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Abstract. Parkinson’s disease (PD) is a progressive age-related neurodegenerative disorder. Although the pathological hall-

mark of PD is dopaminergic cell death in the substantia nigra pars compacta, widespread neurodegenerative changes occur

throughout the brain as disease progresses. Postmortem studies, for example, have demonstrated the presence of Lewy

pathology, apoptosis, and loss of neurotransmitters and interneurons in both cortical and subcortical regions of PD patients.

Many in vivo structural imaging studies have attempted to gauge PD-related pathology, particularly in gray matter, with the

hope of identifying an imaging biomarker. Reports of brain atrophy in PD, however, have been inconsistent, most likely due

to differences in the studied populations (i.e. different disease stages and/or clinical subtypes), experimental designs (i.e.

cross-sectional vs. longitudinal), and image analysis methodologies (i.e. automatic vs. manual segmentation). This review

attempts to summarize the current state of gray matter structural imaging research in PD in relationship to disease progression,

reconciling some of the differences in reported results, and to identify challenges and future avenues.

Keywords: Parkinson’s disease, MRI, structure, review

INTRODUCTION

Parkinson’s disease (PD) is an age-related neu-

rodegenerative disorder marked clinically by resting

tremor, bradykinesia, and rigidity. PD diagnosis and
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treatment are based primarily upon clinical symptoms

and physical examination. Currently, however, there

are no objective biomarkers that can diagnose PD

or gauge disease severity. Thus, there is a need for

markers of PD and its progression that can identify

and follow different clinical trajectories that may help

design treatment strategies [1, 2].

There is an urgent need to identify and/or develop

neuroprotective agents that can slow or reverse

the trajectory of PD-related neurodegeneration.
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The majority of trials investigating neuroprotective

agents utilize clinical criteria (i.e. motor scores and

time to levodopa initiation) as endpoints [3]. Such

clinical measurements are known to have poor inter-

rater reliability and are subject to rater bias [4, 5].

In contrast, structural imaging has the potential to

provide objective in vivo measurements of neurode-

generation. In addition to facilitating the development

and evaluation of new treatment strategies, imaging

measurements of PD and its progression may provide

insights regarding fundamental pathologic processes

in PD, leading to a better scientific understanding of

the disease process.

Overall, reports of gray matter volume and mor-

phometric changes in PD have been inconsistent

and the locations of changes have been extremely

variable. This might suggest that structural imag-

ing has little diagnostic utility at the individual

patient level, but another interpretation is that

structural methodologies have been crude in the

past, necessitating further technical advancement

to be useful clinically. It is important to note

that there have been remarkable differences in the

methods used for extracting brain volume and mor-

phometric data across studies. These techniques

may be classified roughly into regions-of-interest

(ROIs) based approaches (i.e. manual labeling, auto-

matic, or semi-automatic segmentation), voxel-based

whole-brain morphometric analysis [i.e. voxel-based

morphometry (VBM) or tensor-based morphome-

try (TBM)], and surface or shape-based approaches

(i.e. cortical thickness, multivariate shape analysis).

These differences in methodologies and experimen-

tal designs may account for a substantial amount

of the heterogeneity reported. For example, variable

co-registration and choice of multiple comparison

correction technique might cause differing results,

particularly when the data is high dimensional such

as in the VBM approach [6, 7].

In addition to image acquisition and process-

ing technology, the choice of subjects included in

each study also may contribute to inconsistencies

in reported findings. For example, whereas many

previous studies focused on the simple differentia-

tion of PD from control subjects [8–10], there was

a lack of focus on clinical heterogeneity regarding

subtypes, disease durations, and stages. Indeed, sev-

eral studies indicate that the spatial pattern of gray

matter atrophy appears to correspond to clinical sub-

type and disease stage [11–15]. The purpose of this

review is to summarize the current state of struc-

tural MRI research focused on gray matter changes

in PD, particularly as it relates to PD progression,

its ability to identify knowledge gaps and provide

guidance for future research endeavors in MRI-based

biomarker research. The idea that imaging might hold

promise as a diagnostic tool in PD has been raised by

some authors. Some studies, indeed, have aimed to

show proof-of-concept that imaging can predict PD

before its clinical onset [16–20], such as in rapid eye

movement sleep behavioral disorder patients [21].

“At-risk” subjects, however, currently do not undergo

neuroimaging within the preclinical phase of PD. The

current review, therefore, will focus on how structural

imaging relates to changes throughout the course of

disease and its potential to provide biomarkers of PD

progression.

BASAL GANGLIA

The basal ganglia have been a main imaging

focus of interest in PD for several reasons. First,

the putamen and caudate are directly downstream

from the substantia nigra, which is the primary site

of pathology in PD [22]. Degeneration of nigros-

triatal terminals is thought to be associated with

reduced striatal spine density [23, 24]. Interestingly,

however, molecular labeling studies suggested that

the deficits in nigrostriatal terminal densities tend

to reach a floor at roughly five years, despite some

evidence of continued nigral cell death [25, 26]. Sec-

ond, the traditional staging model by Braak et al.

describes basal ganglia involvement relatively early

in the disease, whereas cortical (especially neocorti-

cal) involvement is thought to occur later in disease.

Third, cognitive decline is well documented in PD

[27] even in earlier stages [28], and the striatum (via

cortico-striatal connections) and hippocampus have

been shown to play an important cognitive role in

PD [29, 30]. As such, there is an interest in utilizing

these gray matter structures as markers of PD progres-

sion throughout several disease stages. Thus, we first

will discuss the MRI findings in basal ganglia struc-

tures and their pathological and clinical implications

during the course of PD progression.

Putamen

Nigrostriatal dopaminergic cell loss occurs in early

PD, with more than 50% of putamen dopaminergic

terminals having been lost before clinical diagnosis of

disease [31]. The putamen is one of the principle tar-

gets of nigrostriatal projections that degenerate in PD

[31]. Thus, there has been particular interest in using
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measurements of putamen structure to detect PD

onset and perhaps even to differentiate PD from other

parkinsonisms [32, 33]. Indeed, putamen atrophy has

been reported widely in PD and in a variety of disease

stages [15, 34–43], but not necessarily in all studies

[44–50]. Due to the fact that the putamen under-

goes dopaminergic denervation well before clinical

disease diagnosis [25], several studies have hypoth-

esized that putamen atrophy would be diagnostically

useful for PD and/or measuring progression. Whereas

reduced putamen volume and/or atrophied shape are

reported commonly in the PD literature, it is pos-

sible that a substantial amount of putamen atrophy

occurs prior to disease onset, in parallel to nigrostri-

atal dopaminergic denervation. Ellmore et al. [18],

for example, reported that subjects having rapid eye

movement sleep behavioral disorder (RBD), a possi-

ble precursor to PD, had lower putamen volumes than

control subjects [39]. Geng et al. [38] reported simi-

lar findings among early-stage PD subjects [38]. In a

shape analysis study, Sterling et al. [29] reported atro-

phy of the posterior putamen in early PD, localized

within the known preferential pattern of dopamin-

ergic denervation in PD [29]. Most recently, Lewis

et al. [12] showed that putamen volume is lower and

undergoes accelerated atrophy in the earliest stages

of PD compared to control subjects [12]. A similar

observation of accelerated atrophy in early PD also

was observed by Tessa et al. [51]. In the study by

Lewis et al. [12], however, putamen atrophy reached

a floor after roughly five years of disease, similar to

the changes in nigrostriatal dopaminergic terminals

[25, 52], despite the fact that subjects continued to age

and progress clinically. Taken together, these results

suggest that putamen volume and/or shape could be

useful not only in gauging PD-related pathology near

the time of disease onset, but also might have the

potential to detect changes in high-risk groups (such

as RBD patients). Putamen volume and/or shape,

however, may not provide the ideal measurements

to track PD-related pathology progression after five

years [25].

Caudate

Compared to the putamen, the caudate undergoes

a slightly delayed loss of dopaminergic terminals in

early PD, as nigrostriatal projections to the puta-

men degenerate preferentially [53]. Thus, one might

expect a milder and/or later course of atrophy for

the caudate in PD. Indeed, a number of studies have

reported no significant difference in caudate volume

between PD and control subjects, particularly in

early-stage disease [54, 55], although some of those

studies were likely limited by a small sample size

[38, 39, 44, 45]. Interestingly, two recent shape anal-

yses have shown that the greatest extent of PD-related

atrophy occurs in the head of the caudate, where

dopaminergic terminal losses are known to be most

severe [29, 56]. In addition, there have been reports

of accelerated caudate atrophy in early-stage PD,

followed by a plateau [12, 51], suggesting that the

greatest caudate atrophy also occurs in the earlier

stages of disease. Thus, similar to putamen atrophy,

caudate atrophy might not be the best metric to gauge

progression in the later stages of PD.

Substantia nigra, nucleus accumbens, and globus

pallidus

Fewer studies have reported atrophy of the sub-

stantia nigra, nucleus accumbens, or globus pallidus

in PD. This is likely due to several reasons. First,

these structures can be difficult to define precisely

on T1-weighted MRI. The nucleus accumbens, for

example, is continuous with the putamen and caudate.

The globus pallidus, on the other hand, is a mixture

of white and gray matter. Like the substantia nigra,

it has two distinct functional components (internal

and external) downstream from the striatum [57]. To

investigate these structures, it is necessary to have

extremely consistent and reliable imaging segmenta-

tion techniques, which are not widely available for the

substantia nigra, nucleus accumbens, or globus pal-

lidus. Second, these structures are relatively small, so

there may be more measurement error due to partial

volume effects.

Some evidence suggests that the substantia nigra

volume may be decreased in PD [58]. Previous

studies may have been limited by the difficulty of

delineating precise boundaries of the substantia nigra

using routine structural imaging techniques [38, 59,

60]. The substantia nigra accounts for only 0.5–0.6%

of total brain volume, and partial volume effects can

blur structural boundaries. More recent studies sug-

gest that multimodal imaging may facilitate more

precise detection of substantia nigra atrophy, even

in early PD [58]. As noted previously, at least 50%

of nigral cells are lost before PD diagnosis, and this

potentially could limit the utility of substantia nigra

volume in tracking PD progression [31]. For the

nucleus accumbens, a trend showing lower volume

was reported by Tinaz et al. [41]. Studies investigat-

ing pallidal atrophy in PD roughly have been split
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between reporting atrophy [34, 46, 49], particularly

with impaired cognition and more advanced disease

stages [40, 42, 56, 61], and absence of atrophy [12,

38, 39, 44, 45, 54, 55]. Taken together, these reports

suggest that the extent of pallidal atrophy is relatively

weak and/or that there is a lack of reliable segmenta-

tion techniques to define pallidal anatomy.

HIPPOCAMPUS AND AMYGDALA

Hippocampal structure has been a topic of consid-

erable interest in PD because of its well-documented

role in memory decline and dementia [62]. Indeed,

many studies have demonstrated an association

between hippocampal atrophy and PD with demen-

tia [15, 42, 61, 63–73], cognitive impairment [14, 15,

42, 74, 75], and visual hallucinations [71]. Within

PD, hippocampal atrophy has been associated con-

sistently with impaired memory [14, 15, 65, 74, 76].

It also has been reported that hippocampal structural

changes may be useful to predict future cognitive

decline in PD [14]. In line with the notion that

hippocampal structure is associated primarily with

cognition, several studies have reported a lack of hip-

pocampal atrophy in PD subjects without substantial

cognitive impairment or dementia [47, 54, 56, 77, 78].

Atrophy of the amygdala has been associated with

dementia [42, 66, 69], cognitive impairment [15, 42],

poor memory performance [70], and depression [77]

in PD. Amygdala atrophy has been suggested to occur

in several stages of PD, although results have been

relatively inconsistent. Ibarretxe-Bilbao et al. [79],

for example, demonstrated lower amygdala volumes

and accelerated atrophy in early-stage PD [79, 80],

which is in agreement with postmortem data suggest-

ing amygdala pathology relatively early in disease

[81]. Morgen et al. [82] reported amygdala atro-

phy among PD subjects without dementia, also in

agreement with this notion [82]. A potential techni-

cal challenge in studying both the hippocampus and

amygdala structures is that it is difficult to obtain

accurate structural measurements from automatic

segmentation tools [83]. Adding to this challenge

is the relatively ambiguous boundary between the

hippocampus and amygdala, which can appear as a

continuous structure with standard structural mag-

netic resonance imaging modalities, and the multiple

nuclei and neural substrates within each structure.

Thus, to fully leverage the wealth of available struc-

tural imaging data that has been collected over many

years, more accurate and precise segmentation tech-

niques will be needed.

THALAMUS

The thalamus is the master relay station for brain

structures, and it is intimately relevant to PD because

it connects the basal ganglia to cortical regions.

Although several studies have investigated thalamic

structure in PD, few have reported significant atro-

phy, possibly suggesting that structural changes are

mild or spatially focused in the thalamus. Lisanby

et al. [34], Nagano-Saito et al. [61], and Lee et al.

[46] for example, reported lower thalamus volumes

in PD compared to controls. In contrast, some studies

have found no difference in thalamus volume between

PD and controls [35, 47]. Interestingly, Messina et

al. [9] reported lower thalamus volumes in atypi-

cal parkinsonism compared to PD, suggesting that

thalamic structure might be useful for differentiating

PD from parkinsonian patients [47]. McKeown et al.

[84] furthermore utilized shape analysis to investi-

gate thalamus structure, reporting shape atrophy but

no volume differences between PD and controls [84].

Thus, shape analysis might be more sensitive for

detecting focused degeneration in specific thalamus

nuclei and more refined imaging and segmentation

techniques may be needed to investigate changes in

these nuclei [85].

CORTEX

Voxel- and tensor-based morphometry

Voxel-based morphometry is a technique that

allows group comparisons of gray matter density

over the whole brain region. Several studies have

utilized this analysis approach to investigate cortical

structural changes in PD [86–89]. The majority of

these studies have been cross-sectional [86, 88–97],

although some were longitudinal [98] or had a lon-

gitudinal component [99]. The results from these

studies, however, are variable and inconsistent. For

example, several studies report no cortical structural

changes in PD subjects [86, 93, 100–102] whereas

others report decreased volume in the frontal lobe [90,

96, 97], intraparietal sulcus [88], temporal lobe [89,

91, 98, 99], limbic and paralimbic areas [96, 98], ante-

rior cingulate cortex [91], olfactory cortex [95], and

parietal and occipital cortex [96, 97]. The discrepant

results may be explained by subject heterogeneity, as

most studies did not account for disease duration or

clinical subtype [93, 95, 96, 103].

Some studies suggest that cortical structural

changes may be more obvious in PD patients with
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cognitive deficits. For example, VBM studies have

demonstrated decreased cortical volume in the

anterior cingulate cortex [89, 91], temporal cortex

[89, 91, 92, 98], frontal cortex [89, 90, 92], limbic

and paralimbic areas [98], and parietal cortex [94].

PD patients with dementia [89–92, 94, 98, 101]

appear to have more extensive cortical changes

than those with PD mild cognitive impairment [99,

104, 105], although at least one study found no

difference between PD patients with dementia and

mild cognitive impairment [100].

Tensor based morphometry (TBM) was developed

at the same time as VBM. It is different from VBM

in that instead of relying on gray or white mat-

ter segmentation information, it uses directly the

deformation information acquired during the image

normalization step. Fewer studies have been per-

formed in PD using the TBM technique. Two studies

showed relatively few changes between PD and con-

trol subjects [106, 107]. The TBM technique has

been reappraised in the neuroimaging field due to

recent advances in brain image registration tech-

niques [i.e. Diffeomorphic Anatomical Registration

Through Exponentiated Lie Algebra (DARTEL) in

the Statistical Parametric Mapping (SPM) toolbox

and Symmetric Image Normalization in Advanced

Normalization Tools (ANTS)] that allow reliable

deformation information to be extracted from the

image normalization [108, 109]. A recent longitudi-

nal study using TBM showed accelerated atrophy in

several brain areas (frontal superior and middle gyrus,

anterior cingulum, caudate, and thalamus) in cogni-

tively normal early-stage PD subjects compared to

controls, despite no significant differences at baseline

[51].

When considering the results of VBM studies, it is

important to note that such methodologies necessitate

the use of statistical correction for many comparisons.

Thus, although voxel-based techniques can facili-

tate the exploration of brain changes in PD, there

may be many false negatives that reduce the use-

fulness for targeted hypothesis testing. On the other

hand, the use of voxel-based techniques may allow

for better localization of brain changes compared to

segmentation-based techniques.

Cortical thickness

The loss of cortical thickness (the distance between

the white matter – gray matter interface and the pia

mater) is well documented in Alzheimer’s disease

[110]. Previous studies in PD, however, have yielded

inconsistent results regarding the presence of cortical

thinning at various stages. In cognitively normal and

early PD subjects, past studies have reported mini-

mal or no cortical thinning [13, 73, 111, 112]. Lyoo

et al. [113] reported weak correlations between corti-

cal thickness and disease duration after adjusting for

age and cognitive scores, although no control group

was included for comparison [113]. One small study

of 16 PD and 15 control subjects, however, did report

faster rates of cortical thinning in early PD, but still no

difference in cortical thickness between PD and con-

trol subjects [80]. There is more substantial evidence,

however, to suggest that lower cortical thickness may

be related to cognitive decline or impairment [13, 73,

112, 114–116], worsening motor scores [113, 114],

and visual hallucinations [114] in PD. Pereira et al.

[115], for example, demonstrated that PD subjects

with mild cognitive impairment at an average of 6

months post-diagnosis had cognitive domain-specific

patterns of cortical thinning [115]. Segura et al. [13]

demonstrated similar findings in PD patients with

mild cognitive impairment, although disease duration

was approximately 6.4 years [13]. A recent study by

Mak et al. [117] suggested that whereas PD subjects

with normal cognition have relatively minimal corti-

cal thinning, PD subjects with cognitive impairment

show faster cortical thinning [117]. Finally, there is

a well-documented relationship between lower corti-

cal thickness and PD-related dementia [73, 112, 114].

Combining cortical thickness with hippocampal vol-

ume, Zarei et al., in 2013, reported 80% accuracy in

identifying PD patients with dementia [73].

The results of cortical thickness studies are in

agreement with the documented trajectory of Lewy

pathology, which is thought to involve cortical struc-

tures at a later stage than many subcortical structures

[118]. It should be noted, however, that even in

later-stage PD there is little evidence of cortical thin-

ning if cognition is not impaired. Hwang et al., in

2013, for example, reported thinner cortices in PD

dementia patients compared to PD patients with nor-

mal cognition, despite the fact that PD patients with

dementia had a shorter disease duration. Thus, cor-

tical thinning, as a marker of disease progression,

seems difficult to separate from dementia, which is a

consequence of the natural progression of PD [30].

Interestingly, Lewy pathology in PD is known to

occur in layer-specific patterns in the cortex, pref-

erentially affecting certain cortical layers depending

upon the brain region. To understand the exact

mechanisms, future postmortem studies will need to

determine the direct relationships between cortical
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thickness and pathologic changes that are known to

occur in PD cortices [118–121] and account for the

co-existence of Alzheimer’s pathology.

Cortical gyrification

Most studies of cortical structure in PD have uti-

lized cortical thickness as the sole metric to gauge

cortical atrophy. It is important to consider, how-

ever, the layered structure of the cortex and its

columnar organization. Acknowledging these struc-

tural intricacies, several recent studies have focused

on the folding structure (gyrification indices) of the

cortex in PD. Historically, the gyrification index

offered a method to quantify cortical folding of

a two-dimensional brain slice, defined as the ratio

of cortical surface over an outer perimeter [122].

Local gyrification index is a newer, image-based

metric to quantify gyrification in three dimensions

[123]. One study investigating cortical folding in PD

reported relatively diffuse reductions in a PD cohort

having disease duration of approximately 4 years

compared to control subjects [124]. Another study

found no differences in cortical gyrification between

PD and control subjects, but reported inverse correla-

tions between cortical gyrification in several frontal

and parietal areas and a composite score of disease

severity that included Hoehn-Yahr stage, cognitive

impairment, and disease duration [73]. In this partic-

ular study, it was unclear whether dementia (known

to affect cortical structure) had contributed to the

lower gyrification indices seen in more advanced-

stages PD subjects. Recently, however, our group

published a combined exploration and validation

study of PD subjects who had no dementia at baseline.

The results suggested that PD subjects having disease

duration less than five years undergo accelerated loss

of gyrification over time, although they did not have

significantly lower gyrification compared to controls.

Subjects having disease duration greater than five

years showed significantly lower gyrification indices

in several key areas (supramarginal, inferior pari-

etal, superior frontal, precentral, and postcentral) in

the absence of dementia [11]. Taken together, these

results suggest that PD subjects undergo loss of cor-

tical folding as disease progresses.

Future studies should focus on developing and

implementing more sophisticated methods of quanti-

fying cortical folding, whichmaybeuseful tomeasure

cortical disease progression in PD. In addition, unlike

the pattern of atrophy observed in striatal structures,

it seems that a “floor” of gyrification loss does not

become discernable until much later in disease. Fur-

ther longitudinal studies of more advanced patients

are needed in order to determine whether these losses

continue through the entirety of the disease.

CHALLENGES IN STRUCTURAL

IMAGING AND THE FUTURE

Despite the promise of structural imaging for

assessing macroscopic changes in gray matter asso-

ciated with PD and tracking disease progression at

various stages of disease, there are several major

challenges that currently hinder practical implemen-

tation in clinical studies. One such problem is the

lack of automatic methods that can precisely define

the boundaries of gray matter structures. The effect

sizes of gray matter atrophy also are often very small

(roughly a loss of a few percent is typical in PD).

This makes it critical to reduce measurement error

in the delineation of gray matter structures. Unfortu-

nately, the most widely used segmentation techniques

still are prone to low precision and systematic bias

[125], whereas manual segmentation is extremely

time consuming and susceptible to issues of rater and

left-right bias [126]. Precise and unbiased definition

of structures is particularly important for shape analy-

sis studies, where there is a loss of power if correction

for multiple comparisons is utilized. Thus, the tech-

niques used to control false positives in shape analysis

must also be optimized for power. Finally, automatic

segmentation methods have the potential for bias in

neurodegenerative diseases [125]. Thus, there is a

need to develop new technologies that can define the

precise boundaries of gray matter structures in an

unbiased manner. Such technologies would benefit

structural imaging not only in PD research, but in a

wide range of neurodegenerative diseases.

Lastly, it is important to consider the scientific util-

ity, clinical implications, and limits of structural gray

matter imaging in PD. Some studies have attempted

to evaluate structural imaging as a tool for early

PD diagnosis and differentiating between PD and

atypical parkinsonisms. The weight of the literature,

however, suggests that there is not enough statistical

separation of single-structure measurements between

PD and non-PD subjects to be of clinical use. A recent

study, however, suggested that utilizing patterns of

atrophy across several structures may be of greater

utility for this task [127]. Similarly, many studies

have attempted to link clinical symptoms and/or func-

tional deficits in PD with specific brain structures,
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with variable success. Overall, however, the body of

existing literature suggests that many structures are

related to a variety of clinical symptoms and/or func-

tional deficits in PD, and vice versa. This notion is

not surprising because clinical functions depend upon

multiple brain structural networks and the PD process

affects multiple brain structures [128]. Thus, future

studies of gray matter structures and their functional

implications may seek to identify patterns of morpho-

logic changes over time. This can be accomplished

using a variety of network- and multivariable-based

techniques [129] and combined with different MRI

modalities. If these issues can be addressed and accu-

racy improved substantially, then structural imaging

might have a particularly useful role in monitoring PD

progression and predicting outcomes at the individual

level.
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