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Summary. We propose a new class of models, transition measurement error models, to study the effects of
covariates and the past responses on the current response in longitudinal studies when one of the covariates
is measured with error. We show that the response variable conditional on the error-prone covariate follows
a complex transition mixed effects model. The naive model obtained by ignoring the measurement error
correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores
the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measure-
ment error for both continuous and discrete outcomes. We show that the naive estimator of the regression
coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients
of the past responses are generally inflated. We then develop a structural modeling approach for parameter
estimation using the maximum likelihood estimation method. In view of the multidimensional integration
required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum like-
lihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in
the E-step. We evaluate the performance of the proposed method through a simulation study and apply it
to a longitudinal social support study for elderly women with heart disease. An additional simulation study
shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders
of the models.

Key words: Asymptotic bias; EM algorithm; Maximum likelihood estimator; Measurement error; Struc-
tural modeling; Transitional models.

1. Introduction
Longitudinal data are common in health sciences research,
where repeated measures are obtained for each subject over
time. Diggle et al. (2002) provide a comprehensive overview
of statistical methods for analyzing longitudinal data. One
class of longitudinal models is the transitional model, where
the conditional mean of an outcome at the current time point
is modeled as a function of its values at the previous time
points and covariates (Diggle et al., 2002, Chapter 10). This
model is useful when one is interested in studying the effects
of covariates and the past responses on the current response.
The within-subject correlation is easily accounted for by con-
ditioning on the past responses, and the model can be easily
fit within the generalized linear model framework.

A common problem in longitudinal studies is the presence
of covariate measurement error. For example, it is well known
that covariates such as CD4 counts (Tsiatis, De Gruttola,
and Wulfsohn, 1995) and blood pressure and nutrient intake
(Carroll, Ruppert, and Stefanski, 1995) are often measured

with error. In Section 6, we consider a longitudinal study of
elderly women with heart disease. One of the study objectives
was to investigate the effect of social support on the health
outcomes. However, the social support level was estimated
using the average score of several questions concerning social
support in a simple questionnaire and hence measured the
true social support level with considerable error.

There is an extensive literature on the measurement er-
ror for independent data (Fuller, 1987; Carroll et al., 1995).
For longitudinal data, Tosteson, Buonaccorsi, and Demidenko
(1998), Buonaccorsi, Demidenko, and Tosteson (2000), and
Wang et al. (1998) considered modeling measurement error
in linear and nonlinear mixed effects models. Limited work
has been done for modeling measurement error in transition
models. Schmid, Segal, and Rosner (1994) and Schmid (1996)
studied measurement error in first-order autoregressive mod-
els for continuous longitudinal outcome. It should be noted
that the results in classical generalized linear models with
covariate measurement error (Carroll et al., 1995) are not
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applicable in generalized transition models, since (1) the past
response is included as a covariate in transition models, and
(2) responses and unobserved covariates and their observed
error-prone values are measured repeatedly over time and are
likely to be correlated.

We develop in this article a new class of models, transi-
tion measurement error models, for continuous and discrete
outcomes, to study the effects of covariates and the past re-
sponses on the current response in longitudinal studies when
one of the covariates is measured with error (Section 2). We
show in Section 3 that the response variable conditional on
the error-prone covariate follows a complex transition mixed
effects model. The naive model obtained by ignoring the mea-
surement error correctly specifies the transition part of the
model, but misspecifies the covariate effect structure and ig-
nores the random effects. We next perform an asymptotic bias
analysis in Section 3 and show that ignoring the measurement
error results in the regression coefficients of covariates atten-
uated and the regression coefficients of the past responses
inflated. In contrast to the results in generalized linear mixed
measurement error models (Wang et al., 1998), the biases in
naive estimators do not depend on the cluster size. We develop
a structural modeling approach for inference in Section 4 by
accounting for the measurement error by assuming that the
unobserved covariate follows a transition model. We study
the finite sample performance of the proposed method in a
simulation study in Section 5. Additionally, we conduct an-
other simulation study to compare different model selection
methods including the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC). In Section 6, we
apply the proposed method to the longitudinal study of el-
derly women with heart disease, followed by discussions in
Section 7.

2. The General Transition Measurement Error Model
Suppose the data are obtained from m subjects over time
from a longitudinal study. Denote by Yij the outcome variable
of the ith subject (i = 1, . . . ,m) at the jth time point (j =
1, . . . ,ni ), Xij the unobserved true covariate (for simplicity, Xij

is assumed to be a scalar), Wij the observed error-prone mea-
sure of Xij , and Zij(p × 1) the other covariates which are mea-
sured precisely. We assume a q-order generalized linear transi-
tion model for the outcome variable Yij , where the conditional
distribution of Yij given its history {Y ij−1, . . . ,Y i1} and the
covariate history {Xij−1, . . . ,Xi1} and {Zij−1, . . . ,Zi1} is as-
sumed to depend on the prior q observations of the outcome
Hy,ij = (Y ij−1, . . . ,Y ij−q)

T (q ≤ ni ) and current values of the
covariates {Xij , Zij}. The transition model of the outcome Yij

can be written as

g(μij,x) = β0 + Xijβx + ZT
ijβz + HT

y,ijα, (1)

where μij ,x is the conditional mean of Yij given Xij , Zij , and
Hy,ij , g(·) is a monotonic differentiable link function, β0, βx,
βz(p × 1), and α(q × 1) are unknown regression coefficients.

Define Yi =(Yi1, . . . , Yini
)T ,Xi,Zi,Wi similarly, and θY =

(β0, βx, βT
z , αT )T . Then the joint log likelihood of Yi given

{Xi, Zi} for the ith subject is

�i(Yi |Xi,Zi;θY ) =

ni∑
j=q+1

�ij(Yij |Xij ,Zij ,Hy,ij)

+ �i(Yi1, . . . , Yiq |Xi,Zi), (2)

where �ij(Yij |Xij , Zij , Hy,ij ) belongs to the exponential fam-
ily distribution (McCullagh and Nelder, 1989) with mean μij ,x

and variance φa−1
ij v(u), aij is a prespecified weight, φ is a scale

parameter, v(·) is a variance function, and �i(Y i1, . . . ,Yiq |Xi,
Zi) is assumed free of θY .

The observed error-prone covariate Wij is assumed to be
related to the true unobserved Xij through an additive mea-
surement error model,

Wij = Xij + Uij , (3)

where the measurement error Uij is independent of Xij and
independently follow N(0, σ2

u).
The structural transition measurement error model is com-

pleted by specifying a distribution for the unobserved co-
variate Xij . In the classical measurement error literature, it
is common to assume Xij to be independent (Carroll et al.,
1995). However, for longitudinal data, the Xij observed from
the same subject are likely to be correlated. Hence, parallel-
ing the transition model for Yi , we consider an r-order linear
transition model for the unobserved Xij as

Xij = γ0 + ZT
ijγz + HT

x,ijγx + ex,ij , (4)

where Hx ,ij = (Xij−1, . . . ,Xij−r)
T , θX = (γ0, γ

T
z , γT

x )T is an
unknown parameter vector, and the ex ,ij are independent of
Uij and independently follow N(0, σ2

x).
Assuming the measurement error is nondifferential, i.e.,

Li (Yi |Xi, Zi, Wi) = Li (Yi |Xi, Zi), the joint likelihood of
the observed data (Yi, Wi |Zi) for the ith subject is

Li(Yi,Wi |Zi)

=

∫
Li(Yi |Xi,Zi)Li(Wi |Xi,Zi)Li(Xi |Zi) dXi, (5)

which often does not have a closed-form expression and in-
volves ni dimensional integration except for Gaussian out-
comes.

3. Asymptotic Bias Analysis in Naive Estimators
It is of interest to understand how the transition model (1) can
be misspecified if the measurement error is ignored and the
asymptotic biases in naive estimators are obtained by ignor-
ing the measurement error. To understand the fundamental
issues, for simplicity, we focus in our asymptotic bias analysis
on the first-order transition models for both the outcome vari-
able Yij and the unobserved covariate Xij , i.e., set q = r = 1,
Hy,ij = Y ij−1, and Hx ,ij = Xij−1.

3.1 Misspecification of the Naive Model
The naive model is defined by ignoring the measurement error
by simply replacing the unobserved true covariate Xij with its
error-prone value Wij in model (1) as

g(μij,w) = β0 + Wijβx + ZT
ijβz + Yij−1α. (6)

To examine how the naive model (6) misspecifies the true
(Yi |Wi, Zi) model, we first derive the true (Yi |Wi, Zi)
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model under the transition models (1), (3), and (4), then com-
pare it with (6).

For simplicity, in this investigation, we assume no covari-
ates Zi in the X model (4), i.e.,

Xij = γ0 + Xij−1γx + ex,ij , (7)

which can be rewritten as Xi =1iγ0/(1− γx)+ exi, where 1i

is an ni × 1 vector of ones and exi is an AR(1) Gaussian
process with mean 0 and covariance matrix Σxi, whose (j, k)th
element is σ2

x(1− γ2
x)−1γ

|j−k|
x . Denote by Ii an ni ×ni iden-

tity matrix and by Λi = Σxi{Σxi + σ2
uIi}−1 the reliability

matrix, where Σxi and Λi depend on i only through their
dimensions ni . Since Xi and Wi are jointly normally dis-
tributed and independent of Zi , one can show that Xi given
(Wi, Zi) is also normally distributed with the conditional
mean E(Xi |Wi,Zi) = γ0(1 − γx)−1(Ii − Λi)1i + ΛiWi and
the conditional covariance cov(Xi |Wi,Zi) = (Ii − Λi)Σxi,
i.e.,

Xi = (Ii − Λi)

(
1i

γ0

1 − γx

)
+ ΛiWi + e∗

xi, (8)

where e∗
xi = Xi −E(Xi |Wi,Zi) = (Ii − Λi)exi − ΛiUi fol-

lows N{0, (Ii − Λi)Σxi} and is independent of (Wi, Zi).
Plugging (8) into (1), some calculations show that the ob-

served data (Yi |Wi, Zi) no longer follow a transition model,
but follow the complex random effects transition model as

g(μij,w) = (β0 + γ0jβx) + WT
i αwjβx + ZT

ijβz

+Yij−1α + e∗xijβx, (9)

where μij ,w = E(Yij |Wij , Zij , Y ij−1), γ0j is the jth element
of the vector (Ii − Λi)(1i

γ0
1−γx

),αwj is the transpose of the
jth row of Λi, and the random effect e∗xij is the jth element of
e∗
xi and is induced by measurement error in X. A comparison

of the naive model (6) with the true (Yi |Wi, Zi) model (9)
shows that the naive model correctly specifies the structure
of the transitional part, but ignores the random effect e∗xij
and misspecifies the covariate structure by assuming it only
depends on the current value Wij instead of the whole vector
Wi . Hence ignoring the measurement error could result in
biased estimates of β = (β0, βx, βT

z )T and α.
It is of substantial interest to understand the direction and

the magnitude of such biases. We investigate the asymptotic
bias of the regression coefficients βx and α and the effect of
cluster size on the asymptotic bias when the measurement
error is ignored. To illustrate the fundamental impact of the
measurement error, we assume the same cluster size ni = n
and no covariates Zi . Specifically the transition model in the
asymptotic bias analysis is

g(μij,x) = β0 + Xijβx + Yij−1α, (10)

and the unobserved covariate Xij follows the linear transi-
tional model (7).

The naive model simply replaces Xij in (10) with Wij as

g(μij,w) = β0,naive + Wijβx,naive + Yij−1αnaive. (11)

The naive estimators are the maximum likelihood estimates
(MLEs) under model (11). We assume in our asymptotic in-
vestigation the cluster size n is fixed and the number of clus-
ters (subjects) m → ∞, and investigate the asymptotic limits

of the naive estimators as m → ∞. We first investigate the
effect of cluster size n on the asymptotic biases in naive es-
timators (Section 3.2), then study such asymptotic biases for
Gaussian outcomes (Section 3.3) and for non-Gaussian out-
comes (Section 3.4).

3.2 Cluster Size Effect on the Asymptotic Bias
in Naive Estimator

We show in Theorem 1 that under some general assumptions,
the biases in naive estimators do not depend on the cluster
size n. This result differs from that under generalized linear
mixed models with covariate measurement error, where the
bias increases with the cluster size (Wang et al., 1998). The
proof of Theorem 1 is given in Appendix A.1.

Theorem 1: Suppress the subject index i. Suppose that the
repeated measures (Xj ,Yj ) (j = 1, . . . ,n) are observed from
a stationary two-dimensional first-order Markov process. Then
the asymptotic biases in naive estimators obtained by ignoring
the measurement error via fitting the naive model (11) does not
depend on the cluster size n(n ≥ 2).

Theorem 1 suggests that we can simply restrict our asymp-
totic bias analysis to an arbitrary fixed cluster size n(n ≥ 2).
We can easily extend the results to the case where (Xj ,Yj ) is
a q-order stationary process and show that the asymptotic bi-
ases in naive estimators are free of the cluster size n ≥ q + 1.
Finally, we emphasize that the stationary process assumption
is essential for Theorem 1. If this assumption is violated or
the transition model is misspecified, the result in Theorem 1
may not be true. For instance, in one numerical study where
data were generated from a nonstationary transition model,
the biases in the regression coefficients varied with maximum
bias 10% when cluster sizes changed from 5 to 10.

3.3 Asymptotic Biases in Naive Estimators under the Linear
Transition Model for Gaussian Outcomes

In this section, we study the asymptotic biases in naive esti-
mators of βx and α under the linear transition model for nor-
mally distributed outcomes Yij and assuming an identity link
in (10). Denote the asymptotic limits of the naive estimators
of the regression coefficients θY = (β0, βx, α)T by θY,naive =
(β0,naive, βx,naive, αnaive)

T as m → ∞. Suppress the subject in-
dex i and denote by Unaive(Y, W; θY,naive) the score function
of the naive model (11). The asymptotic limit of the naive
estimator θY,naive solves E{Unaive(Y, W; θY,naive)} = 0, where
the expectation is taken under the true linear model (10) with
g(·) = 1, (3), (7) and is a function of the true parameter vector
(θT

Y , σ2, θT
X , σ2

x)T .
The results in Theorem 1 show the asymptotic biases of the

naive estimators do not depend on the cluster size n. Without
loss of generality, we set the cluster size n = 2 in our asymp-
totic bias calculations. It can be easily shown that θY,naive

satisfies

E(Y2 − β0,naive −W2βx,naive − Y1αnaive) = 0,

E{W2(Y2 − β0,naive −W2βx,naive − Y1αnaive)} = 0,

E{Y1(Y2 − β0,naive −W2βx,naive − Y1αnaive)} = 0.
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Some calculations give⎡⎢⎣ 1 E(X2) E(Y1)

E(X2) E
(
X2

2

)
+ σ2

u E(X2Y1)

E(Y1) E(X2Y1) E
(
Y 2

1

)
⎤⎥⎦
⎛⎝β0 − β0,naive

βx − βx,naive

α− αnaive

⎞⎠

=

⎛⎝ 0

βxσ
2
u

0

⎞⎠ .

It follows that

βx,naive = λ∗βx, αnaive = α + λ∗∗, (12)

where

λ∗ =
var(X2)var(Y1) − cov2(X2, Y1){

var(X2) + σ2
u

}
var(Y1) − cov2(X2, Y1)

,

λ∗∗ =
βxσ

2
ucov(X2, Y1){

var(X2) + σ2
u

}
var(Y1) − cov2(X2, Y1)

,

and the expressions of var(X2), var(Y 1), and cov(X2, Y 1) are
given in Appendix A.2.

It can be shown that λ∗ and λ∗∗ are bounded, and their
properties are given in Theorem 2. The proof of Theorem 2 is
given in Appendix A.2.

Theorem 2: Under the stationary condition that |α| < 1
and |γx| < 1, then

(a) λ∗ satisfies

σ2
x

σ2
x + σ2

u

≤ λ∗ ≤ σ2
x

σ2
x + σ2

u

(
1 − γ2

x

) , (13)

(b) λ∗∗ has the same sign with γx , where γx is defined in the
X model (7).
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Figure 1. Asymptotic relative biases in naive estimators of βx and α by ignoring measurement error in the first-order linear
transition measurement error model for Gaussian outcomes. The true parameter values are β0 = −1, βx = 1, α = 0.5, σ2 =
1, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond to (a) the relative bias in βx,naive; (b) the relative bias in αnaive.

Note that the assumption |α| < 1 and |γx| < 1 in The-
orem 2 guarantees both the Y and X processes being sta-
tionary. Theorem 2 shows that if the measurement error is
ignored, the naive estimator of the regression coefficient βx of
the covariate Xij is attenuated, while the naive estimator of
the regression coefficient α of the past response is inflated if
γx > 0 and underestimated if γx < 0. Since the Xij are often
positively correlated within each subject, γx > 0 in practice,
the naive estimator of α is often inflated in practice. Denote
by σ2

X = σ2
x/(1 − γ2

x) the marginal variance of Xij under
the X model (7). The right-hand side of (13) can be written
as σ2

X/(σ2
X + σ2

u), which is the traditional attenuation fac-
tor in a standard linear regression measurement error model
(Carroll et al., 1995). It follows that the attenuation of the
naive estimator of the regression coefficient βx in a linear tran-
sition model is usually more severe compared to that in a
standard linear regression measurement error model.

In Figure 1, we numerically evaluate the asymptotic relative
biases in βx,naive and αnaive as a function of the measurement
error variance σ2

u under the linear transition measurement er-
ror model. The parameter configurations are β0 = −1, βx = 1,
α = 0.5, σ2 = 1, and γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The relative
bias is defined as the bias of a parameter estimator divided by
its true value. Figure 1 clearly shows that the naive estimator
of βx is attenuated, while the naive estimator of α is inflated.
The biases become more severe as σ2

u increases.

3.4 Asymptotic Bias in Naive Estimator under
the Generalized Linear Transition Model
for Non-Gaussian Outcomes

When the response Yi is non-Gaussian, the bias analysis is
much more complicated and closed-form expressions of the
asymptotic limits of the naive estimators are usually un-
available. Numerical calculations are hence needed. We first
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describe the general theoretical results under the generalized
linear transition model (10). We next illustrate as an example
the detailed numerical calculations of the asymptotic biases in
the logistic transition model in (10) with g(·) being the logit
link.

The naive estimator θ̂Y,naive maximizes the naive log like-
lihood m−1

∑m

i=1 �naive(Yi,Wi;θY,naive), where �naive(Yi, Wi;
θY,naive) is the log-likelihood function of the ith subject under
the naive model (11), and is given in (2) with Xij replaced by
Wij . Suppressing the subscript i, the asymptotic limit of the
naive estimator θY,naive maximizes the asymptotic limit (as
m → ∞) of the naive log likelihood, which is its expectation
E{�naive(Y, W; θY,naive)}, where the expectation is taken with
respect to (Y, W, X) under the true model (3), (7), and (10).
We have

E(Y,W,X){�naive(Y,W;θY,naive)}
= EX(EY [EU{�naive(Y,W = X + U;θY,naive) |X}]), (14)

which is a function of θY,naive and the true value (θY , θX , σ2
x).

Hence θY,naive maximizes (14) with respect to θY,naive as a func-
tion of the true value (θT

Y , θT
X , σ2

x)T . In evaluation of the
logistic transition measurement error model, the conditional
expectation for binary outcome Y is simply a discrete sum-
mation, and the expectation for X can be calculated using
Gauss–Hermite quadrature or Monte Carlo method.

As an example, we numerically calculate the asymptotic bi-
ases of βx,naive and αnaive in the logistic transition model. The
results are presented in Figure 2, where the relative asymp-
totic biases of βx,naive and αnaive are plotted against the mea-
surement error variance σ2

u. The parameter configurations are
the same as those in the linear transition model case. Similar
to the results in the linear transition model, the naive esti-
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Figure 2. Asymptotic relative biases in naive estimates of βx and α by ignoring measurement error in the first-order logistic
transition measurement error model for binary outcomes. The true parameter values are β0 = −1, βx = 1, α = 0.5, and
γ0 = 0.4, γx = 0.6, σ2

x = 0.5. The two plots correspond to (a) relative bias in βx,naive; (b) relative bias in αnaive.

mator of βx is attenuated, while the naive estimator of α is
inflated. As σ2

u increases, the biases become larger.

4. Estimation in Generalized Linear Transition
Measurement Error Models

The asymptotic bias analysis results in Section 3 show that
the naive estimator ignoring the measurement error is asymp-
totically biased. Valid statistical inference, hence, requires
properly accounting for the measurement error. We propose in
this section maximum likelihood estimation by jointly model-
ing the outcome using the transition model (1) and the mea-
surement error using the structural models (3) and (4). In
view of the multidimensional integration required by max-
imizing the likelihood (5), we develop an EM algorithm to
calculate the MLEs. We first discuss in Section 4.1 the EM
algorithm for linear transition measurement error models for
Gaussian outcomes, and extend in Section 4.2 the results to
generalized linear transition measurement error models for
non-Gaussian outcomes.

4.1 EM Algorithm for Linear Transition Measurement
Error Models

In this section, we derive an EM algorithm to compute the
maximum likelihood estimator when the response Yij is nor-
mal and follows a linear transition model

Yij = β0 + Xijβx + ZT
ijβz + HT

y,ijα + εij , (15)

where the εij are independent and follow N(0, σ2). We assume
the error-prone covariate Wij follows (3) and the unobserved
covariate Xij follows the linear transition model (4).

The complete data are (Y, W, X, Z) and the observed
data are (Y, W, Z). It is easy to write out the complete data
log-likelihood function �(Y, W, X |Z) as
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�(Y,W,X |Z)

=

m∑
i=1

{
− ni − q

2
ln(2πσ2)

− 1

2σ2

(
Y(R)

i − CYi
θY

)T (
Y(R)

i − CYi
θY

)
− ni

2
ln

(
2πσ2

u

)
− 1

2σ2
u

(Wi − Xi)
T (Wi − Xi)

− ni − r

2
log

(
2πσ2

x

)
− 1

2σ2
x

(
X(R)

i − CXi
θX

)T (
X(R)

i − CXi
θX

)}
,

where Y(R)
i = (Yi,q+1, . . . , Yini

)T , and 1(Y )
i , X(Y )

i , and Z(Y )
i

are defined similarly; Y(H)
i denotes the history outcomes

Y(H)
i = (Hy,i(q+1), . . . ,Hy,ini

)T , and X(H)
i is defined similarly;

CYi
= {1(Y )

i ,X(Y )
i ,Z(Y )

i ,Y(H)
i } and θY = (β0, βx, βT

z , αT )T

denote the design matrix and the regression coefficient vector
in the response model (15), and X(R)

i = (Xi,r+1, . . . ,Xini
)T ,

and 1(X)
i and Z(X)

i are defined similarly; and CXi
=

{1(X)
i ,Z(X)

i ,X(H)
i } and θX = (γ0, γT

z , γT
x )T denote the de-

sign matrix and the regression coefficient vector in the X
model (4).

Denote by θ = (θT
Y , σ2, θT

X , σ2
x)T and its MLE by θ̂. As-

sume the measurement error variance σ2
u is known. Let θ̂(k)

be the estimator of θ at the kth iteration, the M-step updates
θ̂(k) by

θ̂
(k+1)
Y =

[
m∑
i=1

EX

{
CT

Yi
CYi

∣∣Y,W,Z; θ̂(k)
}]−1

×
[

m∑
i=1

EX

{
CT

Yi

∣∣Y,W,Z; θ̂(k)
}

Y(R)
i

]
;

σ̂2
(k+1)

=

{
m∑
i=1

(ni − q)

}−1

×
m∑
i=1

EX

[{
Y(R)

i − CYi
θ̂

(k+1)
Y

}T

×
{
Y(R)

i − CYi
θ̂

(k+1)
Y

} ∣∣Y,W,Z; θ̂(k)
]
;

θ̂
(k+1)
X =

[
m∑
i=1

EX

{
CT

Xi
CXi

∣∣Y,W,Z; θ̂(k)
}]−1

×
[

m∑
i=1

EX

{
CT

Xi

∣∣Y,W,Z; θ̂(k)
}

X(R)
i

]
;

σ̂2
x

(k+1)
=

{
m∑
i=1

(ni − r)

}−1

×
m∑
i=1

EX

[{
X(R)

i − CXi
θ̂

(k+1)
X

}T

×
{
X(R)

i − CXi
θ̂

(k+1)
X

} ∣∣Y,W,Z; θ̂(k)
]
.

The conditional expectations in the above expressions are cal-
culated at the E-step. Specifically, at the E-step, we calcu-

late the conditional expectation of X(Y )
i , X(Y )

i

T
X(Y )

i , X(H)
i ,

X(H )
i

T
X(H)

i , X(R)
i , X(R)

i

T
X(R)

i , X(H )
i

T
X(R)

i given the observed
data (Yi, Wi, Zi), i = 1, . . . ,m. Since the joint distribution
of (Yi, Wi) is multivariate normal, these conditional expec-
tations are easy to calculate and have closed forms. Their
detailed expressions are given in Appendix A.3.

The covariance of the MLE θ̂ is calculated using the ob-
served information

Jobs(θ̂) = − ∂2�(Y,W |Z)

∂θθT

∣∣∣∣
θ=θ̂

= EX

[{
Jc(θ̂) − Uc(θ̂)Uc(θ̂)T

}∣∣Y,W,Z
]
, (16)

where Jc(θ̂) and Uc(θ̂) denote the observed information ma-
trix and the score function of the complete data (Y, W, X, Z)
(Louis, 1982). Since (Y, W, X |Z) is multivariate normal, (16)
has a closed form and can be easily calculated.

4.2 The EM Algorithm for Generalized Linear Transition
Measurement Error Models

In this section, we discuss the EM algorithm for the general-
ized linear transition measurement error model (1) for non-
Gaussian outcomes. We still assume W and X follow (3) and
(4). Examination of equation (5) suggests that the likelihood
function L(Y, W |Z) does not have a closed form anymore
and requires numerical integration. One can easily see that
the estimators of θX and σ2

x in the M-step can be updated in
the same way as in Section 4.1. Estimation of θY in the M-
step needs to be modified and requires solving the conditional
score equation

m∑
i=1

EXi

[
CT

Yi
ΔiV−1

i

{
Y(R)

i − μi,x

} ∣∣Y,W,Z; θ̂(k)
]

= 0, (17)

where CYi is defined at the beginning of Section 4, μi,x =

E{Y(R)
i |X(Y )

i ,Z(Y )
i ,Y(H)

i } with the jth component μij ,x given
in (1), Vi = diag{var(Yij |Xij , Zij , Hy,ij )}, and Δi =

diag{μ(1)
ij ,x (·)} and μ

(1)
ij ,x (·) denotes the first derivative of μij ,x .

The Fisher scoring method is used to solve (17).
At the E-step, one needs to calculate the conditional ex-

pectations of the form EXi
{Ti(Yi,Wi,Xi,Zi;θ)} for some

function T(·), which can be written as∫
Ti(Yi,Wi,Xi,Zi;θ)f

(
Yi

∣∣Xi,Zi; θ̂
(k)

)
f
(
Wi

∣∣Xi; θ̂
(k)

)
f
(
Xi

∣∣Zi; θ̂
(k)

)
dXi∫

f
(
Yi

∣∣Xi,Zi;θ
(k)

)
f
(
Wi

∣∣Xi; θ̂
(k)

)
f
(
Xi

∣∣Zi; θ̂
(k)

)
dXi

,
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where f(·) denotes a density function. Both the numerator and
the denominator can be evaluated using Monte Carlo sim-
ulations by generating Xi from the conditional distribution
Xi | (Wi, Zi), which is multivariate normal.

We found that calculations of the covariance of θ̂ using
(16) are not stable for non-Gaussian cases. In particular, the
information matrix calculated using (16) may not be positive
definite. We hence estimate the observed information using
Jobs(θ̂) = m−1

∑m

i=1 Ui,obs(θ̂)Ui,obs(θ̂)T , where Ui,obs(θ̂) is the
score of the observed data (Yi, Wi, Zi) for the ith subject.

5. Simulation Study
We conducted two simulation studies to evaluate the finite
sample performance of the MLEs, one for normal outcomes
under linear transition measurement error models (15) and
one for binary outcomes under logistic transition measure-
ment error models. We compared the MLEs with the esti-
mates obtained using the true X and the naive estimates ob-
tained by ignoring measurement error with X replaced by
W. We set the number of subjects m = 100 and the cluster
size n = 5. The covariate Zij was assumed to be a treatment
indicator, with half the subjects being treated and half the
subjects not being treated. The W and X were generated un-
der (3) and (4). For simplicity, to evaluate the performance
of the MLE estimates, we assumed in the simulation studies
first-order transition models for both the outcome variable Yij

and the unobserved covariate Xij , i.e., q = r = 1.
The true parameter values were: (a) β0 = −1, βx = 1,

βz = 0.8, α = 0.5 (σ2 = 1 for the normal case); (b) γ0 =
0.4, γz = 0.5, γx = 0.6, σ2

x = 0.5; (c) σ2
u = 0.5 (assumed

to be known). A total of 1000 replications were used for the
normal case, and 500 replications for the binary case. The
results are presented in Table 1. “True X” corresponds to the
results using the true covariate X (unobserved in practice) by

Table 1
Simulation results of the linear and logistic transition measurement error models based on
1000 replicates (linear) and 500 replicates (logistic) with the number of subjects m = 100

and cluster size n = 5, measurement error variance σ2
u = 0.5

Model Parameter True value Method Mean Est. SE Emp. SE MSE

Linear βx 1 True X 1.000 0.063 0.062 0.004
Naive 0.559 0.053 0.054 0.198
MLE 0.959 0.099 0.096 0.011

βz 0.8 True X 0.817 0.153 0.153 0.024
Naive 1.006 0.172 0.167 0.071
MLE 0.782 0.187 0.181 0.033

α 0.5 True X 0.496 0.030 0.030 0.001
Naive 0.584 0.033 0.031 0.008
MLE 0.517 0.038 0.036 0.002

Logistic βx 1 True X 1.027 0.177 0.178 0.032
Naive 0.579 0.126 0.123 0.193
MLE 1.022 0.263 0.239 0.058

βz 0.8 True X 0.799 0.334 0.331 0.110
Naive 1.199 0.315 0.326 0.265
MLE 0.803 0.395 0.380 0.144

α 0.5 True X 0.466 0.289 0.280 0.080
Naive 0.602 0.279 0.271 0.084
MLE 0.495 0.322 0.290 0.084

Est. SE, estimated SE; Emp. SE, empirical SE.

fitting model (1). “Naive” corresponds to the results when the
measurement error is ignored by fitting (1) with X replaced
by W; “MLE” corresponds to the MLEs using the observed
data W calculated using the EM algorithm in Section 4 to
account for the measurement error. Programming was done
in SAS/IML.

Our simulation results show that the estimates using the
unobserved “true” X performs the best both in terms of bi-
ases and standard errors. The MLEs using the correct mea-
surement error structure perform very well and have little
bias, while the naive estimators are biased. In particular, the
coefficient βx of the unobserved covariate Xij is attenuated,
while the coefficient α of the past response Y ij−1 is inflated
when measurement error is ignored. This result is consistent
with our asymptotic bias analysis result in Section 3. We also
noticed the trade-off between the bias and the variance. The
MLEs effectively correct the biases in naive estimators, but
have larger standard errors (SEs). Using mean square errors
(MSEs) as a measure of overall performance, the MLEs per-
form substantially better than the naive estimates and have
substantially smaller MSEs. The estimated SEs and empirical
SEs agree well.

The orders q and r in both the transition model of Yij

and the transition model of Xij are important, and their mis-
specification could induce considerable bias in the parameter
estimates. To see this, we conducted an additional simula-
tion study, where the outcome Y and the true covariate X
were generated from a third-order and a second-order linear
transition model, respectively (q = 3, r = 2). The parameter
setting was the same as in the previous simulation, except for
the coefficients of the historical observations: α1 = 0.4, α2 =
0.6, α3 = −0.5, γx1 = 0.1, γx2 = 0.5. The sample size was 100
or 200. In the simulation study, we misspecified the transition
models by assuming q = r = 1 and ran 1000 simulations. The
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Table 2
Frequencies of selecting (q, r) models from 1000 samples

Frequency table

Sample size Method r = 1 r = 2 r = 3 r = 4

n = 100 AIC q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 645 134 58
q = 4 0 130 20 13

BIC q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 934 39 1
q = 4 0 25 1 0

n = 200 AIC q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 672 115 65
q = 4 0 119 15 14

BIC q = 1 0 0 0 0
q = 2 0 0 0 0
q = 3 0 945 29 5
q = 4 0 19 2 0

average estimates of the regression coefficients of Xij and Zij

in the outcome model had relative biases as much as 15% and
20%, respectively.

These results show that selection of the orders of the tran-
sition models is important in practice. We considered the AIC
and the BIC. To examine different model selection methods
to choose (q, r), for each of the above simulation data sets, we
further analyzed the data assuming different order transition
models by varying (q, r) between 1 and 4, and maximized
the AIC and the BIC to select the best model. The AIC is
the twice log-likelihood function minus twice the number of
parameters, and the BIC is the difference between twice the
log-likelihood function and log(sample size) times the number
of parameters. The AIC and BIC model selection results are
summarized in Table 2. We considered the sample size n =
100 and n = 200. Our results show that the BIC works much
better than the AIC and has a very high chance (93.4%) of
choosing the correct model in 1000 simulations. We hence will
use the BIC in the data example.

6. Application to the “Women Take PRIDE” Study
We apply the proposed transition measurement error model
to the analysis of the “Women Take PRIDE” study (Janevic
et al., 2004). The study involved 570 women who were aged
60 or older and had cardiac disease. One study objective was
to explore the effects of social support on health outcomes.
Since the social support level was measured using the average
of a few questions in the questionnaire, it was subject to a
considerable measurement error.

After a telephone baseline interview, the participants were
randomly assigned to either a control group or a 4-week in-
tervention group designed to improve self-care ability. Sub-
sequent telephone interviews were conducted at 4, 12, and
18 months. The social support level was calculated using
the average of the scores of several questions concerning so-

cial support in the questionnaire and hence measured the
true social support level with considerable error. The social
support questions were asked at each follow-up time. The
range of the social support level is continuous from 1 to 5
with a higher level indicating less support. A log transforma-
tion was performed to make the normality assumption more
plausible.

Due to the repeated measure nature of the data, examina-
tion of (4) and (3) shows that we can estimate σ2

u by fitting a
linear mixed model for W on Z with the random effect follow-
ing the AR(1) correlation structure. The estimated residual
variance thus estimates the measurement error variance. For
our data, σ2

u was estimated as 0.053, which was about one
fourth of the variation of W and indicated moderate mea-
surement error.

Note that one could treat measurement error in social sup-
port as a misclassification problem (Espeland and Hui, 1987).
However, since social support is an average of multiple ques-
tions, it is continuous. Treating it as a misclassified covariate,
it would have many categories and model parameters would
be difficult to interpret. Further, by treating it as a continuous
variable, one could also estimate σ2

u from the data.
The health outcome is symptom bothersomeness. This

score assesses the bothersomeness of 14 symptoms common
to patients with heart disease. For each symptom, bother-
someness is assessed with the question “How much would you
say this symptom bothers you?” with a response scale from
1 = “not at all” to 5 = “a lot.” A symptom bothersomeness
score was then calculated by summing the responses of the
14 symptoms. The resulting possible total score ranged from
0 to 70, with higher scores indicating greater symptom both-
ersomeness. A log transformation was performed to make the
normality assumption more plausible.

We fit the data using different orders of the proposed tran-
sition measurement error models. The covariates Z included
an intervention indicator, age, race(white/nonwhite), and ed-
ucation level(lower than high school, high school, higher than
high school). In view of our simulation results, the BIC was
used to choose the best model. The BIC chose the first-order
transition models for both the outcome Y and the error-prone
covariate X. The results obtained from the best model are pre-
sented in Table 3. The results show that women with more
social support have less symptom bothersomeness. The inter-
vention reduces symptom bothersomeness. None of the demo-
graphics has significant effects. A comparison of the naive es-
timates with the MLEs shows that the naive estimate of the
social support effect is severely attenuated, while the naive
estimate of the past outcome effect is inflated. These results
are consistent with our theoretical findings in Section 3. The
naive estimates and the MLEs of the coefficients of the other
covariates were similar, indicating the measurement error in
social support had little effects on the coefficients of the other
covariates. This might be due to the small residual variance
of e∗

xi in equation (9).
To examine the effect of σ2

u, we refit the model to the data
by assuming σ2

u = 0.025 and σ2
u = 0.1. The BIC still chose

the first-order transition models as the best model and the
estimates of the coefficients are similar to what is presented
in Table 3.
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Table 3
Parameter estimates for the “Women Take PRIDE” study
under a first-order linear transition model for X and Y with

σ2
u = 0.053

MLE Naive

Parameter Estimate SE Estimate SE

Social support (βx ) 0.213 0.063 0.147 0.052
Intervention −0.08 0.044 −0.085 0.044
Age 0.004 0.0040 0.004 0.0039
Race 0.006 0.073 −0.006 0.073
Education (HS vs. <HS) −0.01 0.058 −0.005 0.058
Education (>HS vs. <HS) −0.09 0.059 −0.083 0.059
Past symptom 0.552 0.031 0.559 0.030

bothersome (α)

7. Discussion
This article focuses on structural modeling for transition
models with measurement errors. In the measurement error
literature, an alternative method is called functional model-
ing. Structural modeling assumes a distribution for the unob-
served covariate X and functional modeling does not assume
a distribution for X. In principle, compared with the func-
tional modeling approach, the structural modeling approach
is likely to yield more efficient estimators when the X model
is correctly specified but less robust estimators when the X
model is misspecified. We focus in this article on the structural
modeling approach by specifying a linear transition model for
X and the consistency of the MLEs requires the X model is
correctly specified. We have also developed a functional ap-
proach for transition measurement error models, e.g., using
SIMEX (Carroll et al., 1995). The results will be reported
elsewhere. Although we consider in this article a scalar un-
observed covariate Xij , our results can be easily extended to
vector unobserved covariates Xij in higher-order transition
models.

We use the AIC and the BIC to choose appropriate orders
in the transition models. Our finite sample study indicates
that the BIC outperforms the AIC, and the BIC shows supe-
rior performance in our model. Other model selection methods
might be used, such as the FIC (focused information crite-
rion) recently proposed by Hjort and Claeskens (2003) and
the cross-validation method. For future research, it would be
interesting to compare the performance of all these methods
when applied to our model. It should be noted that when
the number of repeated measures is small, there might not
be sufficient information in the data to estimate the orders
of transition models. For high-order transition models, high-
dimensional numerical methods will have to be used for the
calculations in the E-step and computation complexity will
increase dramatically for non-Gaussian data.
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Appendix A

A.1 Proof of Theorem 1

Under the transition structure of the naive model, the expec-
tation E{�naive(Y, W; θY,naive)} is
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E{�naive(Y,W;θY,naive)}

=

n∑
j=2

E{�naive(Yj |Wj , Yj−1;θY,naive)}

=

n∑
j=2

EX{EY,U [�naive(Yj |Wi = Xj + Uj , Yj−1;θY,naive)]}

=

n∑
j=2

∫
�naive(Yj |Wj = Xj + Uj , Yj−1;θY,naive)

× f(Yj ,Xj , Yj−1)f(Uj) dYj dXj dYj−1 dUj ,

where f(Yj ,Xj ,Yj−1) is the density of (Yj ,Xj ,Yj−1) under the
true models (10) and (7), f(Uj ) is the density of the measure-
ment error following N(0, σ2

u). Since both Uj and (Xj ,Yj ) are
stationary processes, f(Yj ,Xj ,Yj−1) and f(Uj ) do not depend
on j. It follows that

E{�naive(Y,W;θY,naive)}
= (n− 1)E{�naive(Yj |Wj = Xj + Uj , Yj−1;θY,naive)}.

Hence, the asymptotic limit of the naive estimator θY,naive,
which maximizes E{�naive(Y, W; θY,naive)}, does not depend
on cluster size n (n ≥ 2).

A.2 Proof of Theorem 2

Suppress subscript i. We first note the inequality (a +
c)/(b + c) ≥ a/b for c > 0, b ≥ a > 0. Let a =
var(X2)var(Y 1) − cov2(X2, Y 1), b = {var(X2) + σ2

u}×
var(Y 1) − cov2(X2, Y 1), and c = cov2(X2, Y 1). Noting all
three quantities are positive, simple calculations give

0 ≤ λ∗ ≤ var(X2)

var(X2) + σ2
u

≤ 1.

Some calculations show that

var(Xj) =
σ2
x

1 − γ2
x

,

var(Yj) =

σ2 + β2
x

σ2
x

1 − γ2
x

+
2αβ2

xγxσ
2
x

(1 − αγx)
(
1 − γ2

x

)
1 − α2 ,

cov(Xj , Yj−1) =
βxγxσ

2
x

(1 − αγx)
(
1 − γ2

x

) .
It follows that λ∗ can be written as

λ∗ =

σ2
xvar(Y1) +

σ2
xγ

2
x

1 − γ2
x

var(Y1) − cov2(X2, Y1)(
σ2
x + σ2

u

)
var(Y1) +

σ2
xγ

2
x

1 − γ2
x

var(Y1) − cov2(X2, Y1)

.

Let

c =
σ2
xγ

2
x

1 − γ2
x

var(Y1) − cov2(X2, Y1)

=

σ2
xγ

2
x

(
σ2 +

α2β2
xσ

2
x

(1 − αγx)2

)
(1 − α2)

(
1 − γ2

x

) ≥ 0,

and a and b be the numerator and the denominator of λ∗,
application of the (a, b, c) inequality at the beginning of this
section gives λ∗ ≥ σ2

x(σ2
x + σ2

u)−1. Using the above expression
of cov(X2, Y 1), one can easily see that λ∗∗γx ≥ 0. Hence λ∗∗

has the same sign with γx.

A.3 The E-Step for Calculating the MLEs in Linear
Transition Measurement Error Models
The conditional expectations of X(Y )

i , X(Y )
i

T
X(Y )

i , X(H)
i ,

X(H )
i

T
X(H)

i , X(R)
i , X(R)

i

T
X(R)

i , X(H )
i

T
X(R)

i given the observed
data (Yi, Wi, Zi) (i = 1, . . . , m) need to be calculated in

the E-step. Note that X(Y )
i = L(Y )

i Xi, X(R)
i = L(R)

i Xi, where

L(Y )
i = (0(ni−q)×q I(ni−q)) and L(R)

i = (0(ni−r)×r I(ni−r)). Let

Q(s)
i = (0r×(s−1) Ĩr 0r×(ni−r−s+1)) for s = r + 1, . . . ,ni , where

Ĩr is an r × r matrix whose (l , r − l + 1)th elements (l =
1, . . . , r) are 1’s but 0’s elsewhere, then

X(H)
i = (Hx,i(r+1), . . . ,Hx,ini

) =

⎛⎜⎜⎝
(
Q(r+1)

i Xi

)T
...(

Q(ni)
i Xi

)T
⎞⎟⎟⎠ .

Therefore, the components concerning Xi in �(Yi, Wi,
Xi |Zi) are given by

− 1

2σ2

(
Y(R)

i − 1(Y )
i β0 − Z(Y )

i βz − Y(H)
i α− βxL

(Y )
i Xi

)T
×

(
Y(R)

i − 1(Y )
i β0 − Z(Y )

i βz − Y(H)
i α− βxL

(Y )
i Xi

)
− 1

2σ2
u

(Wi − Xi)
T (Wi − Xi)

− 1

2σ2
x

(
L(R)

i Xi − 1(X)
i γ0 − Z(X)

i γz − γT
x QiXi

)T
×

(
L(R)

i Xi − 1(X)
i γ0 − Z(X)

i γz − γT
x QiXi

)
,

where Qi = (Q(r+1)
i

T
, . . . ,Q(ni)

i

T
)T . Thus, it is easy to see that

given (Yi, Wi, Zi), Xi follows a multivariate-normal distri-
bution with mean −A−1

i bi and covariance matrix A−1
i , where

Ai((Yi,Wi,Zi);θ)

=

⎧⎪⎨⎪⎩β2
x

σ2 L(Y )
i

T
L(Y )

i +
1

σ2
u

I(ni)

+
1

σ2
x

⎛⎜⎝L(R)
i −

⎛⎜⎝γT
x Q(r+1)

i

...

γT
x Q(ni)

i

⎞⎟⎠
⎞⎟⎠
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It follows that
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where A(k)
i =Ai(Yi, Wi, Zi, θ

(k)), b(k)
i =bi(Yi, Wi, Zi, θ

(k)),

and L(R)
i,s−r is the (s − r)th row of L(R)

i .


