. 

 

Figure 19: Damage tests on Sunrise Boulevard Bridge 
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The data from the bridge are acquired during regular data collection times, which are set 

to pre-established time windows for rush hour as well as triggered events. An event that triggers 

data collection is an opening-closing operation of the movable bridge (see Figure 20a). This 

operation can help to verify the dead-load-induced strains on the structure. A major data 

collection is carried out during regular traffic, where the input to the structures cannot be fully 

controlled or characterized (see Figure 20b). The vehicles on the bridge can be captured from the 

video frames; however, it is not possible to exactly determine the axle loadings and spacings for 

the validation of the FEMs. In Chapter 5, the utilization of the load tests and opening-closing 

operation for the calibration of the Sunrise Boulevard Bridge is presented in more detail. 

 

Figure 20: Uncontrolled testing of Sunrise Boulevard Bridge 
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improving the quality (i.e., averaging, filtering, and windowing), and by compressing or 

transforming into a more observable format (i.e., statistical and modal parameters). Then, the 

ε)            ε)            ε)            

ε)            ε)            ε)            

με

με

(a) Opening-Closing (b) Regular Traffic Load



36 

 

optional following steps, which depend greatly on the objectives and constraints associated with 

the St-Id application, involves various parametric and nonparametric data analysis methods, such 

as artificial neural networks (Masri et al. 1996; Nakamura et al. 1998; Chang et al. 2001; Zapico 

et al. 2003), auto-regressive models (Shinozuka and Ghanem 1995; Sohn and Farrar 2001), and 

state space models (Skolnik et al. 2006). 

A practical and, in most cases, effective approach is to use nonparametric models to 

detect anomalies in behavior. Anomalies are detected by tracking the changes in measurements 

with respect to measurements recorded during an initial period as a baseline or comparative 

analysis of moving data windows over time. In addition, these approaches, which examine 

changes over a certain period during the life of a structure, are completely data driven in the 

sense that the evolution of the data is estimated without information of physical processes. 

Moreover, the main advantage of these applications is the easy applicability to long-term 

monitoring studies due to a minimal requirement of user interaction through automated data 

analysis and handling large amounts of data. 

It should be noted that there are critical points related to these methods. First, the 

researchers should always be aware that the daily, monthly, seasonally, and yearly changes in the 

weather and climate may greatly affect the predefined thresholds. Second, it might not be 

possible to directly measure every possible phenomenon of interest at every location of complex 

civil structures. 

With the increasing need for developing better inspection and maintenance strategies for 

aging infrastructure, it is desirable to provide timely support from an SHM integrated condition-

assessment framework (Gokce et al. 2012b). Since low-cost sensor and data acquisition systems 
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are now available, the attempts of such nonparametric (data-driven) methodologies are expected 

to increase in the following years. In the section presented below, a case study on long-term 

monitoring of a movable bridge is presented to illustrate direct data interpretation by tracking 

descriptive statistics obtained from the analysis of the data. 

2.4.2. Case Study: Identification of Unexpected Events by Long-Term Monitoring 

of Sunrise Boulevard Bridge 

To show the effectiveness of an SHM system on the movable bridge, two real-life events 

are presented for illustrating the direct data interpretation with simple yet efficient statistical 

approaches. The opening-closing event of the Sunrise Boulevard Bridge is shown in Figure 21, 

with real-life data from the trunnion tiltmeter, the span lock pressure gage, and the gear box 

accelerometer. 

Movable bridge operation starts with the closing of the pedestrian and traffic gates, which 

is followed by retracting the span lock bars to open the bridge. Then, the electrical motor 

transfers the power to the gear box, which rotates the shaft. Next, shafts rotate open gears that are 

directly attached to main girders. Finally, the structural components start rotating upward. Span 

locks are one of the critical components of this operation (Gul et al. 2011). The issues related to 

the span locks and the problems that can be observed due to their malfunctioning are explored in 

the previous sections. To identify possible alignment problems, dynamic loading leading to 

failure, excessive shear, and hydraulic pressure problems, the installation of tiltmeters, 

accelerometers, strain rosettes, and pressure gages, respectively, is required. In this section, the 

behavior of each different component is identified with the help of long-term SHM data. The 
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general behavior of the span lock pressure data is presented in Figure 21, where the sudden 

increase of pressure is seen and kept almost constant for a short period of time. It is interesting to 

note that the flat (constant) region during span lock opening has one small peak that is barely 

visible when a single data set is visually inspected. However, after a large set of data is collected 

over a period of time, this behavior, along with the small peak, is seen with this flat region. 

 

Figure 21: Representative tiltmeter, span lock pressure gage, and gear box acceleration data 
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After observation of this behavior, a simple data analysis can be conducted to extract 

features based on the statistical information for the opening part of the pressure data. When the 

long-term data was analyzed, an increase in the coefficient of variation (c.o.v) of the opening 

pressure was detected between 6/13/2011 and 6/19/2011. Based on the statistical analysis 

conducted over the flat region, the c.o.v. of the pressure data is found as 1% for the day of 

6/12/2011. For the following days between 6/13/2011 and 6/19/2011, the variance in the pressure 

gage data distribution of the flat region is increased to 4%. On 6/20/2011 the c.o.v. decreased to 

its normal level (1%). The increase of the c.o.v. from 1% to 4% can be seen as a small change, 

but it should be remembered that the increase is detected only for a one-week period (6/13-6/19) 

of the long-term data. For the rest of the data sets consistency of 1% in the coefficient of 

variations are observed. 

Afterward, a more detailed analysis was conducted for these dates as discussed below. 

Sample snapshots from these dates and corresponding behavior along with the extracted 

statistical information are illustrated in Figure 22. It is observed that on 6/12/2011 (7:03 PM), the 

span lock operates similar to previous established behavior based on the opening and closing 

pressure levels and flat region characteristics during span lock opening. On 6/13/2011 (11:00 

AM), it is seen that the first peak is followed by another ~25 psi secondary peak, which was not 

observed before. On 6/16/2011 (9:58 AM), the secondary peak level increased to a ~30 psi level. 

On 6/20/2011 (8:59 PM), span lock seemed to be operating normally again based on the pressure 

data. 
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Figure 22: Behavior change of the pressure gage data 
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this time. In a study by Catbas et al. (2011), it is explored that the malfunction of the span lock 

can cause a significant increase in the stresses that also increase the probability of failure of the 

main girders. 

Another example for direct data analysis is presented by employing the data obtained 

from the gear box accelerometer during opening-closing operation. Gear boxes are critical 

components of the movable bridge operation, and they transfer the power to the shafts. The main 

issues regarding gear boxes are lubrication problems, the wearing of speed reducers, and load 

transfer problems due to shaft seals. Accelerometers are installed on the gear box for tracking the 

vibration characteristics to determine the gear box condition. The typical gear box acceleration 

data is also shown in Figure 21. 

Table 2: Sunrise Boulevard Bridge maintenance log for June 2011 

Bridge Maintenance Log 

Bridge# 860466 Month June Year 2011 

Date Type of Crew Time In Time Out Tender Initials Crew Initials 

6/16 Transfield 9:00 12:30 … … 

Notes: Welding on the deck 

6/19 GSI 23:45 3:00 … … 

Notes: Troubleshoot span-lock system, replaced time delay relay 

6/19 GSI 1:30 3:00 … … 

Notes: Assist with span-lock trouble 

6/28 GSI 6:15 10:15 … … 

Notes: Weekly maintenance, replace output shaft seal on gear box 

6/28 GSI 9:00 12:30 … … 

Notes: Repair outlet in machinery room 

 

From long-term continuous monitoring of the gear box, it is seen that a significant 

increase in the vibration levels started on 6/28/2011 while tracking the statistical properties of the 
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gear box accelerations (Figure 23a). Before this date, the maximum vibration levels are slightly 

higher than 0.2 g, whereas the vibration levels increased to 0.3–0.5 g after 6/28/2011. The 

change in the standard deviation (0.05 g) characteristics is also shown in Figure 23a. In 

mechanical components of movable bridges, such as gear boxes and electrical motors, excessive 

vibrations are critical because these may yield to cracking, leakage, and misalignment (Catbas et 

al. 2011). 

 

Figure 23: Gear box acceleration statistical analysis (a) and frequency domain analysis of three 
different data sets (b) 
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examined (Table 2), and it is seen that on 6/28/2011 during the scheduled inspection, the 

maintenance crew replaced the output shaft seal on the gear box, which changed the vibration 

characteristics at this location. It is also noteworthy to indicate that this preventive maintenance 

action increased the vibration levels, which may directly affect the movable bridge operation. 

This case also illustrated that the use of SHM for maintenance is crucial, as it is possible to 

obtain information about the effectiveness of the maintenance. It should be emphasized that the 

data from visual inspections, maintenance work, and SHM can serve in a complementary 

manner, even cross-checking each other. 

2.5. Calibrated Models 

2.5.1. General Remarks 

Nonparametric models can effectively identify the change in data, however, these models 

are not capable of identifying the root causes of the changes and cannot be used for simulations 

or precise predictive analysis. As a result, parametric models such as field-calibrated finite 

element models (FEMs) become crucial for decision-making purposes. 

The general practice of using geometric models (such as an FEM) includes different 

levels of complexity, discretization, and detail. In this discussion, the FEMs are considered as 

parametric models. Such models are employed for most of the research studies as well as most of 

the practical applications. In rare applications involving existing structures, the FEMs are 

supported by the field experiments for model validation and calibration purposes. 

The model calibration is mainly optimizing a set of selected model parameters to 

minimize the difference between the a-priori model and the experimental results. Several 
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approaches for model calibration/updating process can be considered based on the selection of 

the parameters to identify, the formulation of the objective functions to minimize error between 

the model and experimental results, the optimization approach, and addressing the uncertainties 

both in model and measurement data. 

The other common issue related to the calibration studies is the validation of the model. It 

should be noted that model calibration and model validations are two separate tasks. Calibration 

of a model that has not been validated is likely to lead to results that do not represent real 

structure behavior. For this purpose, different field tests should be conducted, and these different 

measurements should be used with multi-objective criteria for validation of the model. 

In certain cases where more accurate analysis is warranted with detailed models that are 

also calibrated with field data, it is also important to recognize the uncertainties in the model, 

engineering assumptions, and idealizations, as well as the uncertainties in the data. For example, 

to predict the remaining life of a bridge under increasing load and deterioration due to aging, a 

calibrated model can provide better results, yet it is clear that the results cannot be deterministic 

due to the uncertainties as well as the nature of the predictive analysis. As a result, such 

structural models are defined in a probabilistic sense. 

2.5.2. Uncertainties 

The uncertainties in the analytical and experimental steps need to be considered for 

improved decision making based on the results obtained from nonparametric or parametric 

models used for St-Id. There are two broad types of uncertainty. The first type is the aleatory 

uncertainty, which is associated with natural randomness and cannot be reduced or eliminated. 
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An example of aleatory uncertainty is the uncertainty in natural events, such as wind speed and 

direction and earthquake loads. The second type is the epistemic uncertainty, which is associated 

with imperfect knowledge due to a lack of data or crude models (Ang and De Leon 2005). This 

type of uncertainty can be reduced by improving the accuracy of models, having more data, and 

better utilizing the data. Possible sources of uncertainties related to modeling and monitoring 

structures are shown in Table 3. 

Table 3: Possible sources of uncertainty 

Structural Sources Data Acquisition 

* Interactions and correlation 
between different components 

* Non-stationarity 
* Structural nonlinearity 
* Intrinsic stresses, redundancy, 

local deterioration 
* Boundary and continuity 

conditions 

* Dynamic range of the 
system 

* Interferences and 
spurious energy input 

* Spatial aliasing 
* Asynchronous filters 
* Noise & Bias 
* Bandwidth 

Loading and Input Sensor Uncertainty 

* Load-structure interaction 
* Amplitude and frequency 

content of the loading function 
* Spatial location 
* Directionality 
* Duration 
* Non-stationarity 

* Range & Resolution 
* Sensitivity 
* Hysteresis 
* Repeatability 
* Linearity 
* Noise 
* Precision & Accuracy 

 

As indicated previously, St-Id steps such as a-priori modeling, experimentation, and 

model calibration are often governed by different sources of uncertainties. Soil-foundation 

interaction, sub- and superstructure interface, randomness in external loading, and non-stationary 

behavior due to aging are some of the challenging issues related to the structural modeling, 

monitoring data analysis, and model calibration using monitoring data. In order to ensure a 
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successful St-Id application, proper consideration of uncertainties into St-Id framework is 

essential. Consideration and incorporating uncertainty is becoming crucial, especially for aged 

civil structures as the safety margins diminish over time and the need to better quantify the load 

carrying capacity or reliability becomes more critical. Another important aspect is the 

availability of experimental and computational technologies. For example, it is becoming more 

feasible to employ methods such as Monte Carlo techniques, where large numbers of models can 

be utilized. 

2.5.3. Family of Models 

For St-Id of real-life structures using field-calibrated models, it is assumed that a single 

calibrated model reflects the global (i.e., mode shapes, frequencies) and local (i.e., stresses, 

displacements) behavior of the structure within the specified threshold error (Brownjohn et al. 

2000; Zhang et al. 2001; Teughels et al. 2002; Jaishi and Ren 2005; Sanayei et al. 2006; Bell et 

al. 2007b). However, the uncertainties especially related to civil structures are unique and need 

to be considered depending on the level of accuracy needed for the particular St-Id application. 

In the most general sense, a civil structure changes its behavior over time not only due to 

deterioration but also due to environmental effects, which makes civil structures time variant. As 

a result, it is quite difficult to expect that a model, which is calibrated with monitoring data 

collected from a certain time window, can represent the structure under all conditions and 

effects. It is well-established that the structural dynamic characteristics (i.e., structural 

frequencies, mode shapes) used for calibration vary over time. As such, even a well-calibrated 

single model may not be a full representation of the current condition due to the uncertainties as 



47 

 

well as the time-variant nature of the structure. On the other hand, a population of models can be 

more appropriate and promising if such variations in the structure (i.e., change in boundary 

conditions) and uncertainties in various parameters are considered. 

Use of a population of models has been also proposed in the literature in order to consider 

uncertainties in model development and calibration. Some researchers focus on Bayesian 

approaches for model updating studies on numerical examples (Beck and Katafygiotis 1998; 

Katafygiotis and Beck 1998; Papadimitriou et al. 2001). In these studies, researchers mainly 

discuss identifiability of multiple calibrated models, and they illustrated a Bayesian probabilistic 

framework on the identification of parameter sets for different candidate models. In a following 

study, Beck and Au (2002) proposed an adaptive Markov chain Monte Carlo simulation 

approach to evaluate the probability of failure on a two-dimensional FEM of a two-story one-bay 

moment resisting frame for identifiable and unidentifiable cases. Here, the identifiable cases 

refer to cases where the number of model parameters is less than the number of effective 

constraints, and the unidentifiable cases refer to where the number of model parameters is larger 

than the number of effective constraints. Beck and Au (2002) indicate that the complexity and 

computational effort will grow since the difference between the number of parameters and the 

number of constraints increases. Therefore, it is desired to have a calibration methodology that 

can effectively update the models for the unidentifiable cases. 

Moreover, other researchers took different approaches for identifying multiple models for 

structures. For instance, clustering, which is a powerful data mining technique, was employed to 

obtain the topology of the candidate model space (Saitta et al. 2008). In that study, cluster 

centers provide the candidate models that can represent the structural behavior. In another study 
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by Robert-Nicoud et al. (2005b), stochastic global search algorithms were utilized to generate a 

set of candidate models that satisfied the threshold error level between the model predictions and 

measured values. In this study, it was shown that the increase of sensor information can reduce 

the number of candidate models and this reduction directly affects the system identification 

process. For this reason, more measurement information can directly reduce the number of 

candidates, but the difference between prediction and measurement still remains for the best 

candidate model. Therefore, SHM data collected from various sensors during controlled and 

uncontrolled tests is crucial for reducing the number of candidate models for especially complex 

civil structures such as bridges with tapered sections or long span cantilever truss bridges. 

Additional multiple- and candidate-model studies can be found in the literature (Robert-Nicoud 

et al. 2005a; Smith and Saitta 2008; Kripakaran and Smith 2009; Goulet et al. 2010). 

In this dissertation, uncertainties will be incorporated in a representative set of models, 

and the results from these models will be employed. With the developments in the software and 

computational technologies enabling us to perform large numbers of FEM simulations more 

practically, it is possible to generate a large set of models (it will be refereed to as family of 

models from now on) to represent variations, as well as uncertainties, in the modeling and 

measurements. Some of the reasons for using a family-of-models approach can be summarized 

as follows: 

 Complex civil structures do exhibit non-stationarity due to environmental effects, which also 

leads to nonlinear behavior as the structural response changes over time. In addition, many 

structures may have a nonlinear response that can be represented with a piece-wise linear 

approximation. For example, the boundary conditions at the supports and piers have been 
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observed to vary in different seasons in a nonlinear manner due to material properties and 

soil-structure interaction, as well as friction at the continuity conditions (Catbas and Aktan 

2002; Catbas et al. 2007). In other words, the nonlinear response can be represented using the 

linear response coupled with some uncertainty. Therefore, a family-of-models approach can 

be expected to characterize a structure over its operating conditions by providing a non-

deterministic prediction with the incorporation of possible uncertainties in different steps. 

However, it should be noted that a nonlinear structural analysis or a nonlinear parameter 

identification is beyond the scope of this dissertation. 

 While monitoring of structural systems can provide data that can be used to predict future 

performance, it may not be always feasible to conduct certain controlled tests (i.e., static and 

crawl-speed load tests on bridges) multiple times over time to generate a distribution for 

response. Repeatability of such tests may not be feasible or practical for St-Id on real-life 

structures. A family-of-models approach may be a more practical option for such 

applications. 

 While multiple-model St-Id studies provide concepts of candidate models, the use of 

numerous models for determining some of the practical engineering concepts, such as the 

load rating of bridges, or more advanced concepts, such as system-level reliability with the 

consideration of correlation of different components with each other, were not explored for 

real-life structures. 

 In the worst-case scenario for performance prediction of real-life structures, real-life data 

may be very scarce, limited, or even not existent. With the use of a family of models, it might 
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be possible to consider uncertainties, correlations, distributions with a realistic assumption, 

and as a result, system reliability bounds can be obtained for performance predictions. 

 In bridge engineering, load ratings are calculated using idealized FEMs by defining HL-93 

loads based on AASHTO specifications. The HL-93 loads, which include truck and lane 

loads, are considered imaginary loads, and they do not exist in real life. In addition, weakest-

link failure is considered in load-rating applications instead of redundancy. This bridge 

performance metric is also utilized for decision-making purposes, such as retrofit, repair, and 

load postings. In this dissertation, load rating is also presented in a probabilistic manner 

based on a family of models, and this can provide the upper and lower bounds by 

incorporating the uncertainties to benefit the bridge engineers for utilization decisions. 

 Uncertainty incorporation through a family-of-models approach is more suitable especially 

for bridges that have less redundancy due to fracture-critical members (i.e., span locks of 

movable bridges, hanger elements of long-span bridges), bear high operational importance 

(i.e., movable bridges that are critical members of highways and waterways), are 

deteriorated, and seem to perform for demands approaching capacity. 

2.6. Utilization for Decision Making 

2.6.1. General Remarks 

The last step of the St-Id framework is the utilization of the data and/or models for 

decision making (i.e., maintenance, repair, or replacement for the civil infrastructure) based on 
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some type of decision metric. These decisions can be made by utilizing calibrated (parametric) or 

trained (nonparametric) models. 

It is possible to establish different metrics in terms of structural behavior, damage 

features, or other metrics related to loading and resistance of a structure. In this dissertation, two 

main performance metrics are employed for decision-making purposes. The first is load rating, 

which is commonly used for bridge engineers, and the second is structural reliability, which is a 

measure of probability of failure/survival of a structure. Both of these metrics incorporate load 

and resistance and are commonly used in various engineering applications as detailed in the 

following. 

2.6.2. Load Rating 

The load rating of a bridge can be expressed as the ratio of the critical live load effect to 

the available capacity for a certain limit state. Load ratings represent a quantitative measure of 

identifying the need for load posting and/or bridge strengthening, as well as for making 

overweight vehicle permit decisions. The final load rating represents the rating of the weakest 

point within the bridge members. The load rating is commonly used for bridge engineering 

practice and is also described in AASHTO LRFD Bridge Design Specifications (2004). 

Depending on the load rating needed, it may not be necessary to perform each of the load rating 

procedures. Three main load rating procedures are: 

 Design load rating: The design load rating assesses the performance of existing bridges 

utilizing the LRFD design HL-93 loading. It can serve as a screening process to identify 

bridges that should be load rated for legal loads. The design load rating can be performed at 
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two levels: inventory and/or operating level. The inventory load rating, which is the higher 

rating, is performed at the same design level reliability adopted for new bridges. A bridge 

that passes the design load check at the inventory level will have a satisfactory load rating for 

all legal loads. The operating load rating is performed at a lower reliability, which is 

comparable to the operating-level reliability inherent in past load rating practices. 

 Legal load rating: The legal load rating is a second level rating and is for bridges that do not 

have sufficient capacity under the design load rating. Legal load rating establishes whether 

there is a need for load posting or strengthening. It determines the safe load capacity of a 

bridge for the AASHTO family of legal loads and state legal loads, using safety and 

serviceability criteria considered appropriate for evaluation. 

 Permit load rating: The permit load rating checks the safety and serviceability of bridges in 

the review of permit applications for the passage of vehicles above the legally established 

weight limits. Since this is a third level rating it should only be applied to bridges having 

sufficient capacity for AASHTO legal loads. 

One of the most common methods for determining a load rating for a bridge is through an 

analytical method (such as beam-line analysis) by utilizing a simple model. However, as 

discussed in the literature, these simplified methods commonly result in conservative load ratings 

(Catbas et al. 2012c). If these simplified rating calculations result in load posting of a bridge or 

restriction to permit vehicles, more accurate 3-D models may be developed, or load tests can be 

conducted, to better assess the load-carrying capability of the bridge. For certain types of 

bridges, such as arch bridges and bridges with tapered sections (as seen in Sunrise Boulevard 

Bridge), load rating calculation using a model and field measurements may not be a trivial task 
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due to the fact that critical load placement may vary for different sections (Garrett 2007; LeBeau 

and Wadia-Fascetti 2007). 

In this dissertation, the load ratings that are presented in the upcoming chapters are 

calculated based on the HL-93 loading, which includes HL-93 truck (72 kip) and HL-93 lane 

load (0.64 kip/ft) according to the AASHTO Guide (2004). The load factors change according to 

the type of load rating (i.e., inventory or operating load rating); only the inventory load ratings 

are presented in this dissertation. The general formulation for the rating factor is: 

                                      (2.1) 

where C is the factored load-carrying capacity, DC is the dead load of structural 

components, DW is the dead load of the wearing surface, P is a dead load concentrated at a 

single point, LL is the live-load effect, IM is the impact factor (33% is used), and γ’s are the 

safety factors. 

2.6.3. Component and System Reliability 

The second metric that is employed for decision-making demonstration in this 

dissertation is the reliability index, which can be defined as the probabilistic modeling of 

capacities (R) and demands (S) under a given limit state. In other words, reliability is a 

probabilistic measure of assurance of safe performance (Ang and Tang 1984). As an illustration, 

if R and S are defined by probability distribution functions (PDF), such as fR(r) and fS(s), the 

probability that S will not exceed R, P(R>S) represents the reliability of the structural component. 

If R and S are statistically independent, the probability of failure, P(R<S) can be defined as: 
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            (2.2) 

where FR(s) is the cumulative distribution function (CDF) of R. Then, the reliability can be 

expressed as: 

          
            (2.3) 

In another case, if R and S are not independent, the probability of failure can be formulated in 

terms of joint PDF of the random variables R and S, fR,S(r,s), as: 

            
            

  (2.4) 

Another important concept in reliability calculations is the safety margin (M=R-S) which can be 

defined as the difference between the capacity and demand. The safety margin is also a random 

variable with PDF, fM(m), and the probability of failure can be expressed as: 

        
        (2.5) 

From the assumptions about distributions of R, S, and M, it is observed that the reliability is a 

function of the ratio (M/M), which is the safety margin expressed in units of M and called the 

reliability index. In other words, generalized reliability index (β) is the distance from the tangent 

plane of the failure surface; it can be expressed as: 

        (2.6) 

where M and M are the mean and standard deviation of the safety margin, respectively. If R and 

S are statistically independent and normally distributed, Eq. (2.6) becomes 
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                 (2.7) 

where R, S and R, S are the means and standard deviations of the capacity and demand, 

respectively. Moreover, depending on the first-order approximation, the reliability index can be 

calculated as: 

                     
(2.8) 

where Ф-1 is the inverse of the standard normal CDF. Furthermore, the limit state function is 

directly related to the safety margin (M=R-S), but the capacities and demands may consist of 

several variables. For generalization of the concept, the safety margin (M) is formulated as a 

state function, g(X), by Ang and Tang (1984): 

                    
(2.9) 

where X=(X1, X2,…, Xn) is a vector of design variables. If the state function is positive, g(X) > 0, 

it is called the safe state. If the state function is negative, g(X) < 0, it is called the failure state. 

Lastly, If the state function is zero, g(X) = 0, it is called the limit state, which will be utilized in 

the following chapters. 

System reliability is a major concept in reliability analysis, because individual limit-state 

functions are assembled together in a system model. The failure conditions are determined by the 

system model, since failure of one or two members may not be important due to redundancy. On 

the other hand, there may be critical components (fracture-critical) which have to stay intact for 

the structural integrity of the whole system. 

System reliability can be modeled with certain considerations such as assembling the 

failure limit states as parallel or series links after determining the failure modes. In a series 
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systems (Figure 24a), failure of any of its components constitutes failure of the entire system. 

The probability of failure of a series system can be expressed as the probability of the union of 

component failure events: 

                    
     (2.10) 

The probability of failure of any system depends on the correlation among the safety 

margins of the components. The probability of failure of a series system in the perfectly 

correlated case is as follows: 

              ) (2.11) 

whereas the probability of failure of a series system in the statistically independent case is as 

follows: 

                  
    (2.12) 

 

Figure 24: Series (a) and parallel system (b) 

On the other hand, failure of a parallel system requires failures of all its components 

(Figure 24b). The probability of failure of a parallel system can be expressed as the probability 

of the intersections of component failure events: 

(Pf)1
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. . .
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     (2.13) 

The probability of failure of a parallel system in the perfectly correlated case is as 

follows: 

              ) (2.14) 

whereas the probability of failure of a parallel system in the statistically independent case is as 

follows: 

              
    (2.15) 

A combined system can be modeled as a series system of parallel subsystems. Evaluation 

of a system model is performed by reducing first the parallel components. Then, the reduced 

series system is evaluated. Calculation of the bounds for the reliability of series, parallel, and 

combined systems can be found in Ditlevsen (1979). Additional information on the effect of the 

correlation of components on system reliability and the use of different system models can be 

found in Liu et al. (2009) and Kim and Frangopol (2011c). Finally, there are several computer 

programs, such as CalREL (Der Kiureghian et al. 2006), FERUM-MSR (Song and Kang 2009), 

OpenSees (2009), and RELSYS (Estes and Frangopol 1998), that are developed to compute the 

probability of failure of combined systems.  
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CHAPTER 3.  
NONPARAMETRIC STRUCTURAL ASSESSMENT 

3.1. Introduction 

Application of SHM to civil infrastructure systems such as buildings, roads, dams, and 

bridges is relatively recent compared with applications to aerospace and automotive structures. 

For civil infrastructures, a main focus has been on monitoring bridges for identifying condition 

and determining if damage exists, as well as assessing their safety and serviceability (Brownjohn 

et al. 1995; Aktan et al. 1996; Enright and Frangopol 1999; Dyke et al. 2003). 

A structure can be monitored to obtain its global (such as vibration) and/or local (such as 

strain) responses. For global condition monitoring, a variety of studies utilizing vibration data 

can be found in the literature (Sohn et al. 2001; Catbas and Aktan 2002; Giraldo and Dyke 2004; 

Lynch et al. 2004; Catbas et al. 2006; Sanayei et al. 2006; Gul and Catbas 2009). On the other 

hand, local condition assessment, such as monitoring using strain measurements, have also been 

explored by many researchers such as Bakhtiari et al.(2005), Omenzetter and Brownjohn (2006), 

Catbas et al. (2008b), Philips et al. (2009), Li et al. (2010), Catbas et al. (2012e). In summary, 

the objective of local and/or global monitoring is to extract useful information for tracking the 

responses, identifying the deviations from the “normal” operational conditions, and/or detecting 

damage. 

To obtain useful information about the structure and its performance, SHM data analysis 

approaches can be categorized as parametric (model-based or physics-based methods) and 

nonparametric methods (model-free or data-driven methods). While parametric methods can be 

useful for better physical conceptualization and also for predicting future behavior, the level of 
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expertise and time required to develop such models sometimes make this approach impractical 

(Worden 1997; Laory et al. 2011). On the other hand, nonparametric methods can be very 

efficient when utilized only for diagnostics (i.e., detection and localization). The idea of such 

methods is that only training data from the normal operating condition of the structure or system 

is used to establish the diagnostics(Worden and Dulieu-Barton 2004). 

Consequently, nonparametric methods may not provide a physical understanding or 

predictive analysis; however, they are shown to be very practical to use, computationally 

efficient in handling large amounts of data, and efficient in detecting changes in structures in a 

timely manner. Among several data-driven applications, some of the studies that are closely 

related to the contents of this paper can be given as follows: A nonparametric approach, artificial 

neural networks, was employed on large-scale viscous dampers for detecting damage, and this 

application provided successful identification of nonlinear systems (Yun et al. 2009). Other 

methods, such as moving principal component analysis and robust regression analysis, were 

demonstrated to be useful for damage detection during continuous static monitoring of civil 

structures (Posenato et al. 2010). An overview of such methods was recently presented by Smith 

(2011) in a comparative fashion. The applicability of any parametric or nonparametric methods 

needs to be shown first with laboratory demonstrations and then, if possible, on real-life 

structures with damage scenarios to test the approaches and methodologies more reliably. 

In some situations, measured data may exist, but it is not always possible to have a-priori 

or calibrated models in the structural identification framework. Therefore, a nonparametric study 

is conducted in this chapter as illustrated in Figure 25. The objective of this chapter is to employ 

a cross-correlation analysis method for detecting and localizing the changes in the structure due 
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to damage and/or a change in intrinsic stress distribution by using strain monitoring data under 

unknown loading conditions on the structure. This approach can be applicable to any type of 

structure, such as bridges, buildings, wind turbine blades, etc., where the structure is monitored 

over a period of time. For example, structural strain response at critical locations due to 

operating traffic on a bridge or response of a building structure due to ground excitation or wind-

induced loading can be employed for detecting structural changes. It should also be mentioned 

that strain monitoring is the least expensive and the most commonly utilized measurement on 

bridges as well as other structures. While strain measurements can provide data that can be used 

in a number of ways (i.e., in relation to the yield strain levels), tracking the strain response for 

change/damage detection makes it essential that the loading creating that particular strain is 

known. A novelty of the approach in this dissertation is in employing the strain responses to 

detect and localize the changes and damage without the need for the input information, as this 

would be required for most cases with strain data. 

 

Figure 25: Use of nonparametric (data-driven) methods for St-Id of a movable bridge due to 
maintenance issues 
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Detection and localization are achieved by applying the proposed approach to track the 

cross-correlation matrices between the strain measurements that are spatially distributed on the 

critical elements of the structure. The change in the correlation coefficient between two 

measurement channels is related to the change in structural behavior. In addition, the correlation 

matrix obtained from the measurements of all channels is employed for localization. Previously, 

cross-correlation or moving cross-correlation has mainly been evaluated with numerical models 

and simple test structures. In this study, a phenomenological laboratory structure is employed for 

the analysis of different damage conditions, which are induced to the structure first separately 

and then simultaneously. A critical contribution of the study is that the method is then 

demonstrated on a real-life bridge in a similar fashion to the laboratory design, i.e., damage 

conditions are induced first separately and then simultaneously. Because it is an operating 

structure, the bridge is repaired shortly after damage, which allows the researchers to monitor 

and assess the response of the bridge after repair. 

3.2. Theory and Methodology 

Extraction of useful information from large amounts of data coming from long-term 

monitoring studies is always a challenging task for engineers and researchers. The data can be 

analyzed using a number of methods to obtain different features, including the most common 

statistical properties of the data, such as maximum, minimum, mean, standard deviation, and 

correlation. 

In this chapter, correlation of the strain measurements is employed for damage 

identification and localization. In theory, the correlation coefficient is a measure of similarity of 
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two data sets and may take a value between +1 and -1. Having similar behavior in data sets gives 

higher magnitude correlation (values close to +1 and -1), while low-magnitude correlation 

(values close to 0) indicates either low or no correlated response. For continuous monitoring, the 

new data are appended to the raw data set, and a moving window is used to obtain the correlation 

coefficients between sensors for each window with the following formulation: 

                                                                                   
 (3.1) 

where ρij(tn) is the correlation between the sensors i and j at the time tn, only for the last 

Nw measurements from the identified window size, n is the total number of time observations 

during the monitoring duration, Si(tk) and Sj(tk) are the values of the sensors i and j at time tk, and 

i, j are the mean values of data from the sensors i and j. The moving data can be employed in 

such a way that there is an overlap in the data windows selected, or the moving windows can be 

consecutive with zero overlap with a similar analogy that is employed in digital signal processing 

(i.e., averaging of ambient vibration data using Hanning windows). The window overlap can be 

determined based on the initial inspection of the data characteristics, duration and sampling of 

monitoring, and available data. 

To illustrate the correlation feature, representative scatter plots of the different strain 

channels are shown in Figure 26. If the scatter can be bounded closely, this indicates a high 

correlation, whereas the opposite means a low correlation. As shown in Figure 26, the correlation 

between the first and second strain gage is very low, or, in other words, there is almost no 

dependence between these two data sets. On the other hand, the correlation is higher between the 
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first and third strain gage, and the highest correlation is seen between the first and fourth strain 

gage. 

 

Figure 26: Scatter plots of strain channels (Sensor 2, 3, 4) versus one strain channel (Sensor 1) 

The methodology is based on the premise that the correlation coefficients between two 

sensor signals ideally should be “constant” or “stationary” over time until a change or damage 

occurs in the structural configuration. The schematic representation of the methodology is shown 

in Figure 27. As seen in the figure, continuous monitoring data are collected from the structure. 

At one point, damage occurs while the monitoring data are still being collected. First, dynamic 

components of the sufficiently long strain data are filtered out before the correlation analysis. 

Then, the correlation coefficient of each channel is calculated against all the channels to form the 

correlation matrix for each data set. 

The same procedure is repeated to obtain the correlation matrices throughout the 

monitoring of the structure. During undamaged and damaged periods, several sets of 

experimental data are collected to create a population of matrices from each data set. Finally, the 

set of matrices are averaged for undamaged and damaged cases, and the difference matrix is 

obtained by subtracting the mean matrices obtained from two cases. This difference matrix will 
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show whether there is a change in the correlation coefficients in each cell. After observing the 

changes in the cells, the whole matrix is used to detect the damage location easily by locating 

sensors that have the maximum change with respect to the other sensors. 

 

Figure 27: Overview of the correlation-based damage identification methodology 
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3.3. Lab Demonstration 

3.3.1. Test Specimen, Instrumentation, Experiments, and Data Filtering 

For the demonstration of the correlation-based damage identification and localization 

methodology, a four-span bridge model, which has structural response characteristics of a 

medium-span bridge, is employed (Figure 28). The setup consists of two approach spans (120 

cm) and two main spans (305 cm) with a 3.2 mm thick, 120 cm wide steel deck supported by two 

25x25x3 mm steel girders separated at 60 cm from each other. In addition, specially designed 

supports can be easily changed to roller, pin, or fixed boundary conditions as also shown in 

Figure 28. 

 

Figure 28: Four-span bridge in the laboratory (a) and different boundary conditions (b) 

The four-span bridge is instrumented with various sensors, such as accelerometers (16), 

tiltmeters (2), a video camera (1), and strain gages (20), as shown in the instrumentation plan in 

Figure 29. However, only strain gage data, which is collected with a sampling rate of 250 Hz, is 

utilized for the demonstration of the strain correlation-based damage identification and 

localization. Furthermore, a two-axle radio-controlled vehicle, which has 68.7 N and 78.5 N axle 

loads with a spacing of 45 cm is used as a live load (Figure 30a). To obtain a population of data 
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sets, the vehicle crawled over the left lane of the bridge 15 times for each structural condition 

(baseline and damage cases). 

 

Figure 29: Instrumentation plan of the four-span bridge 

 

Figure 30: Four-span bridge and vehicle properties (a) and sample raw and filtered data (b) 

Prior to the correlation analysis, a filter study is carried out to eliminate the dynamic 

effects of the traffic since this is observed to inversely affect the correlations. This may be 

mainly due to the dynamic strain effects being local responses as observed in strain signals, and 
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noise is also mostly observed in the higher-frequency bands. After a detailed filter study, it is 

decided to use a low pass filter with the following properties: third-order fit is selected for 

decreasing the computational time without losing the data behavior. In addition, the cutoff 

frequency is decided based on the first vertical mode of the structure to observe only the static 

behavior. Moreover, zero phasing and peak matching are also very important to catch the peak 

locations and amplitudes. In Figure 30b, typical raw strain data collected at 250 Hz and filtered 

strain data from the four-span bridge are presented. As observed from the figure, each test run 

took around 50 seconds. The average vehicle speed was 0.2 m/s during the tests. It should be 

noted that the duration of the signals used for correlation is many multiples of the highest period 

of the bridge. Although there is a decrease in the peak values of the filtered data, it is seen that 

the peak locations before and after filtering match, while the dynamic effects and noise in the 

strain data are eliminated. 

3.3.2. Damage Simulations and Results 

The damage scenarios applied on the four-span bridge model are determined based on the 

feedback from Department of Transportation (DOT) bridge engineers (Catbas et al. 2008a). 

These damage scenarios involve changes in boundary conditions corresponding to a case usually 

found when rollers or pinned supports of a bridge become corroded or blocked and the structural 

configuration of the bridge changes. These changes on the structure can cause stress 

redistribution, and, consequently, the structural members will be subjected to unexpected 

additional forces caused by this redistribution. This kind of problem is simulated on the four-

span bridge model by fixing the supports as shown in Figure 28. Baseline (Case-0) and three 
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different damage cases (Case-1, 2, 3) for the laboratory structure are illustrated in Figure 31. 

More details about damage cases can be found in Catbas et al. (2012b). 

 

Figure 31: Baseline (case-0) and applied damage scenarios (case-1, 2, 3) on four-span bridge 

Collection of 15 data sets per each case is followed by the data analysis of the proposed 

correlation-based methodology. First, the specially designed low-pass filter, which is described 

in the previous section, is applied to all the data sets to eliminate the dynamic effects on the 

strain channels. The cut-off frequency is decided to be less than the first vertical mode of the 

four-span bridge, which is around 4.9 Hz, to observe the static behavior (Zaurin and Catbas 

2011). Then, the correlation matrices are generated for each data set. Due to the malfunctioning 

of strain gage-20, it was omitted from the study, resulting in a 19 by 19 correlation matrix for 

each data set. For instance, the first row of this matrix consists of the correlation coefficients 

between strain gage-1 and the other strain gages. The other rows are calculated in the same 

manner. The correlation matrix is symmetric, and the diagonal terms should be unity because the 
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correlation of each channel with itself is one. Fifteen matrices are generated from the 15 test runs 

to create a population of correlation matrices for the baseline case. The mean correlation matrix 

is obtained from these matrices. In the same manner, the mean matrices are also obtained for the 

three damage cases. Consequently, these four matrices are employed to determine the existence 

of structural changes and change locations in a comparative fashion. Finally, the difference 

matrices are investigated to better understand and interpret the changes in these matrices. 

Figure 32 illustrates the damage locations for Case-1 (a), the difference matrix between 

Case-0 and Case-1 in an 19 by 19 matrix form (b), and the sample from the correlation data used 

for the cell for the correlation difference between strain gage 1 (SG1) and SG7, as well as for 

SG11 and SG6 (c). The correlation data clearly indicate change/damage as well as its location as 

the darker areas show the maximum change in the correlation coefficients for the SG1 and SG11. 

The change can be observed more easily in SG1 since the vehicle is moving on girder-1 (Figure 

29). In addition, the damage was induced by tightening the bolts at the supports manually. The 

final effect of this damage cannot be expected to be identical at both supports. As a result, the 

change at two different supports is observed at different levels. In fact, similar results are also 

reported by Zaurin (2009) by using completely different data analysis methods using the same 

data. 

To better represent the changes in the correlation coefficients, some of the cells in the 

difference matrix are closely investigated as seen in Figure 32c. For example, the correlation 

coefficient between the SG1 and SG7 was around -0.25 for the baseline tests, but this became 

0.65 during Case-1 tests. The changes in the correlation coefficients are also illustrated between 

SG11 and SG6 (Figure 32c). The change in the correlation coefficients between different sets of 
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data is an indication of structural change (in this case, due to simulated damage) since the 

correlation coefficients are assumed to be “constant” or “stationary” under normal conditions, as 

seen during the baseline condition. In Figure 32c, it is seen that the difference between the mean 

values of the correlation coefficients is several times the standard deviation of the data, giving a 

confidence in change detection. This approach is demonstrated with 15 sets of data before 

damage and 15 sets of data after damage for the illustration of the efficacy of the method. A 

moving window of strain time histories can be employed to obtain the correlation coefficients for 

the identification and location of damage as presented in Figure 32b. 

Furthermore, Case-2 and Case-3 are also clearly identified and located as presented in 

Figure 33 and Figure 34, respectively. In Case-2, the middle supports are fixed; therefore, the 

changes in the difference matrix are observed for SG5, SG6, SG15, and SG16, which are near 

the middle supports. When compared to Case-1, Case-2 did not introduce significant changes in 

the structure because the difference matrix showed relatively lower changes for Case-2. These 

changes can be seen in Figure 33c. Moreover, the new correlation-based methodology can 

identify and localize the damage for Case-3, which is a combination of Case-1 and Case-2. 

Sample correlation coefficient change plots between SG5 and SG15, as well as SG5 and SG18, 

are shown in Figure 34c. In conclusion, the methodology is validated for damage identification 

and localization from these laboratory studies. Validation of the new methodology with a real-

life application is also carried out, and the findings are presented in the next section of this 

chapter. 
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Figure 32: Damage locations (a), difference matrix between case-0 and case-1 (b), and sample 
correlation data used for the corresponding cell of strain gage pairs (c) 
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Figure 33: Damage locations (a), difference matrix between case-0 and case-2 (b), and sample 
correlation data used for the corresponding cell of strain gage pairs (c) 
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Figure 34: Damage locations (a), difference matrix between case-0 and case-3 (b), and sample 
correlation data used for the corresponding cell of strain gage pairs (c) 
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3.4. Real-Life Demonstration: Sunrise Boulevard Bridge 

Sunrise Boulevard Bridge (Figure 35a) is employed as a real-life demonstration for the 

validation of the correlation-based damage identification methodology. Details about the bridge 

description and the monitoring system were discussed in the second chapter of the dissertation. 

For this section of the dissertation, data from the strain gages, a total of 12 sensors, at the bottom 

flanges of the main girders are used to identify and locate the structural alterations with the new 

methodology. The data collection rate is 250 Hz, and the locations for the strain gages and 

corresponding nomenclatures are given in Figure 35b. For example, WN refers to West North 

and ES refers to East South. 

 

Figure 35: Sunrise Boulevard Bridge (a), strain gage locations and nomenclature (b) 
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operation in a 24-hour period. Each data set is collected for five minutes continuously, and a 
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Bridge is shown with a corresponding video frame from the monitoring camera. 
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Figure 36: Sunrise Boulevard Bridge sample data and video frame 

3.4.1. Structural Changes 

Critical issues that create maintenance problems on the movable bridge, which were 

discussed in the previous chapters, are simulated on the Sunrise Boulevard Bridge based on the 

detailed investigation of the bridge inspection reports and interviews with the bridge engineers 

(Catbas et al. 2010). In the second chapter, some of the most common structural maintenance 

problems were identified as live load shoe (LLS) and span lock (SL) shim deformations. These 

two problems are subsequently implemented on the movable bridge separately and jointly. First, 

the West South LLS (WS3) shims are removed (Case-1), then the West South SL (WS1) shims 

are removed (Case-2), and, finally, shims from LLS and SL of West South side are removed for 

the combined damage scenario (Case-3). 

Live Load Shoes (LLS), which are the support locations of the main girders in the closed 

position, are one of the critical structural components of the movable bridges. The main 

operational concern of LLS is the loss of contact, which makes the shims at these locations 

crucial. Small gaps due to deterioration of the shims lead the girders to pound on the live load 

shoes, which results in further misalignment, additional stresses, stress redistributions, fatigue 

damage, and excessive wear. The LLS and shim-removal operation can be seen in Figure 37. 
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Case-1 is the creation of a gap (around 0.3 cm up to 0.5 cm) between the West South LLS (WS3) 

and resting support pads, which corresponds to non-fully seated LLS (Figure 37). 

 

Figure 37: Live load shoe (LLS) and the shim-removal operation 

Span Locks (SL), which are one of the members that fail the most due to deterioration or 

incorrect operation (Catbas et al. 2011), are used to connect the tip ends of the two cantilever 

leaves in bascule bridges. Consequently, both leaves are forced to deflect equally, preventing a 

discontinuity in the deck during operational traffic. Two main components of the SL are the 

receiver and the lock bar (Figure 38). These elements are located in different leaves. During 

operation, the lock bar slides with a hydraulic system across the bronze shoes, mounted in the 
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be loose enough to allow a proper opening operation, but at the same time, the gap between the 
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bar and the receiver has to be small enough to ensure the adequate connection with minimal 

bouncing while vehicles cross from one leaf to the other. This is achieved by placing shims to 

adjust the spacing. Case-2 is the creation of a gap (around 0.3 cm up to 0.5 cm) on the West 

South Span Lock (WS1) by removing the shims. The last structural alteration on the Sunrise 

Boulevard Bridge is Case-3, which is the combination of the Case-1 and Case-2. 

 

Figure 38: Span lock (SL) and the shim removal operation 
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For the validation of the methodology, 10 different data sets were collected between 

October 11 and October 20 for the baseline case (before damage). Then, the structural changes 

were implemented on the structure on October 21. On this day, five data sets were collected for 

each damage case (Case-1, 2, and 3). Afterward, the shims were replaced on the structure, and 10 

additional data sets were collected between October 22 and October 31 for the after-damage case 

to see whether the correlation coefficients were still returning to the same level as the before-

damage data sets. 

It should also be emphasized that the data collected from the monitoring system is based 

on operating traffic, and no special trucks or lane closures are required. From an operational 

point of view, this input-independent analysis is also desirable for real-life applications, since it 

reduces the cost of load tests, minimizes extra manpower, and eliminates traffic interruptions. 

3.4.2. Results 

After data collection and filtering high frequency components from the signals, mean 

correlation matrices are obtained for different data sets and these correlation matrices are 

compared as given in Figure 27 previously to determine structural changes and/or structural 

damage. The comparison is carried out by subtracting the mean correlation matrix from one state 

of the bridge to another state. The difference matrix serves as an indicator as exemplified in the 

following. 

Figure 39 illustrates the damage locations for LLS shims removal (a), the difference 

matrix between the before-damage results and the LLS shims removal in a 12x12 matrix form 

(b), and sample correlation data used for the WS3 and EN2 cell. From the difference matrix, the 
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damage can be easily identified and also localized. In Figure 39b, it is observed that the darkest 

colors are seen for the WS3 location, where the structural change is applied. In addition, Figure 

39c shows the change in the correlation coefficients before, during, and after the damage for the 

cell that corresponds to the correlation between WS3 and EN2. After replacing the shims at the 

LLS location (after damage), the coefficients are almost equal to the before-damage mean value 

of correlation, which demonstrates effective repair of the damage. 

Additionally, damage is also identified and localized for SL shims removal and both 

shims removal from LLS and SL, which are shown in Figure 40 and Figure 41, respectively. The 

change in the correlation coefficient of SL shims removal is illustrated for the WS1 and WN1 

strain gages (Figure 40c), and the change of LLS+SL shims removal is illustrated for the WS3 

and ES2 strain gages (Figure 41c). It is observed that the variation of the correlation coefficient 

for SL shims removal is not as low as seen in the LLS and LLS+SL shims removal cases. Since 

the tip locations are exposed to lower strain levels due to a cantilever type behavior, the variation 

in the correlation coefficients for this location is a little bit higher. Nonetheless, the darkest 

colors in Figure 40b indicate the maximum change is at WS1 where the span-lock shims were 

removed. When both LLS and SL shims are removed, it is seen that two rows and two columns 

corresponding to WS1 and WS3 simultaneously indicate the maximum change (Figure 41b). 
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Figure 39: Damage locations (a), difference matrix between baseline and LLS damage (b), and 
sample correlation data used for the corresponding cell of WS3 and EN2 strain gages (c) 
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Figure 40: Damage locations (a), difference matrix between baseline and SL damage (b), and 
sample correlation data used for the corresponding cell of WS1 and WN1 strain gages (c) 
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Figure 41: Damage locations (a), difference matrix between baseline and LLS+SL damage (b), 
and sample correlation data used for the corresponding cell of WS3 and ES2 strain gages (c) 
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One of the important issues to be discussed is the separation of the mean difference levels 

for a substantial change that can confidently be attributed to a structural change. Table 4 shows 

level of change illustrations from the three different damage cases shown in Figure 39c, Figure 

40c, and Figure 41c. 

Table 4: Level of change illustrations for cases shown in Figure 39c, 40c, and 41c 

Sample Cases Compared  

from the following 

Δμ 
(ρ-difference) 

σi σj Δμ/σi Δμ/σj 

Before Damage & LLS 0.53 σBD=0.10 σLLS=0.19 5.3 2.8 

LLS & After Damage 0.61 σLLS=0.19 σAD=0.06 3.2 10.2 

Before Damage & SL 0.53 σBD=0.18 σSL=0.08 2.9 6.6 

SL & After Damage 0.45 σSL=0.08 σAD=0.18 5.6 2.5 

Before Damage & LLS+SL 0.62 σBD=0.08 σLLS+SL=0.10 7.8 6.2 

LLS+SL & After Damage 0.67 σLLS+SL=0.10 σAD=0.06 6.7 11.2 

 

Higher () ratios express more confidence for change/damage between the cases 

compared. It is seen in most of the cases that separation is very high (as high as Δμ≈11σ), 

indicating there is virtually zero overlap between the correlation coefficients between different 

cases. This separation can be confidently attributed to a change between the observed conditions. 

On the other hand the lowest separation observed is ~2.5σ between the SL damage and after SL 

damage repaired cases as presented in Figure 42a. Probability of overlapping or in other words 

separation level between the two cases can be easily identified as presented in Figure 42b. For 

the lowest case (Δμ≈2.5σ), uncertainties in the separation indicate that almost 99% of the data 

points are separated. Therefore, all the results show sufficient separation. 
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Figure 42: Uncertainty in separation between span lock damage and after damage repaired 

3.5. Summary 

The statistical analysis of large structural health monitoring data help the engineer or 

researcher handle large amounts of data more efficiently, especially in the case of extensive 

SHM applications with high spatial resolution generating data continuously. In addition, 

statistical features of the data can be attributed to structural behavior, and change in the 

descriptive statistics can be attributed to structural changes, damage, and/or deterioration. As 

5 10 15 20 25
-1

-0.5

0

0.5

1
WS1 & WN1

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t 

(r
)

Data Set

Before 

Damage

SL

Damage

μbefore=-0.17

σbefore=0.18 

μSL=0.36

σSL=0.08 

μafter=-0.09

σafter=0.18

After Damage 

Repaired

99%



















2
j

2
i

ji

σσ

μμ
S eveleperationL

SL Damage

μSL=0.36
σSL=0.08 

μafter=-0.09
σafter=0.18

After  Damage Repaired

(a)

(b)



85 

 

mentioned earlier, in some situations, measured data may exist, but it is not always possible to 

have prior or calibrated models in the structural identification framework. In this chapter, an 

effective nonparametric data analysis methodology, which is based on the correlation of the 

strain-time histories from different sensor locations for structural change/damage detection, is 

demonstrated on a laboratory test structure and on a real-life bridge. Cross correlations of the 

strain measurements indicate a level of correlation among different sensor pairs, and the 

correlation coefficients are tracked for extracting the information about structural change. It is 

seen that the correlation-based methodology can identify and locate the damage for both 

structures, which are monitored under normal and damaged conditions. 

In long-term monitoring applications, data size is a challenging issue, but the correlation 

analysis considerably reduces the data size to provide useful information from large amounts of 

strain data; thus, the methodology is computationally efficient. Furthermore, the presented 

approach eliminates the need for loading information (magnitude and placement) for strain-

monitoring applications. Strain-time histories used for the data analysis are obtained from 

arbitrary operating traffic conditions. Moreover, from the maintenance point of view, it is also 

shown that the method can be utilized to evaluate the effectiveness of maintenance (including 

repair) by checking the variations of the correlation coefficients before and after the maintenance 

application. Consequently, this methodology has the potential to be easily applied by engineers 

to different kinds of civil infrastructure that require condition monitoring and maintenance. For 

instance, when the LLS and SL are fixed, it is seen that the correlation levels return to the 

previously observed levels as shown in Figure 39c.  
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CHAPTER 4.  
PARAMETRIC STRUCTURAL ASSESSMENT: LAB DEMONSTRATION 

4.1. Introduction 

Complex analysis and design of structures, especially landmark structures such as long-

span bridges, have been conducted by many engineers and researchers (Abdel-Ghaffar and 

Housner 1978; Abdel-Ghaffar and Nazmy 1991; Imai and Frangopol 2002; Frangopol and Imai 

2004; Masri et al. 2004; Catbas et al. 2007; Catbas et al. 2008b). With advances in sensor 

technologies, utilization of monitoring data for assessment of bridges has also gained increased 

attention over the last decade or so. This approach and technique, which is termed Structural 

Health Monitoring (SHM), can be used for improving the condition evaluation of existing 

structures by means of advanced sensing devices, data acquisition systems, and communication 

technology. SHM applications include structural condition assessment, parameter identification, 

model development and updating, geometric model calibration, and real-time monitoring. 

Building upon the theoretical and experimental studies that have been carried out over the 

last several decades, it is possible to collect monitoring data in greater quantities and with greater 

precision with the current advances in sensing technologies at significantly reduced costs. Novel 

approaches such as wireless sensing, distributed networking, and Internet-based data acquisition 

have been more widely available. It is now very feasible and efficient to acquire data for 

structural responses such as strain, displacement, vibration, and environmental effects (i.e., wind 

speed, temperature, and earthquake excitation) (Catbas et al. 2004a). To objectively evaluate the 

condition of existing structures and to design better structures, novel sensing technologies and 

analytical methods can be used to rapidly identify the onset of structural damage. SHM offers an 
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automated method for tracking the health of a structure by combining damage-detection 

algorithms with structural monitoring systems (Lynch and Loh 2005; Catbas et al. 2008b; Gul 

and Catbas 2009; Yun and Masri 2009; Frangopol 2011a; Gul and Catbas 2011; Okasha et al. 

2011; Zaurin and Catbas 2011). 

 

Figure 43: Use of uncertainty-incorporated family of models for St-Id of a laboratory structure 
due to performance decrease 

In addition, it is also very feasible to develop complex analytical models with large 

degrees of freedom using current computer systems. Advanced geometric models such as FEMs 

can be utilized to determine the load-carrying capacity of bridges, to simulate damage and 

deterioration, and to predict the probability of failure. The difficulty of developing models and 

predictive analysis is further compounded due to the complexity of large-scale structures, such as 

long-span suspension bridges (Imai and Frangopol 2001) and long-span truss bridges (Catbas et 

al. 2007; Catbas et al. 2008b). While the mathematical developments and sophistication of the 
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parent and offspring models will be investigated for predicting the performance of a laboratory 

structure due to performance decrease as illustrated in Figure 43. 

4.1.1. Uncertainties 

For a large and complex system, data from all critical components become important, 

especially for system-level assessment and prediction. The reliability of a system depends on the 

reliability of the components, which is closely related to the structural configuration (based on 

failure mechanisms of primary and secondary elements) and redundancy (possible survival paths 

in the structure) of the system (Ghosn et al. 2010; Okasha and Frangopol 2010). It should also be 

indicated that although monitoring is expected to provide data for calibrating FEMs leading to 

more accurate reliability predictions, uncertainty still exists in the data as well as in the models, 

and this uncertainty needs to be incorporated even in the calibrated models. 

One of the most significant studies to consider uncertainty in model development was 

presented by Smith and Saitta (2008), who explored factors for uncertainties affecting the model 

updating process using multiple models by combining dimensionality reduction (principal 

component analysis) and clustering (K-means). An important aspect of this methodology is the 

generation of a population of candidate models, which can be defined as identified FEMs. 

Moreover, several software packages are also developed for uncertainty analysis, such as 

NESSUS and DAKOTA developed by the Southwest Research Institute and Sandia National 

Laboratories, respectively. These attempts mainly address the aleatory uncertainty and are not 

powerful enough for the epistemic uncertainty quantification (Moon and Aktan 2006a). The 

main sources of uncertainties are shown in Table 3. 
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4.1.2. Objectives 

The main objective of this chapter is to explore the impact of uncertainty in predicting the 

system reliability obtained by a one-time, initially calibrated FEM and a family of models that 

are continuously calibrated with SHM data. When analyzing structures and predicting the 

probability of failure by using 3-D FEMs, a number of different approaches are possible for the 

consideration of data and model uncertainties, as summarized in Figure 44. 

 

Figure 44: Different approaches for utilizing FEMs for reliability prediction of bridges 
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The first column of Figure 44 illustrates that a complex yet nominal 3-D FEM can be 

employed for preliminary analysis of the structure. With the availability of SHM data, it is also 

possible to calibrate this model as shown in the second column and then use it for different 

analyses, such as various simulations including damage and deterioration scenarios, and 

reliability prediction by taking the advantage of uncertainties in loads, inertias, areas, etc. defined 

in the literature. While the use of SHM data improves the level of confidence from the 

simulations, it needs to be recognized that a critical assumption in most analyses is that the 

structural responses remain stationary, observable, and reasonably linear during the course of the 

monitoring. In real life this is not the case, and the data used for model calibration provide 

information from a particular time window from the life cycle and operation of the structure. 

Monitoring data, especially for long-span bridges, show the existence of a change in structural 

behavior mainly due to environmental effects. As a result, it is intuitive to realize that models 

have to be continuously updated with monitoring data to give better representations of structural 

behavior, as shown in column three of Figure 44. At this point, it is critical to consider that there 

are still uncertainties as indicated in Table 3. Consequently, even a “calibrated model” will have 

to account for the uncertainties coming from these different sources. The idea of continuously 

calibrating models with the consideration of the uncertainties yields a family of models as 

illustrated in the last column of Figure 44. Such models can be employed for different 

simulations as well as for the prediction of the system reliability. This chapter of the dissertation 

provides a framework and a fundamental study to quantify the difference from predictions of 

reliability when the uncertainties are incorporated with a family of models as compared to an 

initially calibrated model. 
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4.2. Lab Studies 

4.2.1. Experimental Setup 

Laboratory studies are essential to explore new concepts and methodologies before more 

expensive field tests are performed. For this reason, a test structure that is simple to construct and 

test, yet has specific characteristics leading to quantification of uncertainties as part of this 

fundamental demonstration is decided to design for this section. From a redundancy point of 

view, the characteristics of this test setup were inspired by the I-40 Bridge, which had two 

girders as main load-carrying elements connected with crossbeams. The I-40 Bridge was 

extensively analyzed, tested, and characterized by Farrar et al. (1994). 

The steel test setup “Double-H-Frame (DHF)” is designed as a basic bridge model with 

four structural elements. In Figure 45a, DHF components can be seen with a reliability block 

diagram of a combined series-parallel system. Two of the structural elements are the main 

elements (denoted as 1 and 4 in Figure 45a), whereas the others are the secondary elements 

(denoted as 2 and 3 in Figure 45a). For the construction of the DHF, S3x5.7 section (AISC Steel 

Manual, 2006) with yield strength of 250 MPa is used and the net span length of the structure is 

1.5 m. For the undamaged case (baseline), triangular prisms are used to support the beam at the 

boundaries, restraining vertical deflection but not preventing rotation. 
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Figure 45: DHF, reliability block diagram (a) and sensor locations (b) 

4.2.2. Instrumentation Plan 

DHF is instrumented with eight strain gages, four rosette gages, four displacement 

transducers, four load cells, four tilt meters, and four accelerometers. The sensor locations are 

shown in Figure 45b. Strain gages are used to obtain the critical moment values, whereas the 

rosette gages are used to find the shear values near the supports. On the other hand, load cells are 

needed to closely monitor the load since the hydraulic actuator capacity is 445 kN, and the 

maximum load applied to the structure is 27 kN, which is determined from preliminary finite 

element analysis based on the yielding stress criteria with a safety factor of 1.5. Moreover, 

displacement transducers are used for checking the deflections for the local calibration of the 

model. In addition, the tiltmeters are also attached to the support points for the boundary 

condition tests to observe the support rotations. Last, the accelerometers are used for the impact 

hammer and ambient vibration tests for further studies. It should be noted that for this chapter of 

the dissertation only strain and displacement measurements are used for the calibration of the 
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FEMs for each boundary condition, and strain measurements are used for the reliability 

calculations. 

4.2.3. Experimental Plan 

In this section, different types of support deterioration simulation tests are carried out. In 

Figure 46, the test setup and the data acquisition system are shown. The main idea behind the 

static tests is to calculate the system reliability index due to the support degradation. For this 

reason, several tests are conducted with the loading up to 6 kips level for the changing boundary 

conditions (Figure 47). In these tests, one of the supports is selected, and then the number of 

elastomeric pads at that boundary is changed to simulate the support deterioration. In the test 

nomenclature, “M” corresponds to mid-loading, which means the middle points of the 

components are loaded, and “P” corresponds to the number of pads (Figure 47). After creating 

each test setup for boundary conditions with no elastomeric pad (pin), one elastomeric pad, three 

elastomeric pads, and five elastomeric pads, the same loading is applied in all cases. 

 

Figure 46: DHF test setup (a) and data acquisition (b) 

(a) (b)
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Figure 47: Loading of DHF under different boundary conditions 

In addition, compression tests of the elastomeric pads are performed in order to obtain 

stiffness values and their distributions (Figure 48). These stiffness values are then used in the 

finite element models. Compression tests also help to identify the behavior of material properties 

for individual pads as well as pads stacked together vertically. The laboratory data for the 

elastomeric pads are also employed to determine the distribution type and parameters such as 

mean and standard deviation for the spring stiffness. 

 

Figure 48: Compression tests of duro-50 pads using a universal testing machine (a) and spring 
constants at the anticipated support reaction interval (b) 
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Probabilistic modeling of the structural capacity and load effects requires determination 

of the statistical parameters representing the uncertainties in the calculation of each parameter. 

Sources of variability are generally categorized as material factor (material properties), 

fabrication factor (imperfections), and analysis factor (assumptions, approximations) 

(Ellingwood et al. 1980). The mean value and the variance (or standard deviation, or coefficient 

of variation) should be known for reliability analysis. In this chapter, probability distributions are 

used for the random variables. Table 5 shows the probabilistic parameters (i.e., main descriptors 

of random variables) used in this framework, which is demonstrated on a laboratory structure. It 

should be noted that the level of uncertainty for real-life structures can be different and in most 

cases higher depending on the structure. In the following chapters, the challenges and refinement 

of this framework for real-life implementations are explored. 

Table 5: Main descriptors of random variables 

Parameter 
Modulus of 

Elasticity (E) 
Moment of 
Inertia (I) 

Load 
(P) 

Spring 
Stiffness (k) 

Mean 29000 ksi 3 in
4
 

Depends on the 
location 

Depends on 
number of pads 

Assumed Coefficient 
of Variations 

5% 5% 5% 5% 

Distribution Type Lognormal Lognormal Lognormal Uniform 

4.3. ANN-Based FEM Calibration 

SHM data can be used to calibrate FEMs using various methods for calibration, and 

different methodologies can be used for this process. There are a number of studies available in 

model calibration and geometric parameter identification. For example, Sanayei et al. (1997) and 
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Santini et al. (2007a) determined the geometric parameters for model calibration by means of an 

error function minimization technique between the measurements and the FEM. In these studies, 

a MATLAB-based parameter estimation program developed by Sanayei (1997) was employed to 

obtain critical properties such as moment of inertia at complex connections. 

In this dissertation, Artificial Neural Networks (ANN) is utilized for FEM calibration. 

Briefly, ANN learns from the existing patterns and then makes a prediction for the patterns that 

are not considered during learning. Therefore, the success of a network is measured by its 

generalization performance. If the difference between the actual and computed output by ANN is 

within an acceptable level, then the network can be used for prediction in the similar domain, 

which exhibits certain common characteristics with the existing patterns. The prediction 

performance of a network usually depends on the network parameters and the topology chosen. 

The best performance is generally achieved by extensive parametric study on the different 

network using a trial-and-error approach. In each trial, the performance of the network is 

evaluated. This process is repeated until the best architecture with the right network parameters 

is obtained. 

A common approach for FEM calibration is the manual calibration approach based on 

trial and error, which can be time consuming. Since the objective in this chapter is to explore 

uncertainties by means of a family of models, these different models generated based on an 

automated calibration approach provides good coverage of the distributions of different 

parameters. Therefore, it is feasible to develop these models and also utilize them for a neural-

network-based solution strategy for easy and practical calibration of these models. 
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In the beginning of the calibration process, a preliminary FEM of the DHF is developed 

using the nominal structural parameters and material properties. Next, sensitivity studies are 

conducted to determine the governing parameters affecting the static response of the DHF, as 

well as to determine the sensitivity range of each parameter. Afterward, a set of training patterns 

incorporating a selected number of DHF parameters (spring constant, modulus of elasticity, and 

moment of inertia) and responses (strain and displacement) are constituted by considering 

different values/combinations of these parameters generated randomly within their sensitive 

ranges. The input parameters (E, I, k) and responses (δ and ε) are illustrated in Figure 49. 

 

Figure 49: Input parameters and output responses for the ANN-based calibration 

In the ANN-based calibration process, the Levenberg-Marquardt algorithm (Levenberg 

1944; Marquardt 1963) is used for the learning rule of the ANN, and the sigmoid function is used 

for the activation function. Since Levenberg-Marquardt requires less time and epochs to 

converge, it performs more efficiently compared to other learning rules, which in turn makes it 

ideal for the trial of different networks (Yonaba et al. 2010). The use of the sigmoid function 

requires that the input and output data be scaled to the range 0–1. In this application, the input 

and output data are scaled to a somewhat narrower range between 0.2 and 0.8, resulting in a 
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considerable improvement in learning speed due to increased sensitivity of the sigmoid function 

within this range. 

The network architecture consists of an input layer of eight nodes (four axial strain values 

and four displacement values), an output layer of 28 nodes (four stiffness values at supports, 12 

elasticity values eight of which are member elasticity and four of which are joint elasticity, and 

12 moment-of-inertia values eight of which are moment of inertia and four of which are joint 

moment of inertia), and one hidden layer of 28 nodes. Each is found to be the appropriate 

network. 

A total of 2,000 FEMs are created randomly with these input parameters and output 

responses are collected for the network training process. ANN is then trained to learn the 

relationship between the DHF parameters and responses in reverse direction, such as the inputs 

are the strains and displacements, whereas outputs are the spring stiffnesses, moduli of elasticity, 

and moments of inertia. These training data are divided into three sets, namely, the training set, 

the cross-validation set, and the test set. The training set contains 1,300 patterns and is used to 

detect any relationship between the DHF parameters and the responses. The cross-validation set 

contains 300 patterns and is used to avoid the problem of over fitting. The test set contains 400 

patterns and is used to evaluate the performance of the networks. Based on defined network 

parameters, the effect of the number of hidden layers and the number of processing elements in 

hidden layers as well as in output layers are observed using several architectures. 

After the completion of training of each network, the performance of the network is 

tested using the test patterns that are not used during the training phase. The performance is 

measured by the average maximum error in the testing set. This process is repeated for each 
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network design. In this way, many networks that are capable of generalization at different levels 

are obtained. The best network is selected from among them. After network selection, 

experimental readings (strains and displacements) are fed into the trained neural-network system 

to predict the values of structural parameters for each boundary condition. These structural 

parameters, which are predicted from network analysis, are then used to create the calibrated 

FEMs for each boundary condition. 

A comparison between the experimental and analytical response of the DHF is 

conducted. If these two sets of parameters differ significantly, then the ANN model is re-trained. 

The re-training procedure is continued until the difference between the measured and calculated 

responses is less than 10%. This calibration could have targeted an even lower difference 

between the network results and the measurements. However, it was shown that 10% root mean 

squared error (RMSE) between models of long-span bridges and local measurements such as 

strain and displacement can be considered quite satisfactory (Catbas et al. 2007). The flowchart 

of the ANN-based calibration process is summarized in Figure 50. 

 

Figure 50: Flowchart of the calibration process 
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The calibration methodology is applied for each boundary condition (Figure 47), and four 

calibrated FEMs (zero pads, one pad, three pads, and five pads) are created as parent FEMs. In 

Table 6, experimental readings versus ANN-based calibrated FEM outputs for different test 

setups are shown with the error percentages. Each calibrated FEM has less than 7% RMSE, 

which can be considered as a realistic difference as discussed above. 

Table 6: Network inputs and FEM outputs comparison for different test setups 

 

Input 
To 

Network 

Output From 
Calibrated 

FEM 

Difference 
(%) 

 

Input 
To 

Network 

Output From 
Calibrated 

FEM 

Difference 
(%) 

0
-P

a
d

 

 (με) 634 582 8.2 
1
 P

a
d

 
 (με) 531 504 5.0 

 (με) 241 221 8.3  (με) 269 258 4.0 

 (με) 130 127 2.3  (με) 132 128 3.2 

 (με) 630 576 8.6  (με) 698 666 4.6 

d1 (in) 0.121 0.114 5.4 d1 (in) 0.143 0.137 4.1 

d2 (in) 0.122 0.116 5.0 d2 (in) 0.129 0.124 3.8 

d3 (in) 0.126 0.123 2.6 d3 (in) 0.139 0.132 5.1 

d4 (in) 0.123 0.121 1.3 d4 (in) 0.138 0.135 2.1 

Root Mean Square Error: 5.9% Root Mean Square Error: 4.1% 

3
 P

a
d
s
 

 (με) 507 474 6.5 

5
 P

a
d
s
 

 (με) 476 441 7.5 

 (με) 285 270 5.2  (με) 306 275 9.9 

 (με) 133 126 5.3  (με) 131 135 3.1 

 (με) 723 657 9.1  (με) 762 745 2.3 

d1 (in) 0.282 0.264 6.3 d1 (in) 0.426 0.414 2.9 

d2 (in) 0.195 0.211 8.0 d2 (in) 0.275 0.296 7.9 

d3 (in) 0.139 0.136 1.8 d3 (in) 0.149 0.135 8.8 

d4 (in) 0.138 0.133 3.8 d4 (in) 0.143 0.135 5.9 

Root Mean Square Error: 6.1% Root Mean Square Error: 6.6% 

4.4. Family of Models 

Even after calibration of the FEMs for each boundary condition, uncertainties from 

different sources need to be incorporated. Considering possible distributions of critical 
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parameters yields a family of models. The calibrated FEMs (total of four FEMs, one for each 

boundary condition) are considered as parent models, from which a set of offspring models are 

generated. The number of offspring models that will be used for simulations is decided based on 

the following error associated sample size given by Ang and Tang (1984): 

                       (4.1) 

where Pf is the structure’s estimated probability of failure and n is the sample size. A total 

of 10,000 offspring FEMs are to be created for each test setup (i.e., zero pads, one pad, three 

pads, and five pads). In each group of 10,000 FEMs, variables (moment of inertia, modulus of 

elasticity, load and spring constant) are generated based on the distributions given in Table 5. 

Finally, these offspring models are analyzed, and the distributions of the strain values are 

obtained to calculate the system reliability. Figure 51 illustrates the process of generating 

offspring FEMs from the parent FEMs by incorporating the uncertainty of variables. 

 

Figure 51: Incorporating uncertainty of variables into the offspring models 
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response distributions incorporate the uncertainties that are described in Figure 51. As discussed 

above, the parent model and the offspring models calibrated continuously using monitoring 

provide a better estimate of the structure’s probability of failure than models calibrated once with 

monitoring data. The prediction difference between an initially calibrated FEM and a family of 

FEMs that are continuously calibrated with SHM data approaches will be quantified next for the 

DHF as conceptually illustrated in Figure 53. 

 

Figure 52: Experimental strain and simulation strain histogram comparison for the zero pads case 

 

Figure 53: Reliability prediction comparison of initial and continuous calibration 
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4.5. Component and System Reliability 

Calculation of the system reliability of a structure, which was explained in the second 

chapter of this dissertation, requires the component reliabilities and selection of an appropriate 

system model. A system can be modeled as parallel, series, or a combination of parallel-series 

connected components. Component reliabilities, or in other words, reliability indices of 

individual members, are obtained separately based on yielding strain criterion from the following 

limit state function: 

         
(4.2) 

where y is the yielding strain of steel and d measured is the measured strain obtained 

from monitoring during different boundary deterioration stages. The system model of the four-

element DHF, which is presented in (Figure 45a), is created by considering the types of elements 

such as main and secondary components. The analogy here is main components can be 

considered as a main girder of a bridge, whereas the secondary components can be considered as 

floor beams of a bridge. Therefore, according to this system model, failure of any main 

component will fail the system or failure of both secondary components will fail the system. 

More details about some of the possible system configurations can be found in (Catbas et al. 

2012a). 

For the DHF, the strain response of the structure and the corresponding component 

reliabilities, which are determined using the limit state function given in Eq. (4.2), are illustrated 

in Figure 54 as a function of the number of pads. In this figure, the responses of the main 

components (components 1 and 4) vary, while the responses of the secondary components 

(components 2 and 3) remain relatively constant with the change in boundary conditions. The 
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addition of pads relaxes the stresses of component-1, which is supported by the elastomeric pads, 

while component-4 is to resist the applied loading thereby experiencing an increase in stresses. 

Furthermore, Figure 54 shows that none of the four components exceeds the yielding strain, and 

the minimum component reliabilities are calculated for component-4. 

 

Figure 54: Experimental strain values and corresponding component reliabilities 
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as well as to predict the probability of the failure (or reliability) of the structure. In order to 

quantify the prediction difference between such a case with continuously calibrated models, 

these two cases are evaluated on the laboratory structure. 

The reliability of the system is determined based on the given yielding performance 

function in Eq. (4.2). First, the FEM is calibrated for pinned support condition, and this model 

(initially calibrated FEM) is then used for the system reliability calculation. For the subsequent 

deterioration scenarios (for one pad, three pads, and five pads cases), this initially calibrated 

FEM model is modified with the spring constants coming directly from the laboratory tests of the 

elastomeric pads to obtain prediction curves using this initially calibrated FEM. This approach is 

analogous when a model is employed for reliability prediction where any visually observed 

condition such as damage or deterioration is simulated using the model. As a result, no 

monitoring data after the zero-pad condition are used for calibration except for the spring 

constants that are determined as shown in Figure 48. 

Ideally, the FEMs should be continuously calibrated and these models should also 

consider the uncertainty that still exists within the entire process. To demonstrate this case, the 

FEM is calibrated for each particular boundary condition by using the ANN-based model 

calibration approach. As described earlier, such a model is called the parent FEM from which 

10,000 offspring FEMs are generated by incorporating the uncertainties, considering the 

distributions of critical parameters. Consequently, the strain responses of the offspring models, 

which are obtained as random variables from the offspring model outputs, are employed in 

reliability computations. 
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It should be noted that the use of parent-offspring FEMs becomes more important 

especially when critical parameters cannot be well-defined. The boundary conditions at the very 

beginning can be characterized as pin support, which can be effectively modeled as compared to 

elastomeric pads. When the elastomeric pads are stacked on top of each other, the vertical 

stiffness associated with this support condition cannot be defined simply with a constant 

coefficient, as can be observed from the laboratory tests shown in Figure 48. As a result, it is 

seen in Figure 55 that the prediction of reliability from the two cases become separated over time 

with increased boundary condition changes by adding elastomeric pads at the supports. 

 

Figure 55: Reliability indices for initially calibrated and step-by-step calibrated family of models 
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The system reliability index of the DHF with pin support (no pads) is predicted as 4.60 

by both the calibrated FEM and the family of models since the main uncertainty from the 

boundary conditions can be modeled effectively. With the addition of the elastomeric pads, the 

difference in the predictions becomes more and more apparent, especially when five pads are 

used. In this case, the initially calibrated FEM, which is updated with spring stiffness values 

from the compression tests, gives a system reliability index of 3.57. However, the continuously 

calibrated parent model and its offspring yield a reliability index of 3.20. In terms of the 

probability of failure, the difference in the predictions can be as high as an order of magnitude. 

This illustrates the importance of calibrating models continuously and incorporating uncertainties 

with a family of FEMs to better predict the reliability of structures. 

4.6. Summary 

This chapter explores the impact of uncertainty in predicting the system reliability by 

using a single model as well as using a family of models, whose concept is presented in previous 

chapters. For the demonstration of system reliability determined by field-calibrated models, a 

single FE model, which was calibrated initially using the monitoring data, is compared against 

results obtained from a family of models, which are continuously calibrated with monitoring 

data. In this chapter, uncertainty types and sources are discussed as these uncertainties are 

incorporated in the models. In order to illustrate the uncertainty effects, a laboratory structure 

called Double-H Frame (DHF) is built with a series-parallel system configuration. This test setup 

is instrumented with different sensors and monitored under changing the boundary conditions in 

a controlled environment. The changing boundary conditions simulate support deterioration by 
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using a number of elastomeric pads. The uncertainty due to boundary conditions increases by 

adding pads at the support. The monitoring data is employed to calibrate FEMs by means of an 

ANN-based approach. 

The calibrated FEMs are considered as parent models, from which a set of 10,000 

offspring models are generated, and the offspring models incorporate the uncertainties due to 

different parameters, which are characterized as random variables. It should be noted that the use 

of parent-offspring FEMs becomes important especially when critical parameters that have 

impact on the models cannot be well-defined. The simulations with offspring FEMs yield 

responses of the structure as distributions rather than single, deterministic values. It is seen that 

the monitoring data are represented with the offspring models, and the offspring models provide 

different results for the structural reliability, and this difference increases especially as the 

structure deteriorates over time, which is simulated by increasing the elastomeric pads at one 

support location. 

In terms of the probability of unsatisfactory performance, the difference in the predictions 

(obtained using the initially calibrated FEM and a family of FEMs continuously calibrated with 

monitoring data) can be as large as an order of magnitude. This illustrates the importance of 

calibrating models continuously with monitoring data and incorporating uncertainties with a 

family of FEMs to better predict the reliability of structures.  
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CHAPTER 5.  
PARAMETRIC STRUCTURAL ASSESSMENT: 

REAL-LIFE DEMONSTRATION-I 

5.1. Introduction 

It is accepted that structural identification (St-Id) applications inevitably involve 

uncertainties in the measurement and modeling, but such uncertainties can be reduced with 

improved knowledge. The uncertainty types and sources have long been investigated by many 

researchers (Ang and Tang 1984; Ang and De Leon 2005; Ellingwood 2005; Moon and Aktan 

2006a; Catbas et al. 2008b; Frangopol 2011a). Since the St-Id applications are directly affected 

by both measurement and modeling uncertainties along with the time-variant characteristics of 

civil structures, it may not always be reasonable to use a single FEM to represent a structure with 

this model for various applications. A single FEM calibrated using a set of data may reproduce 

that data set accurately within acceptable limits, however, another prediction might not be 

accurate as a result of uncertainties in the data and model, as well as the non-stationarity and 

nonlinearity of the structure. 

The use of population of models has been proposed in the literature in order to consider 

uncertainty in model development. Papers by Beck and Katafygiotis (1998) and Katafygiotis and 

Beck (1998) are some of the pioneering efforts in using a set of structural models via Bayesian 

framework for model updating. In these studies, they mainly discussed identifiability of multiple 

calibrated models and illustrated a Bayesian probabilistic framework on identification of a two-

degree-of-freedom linear planar shear building to update the robust reliability using measured 

response data. It should be noted that for Bayesian inference applications, new data is needed to 
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obtain the posterior distributions, but this type of future data may not exist for making long-term 

predictions in some cases. In a study by Papadimitriou et al. (2001), Bayesian methodology-

based system identification of a very simple beam model is combined with probabilistic 

structural analysis to update the assessment of the robust reliability based on dynamic test data 

and the difficulties of evaluating the total probability theorem unless only a small number of 

modal parameters are involved. Bayesian probabilistic approaches are also investigated for 

identification of structural damage via SHM (Sohn and Law 1997; Papadimitriou et al. 2000; 

Ching and Hsieh 2009). 

In recent years, selection of a population of candidate models with the help of a stochastic 

global search was presented by Robert-Nicoud et al. (2005b). In that study, it was shown that the 

increase of sensor information can reduce the number of candidate models, which directly affects 

the system identification process. In a study by Smith and Saitta (2008), a combined data-mining 

technique (based on principal component analysis and k-means clustering) was investigated for 

finding the candidate models. This new methodology was demonstrated on a real-life structure 

(Schwandbach Bridge) and the usefulness of data-mining techniques for grouping models into 

clusters for better St-Id was demonstrated. Moreover, different optimization methods, such as 

global search for obtaining the initial sensor locations for a monitoring system and greedy 

strategy for finding the locations for damage identification, were presented on two different 

bridges by Kripakaran and Smith (2009) with the multi-model approach considerations. In a 

different study, multi-models of Langensand Bridge in Lucerne were used for displacement, 

rotation, and strain predictions by considering the modeling and measurement uncertainties 

(Goulet et al. 2010). While such studies provide concepts of multiple models, the use of 
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numerous models for determining some of the practical engineering concepts, such as load rating 

of bridges, or more advanced concepts, such as system-level reliability with the consideration of 

correlation of different components with each other, were not explored for real-life structures. 

In the previous chapter, the impact of uncertainty was explored for predicting the system 

reliability obtained by a one-time, initially calibrated FEM and also by a family of FEMs 

continuously calibrated with monitoring data (Catbas et al. 2012a). The importance of using 

multiple models, the effects of using single models for performance prediction, and the 

advantages of continuous calibration with new SHM data were discussed and demonstrated on a 

simple laboratory structure. 

 

Figure 56: Use of uncertainty-incorporated family of models for St-Id of a movable bridge due to 
performance decrease 

In this chapter, a family-of-models approach with parent and offspring models will be 
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system. The uncertainty in the data collected by means of intermittent testing or monitoring, 

limitations of the models, and non-stationary nature of structural behavior need to be considered. 

These uncertainties can be incorporated by using a family of models that can be described as 

parent and offspring models. 

The significant contributions of this chapter may be summarized as follows. The multiple 

models (offspring models) are created to incorporate the uncertainties. A single calibrated model 

is not used because a perfect single model cannot be obtained using the SHM data as commonly 

seen in the literature. Implementation of multiple models for performance prediction under 

damage and deterioration is rarely tackled in previous studies. The inclusion of the real SHM 

data for calculating the reliability index is also not commonly seen in the literature. In this 

chapter, load rating is presented with a probabilistic approach along with the structural reliability 

analysis of the Sunrise Boulevard Bridge. As a result, the performance of the bridge is evaluated 

using these commonly used performance metrics. In this case, load rating is given with a 

distribution with the inclusion of uncertainties. For the system reliability approach, the bridge is 

modeled with different system configurations, and the analyses are conducted based on (1) SHM 

data, which provide the traffic stresses due to heavy vehicle traffic and temperature cycles, and 

(2) family-of-model simulations in which a traffic flow is generated with different vehicles. In 

order to consider some common issues related to this specific bridge type, time-dependent 

deterioration models that include corrosion of the girders along with live load increase over time 

and a damage case are investigated to demonstrate the implementation of St-Id with a family of 

models for performance prediction. Such results are expected to provide a set of solutions for the 

performance of a structure for optimum decision making. 
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5.2. Case Study: Sunrise Boulevard Bridge and Monitoring System 

Sunrise Boulevard Bridge is employed to demonstrate the use of a family of models 

incorporating uncertainty for structural identification due to performance decrease. Details about 

the bridge description and the monitoring system were discussed in the second chapter of this 

dissertation. For this chapter, three months’ worth of monitoring data from the high-speed and 

slow-speed strain gages, which are located at the bottom flange sections of the main girders, is 

used for the investigation of the structural identification process by considering deterioration, 

damage, and traffic increase. A total of 12 high-speed strain gages are utilized for capturing 

traffic events, and a total of 12 slow-speed strain gages are utilized for capturing environmental 

events on the bridge. 

The nomenclature for strain gages and the corresponding three-month traffic-induced 

strain and temperature-induced daily strain cycle histograms obtained using the monitoring data 

are given in Figure 57. In this figure, histograms for heavy-traffic-induced strain and 

temperature-induced daily strain cycle for the East-North (EN) main girder sensor locations are 

shown along with the fitted lognormal distributions. It should be noted that these measured data 

will be used for the reliability calculations of the bridge in the later sections of this chapter. As 

seen in the traffic strain histograms, the higher strain values are observed at EN3, which is close 

to the boundary location called live load shoes. Due to the cantilever behavior of the Sunrise 

Boulevard Bridge leaves, the lowest traffic-induced strains are recorded at the tip location (EN1). 

More details about the bridge and its monitoring system can be found in Catbas et al. (2011) and 

Gokce et al. (2012a). 
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Figure 57: Location nomenclatures and representative traffic- and temperature-induced strain 
histograms for different locations of the east-north girder 

5.3. Family of Models 

The importance and reasons of using a family-of-models approach was discussed in the 

second chapter. In this section, a family-of-models approach is described for a movable bridge. 

In the following subsections, uncertainties, artificial neural network (ANN) based calibration 

strategy by utilizing multiple objective functions, and parent and offspring models are discussed. 

A flowchart that summarizes chapter five is presented in Figure 58. 
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Figure 58: Flowchart that summarizes chapter five 
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epistemic uncertainty, which is associated with imperfect knowledge due to lack of data or crude 

models (Ang and De Leon 2005). It should be noted that the effect of epistemic uncertainty can 

be reduced with more information, which can be obtained with health monitoring systems. In a 

paper by Kiureghian and Ditlevsen (2009), the categorization of uncertainties as aleatory or 

epistemic is mainly discussed, and it is mentioned that this categorization depends on the 

uncertainty model builder by considering the context and application. 

Sources of uncertainties, which are visualized in Figure 59, are classified into three 

different groups: (1) Associated with modeling: boundary conditions, material properties, section 

properties, loads, deterioration, and damage; (2) Associated with measurement: data acquisition 

accuracy, sensor resolution, and field test design; (3) Associated with data post-processing: 

failure modes, correlation, and assumed distributions. Distribution types and coefficients of 

variation of these uncertainties are provided in Figure 66. 

 

Figure 59: Uncertainty sources considered in this chapter 

 

Boundary 
Conditions 

Material & 
Section 

Properties

Loads

DAQ

1 4
2

3

1 2 3 4

1

4

2

3

1

2

3

4

System Models
Correlation 

Matrix

rn1

r11

r21

…

r12

r22

rn2

…

…
…

…
…

r1n

r21

rnn

…

nxn
Assumed 

Distributions

Associated with Geometric Modeling 
Associated with Data Post-Processing 

Associated with 
Measurement Data 

Numerical 
Computation

EI

PLx

EI

Px
x

26
)(

23

d



117 

 

5.3.2. ANN-based FEM Calibration and Parent Model 

Different model updating/calibration studies from different researchers are presented in 

the introduction. In this study, Artificial Neural Networks (ANN) are utilized for FEM 

calibration. Briefly, ANN learns from the provided patterns and then makes a prediction for the 

patterns that are not provided during learning. A flowchart is presented in Figure 60 to 

summarize the ANN-based model calibration strategy for the Sunrise Boulevard Bridge model. 

In the beginning of the calibration process, first a preliminary frame model of the bridge, 

which consists of 1,084 frames, 720 shells, 32 solids, and 963 rigid links, is developed using the 

nominal structural parameters and material properties. Next, a total of 2,000 FEMs are created 

randomly by using the uniformly distributed modulus of elasticity, moment of inertia, and spring 

stiffness parameters generated by the parameter pool. The strain outputs of these FEMs are 

collected at 12 different locations. Then, ANN is trained to learn the relationship between the 

bridge responses and model parameters by using the Levenberg-Marquardt learning algorithm 

(Levenberg 1944; Marquardt 1963). Eq. (5.1) shows the basic algebraic equation for each layer 

of an ANN that is used in this study. 

                 
(5.1) 

where aj is the output of neuron j; wij represents the weight from neuron i to neuron j; ui is 

the input signal generated for neuron i; qj is the bias term associated with neuron j; and the 

nonlinear activation function f(x)is assumed to be a sigmoid function as: 

                
(5.2) 
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Figure 60: Flowchart of ANN-based calibration process 
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the cross-validation set, which contains 300 patterns to avoid the problem of over fitting or in 

other words to avoid memorization of the patterns. The last set is the test set, which consists of 

400 patterns and is used to evaluate the performance of the networks by checking errors between 

the real and the ANN-predicted values. 

After the completion of network training, experimental strain readings coming from load 

test are fed into the trained neural network system to predict the values of structural parameters 

(moments of inertia, moments of elasticity, and spring stiffnesses). These structural parameters 

predicted from network analysis are first checked whether the parameters are realistic and then 

are used to create the preliminary calibrated FEM. 

Then, using a multi-objective evaluation, which utilizes data from different tests, the 

validity of the ANN training is checked to confirm if a calibrated model is obtained. It should be 

noted that the truck loading corresponds to static field tests conducted on the bridge, which were 

explained in second chapter. In addition, dead load is obtained by the strain differences during 

opening-closing events. Lastly, the regular traffic load is collected by the automated monitoring 

system during rush hours. More information about these loadings can be found in (Catbas et al. 

2011). 

The acceptable root mean squared error for 12 locations is selected as 10% because it was 

shown that this much difference between local measurements (strains or displacements) and 

analytical models of bridges can be considered quite satisfactory (Catbas et al. 2007). In this 

multi-objective evaluation, a comparison between the experimental and analytical response of 

the bridge is conducted. If these two sets of parameters differ significantly, then the ANN model 

is re-trained. The re-training procedure is continued until the difference between the measured 
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and calculated responses assures the target criteria. In Figure 61, a comparison of test and 

calibrated FEM outputs under different objectives is presented with root mean squared errors for 

different locations. These errors indicate that the preliminary calibrated FEM can be accepted as 

a parent model (Figure 62) from which the offspring models are generated as discussed in the 

following. 

 

Figure 61: Comparison of measured strains and calibrated model results for truck load (a), dead 
load (b), and bus load (c) 

 

Figure 62: Sunrise Boulevard Bridge parent model and some typical movable bridge components 
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5.3.3. Deterioration and Damage 

As mentioned in the second chapter, movable bridges undergo certain deterioration 

effects due to normal aging and operation. For maintenance operations and bridge safety, it is 

crucial to estimate the future condition of these bridges. Corrosion penetration and associated 

section loss can be considered as the main factor in capacity degradation over the lifetime of the 

bridge. Section loss due to corrosion is a major cause of deterioration for steel profiles, 

especially at locations closer to salt water and with high humidity. The following corrosion 

penetration model given by Albrecht and Naeemi (1984) is used in the family-of-models 

application to define the degradation effect over time: 

           
(5.3) 

where C(t) is the corrosion penetration depth in 10-6 m, t is time in years, and A (normal 

distribution, mean=34.0, coefficient of variation=0.09) and B (normal distribution, mean=0.65, 

coefficient of variation=0.10) are statistical random variables (Albrecht and Naeemi 1984). The 

corrosion penetration is assumed to follow the pattern shown in Figure 63. According to this 

pattern, due to pooling, the corrosion progresses along the top surface of the bottom flange and ¼ 

of the depth of the web. A similar example was also presented by Estes and Frangopol (1999). 

The section loss can be calculated based on the corrosion penetration function and the corrosion 

pattern. The mean value and standard deviation for the moment of inertia and section modulus at 

WS3 are evaluated with respect to time for all girder members of the parent FEM (Figure 63). 

Finally, the long-term deterioration effects due to corrosion are modeled as statistical variables. 

It is noted that the uncertainty in the model increases with time as expected. The parent FEM 

discussed above is selected to represent the current condition (0 year) of the Sunrise Boulevard 
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Bridge. By considering the time-dependent corrosion models, five more parent FEMs are created 

for demonstration of the condition of the bridge for 15, 30, 45, 60, and 75 years. In this study, no 

maintenance for corrosion was assumed over the 75 years as shown in Figure 63. 

 

Figure 63: Corrosion penetration model, moment of inertia, and section modulus change over 
time for WS3 section 

Movable bridges constantly suffer from the wearing effect of opening/closing operations 

such as the breakdown of the span lock and its drive system (Figure 64). In addition to the 

deterioration that gradually occurs over time, instantaneous damage is another problem in these 

types of kinematic structures. Therefore, the effects of span-lock failure, which was identified as 

one of the problematic components in the second chapter, are also investigated as a sudden 

performance decrease. In the literature, the effect of span-lock failure was investigated from the 

load distribution point of view by Catbas et al. (2011), but in this chapter this effect is explored 

from a performance metric point of view. 

The span-lock bar locks the two leaves of the double-bascule spans, providing a safer 

load distribution and preventing excessive deflections and vibrations. For this purpose, another 

parent model with south span-lock failure is created for 0 years to compare the effects of 

performance loss between the deterioration and damage. To represent the span-lock damage in 
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the parent model, the continuity condition of the south girders was removed for the damage 

simulation. 

 

Figure 64: Movable bridge span lock and its components 

5.3.4. Live Loads and Live Load Increase 

The parent model of Sunrise Boulevard Bridge is loaded with different types of vehicles 

for two types of performance evaluations, i.e., load rating and system reliability. Calculations of 

these performance analyses are presented in the following sections in more detail. For the load 

rating evaluation, two HL-93 trucks and lane load are used as shown in Figure 65a. These 

positions of the two HL-93 trucks are selected to give the most critical load rating case which 

was identified based on a previous study by Gokce et al. (2011). In addition, a total of 14 

vehicles which consist of the buses and firetrucks are also used for loading the model in the right 

and left lanes for the system reliability evaluation (Figure 65b). The idea behind the loading 

numbers of heavy vehicles is to create traffic flows from the offspring models, which are 

described in the next section. It should be noted that these two specific heavy vehicles are 
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selected since their presence on the bridge is very likely due to the bus route and proximity of a 

fire station to the bridge. 

 

Figure 65: HL-93 (a) and heavy truck (b) loading for the parent model of the movable bridge 

For the parent models representing the aged bridge (15, 30, 45, 60, and 75 years), a traffic 

load increase over time is also considered based on the following equation given by Nowak 

(1999): 

                          
(5.4) 

where Δ is the expected 75-year maximum traffic load, μtraffic and σtraffic are the mean and 

the standard deviation of the current traffic load based on the three months daily maximum data, 

respectively. This increase is reflected directly to the applied loads (bus and firetruck) in the 

offspring models of different ages by considering the live-load uncertainties. Finally, a total of 

seven parent models are developed: one for the baseline condition (0 year), five for deterioration 

simulations over 75 years (15, 30, 45, 60, 75 years), and one for the span-lock damage case (0 

year-SL). 
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5.3.5. Offspring Models and Traffic Generation 

This section presents the generation of offspring models based on the parent models (total 

of seven) by considering the adapted uncertainties (Nowak and Collins 2000), which are 

presented in Figure 66. The number of offspring models that will be used for simulations is 

decided based on the Eq. (4.1), which was error associated sample size proposed by Ang and 

Tang (1984). 

In each offspring model, variables such as moment of inertia, modulus of elasticity, dead 

load, live load, spring constants for boundaries, and yield stress are incorporated based on the 

coefficients of variation as given in Figure 66 to create the offspring models from each parent 

model. As described in previous chapters, this manipulation is accomplished by a visual basic 

code that was developed by researchers that interacts with the finite element code and randomly 

changes the variables with the defined distributions in the text files of the parent models. 

Moreover, the analyses of the offspring models are completed with a batch file that automatically 

opens and analyzes the model and then saves the outputs in a defined format under the defined 

loads for interested locations. 

 

Figure 66: Incorporating uncertainty of variables into the parents to generate offspring models 

 Offspring FEM Generation 
based on Uncertainty of 
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for each year

Simulations 
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Several other computer codes are also developed to collect and tabulate the data from 

numbers of offspring models. One important code is for the traffic flow generation from the 

offspring outputs. As mentioned earlier, 14 different heavy vehicles (bus or firetruck) are loaded 

in each offspring model, and a traffic flow is generated for each family of models with a random 

selection process based on the following probabilistic assumptions: 

 In 60% of the situations, only one vehicle will be on one lane. For example, there are 14 pre-

defined spots, which cover almost all of the locations in right and left lane, and randomly one 

of the vehicles (bus or firetruck) will be on one of these spots. 

 In 30% of the situations, which yields 3,000 out of 10,000 simulations, two vehicles will be 

on two different lanes. 

 In 10% of the situations, two vehicles will be on the same lane. As an illustration, one bus 

and one firetruck can be on the right lane. The third assumption is a rare one, but it is likely 

to be seen right after an opening/closing event when vehicles simultaneously start after short 

durations of stopped-vehicle traffic. 

Finally, these outputs of offspring models are analyzed, and the histograms of the 

responses are obtained along with the appropriate distribution fits. The distributions are obtained 

to calculate the load-rating distributions and system reliability and can be seen for the ES and 

WN main girder locations for 0 year in Figure 67. For all of the locations, it is seen that the best 

distribution fit is chosen as Generalized Extreme Value (GEV) distribution function given in Eq. 

(5.5), and this selected distribution type is used in the system reliability calculations. 

                                                      
(5.5) 
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where fx(x)=probability density function (PDF) of the GEV distribution; ξ=shape parameter of 

fx(x); σ=scale parameter of fx(x); η=location parameter of fx(x). 

 

Figure 67: Representative offspring output histograms coming from the generated traffic flow for 
WN and ES main girder locations for Year 0 

5.4. Bridge Performance Predictions 

5.4.1. Load Rating 

In the second chapter, details of the load rating calculation were discussed, and 

formulation was given in Eq. (2.1). In this section, the load rating of the movable bridge is 

calculated by following the AASHTO Guide (AASHTO 2004) and using the offspring model 

outputs, which are loaded by two HL-93 trucks and HL-93 lane load (0.64 kip/ft) as given in 

Figure 65a. The load factors change according to the type of load rating, i.e., inventory or 

operating load rating, and only the inventory load ratings are presented in this section for the 

sake of brevity. 
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The weakest link for the inventory load rating is found to be the WS3 location under HL-

93 loading from the offspring models outputs. In Figure 68, the load rating values from single 

models (parent models) and load rating distributions from the family of models are compared for 

different cases. 

 

Figure 68: Comparison of load rating at WS3 obtained using a family of models and parent 
models 

For the current condition of the bridge, the parent model gives a load rating of 2.11, 

whereas the offspring model outputs give a distribution with a mean of 2.21 and a standard 

deviation of 0.20. Furthermore, under deterioration, the predicted parent-model load rating for 75 

years is 1.15, and the predicted family-of-models load rating distribution has a mean of 1.06. 

These deviations in the predicted load rating values can be reduced if SHM data is employed to 

update the models as proposed in the fourth chapter of this dissertation. Moreover, it is observed 

that some of the parent-model load ratings are slightly higher than the mean of the distribution 

for future cases, implying that non-conservative values may be obtained when parent models are 
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used. This can be attributed to the increase in uncertainty bounds as presented in Figure 63 for 

deterioration conditions. Next, Figure 68 also indicates that span-lock damage is a very critical 

issue for bascule type movable bridges because this phenomenon directly affects the load 

distribution on the bridge. The offspring model outputs show that the mean load rating for 0 year 

is decreasing from 2.21 to 1.47 due to span-lock failure. This specific damage can be considered 

to be equivalent to a 45-year deterioration effect in terms of the load rating of the bridge. 

With the family-of-models approach, it is also possible to explore the probability of not 

meeting a certain level of load rating for a structure. In this discussion, this probability is deemed 

as risk. In a study by Catbas et al. (2012c), the uncertainty impacts were found to be considerable 

when simplified methods used for load rating calculations as followed in the current practice. 

Since it is known that uncertainties cannot be totally eliminated, it is important to incorporate 

them in the analysis and also to quantify the risk from these models. In Figure 69, load rating 

results of parent and offspring models are presented along with the quantified risk of having a 

load rating less than one for the span lock failure case. 

Based on the AASHTO Guide (AASHTO 2004), the load rating of a bridge should be 

higher than 1.0. In this study, load rating is calculated as 1.40 from the parent model whereas the 

mean of the load rating coming from the offspring models is calculated as 1.29. Both results are 

acceptable from a bridge engineering perspective. Based on family-of-models approach, the 

probability (“risk”) for having a load rating less than 1.0 is calculated as 1.6%. As a result, 

family-of-model approach not only provides the bounds and distributions of load ratings in a 

non-deterministic manner by considering different uncertainty sources but also quantifies the 

risks for structures. 
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Figure 69: Load rating results of parent and offspring models for the span-lock failure 

5.4.2. Component and System Reliability 

The second bridge performance metric demonstrated in this chapter is the reliability 

index that can be defined as probabilistic modeling of capacities and demands under a given 

limit state. As explained in the second chapter of the dissertation, prior to applying the system 

reliability approach, the limit state functions for the components are defined; the correlation 

between responses of different components and the system models are generated. In this section, 

Sunrise Boulevard Bridge is analyzed with respect to yield strain of 12 different failure modes. 

Component reliabilities of the bridge are obtained mostly from SHM data, which are presented 

with histograms in Figure 57, by using the following limit state function: 

                                                            
(5.6) 
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the other hand, demand has different components such as dead load (              ) obtained from 

self weight of the offspring models, heavy vehicle load (              ) obtained from off-spring 

models (Figure 65b), lane load (        ) obtained from SHM data (Figure 57) and temperature 

induced strain cycles (        ) obtained from SHM data (Figure 57). It should be noted that using 

only SHM data may produce higher reliability indices (or lower probabilities of failure) because 

the mean of the SHM data will offer lower strain values due to the light traffic caused by cars 

which can be insignificant for reliability applications. For this reason, real data is used as a lane 

load. Component reliability results for South main girder locations at t=0 year can be seen in 

Figure 70. 

 

Figure 70: Component reliability index results for south main girders locations at t=0 year 

As mentioned earlier, due to the cantilever behavior of the bridge, lower reliability 

indices are seen for locations close to boundaries (such as ES3 and WS3) which are near the live 

load shoes of movable bridges. On the contrary, ES1 and WS1, which are closer to the span 

locks (tips of the cantilever), show the lowest stresses (strains) and as a result, they have the 
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highest reliability indices. It should also be mentioned that there is a difference in the component 

reliability of the symmetric ES1 and WS1 due to the slightly different response of these 

components as seen in the monitoring data. 

Four different system models (Figure 71), which describes the relationship of the 

components and behavior of the system, are generated to cover possible failure modes of the 

bridge and these models are as follows: 

 Series system: Failure of any component will fail the system. 

 Parallel system: Failure of all components will fail the system. 

 Combined System-1: Failure of any two main girder components will fail the system. 

 Combined System-2: Failure of all components any main girder will fail the system. 

Series and parallel systems are considered to provide upper and lower reliability bounds 

whereas two different combined systems are presented to offer a more realistic system models by 

mainly considering the failure of each main girder. 

 

Figure 71: Series, parallel and combined system models for the movable bridge 
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The system reliability of any system depends also on the correlation among the safety 

margins of the components. The two extreme cases are: (a) perfectly correlated safety margins, 

and (b) independent safety margins. Due to the lack of data regarding correlation among the 

random variables (capacities, dead loads, live loads, and temperature loads) involved, the 

following considerations were assumed. Load and resistance are separately correlated with each 

other but not correlated together. Moreover, there are four types of loads that are separately 

correlated with each other. For example: correlation coefficient between dead loads can be 1.0 or 

0.5 but correlation coefficient among dead load and live load is always considered as 0. 

Considered three correlation cases are as follows: (1) capacities and all the loads are independent 

(ρ=0), (2) capacities are perfectly correlated (ρ=1) and each type of load is separately perfectly 

correlated (ρ=1), (3) capacities are partially correlated (ρ=0.5) and each type of load is separately 

partially correlated (ρ=0.5). All these cases were considered for each assumed system. 

The reliability analysis of the bridge was conducted by using the reliability software 

RELSYS (Estes and Frangopol 1998). RELSYS can compute reliability of generic series/parallel 

systems other than single components. In order to compute system reliability, RELSYS needs to 

reduce the systems to one equivalent component by solving the parallel components first and 

then the series components. The calculation of the system probability of failure was presented in 

the second chapter of the dissertation. 

Upper and lower bounds of the system reliability indices are illustrated in Figure 72. For 

a series system, the system safety is maximum when the safety margins of components are 

perfectly correlated and minimum when they are independent. For a parallel system, the system 

safety is maximum when the safety margins of components are independent and minimum when 
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they are perfectly correlated. As a result, the upper reliability bound is the parallel configuration 

of the system with zero correlation variables and the lower bound is the series configuration with 

zero correlation. In these system reliability calculations, failure modes with very high reliabilities 

(i.e., βsys >10.0) are taken as 10. 

 

Figure 72: System reliability upper and lower bounds for the movable bridge 

Figure 73 shows the system reliability results of combined system models over time for 

different correlation cases, which are defined previously. As expected system reliabilities of 

combined system-1 are less than those of system-2 due to the assumed differences in system 

models. In addition, it is observed from these results that no correlation yields smaller 

probabilities of failure of the structural system over years. Moreover, partial or perfect 

correlation does not make too much difference for system reliability indices in combined system-

1 while for the more redundant system model (combined system-2); the effect of correlation is 
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more pronounced. Finally, the reliability values for the different systems lie between the upper 

and lower bounds as expected. 

 

Figure 73: System reliability results of combined system models of the movable bridge for 
different correlation cases over time 

Apart from the deterioration cases, system reliability results for the damaged and 

undamaged condition are presented for the current year in Table 4. From this table, it is seen that 

a span lock failure in the bridge will decrease the reliability index to a 30-45 year deterioration 

effect which is also similar to the findings for the load rating analysis. During span lock damage, 

importance of the correlation in combined system-1 can be observed by comparing the reliability 

index results for the no correlation case with the perfect correlation case. This difference in the 

system reliability index corresponds to a substantial increase of the failure probability. These 

results show that the configuration of the bridge and the correlation of variables are important 

factors for system reliability calculations. 
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Table 7: System reliability indices during a span lock failure for different system models of the 
movable bridge under different correlation values 

 
System 
Type 

No 
Correlation 

Partial 
Correlation 

Perfect 
Correlation 

t=0 

Series 4.45 4.45 4.58 

Combined-1 9.12 7.77 7.56 

Combined-2 10.00 9.86 8.92 

t=0 with 
Span 
Lock 

Damage 

Series 3.07 3.07 3.16 

Combined-1 7.02 6.07 5.94 

Combined-2 10.00 9.28 8.98 

5.5. Summary 

This chapter presents a structural identification implementation by means of a family of 

calibrated models for performance evaluation of a movable bridge due to deterioration, damage, 

and traffic increase. Performance metrics, load rating, and reliability are predicted using the 

family-of-models approach, which considers the possible uncertainties associated with modeling, 

measurement, and data post-processing. For the calibration of the nominal model, an ANN-based 

calibrations methodology is employed using different monitoring data with multiple objective 

functions. The application of the new and effective calibration methodology, which was 

presented in previous chapters, is also validated with a real-life application. 

As a demonstration of the family-of-models approach, a real-life movable bridge 

performance is evaluated for a 75-year period with the inclusion of deterioration (corrosion of 

steel members) and sudden damage (span-lock failure typical for movable bascule bridges). In 

addition, the traffic increase is also anticipated and included in the predictive analysis. A single 

FEM that is calibrated using a set of data may reproduce that data set accurately within 
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acceptable numerical limits, however, another prediction might not be accurate as a result of 

uncertainties in experimental data, structural model assumptions, and non-stationary and 

nonlinear behavior of real-life structures. While previous studies provide concepts of multiple 

models, the use of many models for determining some of the practical engineering concepts, 

such as load rating of bridges, and more advanced concepts, such as system-level reliability with 

the consideration of the correlation of different components with each other, are explored for 

real-life structures. 

The load rating from parent models and load rating distributions from offspring models 

are compared for different cases. With the inclusion of uncertainties, the load rating of the bridge 

is presented with a distribution rather than a deterministic value. As expected, the load rating 

decreases over time along with an increased coefficient of variation. Also, an instantaneous 

damage simulated for the span lock reduces the load rating to a considerably deteriorated 

condition. The system reliability of the bridge is considered by using four different system 

models. Perfectly correlated safety margins, partial correlation, and independent safety margins 

are considered, and the reliability of the system is predicted within bounds over a period of time. 

A careful selection of the system model and the use of monitoring-based correlation among the 

safety margins of different components can be used for reliable performance predictions as well 

(Frangopol 2011b). Reliability studies in this chapter show the importance of data post-

processing and how the results can be affected due to various system, model, or correlation 

assumptions.  
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CHAPTER 6.  
PARAMETRIC STRUCTURAL ASSESSMENT: 

REAL-LIFE DEMONSTRATION-II 

6.1. Introduction 

Structural system damage and deterioration is a complex problem that affects system 

performance over the life cycle of the structure. Bridge performance problems due to damage 

and deterioration have become a national concern. Some reasons behind the deterioration of 

bridges are aging of materials, excessive loading, environmental changes, lack of proper 

condition based maintenance. Consequently, maintenance actions such as retrofit, repair, 

rehabilitation and replacement need to be taken to ensure the safety of the public. 

Before making any decisions about maintenance operations it is desirable to simulate the 

conditions of the structure with analytical models. Different types of models with varying 

complexity are developed for the analysis and design of structural retrofit while performance 

enhancement can be determined by modeling of unretrofitted and retrofitted systems. There are 

also several uncertainties that need to be considered for better understanding retrofit effects on 

structural performance. To develop more accurate models by considering uncertainty may be 

carried out by using calibrated models with monitoring data. This will help to better characterize 

the existing system and to predict future performance of the structure more adequately. As a 

result, field calibrated finite element models (FEMs) are very critical for understanding the 

maintenance and retrofit effects on the performance of a structure, and in this chapter, retrofit 

effects on structural performance of a long span cantilever truss bridge is investigated. 
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Throughout history, dramatic steel bridge collapses have been observed due to lack of 

redundancy and those failures cost human lives. These unfortunate incidents initiate research 

towards safer structures for these observed failures as well as produce new vocabulary such as 

fracture critical members. Among several bridge collapses, Silver Bridge, US (1967), Mianus 

River Bridge, US (1986) and the Latchford Bridge, Canada (2003) are illustrative for fracture 

critical members. The Silver Bridge, which spanned the Ohio River, was built in 1928. The joint 

of the eyebar at west of the Ohio tower of this suspension bridge failed in 1967 and then, the 

collapse continued with failure of the West Virginia tower and the middle portion of the center 

span (Lichtenstein 1993). The Mianus River Bridge, which was carrying the I-95, was built in 

1958. Due to a rusted hanger–pin connection, the hanger failed in 1983 and two lane of the 

roadway fell into the river below (Little 2002). As a final example here, in 2003, the Latchford 

Bridge over the Montreal River settled 2 m when a truck was crossing the bridge due to failure of 

upper connection of the hanger (Biezma and Schanack 2007). 

After these collapses, many hanger elements, which became a new concern of bridge 

engineers and researchers, were closely inspected, evaluated and retrofitted for increased 

redundancy. As seen from the examples given, hanger elements can be defined as fracture 

critical members for structural systems because failure of these elements can lead to collapse of 

the overall system. Although retrofitting applications of hanger elements are very common; load 

rating, component and system reliability changes before and after this procedure have not been 

explored extensively in the literature. 

Some representative studies related to hanger element include the following: possible 

different hanger systems (Kondoh et al. 2001), investigation of stress spikes in hanger elements 
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due to misalignment loading (Mehta 2001) and testing full scale retrofitted truss bridges in the 

field and in the laboratory (Azizinamini 2002; Ermopoulos and Spyrakos 2006). Additionally, 

major efforts were made on the seismic retrofit of bridges where different retrofit schemes and 

damper systems were proposed (Ingham et al. 1997; Sarraf and Bruneau 1998; Murphy and 

Collins 2004; Pollino and Bruneau 2007; Casciati et al. 2008; Hoang et al. 2008). Moreover, 

fragility of bridges after retrofit application (Padgett and DesRoches 2007), life cycle cost 

analysis of retrofit applications (Padgett et al. 2010) and nonlinear modeling and analysis of a 

steel truss bridge (Nagavi and Aktan 2003) were reported in the literature. 

In this chapter of the dissertation, performances of a long span cantilever truss bridge 

before and after retrofit applications are investigated with a calibrated model and family of 

models approach. The suspended span of a cantilever truss bridge is carried by four hanger 

elements and as a result, the axial forces on these fracture critical members are extremely high 

(Aktan et al. 2000a). The hangers can be retrofitted by adding additional retrofit members around 

the hanger members to increase the redundancy and also to decrease the dead load forces on 

these elements by pre-stressing the retrofit members. 

The scope of this chapter is as follows: First, the bridge and its monitoring system are 

explained. Afterwards, a-priori, calibrated and retrofitted finite element models (FEMs) are 

discussed. Then, family of models is used to evaluate the load rating and reliability of the bridge 

with emphasis on the uncertainties. Finally, the results from single models (a-priori, calibrated 

and retrofitted) and family of models are presented in a comparative fashion to quantify the 

uncertainty effects on structural performance metrics such as load rating and system reliability. 
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Schematic presentation of the identification process is presented for use of a-priori model and 

uncertainty incorporated family of models in Figure 74 and Figure 75, respectively. 

 

Figure 74: Use of a-priori model for St-Id of a long span bridge due to performance increase 

 

Figure 75: Use of uncertainty-incorporated family of models for St-Id of a long span bridge due 
to performance increase 
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and a total length of 13,912 ft, carrying five traffic lanes, serves more than six million vehicles 

annually. The substructures of the through-truss contain four reinforced concrete piers which 

were constructed on pile foundations. The two main trusses of the through-truss are spaced 72.5 

ft apart. Each main truss has 73 panel points spaced at 45.7 ft intervals. Welded box sections are 

used for the top and bottom chords of the trusses and a combination of welded box and I-sections 

is used for the vertical and diagonal truss members. Lateral bracing is provided by K-bracing at 

the top and bottom chord levels, and by portal and sway frames located at various panel points 

throughout the structure. The suspended span of the bridge is connected to the cantilever arms 

via vertical hangers, which are pinned at their upper and lower extremities. Truss members with 

axial and rotational releases transition the top and bottom chords between the suspended span 

and the adjacent cantilever arms. The floor system of the bridge is an 8 in thick lightweight 

reinforced concrete deck that is composite with 9 steel beams laterally spaced at 6.9 ft. The 

beams are continuous over the floor beams in either four span or five span increments. An 

important characteristic of this bridge is that the suspended span is hung between the cantilever 

spans with four fracture critical hanger elements, making them non-redundant. More details 

about the bridge can be found in Aktan et al. (2000a). 

 

Figure 76: Long span cantilever truss bridge 
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6.2.1. Monitoring System and Field Tests 

The bridge was extensively instrumented and monitored in order to track different inputs 

such as traffic, wind and temperature and structural responses such as vibrations and strains. In 

addition, vibrations and strains provided by the monitoring system are used for characterizing the 

global and local bridge behavior of the FEMs. The monitoring system includes video cameras, 

weigh in motion (WIM) systems, weather stations, strain gages, accelerometers, tiltmeters, 

crackmeters and vibrating wire gages. In this chapter of the study, only temperature induced 

strain data coming from vibrating wire gages and wind speed and direction data coming from 

wind stations are used for the performance evaluations of the bridge. Measured temperature 

cycle, temperature induced strain and wind data, which are presented in Figure 77, Figure 78, 

and Figure 79, respectively, are included in the reliability analysis. It should be noted that 

vibrating wire strain gages used in the monitoring are temperature compensated (stress-induced 

strains) by adjusting the thermal expansion coefficients of the strain gage wire and the steel 

member that the strain gage is attached to (Levi 1997). 

 

Figure 77: Measured temperature variations for the hanger 
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Figure 78: Measured temperature induced strain variations for the hanger 

 

Figure 79: Measured wind direction and wind speed data 
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(frequency, mode shapes) for the structure. The data obtained from the ambient vibration surveys 

at the bridge was used for global level FEM calibration of the through truss spans. Controlled 

load tests were performed using two cranes of known weight (108 kip each) on the through truss 

spans and the deck truss and stringer approach spans in order to obtain strain data (via 52 high-

speed strain gages) necessary for local level calibration of the FEM. The concepts of global and 

local level FEM calibration and how these were performed in this study are described in the 

following section. 

6.2.2. A-Priori and Calibrated FEMs 

Development and calibration procedure of a 3-D FEM can take several stages. First, the 

relevant design drawings and calculations for the long span bridge need to be obtained. Based on 

the design drawings and photographs, a 3-D CAD model of the structure is constructed and then, 

the drawing files are imported to the finite element software for obtaining the general geometry 

of the bridge. Next, the material properties, section properties, releases and constraints are 

assigned to the structural elements. Finally, the initial boundary conditions are created based on 

design drawings. It should be noted that a-priori modeling, field experimentation and model 

calibration steps for the St-ID of the long span bridge were accomplished through the studies 

conducted by Drexel Intelligent Infrastructure and Transportation Safety Institute (DI3) 

researchers and extensive studies related to these steps can be found in the literature (Aktan et al. 

2000a; Aktan et al. 2000b; Catbas and Aktan 2002; Catbas et al. 2007). Based on the calibrated 

model utilized for the previous studies, a retrofitted model, which is explained in the next 

section, is created. 
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The structural elements of the bridge were modeled using a combination of shell and 

beam elements, with rigid links as well as body constraints to represent the actual 3-D geometry 

of the interfaces and connections. In-plane and out-of-plane deformations of the deck slab were 

simulated by discretizing the slab into 2,966 rectangular shell elements with six degrees of 

freedom at each node. 3-D beam elements represented the upper chords, lower chords, verticals, 

diagonals, floor beams, out-of-plane truss members, bracing, and roadway stringers. A model 

using bar elements for the through truss elements was developed, however, due to actual end 

connections and the test data, beam elements were found to perform better. The piers were 

modeled with 3-D frame elements in a smeared manner for computational efficiency. The total 

number of frame elements utilized in the model was 6,047. General view of the a-priori model is 

presented in Figure 80. 

 

Figure 80: A-priori model of the long span cantilever truss bridge 

Before calibration, any possible human errors in input have to be eliminated by quality 

assurance and control measures developed for large scale models, since analyses may be carried 

out and global equilibrium may be maintained even with the presence of many errors at the local 

level. A-priori model was verified by checking the static equilibrium, checking the dead load 
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forces with the design calculations and checking the preliminary mode shapes for local 

connection problems. 

In order to calibrate the models, data is needed at both global and local levels and these 

data sets were obtained from experimental data collected when the field tests were performed on 

the bridge. The first step of the calibration process is the global calibration of a-priori model and 

this was achieved by using global vibration characteristics of the bridge. Ambient vibration test 

data and data analysis results were utilized for this purpose. Since modal properties (frequencies 

and mode shapes) are a function of parameters such as the mass, stiffness, damping of a 

structure, differences in the identified modal properties from the experiment and the FEM can be 

attributed to differences in these parameters. Moreover, the a-priori model was calibrated by 

modifying its boundary conditions or by idealizing its some structural elements. When the mode 

shapes were similar, and the frequency difference between the model and experiment results was 

minimized, it could be concluded that the model represents the measured responses in a global 

sense. 

The second step of the calibration process is the local calibration of the a-priori model 

and controlled load test data was utilized for this purpose. If there was an unacceptable level of 

difference between the experimental results and model predictions, the stiffness of the model in 

specific locations or regions was adjusted. It is important to note that parameters that are adjusted 

during the local calibration process should reflect a physical situation. Incorporating a non-

physical condition that satisfies a purely numerical correlation between experimental and 

analytical results was avoided. The details about the model development and calibration 

processes can be found in Catbas et al. (2007). 



148 

 

6.2.3. Retrofitted FEM 

The importance of the hanger element was discussed in the previous sections. For the 

case study here, all four hanger elements of the bridge mostly carry the dead loads and these 

hangers transmit the forces from the suspended to the cantilever spans. Failure of any one of the 

hanger elements may lead to the overall system failure of the bridge. 3-D FEM and conceptual 

representation are presented with different spans in Figure 81. 

 

Figure 81: Structural system conceptualization representation (a) and 3-D FEM of the long span 
cantilever truss bridge (b) 
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vertically from the upper chord of the cantilever arm to the lower chord of the suspended span 

and these rods are pre-tensioned to remove 50% of the dead load from the hanger bar. Some 

pictures and a schematic representation of the auxiliary system are shown in Figure 82. 

 

Figure 82: Retrofitted hanger and auxiliary system photos and drawings (Catbas et al. (2003) and 
photo credit to Dr. Kirk Grimmelsman) 

As described previously, the main components of an auxiliary system are the stainless 
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affect the frequencies significantly. In addition, axial forces due to dead load are presented in 

Figure 84 for the a-priori model, calibrated model and retrofitted model. Axial force of the 

hanger element due to dead load is found to be 3,708 kips, 3,199 kips and 1,584 kips for the a-

priori, calibrated and the retrofitted model, respectively. The retrofitted model, which is 

developed using the calibrated model is utilized as the parent model for the family of models for 

the investigation of performance change by considering uncertainties. 

 

Figure 83: Experimental, a-priori model, calibrated model and retrofitted model frequencies 
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Figure 84: Axial forces under dead load for a-priori, calibrated and retrofitted models 
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Dead, live, wind and post-tension loads for the parent model are defined before the 

offspring model generation process. The self weight of the structure is defined as the dead load 

whereas the HL93 loading which includes lane and truck loading is used as a live load. For this 

study, all five lanes of the bridge are loaded with 0.64 kip/ft HL93 lane load and 72 kip HL93 

truck load as defined in the AASHTO (2004) specifications. A preliminary moving load analysis 

is also conducted to find the critical loading condition for the hanger elements since only one 

HL93 truck loading per lane is used. In addition, to define the wind loading in the finite element 

software, mean of the wind loading parameters (Figure 79) coming from the monitoring system 

are utilized along with the exposure type, importance factor, gust factor, pressure coefficient, 

velocity pressure exposure coefficient and topographic factor. Finally, another preliminary 

analysis is carried out to obtain the needed temperature value to be applied to the rods to 

simulate the dead load transfer by means of post-tensioning of the rods. 

The offspring models of the long span cantilever truss bridge are generated from the 

parent model, which is mainly the calibrated FEM with an additional auxiliary system on the 

hanger elements. A summary of the family of models procedure is presented in Figure 85. 

 

Figure 85: Schematic summary of the family of models procedure 
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The generation of family of models incorporates the variables such as the loads, section 

properties and mechanical properties based on the distributions obtained from the studies found 

in the literature. In Table 8, statistical parameters such as bias factor, coefficient of variation and 

distribution types are given for the random variables along with the sources. 

Table 8: Statistical parameters for the random variables 

 Bias (λ) C.O.V. Dist. Type Source 

Dead Load (DL) 1.05 0.10 Normal (Ellingwood et al. 1980) 
Lane Load(LL) 1.20 0.18 Normal (Ellingwood et al. 1980) 

Truck Load (TL) 1.20 0.18 Normal (Ellingwood et al. 1980) 
Post-Tension(PTL) 1.00 0.10 Normal Assumed 

Elasticity (E) 1.00 0.06 Lognormal (Ellingwood et al. 1980) 

Yield Stress (Fy) 1.05 0.11 Lognormal (Ellingwood et al. 1980) 

Area (A) 1.00 0.05 Lognormal (Haukaas and Der Kiureghian 2007) 

 

Based on the data generated using random variables, uncertainties are incorporated in the 

offspring models by means of the different programs and files (Figure 85). Different load 

variables (dead, live, wind and temperature for post-tensioning), elasticities, yield stresses and 

cross-section areas are assigned for each offspring model. Next, a batch file (command file) is 

employed to automatically analyze and save the results from these offspring FEMs. Then, the 

values of interest are collected from the saved results and combined into a matrix format. 

Afterwards, the performance metrics, which will be described in the next section, such as load 

rating, component and system reliabilities are calculated via the given formulations. Lastly, 

histograms for capacity, dead load, live load and wind load are obtained to calculate the load 

rating distributions and system reliability. Representative axial strain histograms and distribution 

fits for the hanger and one of the stainless rods are shown in Figure 86 and Figure 87, 
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respectively. These figures clearly indicate the importance of the dead loads in long span bridges 

when compared to other types of loading such as live and wind loads. 

 

Figure 86: Representative offspring output histograms and distribution fits for the hanger bar 

 

Figure 87: Representative offspring output histograms and distribution fits for Rod-3 
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6.4. Bridge Performance Prediction 

6.4.1. Load Rating 

Load rating of a bridge can be expressed as the factor of the critical live load effect to the 

available capacity for a certain limit state. Load rating can be carried out for a number of critical 

locations and components on the structure. For this study, the load rating of the hanger and the 

auxiliary system are calculated by following the AASHTO (2004) guide and using the a-priori 

model, calibrated model and family of models (parent and offspring models). The general 

formulation to calculate the rating factor is given in Eq. (2.1). 

Since 3-D models are used, axle loads are defined as individual point loads (8 kip – 32 

kip – 32 kip) for the truck loads and lane loads are defined as distributed load at 0.64 kip/ft as 

defined in the AASHTO code. The yield strength is given as 100 ksi for the steel hanger and 50 

ksi for the stainless steel rods as given in the design drawings. The capacities of the sections are 

calculated based on the axial strain capacity. The cross-section area (A) of the hanger is 94.13 in2 

while it is 44.18 in2 for a single rod. The dynamic impact factor is used as 33% for calculating 

load ratings. 

For the comparative evaluation, first, the load rating is calculated from the capacity, dead 

load and live load values of the a-priori model and calibrated model, which do not have the 

auxiliary system or in other words do not have the retrofits. It should be noted that the a-priori 

model was created to capture the design load calculations. From the a-priori without retrofit and 

calibrated without retrofit models, hanger load rating is found as 2.46 and 2.85, respectively with 

the dead load forces, which are presented in Figure 84. 
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Hanger load rating results after the addition of the auxiliary system is presented in Figure 

88. Load ratings of the hanger element become 5.86 for the a-priori model with retrofit, 7.66 for 

the calibrated (parent) model. In addition, the mean and the standard deviation of the load rating 

distribution coming from the offspring models are found to be 6.87 and 1.29, respectively. These 

results indicate that the design load rating coming from the nominal model is almost tripled when 

compared to the calibrated (parent) model after the retrofit application. 

 

Figure 88: Comparison of hanger element load ratings for a-priori, a-priori with retrofit, 
calibrated, calibrated (parent) with retrofit and offspring models with retrofit 
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defined live load (HL-93 loading). Moreover, the load rating ratio between the parent model with 

retrofit (LR=7.66) and the offsprings with retrofit (LR=6.87) is calculated as 90%, in other words 

the reduction in load carrying capacity is found as 10% independent of the loading. 

Another important load rating difference between the a-priori model with retrofit and 

parent (retrofitted and calibrated) model is determined to be 1.80 and this clearly illustrates that 

the a-priori model can produce underestimated results in this case which may yield to unreliable 

decision making. From the performance ratio calculation, the load carrying capacity reduction is 

found as 25% between the a-priori model with retrofit and the parent model with retrofit. It 

should be noted that the load rating of the a-priori and parent models simulating retrofit 

application are in the ±σ range of the load rating distribution of the offspring models. 

The other components of the auxiliary system are the stainless steel rods. The load rating 

results for the a-priori, parent and offspring models are presented in Figure 89 for the 4 rods. The 

load ratings of the rods are varying between 6.94 - 7.71 for the a-priori model with retrofit, 8.59 - 

9.53 for the parent model. Mean values of the offspring model load rating histograms for 

different rods are changing between 7.90 – 8.83 with a standard deviation interval of 1.85 – 2.07.  

Finally, the family of model approach offers to see the bounds and distributions of load 

ratings in a non-deterministic manner by considering different uncertainty sources. The 

probabilistic results provided by family of models approach promises more informed decision 

making for different purposes such as replacement or maintenance by identifying the risk 

associated for different alternatives. 
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Figure 89: Comparison of rod element load ratings for the a-priori, parent and offspring models 
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A system reliability approach requires the capacity and demand random variables, 

correlation of these variables and finally a system model, in other words, a failure mechanism. In 

this study, a long span bridge is analyzed with respect to yield strain of 5 different elements 

under the limit state based on the axial capacity and loading. Component reliabilities of one 

hanger and four rods are obtained from FEM and SHM data by using the limit state equation: 

                             
(6.1) 

For the strain capacity (  ), a multiplier 0.75 is assumed for the given limit state to be 

within linear stress-strain range. The demand has different components, which are dead load 

strain (   ), live load strain (   ) coming from HL93 loading, wind load strain (   ) and the 

temperature induced strain (   ). As already mentioned in previous sections, wind speed and 

wind direction data from the monitoring system are used in the finite element analysis for the 

wind loading calculations. In addition, temperature induced strains coming from vibrating wire 

measurements (Figure 78) are used for the reliability calculations by obtaining the maximum 

strain differentials, which were calculated in Catbas et al. (2008b). The correlation values 

between the random variables are assumed as zero. Hanger subsystem models that are related to 

the hanger elements and the retrofit rods are defined for the comparative evaluation of the 

performance before and after retrofit application as presented in Figure 90. 

 

Figure 90: Subsystem models and descriptions 
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Before retrofit application, hanger subsystem contains only the hanger element (Figure 

90-A). After retrofit application, the auxiliary system will increase the redundancy with the 

addition of four rods in parallel to the hanger subsystem (Figure 90-B). The idea is that four rods 

will reduce the load demand on the hanger and even in the case of hanger failure; the rods will be 

able to carry their share of load coming from the load of the suspended span. 

Component reliabilities can be calculated for the hanger before a retrofit application. For 

this purpose, a-priori and calibrated models are used and the reliability indices for the hanger are 

calculated as 1.97 and 2.61, respectively for the given limit state function. When the auxiliary 

system is added to the hanger region, the component reliability of the hanger element is 

increased to 6.28 for the parent model, which is the calibrated model with the retrofit rods. Also, 

a family-of-models is generated with the inclusion of the uncertainties defined previously for this 

particular case study. It is observed that the reliability index of the hanger is found to be 4.68 

when the hanger is retrofitted with 4 rods. It should be noted that the uncertainties coming from 

Table 8 are directly used in reliability calculations for single model, whereas these uncertainties 

are incorporated in the offspring model with a Monte Carlo approach and the reliability indices 

are calculated from the output distributions of the offsprings. 

The increase in component reliability index of the hanger is mainly due to the significant 

decrease in the dead load strains. Half of the dead load is transferred to the rods through auxiliary 

system and the component reliability indices of the rods are calculated as 3.96, 4.15, 3.81 and 

3.98. The component reliability indices for a-priori without retrofit, calibrated without retrofit, 

parent (calibrated with retrofit) and offspring models with retrofit are presented in Table 9. 
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Table 9: Summary of the component reliability indices and corresponding probability of failures 
for a-priori, calibrated, parent and offspring models 

 

A-PRIORI 
(no retrofit) 

CALIBRATED 
(no retrofit) 

PARENT 
(retrofitted) 

OFFSPRINGS 
(retrofitted) 

BETA(β) Pf BETA (β) Pf BETA (β) Pf BETA (β) Pf 

ROD1 - - - - 5.10 1.7E-07 3.96 3.7E-05 

ROD2 - - - - 5.36 4.1E-08 4.15 1.6E-05 

ROD3 - - - - 5.00 2.9E-07 3.81 7.0E-05 

ROD4 - - - - 5.21 9.6E-08 3.98 3.5E-05 

HANGER 1.97 2.4E-02 2.61 4.5E-03 6.28 1.7E-10 4.68 1.4E-06 

 

The results show a tremendous decrease in probability of failure, thereby, increase in 

structural reliability index of the hanger as shown in Table 9. While the reliability indices both 

for parent model and the offspring models are quite high, the incorporation of the uncertainties in 

the offspring model has a major impact in the final results for these two cases when analyzed in a 

comparative fashion. 

After the component reliability evaluation, the subsystem reliability is also investigated in 

order to quantify the system reliability with the inclusion of uncertainties in the offspring 

models. To compute the system reliability, first, the component reliabilities are calculated and 

then, cut-set information is provided to the reliability analysis software. The system reliability 

results of hanger subsystem are shown in Table 10. When hanger bar is combined with four rods 

as presented in Figure 90-B, the subsystem reliability index of the parent model with retrofit 

increases to b=8.25 as expected due to the redundancy by auxiliary system increases the and also 

due to significant decrease in the dead load forces on the hangers. As stated before, the use of 

family of models approach gives lower results when compared to the single parent model as a 

result of the combined effect of the uncertainties. As an illustration, the system reliability of the 
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hanger subsystem is calculated as b=6.25 from the offspring models outputs. It should be noted 

that the performance and survival of the long span bridge mainly depend on the performance of 

the system of the hangers and retrofit bars. 

Table 10: Summary of the system reliability indices for hanger subsystem 

 

PARENT 
(retrofitted) 

OFFSPRINGS 
(retrofitted) 

BETA (β) Pf BETA (β) Pf 

SUBSYSTEM 
(Figure 90-B) 

8.25 7.9E-17 6.25 2.0E-10 

 

The implication of the consideration of the uncertainties may be more critical if all the 

elements of the system are analyzed to evaluate the system reliability of the entire bridge as 

described in Catbas et al (2008) where all upper chord elements, vertical, diagonal and lower 

chord elements are employed for the structural system reliability computations. In this 

dissertation, the scope is limited to the performance evaluation of the hanger retrofit for a hanger 

subsystem (hanger and retrofit rods). It is seen that a reasonably designed and constructed retrofit 

for such bridges increases the system reliability of the hanger system practically to the highest 

level for a limit state that employs the axial strain capacity. The subtle point here is that the 

impact of uncertainty can play a major role irrespective of the high reliability indices as can be 

seen here when the parent model and offspring models are considered. 

6.5. Summary 

Historically, bridge collapses have always been unfortunate and unforgettable incidents 

that not only cost human lives but also resulted in economical losses. Pin and hanger systems (as 
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fracture critical members) are one of the reasons for several bridge failures in history. In the 

literature, pin-hanger systems were closely investigated from a seismic application point of view 

but not fully examined from an auxiliary system application point of view. In this chapter of the 

dissertation, performance increase is studied for a long span cantilever truss bridge after the pin 

and hanger system is retrofitted. Although the retrofit application is very common for these types 

of structures, load rating, component reliability and system reliability changes due to the 

applications have not been fully studied. 

First, the bridge and its monitoring system are explained. Then, the field tests including 

ambient vibration and load testing are presented. Afterwards, a-priori, calibrated and retrofitted 

models are discussed. Second, family of models is used to evaluate the load rating and reliability 

of the bridge with emphasis on the uncertainties. Finally the results from single models (a-priori, 

calibrated and retrofitted) and family of models are presented in a comparative fashion to 

quantify the uncertainty effects on structural performance metrics such as load rating and system 

reliability. 

Load rating calculations show that load rating of the hanger element is 2.46 for the a-

priori model without retrofit. After adding the auxiliary system to the a-priori model, the load 

rating dramatically increased to 5.86 due to the significant reduce in the dead load forces on the 

hanger element. In addition, load rating of the hanger bar is calculated as 7.66 for the parent 

(calibrated with retrofit) model whereas the mean and the standard deviation of the load rating 

distribution coming from the offspring models are found to be 6.87 and 1.29, respectively. The 

effect of the uncertainties causes a difference of 0.8 in load rating and this indicates that the 

uncertainties can lead to a difference around 0.8x(8kips+32kips+32kips)=57.6 kips of a live load. 
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Additional retrofit members around the hanger members are not only increasing the 

redundancy but also decreasing the dead load forces on these elements. Therefore, component 

and system reliability results are also presented in a comparative fashion for the different models 

of the bridge including a-priori model without retrofit, calibrated model without retrofit, parent 

model with retrofit and offspring models with retrofit. The component reliability index of the 

hanger element is increased due to the significant decrease in the dead load strains. 

In addition, the impact of uncertainties in hanger component reliability is also clearly 

seen from the difference (βdifference=1.6) between the parent and offspring models results. 

Furthermore, the subsystem reliability of the hanger region is calculated as 8.25 for the parent 

model and 6.25 for the offspring models. Based on these observations, it can be argued that a 

reasonably designed and constructed retrofit for such bridges increases the system reliability of 

the hanger system practically to the highest level for a limit state that employs the axial strain 

capacity. The subtle point here is that the impact of uncertainty can play a major role irrespective 

of the extremely high reliability indices as can be seen here when the parent model and offspring 

models are considered. 

Finally, this chapter again clearly illustrates the importance of uncertainties for the 

evaluation of structure’s critical elements and retrofit. It is recommended that models be 

developed and calibrated using monitoring data, while still considering the uncertainties from 

various sources.  
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CHAPTER 7.  
SUMMARY AND CONCLUSIONS 

The principle objective of this dissertation is to investigate nonparametric and parametric 

approaches within the general Structural Identification (St-Id) framework by taking uncertainties 

into account for improved decision making. These approaches are explored for detecting and 

locating structural changes with higher efficiency by means of nonparametric analysis, and for 

improved accuracy by means of parametric analysis with the inclusion of uncertainties for 

structural assessment and predictions. The dissertation can mainly be summarized in five parts: 

(1) general explanation of St-Id framework steps with real-life case studies; (2) introduction and 

demonstration of a nonparametric methodology for damage detection and localization with 

laboratory experiments and real-life data; (3) introduction of a family-of-models approach for 

characterizing uncertainties and a demonstration of continuous calibration of the family of 

models using structural health monitoring data within the St-Id framework; (4) characterization 

of performance for a real-life bridge under the effects of deterioration, damage, and traffic 

increase by using the family-of-models approach; and (5) investigation of bridge performance 

increase for a real-life long-span bridge due to retrofit by means of a family-of-models approach. 

The general St-Id framework that is followed in this dissertation is developed by the ASCE 

Structural Identification Committee and is defined in more detail in the ASCE report 

documenting the six steps of the framework (Catbas et al. 2012d). 

The steps of the general St-Id framework are presented and exemplified with laboratory 

and real-life bridges. A movable bridge, which is studied in detail as a unique structure not 

commonly found in the literature, is employed for different St-Id steps. In addition, the 
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performance of a long-span cantilever truss bridge is investigated after the fracture critical 

hanger members are retrofitted to increase the redundancy and reliability of the bridge. 

Nonparametric methods are becoming more attractive because of the ease of use and 

rapid analysis of large sets of data to determine changes in some representative features. In this 

dissertation, a practical and effective nonparametric (data-driven) approach is explored for the 

identification and localization of structural changes due to damage. This method is also 

employed to determine the effectiveness of structural repair, which was implemented to bring the 

structure to its previous performance levels. In this approach, cross-correlation analyses between 

strain data sets are utilized for damage detection, and correlation matrices are employed for 

damage localization. First, the efficient methodology is demonstrated on a laboratory test 

structure for undamaged and different damaged conditions. Then, the methodology is validated 

on a real-life bridge, where the bridge is monitored before the damage, after the damage 

occurred, and after the damage was repaired. 

One of the advantages of this approach is the use of most commonly used sensors (strain 

gages) without the need for loading information (magnitude and placement) for strain monitoring 

applications. Strain time histories used for the data analysis are obtained from arbitrary operating 

traffic conditions. If the correlation analysis is not employed, raw strain data may lead to false 

negatives and/or false positives since the levels will depend on the operating traffic. For 

example, the strain levels in a damaged bridge may not be very high depending on the operating 

traffic. At the same time, an intact bridge may produce high strain measurements under heavy 

traffic, which are not necessarily indicators of damage. As a result, the structure can be 

monitored over a long period of time without any special loading considerations. This is one of 
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the strengths of the method that any loading can be used to detect damage. Moreover, the 

correlation-based data analysis methodology is computationally efficient and easy to use, 

especially for handling large amounts of monitoring data. In addition, in the real-life bridge case, 

it is also shown that the method can be utilized to evaluate the effectiveness of maintenance 

(including repair) by checking the variations of the correlation coefficients before and after the 

maintenance application. The separation of correlation coefficients over time is an indicator of a 

structural change and possibly damage. However, the separation of correlation coefficients may 

not be clear due to uncertainties. As a result, the cluster of correlation coefficients for a particular 

condition of the structure and the cluster corresponding to another condition state are to be 

statistically evaluated. For this, the distributions of different clusters are analyzed for the real life 

case and it is seen that the probability of separation of two sets was quantified as almost 99% for 

the worst case. Consequently, this methodology has the potential to be easily applied by 

engineers to different kinds of civil infrastructure for condition monitoring and maintenance. 

Structural Identification using parametric methods provide more insight to the behavior; 

root causes of the problems can be determined, and better predictive analyses can be carried out 

with the physical interpretation of the structural responses. For the parametric St-Id, a family-of-

models approach is presented using Monte Carlo simulations and finite element analyses with 

special consideration of the uncertainties coming from different sources, such as measurement, 

modeling, and data post-processing. In this dissertation, the family of models is developed from 

a parent model, which is calibrated using monitoring data. While there are a number of methods 

and approaches for FEM calibration (updating), the calibration is carried out using ANNs to 

obtain the parent model, then the offspring models are generated from the parent model. The 
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responses from the family of models are employed to predict the performance of a structure in 

terms of its structural load rating and reliability, with special emphasis on different sources of 

uncertainties. The family-of-models technique is initially investigated for a laboratory structure 

and two real-life structures under performance decrease and increase circumstances. 

In the laboratory demonstration of the family-of-models technique, the impact of 

uncertainty is investigated in predicting the system reliability obtained by a single calibrated 

FEM and then by a family of models that are continuously calibrated with SHM data. After 

discussing the laboratory structure, instrumentation plan, experimentation during support 

deterioration, and ANN-based model calibration, the family of models is employed for system 

reliability calculations. In terms of the probability of unsatisfactory performance, the difference 

in the predictions (obtained using the initially calibrated FEM and a family of models 

continuously calibrated with monitoring data) can be as large as an order of magnitude when 

uncertainties are not reduced by using monitoring data. This illustrates the importance of 

continuously calibrating the models with monitoring data and incorporating uncertainties for 

better predicting the reliability of structures. It should be noted that the use of parent-offspring 

FEMs becomes important especially when critical parameters (i.e., boundary spring constants) 

that have impact on the models cannot be well-defined. 

As a first real-life application, movable bridge performance is evaluated for deterioration 

of the sections, traffic load increase over a 75-year period, and sudden span lock failure by 

employing the family-of-models approach. The calibration for the parent model is successfully 

accomplished using the ANN-based calibration methodology with multiple sensor measurements 
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and multiple objectives to minimize the error between the model response and monitoring data 

obtained from the truck load testing, operational traffic, and opening/closing of the bridge. 

After the parent and the offspring models are developed, load rating values from each 

single model (parent model) representing a certain condition and load rating distributions from 

offspring models are obtained and compared for different deterioration and damage conditions. 

As expected, the load rating decreases over time, along with an increased coefficient of variation. 

It is also observed that the effect of the instantaneous damage simulating the span lock failure 

can be equivalent to a 45-year deterioration in terms of load rating of the bridge. With the 

family-of-models approach, the probability of not meeting a certain level of load rating for this 

bridge is explored. In this discussion, this probability is deemed as risk. Based on family-of-

models approach, the probability (“risk”) for having a load rating less than 1.0 is calculated as 

1.6%. The family-of-model approach, therefore, not only provides the bounds and distributions 

of load ratings in a non-deterministic manner by considering different uncertainty sources but 

also quantifies the risks for structures. Further improvement to this computation can be made 

with the inclusion of importance of structures and a more general inclusion of hazards in terms of 

natural disasters, extreme loadings cases and accidents. 

The system reliability of the bridge is also evaluated by using four different system 

models and three different correlation margins to determine the effect of data post-processing 

uncertainties. Perfectly correlated safety margins, partial correlation, and independent safety 

margins are considered, and the reliability of the system is predicted within bounds over a period 

of time. The most critical case is determined to be the series system model with the system safety 

being minimum when the safety margins of components are independent. Due to deterioration 
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and anticipated load increase, the reliability index decreases from 4.5 to 1.0 levels over a 75-year 

period. In addition, reliability results show that the configuration of the bridge and the correlation 

of variables are important factors for system reliability calculations. Finally, it is also observed 

that the effect of the span lock damage to the system reliability can be equivalent to a 45-year 

deterioration, which is also similar to the findings for the load rating analysis. 

In the second real-life application, performance of a long-span cantilever truss bridge 

before and after retrofit applications is investigated with a calibrated model and a family-of-

models approach. The fracture critical hanger members are retrofitted by adding additional rods 

around the hanger members to increase the redundancy and also to decrease the dead-load forces 

on the hangers by post-tensioning the retrofit rods. The particular uncertainties considered in this 

analysis are the variation in dead load, lane load, truck load, post-tension load due to application 

and losses, modulus of elasticity, yield stress, and cross-sectional areas. 

First, the family of models is used to evaluate the load rating of the bridge with emphasis 

on the uncertainties. From the calculations, load rating of the hanger element, which is 2.46 

before the retrofit, is increased to 5.86 for the a-priori model with retrofit and 7.66 for the 

calibrated (parent) model with retrofit. In addition, the mean and the standard deviation of the 

load rating distribution coming from the offspring models are found to be 6.87 and 1.29, 

respectively. These results indicate that the design load rating coming from the a-priori model 

without retrofit is almost tripled when compared to the calibrated (parent) model after the retrofit 

application. The difference in load rating between the parent model and the mean of the offspring 

models is about 0.80, which indicates that the uncertainties can lead to a difference of as much as 

0.80 times the HL-93 loading. Moreover, the load rating ratio between the parent model with 



171 

 

retrofit (LR=7.66) and the offsprings with retrofit (LR=6.87) is calculated as 90%, in other words 

the reduction in load carrying capacity is found as 10% independent of the loading when the 

uncertainties defined above are incorporated. Another important load rating difference between 

the a-priori model with retrofit and the parent (retrofitted and calibrated) model is determined to 

be 1.80, which clearly illustrates the a-priori model can produce underestimated results in this 

case, potentially resulting in unnecessarily conservative decision making. From the ratio of the 

load ratings, the load carrying capacity is found to be 25% less for the a-priori model with 

retrofit compared to the parent model with retrofit. 

Next, component and subsystem reliability results are presented in a comparative fashion 

for the different models of the long-span bridge: a-priori model without retrofit, calibrated model 

without retrofit, a parent model with retrofit, and offspring models with retrofit. As expected, the 

component reliability index of the hanger element increases due to the significant decrease in the 

dead-load strains. Before the retrofit application, the component reliability index of the hanger 

bar is calculated as 2.61 from the calibrated model. With the addition of the rods to the hanger 

region, the subsystem (hanger and four retrofit rods) reliability index is calculated as 6.25 from 

the offspring models. In this dissertation, the scope is limited to the performance evaluation of 

the hanger retrofit for a hanger subsystem. However, the implication of the consideration of the 

uncertainties may be more critical if all the elements of the system are analyzed to evaluate the 

system reliability of the entire bridge, as described in (Catbas et al. 2008b), where all upper 

chord elements, vertical, diagonal, and lower chord elements are employed for the structural 

system reliability computations. It is seen that a reasonably designed and constructed retrofit for 

such bridges increases the system reliability of the hanger system practically to the highest level 
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when a limit state that employs the axial strain capacity. The subtle point here is that the impact 

of uncertainty can play a major role irrespective of the high reliability indices, as can be seen 

here when the parent model and offspring models are considered. 

All in all, it is observed that the uncertainties play a considerable role even when 

compared to calibrated model-based predictions for reliability and load rating, especially when 

the structure is complex, deteriorated and aged, and subjected to variable environmental and 

operational conditions. A family-of-models approach can be suitable especially for structures 

that have less redundancy, high operational importance, are deteriorated, and seem to perform for 

load level demands approaching the capacity. With such models, it is possible to make more 

reliable and informed decisions for structures current and future performance.  
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