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Abstract

Background: The epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a

number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell

proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result

in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and

tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the

EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this

paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to

gain insight into the structural changes observed in the target protein upon mutation. We also report two novel

inhibitors identified by combined approach of QSAR model development.

Results: The wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA

analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using

38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds

of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751),

q2(0.9491) and pred_r2(0.9525).

Conclusion: Analysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the

mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against

erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both

wild-type and mutant structure.

Introduction
The epidermal growth factor receptor (EGFR) is a mem-

ber of the ErbB family that is involved in a number of

processes responsible for cancer development and pro-

gression such as angiogenesis, apoptosis, cell proliferation

and metastatic spread [1]. The EGFR family comprises of

four receptors namely, EGFR (ErbB1/HER1), ErbB2

(HER2/neu), ErbB3 (HER3) and ErbB4 (HER4). Various

mechanisms including gene amplification and mutations

result in a disturbed regulatory mechanism of EGFR sig-

nalling [2]. Malfunction in activation of such kinases has

been shown to result in uncontrolled cell growth. The

EGFR TK domain has been identified as suitable target in

cancer therapy and drugs such as erlotinib have been

used for treatment of cancer. However, mutations in the

region of the EGFR gene encoding the tyrosine kinase

(TK) domain causes altered responses to EGFR TK inhi-

bitors (TKI) [2]. In 2004, these mutations were first iden-

tified in patients with non-small cell lung cancer

(NSCLC)[1]. NSCLC of Caucasian origin account for
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15% while NSCLC of Asian ethnicity for 30% of EGFR

mutations. These mutations are known to be associated

with non-smoking status, adenocarcinoma histology and

female gender [3,4].

The most common mutations involve point mutations

in exon 18 and exon 21, insertions or deletions in exon 19,

insertions/duplications and point mutations in exon

20 [5]. Destabilization of equilibrium between the active

and inactive state of EGFR kinase activity toward promot-

ing enzyme activation is a result of these mutations which

in turn causes EGFR to translate into tumor growth and

gives a survival advantage [1,6]. Mutations T790M (gate-

keeper), M766T (C helix), L718A (solvent chanel) and

T854A (activation loop) are most common in erlotinib

resistance [7]. For this study we will be studying a drug-

sensitive second-site EGFR mutation, T854A, which

occurs due to change of Guanine in place of Adenine at

nucleotide 2560 (exon 21)[8]. This non-synonymous single

nucleotide polymorphism (SNP) results in substitution of

Alanine for Threonine at position 854. The T854A residue

is located at the bottom of the ATP binding site on C-lobe

and its side chain is in contact distance of erlotinib or gefi-

tinib. Thus, T854A substitution results in loss of contacts

and binding affinity to these inhibitors.

In silico methodology for drug development is a viable

and good option when compared to conventional drug

development methods. One such in silico method

involves development of quantitative structure activity

relationship (QSAR) which establishes a correlation

between the structure and inhibitory activity of molecular

fragments of interests. 3D-QSAR is a robust technique in

drug design process used to predict the inhibitory activ-

ities of the prospective lead compounds by applying the

knowledge of three-dimensional properties of the lead

compounds through a chemometric approach [9,10]. It

develops models which indicate the synthesis of novel

inhibitors assuming that the receptor binding ability is

related to its inhibitory activity [11,12]. For development

of QSAR model, the binding site of receptor is consid-

ered to be rigid and that the ligand molecules belong to a

set of congeneric series [12]. Molecular fields including

hydrophobic, steric and electrostatic interaction energies

are calculated for the set of compounds. A molecular

field analysis model is generated and evaluated for its

robustness by calculation of statistical parameters.

In this study we performed molecular dynamics simu-

lations on both wild-type (WT) and mutant (T854A)

structures and analysed the structural changes [13-16].

A 3D-QSAR model was developed using 38 thiazolyl-

pyrazoline derivatives reported by Lv et al (2011) against

WT EGFR [17]. This model was then used to screen

ZINC libraries for compounds with high predicted activ-

ity values which can be considered as lead drug candi-

dates against both WT and mutant (T854A). This paper

gives insights to the structural changes brought about

by single nucleotide polymorphism in tyrosine kinase

domain of EGFR. The compounds reported in this study

can be considered for further experimental validation as

potent lead compounds.

Materials and methods
Generation of wild-type and mutant EGFR structures

The crystal structure of WT EGFR was extracted from

Protein Data Bank (PDB) [PDB ID: 4G5J][18]. The

obtained crystal structure was first prepared using Protein

preparation utility of Schrodinger [19-21]. Mutant struc-

ture was generated using Schrodinger Glide software

through Maestro interface. The WT structure of EGFR

was also subject to the identical in silico mutational

method in which the wild-type residue (Threonine) was

mutated to itself (Threonine) to ensure that mutation pro-

cess is uniform for all structures. These structures were

then subject to MD simulations.

Molecular dynamics simulations

The GROMACS package [22,23] was used for carrying

out MD simulations using the same conditions as men-

tioned in previous works of our lab [15,24,25]. Com-

parative analysis of structural deviations in WT and

mutated (T854A) structures of EGFR were carried out

using Gromacs utility tools such as g_rmsf, g_rms,

g_gyrate, g_sas etc.

Principal component analysis

The essential dynamics (ED) method was used for the

computation of eigenvectors and eigenvalues with their

projection along the first two principal components with

the help of a protocol present in the GROMACS software

package [26]. The principal component analysis (PCA) or

ED is a protocol that simplifies the complexity of data

obtained and extracts the important motion in MD that

are significant for the biological function of the protein

[26]. In this evaluation, a covariance matrix was created

from the obtained trajectories once the rotational and

translational movements were removed. The matrix was

then diagonalized to identify a set of eigenvectors and

eigenvalues. The amplitude of eigenvectors and the dis-

placement of atoms along each of these eigenvectors

show the concentrated motions of protein along each

direction and were represented by eigenvalues. This ana-

lysis was performed using g_covar and g_anaeig of GRO-

MACS utility tools.

Selection and presentation of data set for QSAR model

development

The dataset of 45 thiazolyl-pyrazoline derivatives [30]

and the template (Figure 1a) was drawn using Chems-

ketch (ACD/Chemsketch Freeware Version 12.01) These
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compounds were prepared by Vlife Engine module of

Vlife MDS as described previously [9,27-29].

Computation of force field

The 38 thiazolyl-pyrazoline derivatives along with their

pIC50 (negative logarithm of IC50) values (Table S1;

additional file 1) were used for calculation of force field

as described previously [9,27-29].

Building the 3D-QSAR model of thiazolyl-pyrazoline

derived compounds

Sphere exclusion method was applied for division of 38

compounds comprising the dataset into training and test

set. Stepwise forward multiple regression method was uti-

lized using the advanced variable selection and model

building wizard for development of the 3D-QSAR model

with default values. The stepwise forward variable selec-

tion algorithm has been described in previous studies

[9,27,28,31].

Validation of the developed 3D-QSAR model

The integrity of the developed 3D-QSAR model was con-

firmed with the help of different statistical parameters

including squared correlation coefficient (r2), cross vali-

dated squared correlation coefficient (q2), predicted

squared correlation coefficient (pred_r2), F-test and stan-

dard error. The model is said to be robust if it has the fol-

lowing statistical parameters r2 > 0.6, q2 > 0.6 and pred_r2 >

0.5 [32-34]. The F-test is described as the variance observed

by the developed QSAR model divided by the variance due

to the error in the regression. Hence, statistical significance

of the developed model can be explained with high F-test.

The low standard error of Pred_r2se, q2_se and r2_se

showed absolute fitness quality of the model.

Model cross-validation

The developed model was first validated internally and

then externally as described previously [9,27,28,31].

Briefly internal validation was carried out using the

leave-one-out (q2, LOO) method while external valida-

tion involved prediction of inhibitory activity of each

molecule comprising the test set by means of the QSAR

model generated using compounds in the training set.

Y randomisation test was employed for examining the

robustness of the developed models for training sets by

calculation of Z-score as described previously [9,27,28,31].

Prediction of ZINC library using developed 3D-QSAR

model

A natural compound ZINC database containing 0.2 mil-

lion compounds was prepared and used for prediction

of inhibitory activity using the developed 3D-QSAR

model. Compounds with high predicted inhibitory activ-

ity were selected for docking analysis.

Docking of top scoring compounds with EGFR

Docking of the top two compounds with WT and

T854A structures was performed using the Glide mod-

ule of Schrodinger [35,36] as described previously

[13,25,37].

Results and discussion
Structural and functional analysis of EGFR tyrosine kinase

domain upon mutation

Molecular dynamics simulations for WT and mutant

(T854A) EGFR TK protein was performed to gain

insight into the structural and functional behaviour of

the drug resistance associated mutation. We studied

RMSD, RMSF, radius of gyration (Rg), solvent accessible

surface area (SASA) and ED analysis between the WT

and mutant (T854A) EGFR protein. RMSD for the back-

bone of the protein structures were calculated from the

initial structure (Figure 2a). In this figure, till 14ns WT

showed backbone RMSD of ∼0.13 to ∼0.27 nm during

this part of simulations. After 14 ns WT structure

exhibited minimum deviation till the end of simulation

Figure 1 (a) Representation of structure of common template of thiazolyl-pyrazoline compounds. (b) Depiction of aligned set of

molecules and 3D descriptors in cubic grid.
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that is 40 ns with its backbone RMSD ranging from

∼0.14 to ∼0.22 nm, where as mutant structure showed

maximum deviation till the end of simulation resulting

backbone RMSD of ∼0.13 to ∼0.47 nm respectively.

This stable RMSD provided a suitable basis for further

analysis. For determining the effect of mutation on the

behaviour of residues, the RMSF values of WT and

mutant (T854A) structures were calculated (Figure 2b).

The results indicate higher degree of flexibility in

mutant (T854A) in comparison to WT.

Another parameter radius of gyration (Rg) defined as

the mass-weight root mean square distance of collec-

tion of atoms from their common centre of mass was

helpful in giving further insight into the structural

changes due to mutation and the overall dimension of

the protein. Plot of radius of gyration of protein vs.

time is shown in Figure 2c. It can be seen that mutant

(T854A) structure exhibited higher Rg value in com-

parison to WT structure. Variation of SASA for both

WT and mutant (T854A) proteins with respect to time

can be seen in Figure S1(a). WT structure was observed

to have higher value of SASA with time, while mutant

(T854A) showed lower value of SASA. Greater fluctua-

tion in Rg in mutant (T854A) structure suggested struc-

tural alteration in the mutant structure. Since, hydrogen

bonds play an important role in maintaining the stable

conformation of protein, analysis of WT and mutant

(T854A) proteins were performed with respect to time

(Figure S1(b)). The total energy (Figure S1(c)) was

observed to be more or less the same throughout the

simulations for both WT and mutant (T854A).

All these results indicate that mutation (T854A) ren-

dered the protein structure more flexible affecting the

structural and functional behaviour of EGFR TK protein.

This result was further validated by principal component

analysis (PCA) analysis.

Essential dynamics (ED) analysis gives an improved ana-

lysis of dynamical mechanical properties of the protein

Figure 2 Graphs showing (a) RMSD (b) RMSF and (c) Radius of gyration of wild-type (blue) and mutant (T854A) (red) protein.
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system. To further support our MD simulations results,

the large-scale collective motions of the WT and mutant

(T854A) protein using ED analysis were determined. Prin-

cipal components are the eigenvectors of a covariance

matrix. This projection gives the change of particular tra-

jectory along each eigenvector. The range of the corre-

sponding eigenvalues (Figure 3) indicated that the

fluctuation of the protein system was basically restricted

to the first two eigenvectors. The motion of the two pro-

teins in phase space can be shown by the projection of tra-

jectories obtained at 300 K onto the first two principal

components (PC1, PC2) in which we observe clusters of

stable states. Analysis of these plots reveals that the clus-

ters are well defined in WT than mutant (T854A). Also,

mutant (T854A) covers a greater region of phase space

mainly along PC1 plane than WT. It can thus be said that

mutant (T854A) is more flexible than WT at 300 K. The

values for trace of the diagonalized covariance matrix of

the Ca atomic positional fluctuations obtained for WT

protein and mutant (T854A) protein were 7.603 nm2 and

18.3734 nm2 respectively. Trace is the total variance of the

dataset thus again confirming the overall increased flexibil-

ity of mutant than WT at 300 K.

Also it can be seen in Figure 4, T854A mutation causes

change in active site. Since, 854 lies in the contact region

of erlotinib but not close to ATP, this mutation results in

reduced affinity for erlotinib while maintaining its kinase

activity. Substitution of alanine in place of threonine

causes the binding surface to move away from erlotinib

indicating a possible reason for its decreased binding affi-

nity. This mutation causes flexibility in the binding

region of erlotinib while not affecting binding of ATP

thus explaining its acquired resistance and maintained

functionality.

3D QSAR model data selection

A 3D-QSAR model development gives a statistical rela-

tionship between the structures and activity of chemical

compounds by calculation of 3D molecular descriptors

involving steric, electrostatic and hydrophobic points

marked on the 3D spatial grid. The invariable columns

were removed after computing the force field grid

descriptors which resulted in 3163 descriptors from 3268

descriptors, thus removing 105 invariable descriptors. For

development of the QSAR model, pIC50 was chosen as

the dependent variable while the calculated 3D descrip-

tors as independent variable. Division of dataset resulted

in 11 compounds in test set while the rest 27 compounds

in training set. The test set consisted of compounds 6, 9,

12, 28, 29, 32, 36, 37, 40, 44 and 45.

3D-QSAR model development and validation

Stepwise forward (SW) multiple regression (MR)

method was applied for development of 3D-QSAR

model. The descriptors chosen were E_337, S_335,

E_832, E_424, S_151 and E_721 belonging to steric and

electrostatic field energy of interactions with the num-

bers representing their respective spatial grid points. In

this model, no hydrophobic descriptors were selected in

the final model. The 3D QSAR model obtained is:

pIC50 = [0.2989(±0.0020) × E 337] + [3.2763(±0.5560) × S 335]

+[0.1785(±0.0003) × E 832] + [0.4938(±0.0033) × E 424]

−[11.7460(±0.3402) × S 151] − [0.6486(±0.0019) × E 721]

+5.0198

Each descriptor is associated with a numerical coeffi-

cient and its error while the last single numerical value is

the regression coefficient. Internal and external validation

of the developed model was carried out using the LOO

method by calculating statistical parameters and meeting

critical requirements for a model to be robust. The statis-

tical parameters obtained for this model included correla-

tion coefficient r2 (0.9751), cross-validated correlation

coefficient q2 (0.9491), predicted correlation coefficient

pred_r2 (0.9525), low standard error value, r2_se (0.0966),

q2_se (0.1380) andpred_r2_se (0.1282) which confirm the

Figure 3 (a) Projection of the motion of the protein in phase

space along the first two principal eigenvectors of wild-type

(blue) and mutant (T854A) (red) protein structures.
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model to be robust. Along with this, high value of F-test

(130.3822) implied that the developed QSAR model is

99% statistically valid with 1 in 10000 chance of failure.

There are other important statistical parameters such as

Z-scores for r2, q2 and pred_r2 which are also important

for QSAR model validation. Zscore_r2 of 6.7926 implies a

100%area under the normal curve, Zscore_q2 of 4.3671

implies a 99.99% area under the normal curve and Zscor-

e_pred_r2 of 1.6521 implies a 95.0743% area under the

normal curve. These percentages indicate that the

respective scores are near the mean ‘μ’ thus validating

the model’s statistical robustness. A parameter p-value

for each of r2, q2 and pred_r2 was also obtained to be sta-

tistically significant with values 0.0001, 0.0001 and 0.09

respectively.

The robustness of the model can also be validated by

radar and fitness plots. The fitness plot (Figure 5a) shows

the extent of variation between the actual and predicted

inhibitory activities of the thiazolyl-pyrazoline derived

compounds. The radar plots (Figure S2 (a,b); Additional

file 1) express the quality of the 3D-QSAR model by the

extent of overlap between the actual value (blue) and pre-

dicted activity (red) lines. The contribution plot for each

descriptor (Figure S2(c); additional file 1) specifies contri-

bution of the properties that should be present in the

lead compound for improving its inhibitory activity.

Descriptors with positive contribution enhance the inhi-

bitory activity of the lead compound whereas those with

negative contribution reduce the same. Positive contribu-

tion for electrostatic descriptor shows a requirement of

electropositive group at the substitution site and an elec-

tronegative group in case of negativeshi contribution.

The grid points E_337, E_832, S_335 and E_424 had

a positive contribution (8.087%, 17.767%, 5.291% and

13.366% respectively) in the developed 3D-QSAR

model against EGFR, while the descriptors S_151 and

E_463 show negative contribution of 24.048% and

31.442% respectively. The grid points can be seen in

Figure 1b. Steric descriptors represent the class of bulk

descriptors which describe both size and shape of the

molecules and fragments. Thus, positive contribution

of a steric descriptor at specific grid point indicates

the importance of a bulky group at that position. The

value for each descriptor and predicted inhibitory

activity for the dataset is mentioned in Table S2 (addi-

tional file 1).

Figure 4 Change in erlotinib binding site due to T854A mutation.

Figure 5 Graph of observed versus predicted activity for

training and test set.
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The second class of descriptors, electrostatic descriptors

give the importance of electronegative and electropositive

groups at a particular site. Electrostatic descriptors with

positive contribution imply the significance of presence of

electropositive groups while those with negative contribu-

tion signify the importance of presence of electronegative

groups.

Activity prediction of ZINC libraries using developed

3D-QSAR model

A total of 0.2 million natural compounds from ZINC

library were screened and the highest predicted activity

was observed to be 13.436 with 195 compounds having

predicted activity above 8 and extrapolation between -1

and 1. We report the top two compounds with highest

predicted activity. The first compound 7-hydroxy-3-(4-

methoxyphenyl)-8-[(4-methylpiperazin-1-yl)methyl]-4H-

chromen-4-one [ZINC ID: 20391511] (HCO) had a

predicted activity (pIC50) of 13.44 while the second com-

pound N-(2-(1H-indol-3-yl)ethyl)-2-((8-oxo-8H-benzo[c]

indolo[3,2,1-ij][1, 5]naphthyridin-12-yl)oxy)propanamide

[ZINC ID: 08792354] (NOP) possessed a predicted activ-

ity value of 11.92 (Figure 6). The QSAR model generated

was also used to predict the inhibitory activity of a sec-

ond generation drug, BIBW2992, as reported by Bean et

al as a positive control [8]. It was observed that HCO and

NOP possessed better predicted inhibitory activity than

BIBW2992 (4.3). Values of top 10 ZINC compounds with

their predicted activity can be seen in Table 1.

Docking analysis of HCO and NOP to both WT and T854A

structures

Both compounds (HCO and NOP) with highest pre-

dicted inhibitory activity against WT were docked with

WT and T854A structures. The first compound HCO

showed a binding affinity of -13.025 kJ/mol with WT

while showing a better binding affinity of -16.485 kJ/mol

with T854A structure. The second compound NOP also

showed a better binding affinity to T854A (-8.598 kJ/mol)

than WT (-8.037 kJ/mol). The results are summarised in

table 2. Thus these compounds can be considered as lead

compounds against both WT and T854A structures.

Conclusion
In the present study, we performed molecular dynamics

simulations on both wild-type (WT) and mutant

(T854A) structures of EGFR to analyse the structural

changes brought about by missense SNP resulting in

T854A mutation. A 3D-QSAR model was developed

using 38 thiazolyl-pyrazoline derivatives against WT

which was then used to screen ZINC libraries by predict-

ing their inhibitory activity (pIC50). The top two com-

pounds were docked against WT and T854A structures.

These compounds can be considered as lead drug candi-

dates against both WT and mutant (T854A). The results

indicate stability loss observed in RMSD, RMSF, Rg and

SASA analysis. Thus it can be said that WT structure

becomes more flexible upon mutation (T854A) which

brings about changes in the binding site of erlotinib thus

reducing its binding affinity and rendering the mutated

protein to become drug resistant while maintaining its

functionality. This was further supported by results

obtained in PCA analysis. This generates the need to

develop drugs that inhibit both WT and mutant proteins.

We report two novel compounds (HCO and NOP) which

Figure 6 Structure of top (a) HCO and (b) NOP.

Table 2. Binding affinity of HCO and NOP with WT and

T854A mutant structures

Compound Score (kJ/mol)

WT T854A

HCO -13.025 -16.485

NOP -8.037 -8.598

Table 1. Predicted activity value (pIC50) of top ten ZINC

compounds

S.No. ZINC ID Predicted Activity Extrapolation

1 ZINC20391511 13.436 -0.22

2 ZINC08792354 11.92 0.104

3 ZINC34105774 11.075 0.232

4 ZINC12892580 9.957 -0.373

5 ZINC11865797 9.883 0.314

6 ZINC68604752 9.68 -0.364

7 ZINC08877152 9.513 0.34

8 ZINC70700724 9.295 -0.051

9 ZINC33832195 9.142 -0.462

10 ZINC41669357 8.92 0.342
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have high predicted inhibitory activity against WT and

high binding affinity against both WT and T854A mutant

structure. Since these compounds possess better pre-

dicted inhibitory activity than BIBW2992 a known sec-

ond-generation EGFR inhibitor for T854A change, they

can be considered for further experimental validation as

potent lead compounds. We present a comprehensive

view of the correlation between the structure and inhibi-

tory activity of thiazolyl-pyrazoline derived molecules.

This study advances the use of thiazolyl-pyrazoline moi-

ety as anti-cancer. Results of this study will also prove to

be useful in designing potent anti-tumorals based on

EGFR TK inhibition to further develop drugs against

cancer.

Additional material

Additional file 1: This file includes the following figures and tables.

Figure S1: Graphs showing (a) solvent accessible surface area (SASA) (b)

Hydrogen bonds and (c) Total energy of wild-type (blue) and mutant

(T854A) (red) protein. Figure S2: Depicting radar plots for (a) training set

(b) test set and (c) contribution plot for 3D descriptors. Table S1: Details

of thiazolyl-pyrazoline derived compounds along with their actual activity

value against WT EGFR. Table S2: Values for descriptors and predicted

activity value of thiazolyl-pyrazoline derivatives.
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