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Abstract

This paper addresses the modeling of strains generated by magnetostrictive transducers in re-

sponse to applied magnetic �elds. The measured strains are dependent upon both the rotation of

moments within the material in response to the �eld and the elastic properties of the material.

The magnetic behavior is characterized through the consideration of the Jiles-Atherton mean �eld

theory for ferromagnetic hysteresis in combination with a quadratic moment rotation model for

magnetostriction. The incorporation of elastic properties is necessary to account for the dynamics

of the material as it vibrates. This is modeled through force balancing which yields a wave equation

with magnetostrictive inputs. The validity of the resulting transducer model is illustrated through

comparison with experimental data.
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1 Introduction

The phenomenon of magnetostriction is characterized by the changes in shape which occur in cer-

tain materials when the materials are subjected to magnetic �elds. For rare-earth alloys such as

Terfenol-D (Tb0:3Dy0:7Fe1:9), the generated strains and forces are su�ciently large to prove advanta-

geous in transducer design. Initial investigations have demonstrated the utility of such transducers

in applications ranging from ultrasonic transduction to vibration control in heavy structures.

This paper addresses the modeling of strains generated by magnetostrictive materials when em-

ployed in transducer design. To illustrate, we consider the prototypical broadband transducer de-

picted in Figure 1 and detailed in [1]. While transducer design will vary according to speci�c require-

ments, this design is typical for control applications and illustrates the various physical components

which must be modeled to fully utilize the magnetostrictive actuator capabilities. The primary com-

ponents of the actuator consist of a cylindrical Terfenol-D rod, a wound wire solenoid, an enclosing

permanent magnet and a prestress mechanism. The rod is manufactured so that magnetic moments

are primarily oriented perpendicular to the longitudinal axis. The prestress mechanism increases

the distribution of moments perpendicular to the rod axis and allows the transducer to be operated

in compression. Application of current to the solenoid then produces a magnetic �eld which causes

the moments to rotate so as to align with the �eld. The resulting strains and forces provide the

actuator capabilities for the transducer. The capability for attaining bidirectional strains and forces

is provided by a magnetic bias generated by either the surrounding permanent magnet or an applied

DC current to the solenoid.

For control applications, it is necessary to accurately quantify the relationship between the current

I(t) applied to the solenoid and the strains e(t) generated by the transducer. This necessitates

modeling the electric, magnetic, mechanical and thermal regimes within the system. While all four

regimes are fully coupled, we focus here on the magnetic and mechanical aspects of the system with

nearly constant temperatures maintained to reduce thermal e�ects.

To illustrate the nature of the magnetic and mechanical phenomena, experimental data collected

from the transducer depicted in Figure 1 is plotted in Figure 2. In Figure 2a, it is observed that the

relationship between the input magnetic �eld H and magnetization M is nonlinear with signi�cant

saturation and is irreversible due to hysteresis. These e�ects must be incorporated when modeling

the magnetic regime. The relationship between the magnetization M and strain e, plotted in Fig-

ure 2b, also exhibits hysteresis and nonlinear features which must be modeled when characterizing

the mechanical properties of the system. An important feature of the magnetoelastic model consid-

ered here is that it incorporates the observed hysteresis in the strain whereas previously considered

models yielded single-valued strain outputs.

Direction of
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������
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Figure 1. Cross section of a prototypical Terfenol-D magnetostrictive transducer.
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Initial models quantifying the magnetomechanical coupling were based on the linear constitutive

piezomagnetic equations

e = sH� + d33H (1a)

B = d�33� + ��H (1b)

which are derived from thermodynamic principles in combination with empirical laws. In these re-

lations, e and � denote the longitudinal strain and axial stress in the material while sH denotes

the mechanical compliance at a �xed �eld strength H. Moreover, B and �� respectively denote the

magnetic 
ux and permeability at constant stress while d33 �
@e
@H

j� and d�33 �
@B
@�
jH are magnetoe-

lastic coupling coe�cients. It is noted in (1a) that the generated strains are dependent upon both

the elastic properties of the material (modeled by the term sH�) and magnetic inputs (modeled by

d33H). Equation (1b) models the converse magnetostrictive e�ect in which magnetic 
ux is gener-

ated by stresses in the material. This latter property provides the magnetostrictive materials with

their sensor capabilities.

While the linear model (1) is commonly employed in magnetostrictive transducer applications, the

relations are accurate only at low operating levels. They do not provide mechanisms for incorporating

the hysteresis and nonlinearities observed in the data in Figure 2 at higher drive levels and will be

highly de�cient in such regimes. For example, the permeability � is not only nonconstant for the

data, but is in fact a multivalued map depending on both H and �. As detailed in [2, 3], the

assumption of a constant Young's modulus EH and corresponding compliance sH is also invalid for

large �eld 
uctuations, and a variable Young's modulus E(H;�) and compliance s(H;�) must be

employed to attain accurate models.

There are numerous approaches for extending the magnetomechanical term d33H in (1a) to in-

clude the nonlinear dynamics and hysteresis observed at moderate to high drive levels. However,

most previous investigations have focussed on speci�c magnetic or magnetostrictive components of

the system and few results are currently available which address the coupled magnetoelastic proper-

ties of magnetostrictive materials. For the magnetic regime, modeling techniques include microme-

chanical characterizations [4], phenomenological and Preisach approaches [5, 6, 7], the inclusion of

speci�c nonlinear e�ects [8, 9], and domain theory based upon mean �eld equilibrium thermody-

namics [10, 11, 12]. The modeling of strain e�ects due to the magnetostriction has received less

attention and is less developed than the theory for magnetization. Current magnetostriction models

are typically based upon either energy-based theories which quantify the interaction between atomic

moments in a crystal lattice [13, 14, 15, 16] or polynomial expansions constructed to quantify the

phenomenological behavior of the magnetostriction [17, 18]. With suitable assumptions, both ap-

proaches yield models in which the magnetostriction is characterized in terms of even powers of the

magnetization (such a relation can be observed in the experimental data of Figure 2). To extend (1a)

to a nonlinear model which characterizes strains in terms of input �elds, it is necessary to quantify

the coupled magnetic, magnetostrictive, and elastic properties of the material. Certain aspects of

this problem are considered in [16, 19, 20] for magnetostrictive materials and [21] for electrostric-

tives. Models and corresponding numerical methods appropriate for quantifying strains generated

by magnetostrictive transducers in general control applications are still lacking, however, and it is

this problem which we address here.

To model the relationship between the input current I(t) and output strains e(t), we consider

the magnetic, magnetostrictive and elastic components in the system. To model the �rst, the Jiles-

Atherton mean �eld theory for ferromagnetic hysteresis is modi�ed to provide an energy-based re-

lationship between the current I(t) applied to the solenoid and the resulting magnetization M(t).
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A quadratic moment rotation model then yields the output magnetostriction �(t). This provides

a nonlinear and hysteretic analogue to the linear term d33H in (1a). As demonstrated in [22], the

magnetostriction provides adequate �ts to experimental strain data at low to moderate drive levels.

At high input levels, however, it is inadequate since it incorporates only active contributions to the

strain and neglects material or passive strain e�ects. To model these e�ects, force balancing is used

to derive a dynamic PDE model quantifying the rod dynamics. This PDE model has the form of

a wave equation with magnetostrictive inputs and boundary conditions which model the prestress

mechanism and mechanical return. The solution to this system provides the rod displacements and

corresponding total strains. A comparison between the strain relations employed in this model and

the linear relation (1a) is provided in Section 4.

Due to the generality of the PDE model, it is not possible to obtain an analytic solution specifying

the rod displacements. To address this issue, we present in Section 5 appropriate numerical methods

for approximating the spatial and temporal components of the PDE model. We consider a Galerkin

�nite element discretization in space which reduces the PDE to a matrix ODE system which evolves in

time. The dynamics of the ODE system are approximated through a �nite di�erence discretization to

obtain a discrete time system having the measured current to the solenoid as input. The validity of the

model and approximation method are illustrated in Section 6 through comparison with experimental

data. It is demonstrated that the model characterizes the inherent magnetic hysteresis and accurately

quanti�es the strains and displacements output by the transducer.
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Figure 2. Relationship in experimental data between (a) the magnetic �eldH and the magnetization

M , and (b) the magnetization M and the generated strains e.

2 Magnetization and Magnetostriction Models

The magnetization and magnetostriction models which we employ are based upon domain and do-

main wall theory for ferromagnetic materials. In ferromagnetic materials such as Terfenol-D, mo-

ments are highly aligned in regions termed domains at temperatures below the Curie point. The

transition regions between domains are termed domain walls. Magnetization in such materials can

then be described through quanti�cation of domain con�gurations while magnetostriction can be

characterized through the determination of the deformations which occur when moment con�gura-

tions change.
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2.1 Magnetization Model

The model which is employed for the magnetic component of the system is based upon the ther-

modynamic mean �eld theory of Jiles and Atherton [10, 11, 12]. In this approach, hysteresis-free

(anhysteretic), irreversible and reversible components of the magnetization are quanti�ed and used

to characterize the total magnetization generated by an input magnetic �eld. The anhysteretic mag-

netization Man is attributed to moment rotation within domains and is completely reversible. Such

magnetization curves are rarely observed in laboratory materials, however, due to the presence of

defects or second-phase materials (e.g., Dysprosium in Terfenol-D) which provide minimum energy

states that impede domain wall movement and subsequent bulk moment reorientation. These in-

clusions or defects are often referred to as pinning sites. The e�ects of pinning on domain wall

movement is quanti�ed through the theory of Jiles and Atherton through consideration of reversible

Mrev and irreversibleMirr components of the magnetization. For low �eld variations about an equi-

librium level, the magnetization is reversible since the domain walls bulge but remain pinned at

the inclusions. At higher input levels, the walls attain su�cient energy to break the pinning sites

(move out of the minimum energy state) and intersect remote pinning sites. This leads to an irre-

versible change in magnetization and provides a signi�cant mechanism for hysteresis. The reader is

referred to [10, 13, 23] for additional details and discussion of other experimental phenomena, such as

Barkhausen discontinuities, which are attributed to domain wall e�ects. This approach was initially

employed in [22, 24, 25] to model magnetostrictive transducers. We summarize here pertinent details

and indicate extensions from the original model.

To quantify Man;Mrev and Mirr, it is necessary to �rst determine the e�ective �eld Heff which

acts upon magnetic moments in the Terfenol rod. As detailed in [10, 11], Heff is dependent upon

the magnetic �eld generated by the solenoid, magnetic moment interactions, crystal and stress

anisotropies, temperature and the transducer architecture (e.g., end e�ects). In [10, 22], it is il-

lustrated that for large prestresses, stress anisotropies dominate crystalline anisotropies; hence for

this model, crystalline anisotropies are neglected. Under the assumption of �xed temperature and

quasi-static operating conditions, the e�ective �eld is then modeled by

Heff (t; x) = H(t; x) + �M(t; x) +H�(t; x)

where x denotes the longitudinal coordinate. Here H is the �eld generated by a solenoid with n

turns per unit length, �M quanti�es the �eld due to magnetic interactions between moments, and

H� is the �eld due to magnetoelastic domain interactions. The parameter � quanti�es the amount of

domain interaction. For the prestress mechanism under consideration, it is demonstrated in [22] that

the approximation H� = 9
2
�s�0
�0M2

s

M provides an adequate average of the stress contributions to the

e�ective �eld. Here �s andMs respectively denote the saturation magnetostriction and magnetization

while �0 is the free space permeability. The magnetic interactions and stress coe�cient can then be

combined into the single coe�cient e� = �+ 9
2
�s�0
�0M2

s

which must be experimentally determined for a

given system.

Empirical studies have indicated that under a variety of operating conditions, a reasonable ap-

proximation to the e�ective �eld is provided by

Heff(t; x) = nI(t)'(x) + e�M(t; x) (2)

where I(t) is the current to the solenoid and '(x) is an empirically-determined function which

incorporates transducer anomalies, such as end e�ects, that produce nonuniform �eld characteristics

along the length of the rod. It should be noted that while the expression (2) is time-dependent, it

must be restricted to low frequencies since the present model does not incorporate AC losses. The

extension of this model to incorporate eddy current losses is under investigation.
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For a computed e�ective �eld Heff , Boltzmann statistics are used to quantify the anhysteretic

magnetization in terms of the Langevin function

Man(t; x) =Ms

"
coth

�
Heff (t; x)

a

�
�

a

Heff (t; x)

#
: (3)

The constant a = NkBT
�0Ms

, where kB is Boltzmann's constant, N denotes the domain density and

kBT represents the Boltzmann thermal energy, is treated as a parameter to be identi�ed since N is

unknown.

As detailed in [10, 11], quanti�cation of the energy required to break pinning sites yields the

expression
@Mirr

@t
(t; x) =

dI

dt
'(x) �

Man(t; x)�Mirr(t; x)

k� � e� [Man(t; x)�Mirr(t; x)]
dMirr

dM

(4)

for the time rate of change of the irreversible magnetization curve. The constant k has the form

k =
hpih"�i

2m�0(1�c)
, where hpi is the average density of pinning sites, h"�i is the average energy for 180o

walls, c is a reversibility coe�cient, and m is the magnetic moment per unit volume of a typical

domain. The parameter k provides a measure of the average energy required to break pinning sites

and is also treated as a parameter to be estimated since hpi; c and h"�i are unknown. The parameter

� is de�ned to have the value +1 when dH
dt

> 0 and �1 when dH
dt

< 0 to guarantee that pinning

always opposes changes in magnetization.

The reversible magnetization quanti�es the degree to which domain walls bulge before attaining

the energy necessary to break the pinning sites. To a �rst approximation, the reversible magnetization

is given by

Mrev(t; x) = c[Man(t; x)�Mirr(t; x)] (5)

(see [11]). The reversibility coe�cient c can be estimated from the ratio of the initial and anhysteretic

di�erential susceptibilities [12] or through a least squares �t to data.

The total magnetization is then given by

M(t; x) =Mrev(t; x) +Mirr(t; x) (6)

where Mirr and Mrev are de�ned in (4) and (5) and the anhysteretic magnetization is given by (3).

For implementation purposes, it is necessary to numerically integrate the expression (4) to obtain

Mirr. For the results in Section 4, this was accomplished via Euler's method. If higher accuracy is

required, methods such as a trapezoid rule or Runge-Kutta method can be employed.

2.2 Magnetostriction Model

The second magnetomechanical component to be modeled is the deformations which occur when

moment con�gurations are altered by an applied �eld H. These deformations are typically quanti�ed

through either an energy formulation [13, 14, 15, 16] or a phenomenological series expansion involving

even powers of the magnetization [17, 18].

In the �rst case, general relations quantifying the material deformations are obtained through the

minimization of various energy functionals. For example, one choice is the total energy expression

E = Emag +Eel +Eanis (7)

where the magnetoelastic energy Emag quanti�es the interactions between atomic magnetic moments

in a crystal lattice, Eel denotes the elastic energy, and Eanis is the crystal anisotropy energy. As de-

tailed in [13, 15], minimization of (7) yields a general expression for the anisotropic magnetostriction.
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The situation is simpli�ed in the regime considered here since the magnetic moments are essentially

perpendicular to the applied �eld due to the manner of rod solidi�cation and the compression pro-

vided by the prestress mechanism. In this case, energy minimization yields the isotropic single-valued

relation

�(t; x) =
3

2

�s

M2
s

M2(t; x) (8)

between the magnetization M and magnetostriction �.

A second approach for modeling the magnetostriction is to employ the symmetry about M = 0

to formulate a series expansion

�(t; x) =
1X
i=0


iM
2i(t; x) (9)

which empirically relates the magnetization and magnetostriction [17, 18]. The series is typically

truncated after i = 1 or i = 2 to obtain a model which can be e�ciently implemented. Note that the

constant term yields elastic strains while i = 1 yields the quadratic term obtained in (8) through an

energy formulation.

The use of the quadratic expression (8) or a truncation of (9) in a transducer model requires

the identi�cation of the physical constants Ms; �s or the empirical constants 
0; 
1; � � � ; 
N . As will

be observed in the experimental results of Section 5, the saturation magnetization Ms varies little

between samples of Terfenol-D, and values identi�ed for the transducer are very close to published

material speci�cations. The saturation magnetostriction �s exhibits more dependence on operating

conditions due to its dependence on the initial orientation of moments; hence it must be estimated for

each transducer con�guration. For the remainder of this discussion, the quadratic magnetostriction

model (8) is employed.

3 Strain Model for the Terfenol Rod

The expression (8) quanti�es the magnetostriction which occurs when moments within the material

reorient in response to an applied �eld. This provides a generalization of the term d33H in (1a) to

accommodate the nonlinear dynamics inherent to the material at moderate to high drive levels. It

ignores, however, the elastic properties of the material which are quanti�ed in (1a) by the term sH�.

In this section, we build on prior work to address this issue through consideration of a PDE model

for the Terfenol rod which employs the �eld-induced magnetostriction �(t; x) as input. This provides

a partially coupled model which incorporates both structural dynamics and magnetic hysteresis.

For modeling purposes, we consider the Terfenol rod, prestress mechanism and end mass from

the transducer depicted in Figure 1. The rod is assumed to have length L, cross-sectional area A

and longitudinal coordinate x. The density, Young's modulus and internal damping coe�cient are

denoted by �;E and cD, respectively. The left end of the rod (x = 0) is assumed �xed while the right

end is constrained by the spring washer which is modeled by a linear translational spring having

sti�ness kL and damping coe�cient cL. It is noted that due to the compression bolt and spring

washers, the rod is subjected to a prestress �0. Finally, the attached end mass is modeled by a point

mass ML.

The displacements of the rod at a point x and time t can be speci�ed relative to either the

unstressed state or the equilibrium state attained by the material after a prestress �0 is applied. The

longitudinal displacements relative to the unstressed and prestressed equilibrium states are denoted

by u(t; x) and u(t; x), respectively. To relate the two, it is noted that when the prestress �0 is applied,
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the free end of the rod displaces by an amount

u0 =
L

E
�0

as illustrated in Figure 3. Under the assumption of homogeneous material properties and a uniform

cross-sectional area, this produces a displacement

u0(x) = u0
x

L

for 0 � x � L. The time-dependent displacements relative to the unstressed and prestressed equi-

librium states are then related by the equation

u(t; x) = u(t; x)� u0(x) : (10)

Note that for a compressive prestress �0, u0 and hence u0(x) will be negative.

We consider �rst a dynamic model in terms of the displacement at u(t; x). Under the assumptions

of linear elasticity, small displacements, and Kelvin-Voigt damping, the stress at a point x; 0 < x < L,

is given by

�(t; x) = E
@u

@x
(t; x) + cD

@2u

@x@t
(t; x)�E�(t; x) (11)

where � is given by (8). When integrated across the rod, this yields the inplane resultant

NTot(t; x) = EA
@u

@x
(t; x) + cDA

@2u

@x@t
(t; x)�EA�(t; x) : (12)

Force balancing then yields the wave equation

�A
@2u

@t2
=
@NTot

@x

as a model for the internal rod dynamics.

To obtain appropriate boundary conditions, it is �rst noted that the �xed end of the rod satis�es

the condition u(t; x) = 0. At the end x = L, we consider an in�nitesimal section having the

orientation depicted in Figure 4. Force balancing then yields the boundary condition

N tot(t; L) + kL [u(t; L)� u0] + cL
@u

@t
(t; L) + �0A = �ML

@2u

@t2
(t; L) (13)

(a more general discussion regarding the derivation of general elastic boundary conditions can be

found in [26]). Note that when u(t; L) = u0 and
@u
@t

= @2u
@t2

= 0, the boundary condition (13) reduces

u0 < 0

0 < 0σ

u(t,L)

(a)

(b)

(c)
u(t,L)

Figure 3. (a) Unstressed rod, (b) End displacement u0 = L�0=E due to a prestress �0, and

(c) Time-dependent end displacements u(t; L) and u(t; L) = u(t; L)� u0.
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to the equilibrium condition

N tot(t; L) = ��0A :

When combined with initial conditions, the strong form of the model is then

�A
@2u

@t2
=
@N tot

@x8><
>:

u(t; 0) = 0

N tot(t; L) = �kL [u(t; L)� u0]� cL
@u

@t
(t; L)�ML

@2u

@t2
(t; L)� �0A

8><
>:

u(0; x) = u0(x)

@u

@t
(0; x) = 0 :

(14)

It is noted that the initial conditions incorporate the equilibrium displacement u0(x) due to the

prestress �0.

To de�ne a weak or variational form of the model, the state u is considered in the state space

X = L2(0; L) and the space of test functions is taken to be V = H1
L(0; L) � f� 2 H1(0; L) j�(0) = 0g.

Multiplication by test functions followed by integration then yields the weak formZ L

0

�A
@2u

@t2
�dx = �

Z L

0

"
EA

@u

@x
+ cDA

@2u

@x@t
�EA�+ �0A

#
@�

@x
dx

�

"
kL [u(t; L)� u0] + cL

@u

@t
(t; L) +ML

@2u

@t2
(t; L)

#
�(L)

(15)

for all � 2 V . The consideration of the prestress as a distributed input rather than a boundary

condition follows from integration by parts. This formulation illustrates that if the prestress is

negated by a constant input magnetostriction � = �0=E, the system has the equilibrium solution

u(t; x) = 0. Conversely, the retention of the prestress as a boundary condition illustrates that in

the absence of an applied current and resulting magnetostriction, the system will have the solution

u(t; x) = u0(x) and hence retain the initial o�set for all time.

+ u kLu

totN ML
Rod

ρuρtc L

σ0
x = L

< 0

Figure 4. Orientation of spring forces, edge reactions and resultants for the Terfenol rod.
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For many applications, the o�set u0(x) due to the prestress �0 is not consistent with strain or

displacement data measured from the equilibriumprestressed state. For such cases, it is advantageous

to consider the system satis�ed by the perturbed displacement u(t; x). Substitution of the expression

(10) into (11) yields the stress relation

�(t; x) = E
@u

@x
(t; x) + cD

@2u

@x@t
�E�(t; x) + �0 (16)

while substitution into (12) and (13) yields the strong form of the model

�A
@2u

@t2
=
@Ntot

@x8><
>:

u(t; 0) = 0

Ntot(t; L) = �kLu(t; L)� cL
@u

@t
(t; L)�ML

@2u

@t2
(t; L)

8><
>:

u(0; x) = 0

@u

@t
(0; x) = 0 :

(17)

The initial displacement in this case is u(x; 0) = 0 since u denotes displacements from the prestressed

equilibrium state.

The corresponding weak form of the model is

Z L

0

�A
@2u

@t2
�dx = �

Z L

0

"
EA

@u

@x
+ cDA

@2u

@x@t
�EA�

#
@�

@x
dx

�

"
kLu(t; L) + cL

@u

@t
(t; L) +ML

@2u

@t2
(t; L)

#
�(L)

(18)

for all � 2 V . The solution u(t; x) to (17) or (18) provides the longitudinal displacements of the

rod from the perturbed state u0(x) produced by the prestress �0. In the absence of an applied

input �(t; x), the system (18) will have the equilibrium solution u(t; x) � 0 as compared with the

o�set solution u(t; x) = u0(x) which satis�es (15). Hence the model (18) and corresponding stress

relation (16) are preferable when data is measured relative to the prestressed state. This structural

model is summarized along with the previously-de�ned magnetization and magnetostriction models

in Table 1. Note that in the weak form (18), displacements and test functions are di�erentiated only

once compared with the second derivatives required in the strong form. This reduces the smoothness

requirements on the �nite element basis when constructing an approximation method.
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Magnetization

Model

H(t; x) = nI(t)'(x)

Heff (t; x) = H(t; x) + e�M(t; x)

Man(t; x) =Ms

"
coth

�
Heff (t; x)

a

�
�

 
a

Heff(t; x)

!#

@Mirr

@t
(t; x) = n

dI

dt
'(x) �

Man(t; x)�Mirr(t; x)

k� � e�[Man(t; x)�Mirr(t; x)]
dMirr

dM

Mrev(t; x) = c[Man(t; x)�Mirr(t; x)]

M(t; x) =Mrev(t; x) +Mirr(t; x)

Magnetostric-

tion Model
�(t; x) =

3

2

�s

M2
s

M2(t; x)

Structural

Dynamics of

Terfenol rod

Z L

0

�A
@2u

@t2
�dx = �

Z L

0

"
EA

@u

@x
+ cDA

@2u

@x@t
�EA�

#
@�

@x
dx

�

"
kLu(t; L) + cL

@u

@t
(t; L) +ML

@2u

@t2
(t; L)

#
�(L)

Table 1. Time-dependent model quantifying the magnetizationM(t; x), the output magnetostriction

�(t; x) and rod displacements u(t; x).

4 Comparison with the Linear Model

The stress relation (16) generalizes the linear constitutive law (1a) to include both Kelvin-Voigt

damping and hysteretic and nonlinear magnetomechanical inputs. To verify this, it is noted that in

this regime, sH = 1=E and e = @u
@x

so that (16) can be reformulated as

e = sH(� � �0) + ��
cD

E
_e :

To illustrate that � provides the active strain contributions modeled by d33H in the linear model

(1a), we take cD = �0 = 0 and employ the relation (8) to obtain

e = sH� +
3

2

�s

M2
s

M2 :

Linearization about a biasing magnetization level M0 then yields the strain expression

e = sH� +
3

2

�s

M2
s

�
2MM0 �M2

0

�
: (19)
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To express the magnetization and resulting strain in terms of the applied magnetic �eld, it is

noted that in the absence of hysteresis, the magnetization satis�es the anhysteretic relation

M = Ms

"
coth

�
Heff

a

�
�

a

Heff

#

= Ms

�
Heff

3a

�
+ Ò

 
H3
eff

a3

!
:

To linearize, the high order terms in the Taylor expansion are neglected to obtain

M =
Ms

3a
(H + ~�M)

which implies that

M =
Ms

3a�Ms~�
H :

Hence (19) can be written as

e = sH� +
3

2

�s

M2
s

�
Ms

3a�Ms~�

�2 �
2HH0 �H2

0

�
(20)

where H0 is the magnetic �eld required to produce the bias magnetization M0.

As depicted in Figure 5, the total strain e is composed of a bias e0 due to the biasing magnetization

M0 and bidirectional strains �e about e0. To specify e0 and �e, we reformulate (20) as

e =

"
sH� +

3�s

M2
s

�
Ms

3a�Ms~�

�2
H0(H �H0)

#
+

3

2

�s

M2
s

�
Ms

3a�Ms~�

�2
H0

= �e+ e0

where e0 =
3
2
�s
M2

s

�
Ms

3a�Ms ~�

�2
H0 and

�e = sH� +
3�s

M2
s

�
Ms

3a�Ms~�

�2
H0(H �H0)

(Note that �e = sH� when H = H0). With the de�nitions

d33 =
3�s

M2
s

�
Ms

3a�Ms~�

�2
H0

�H = H �H0 ;

the bidirectional strains are then given by

�e = sH� + d33�H

which is equivalent to the original linear expression (1a) when it is used to model bidirectional strains

about a preset magnetization level M0.

We conclude this section by noting that the reader can �nd further details regarding the decom-

position of strains into passive components due to elastic properties of the material and nonlinear

active components due to magnetostriction in [19, p. 180].
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M0

Strain

∆ e
e

0e

Linearization

M

Magnetization

Figure 5. Linearization about the biasing magnetization M0 and the resulting bias strain e0,

bidirectional strain �e; and total strain e = e0 +�e.

5 Approximation Method

To approximate the solution of (18), we consider a Galerkin discretization in space followed by a

�nite-di�erence approximation of the resulting temporal system. To this end, we consider a uniform

partition of the interval [0; L] with points xi = ih; i = 0; 1; � � � ; N and stepsize h = L=N where N

denotes the number of subintervals. The spatial basis f�ig
N
i=1 is comprised of linear splines, or `hat

functions,' of the form

�i(x) =
1

h

8>><
>>:

(x� xi�1) ; xi�1 � x < xi

(xi+1 � x) ; xi � x � xi+1

0 ; otherwise

; i = 1; � � � ; N � 1

�N (x) =
1

h

(
(x� xN�1) ; xN�1 � x � xN

0 ; otherwise

(see [27] for details). A general basis function �i and �nal basis function �N are plotted in Figure 6.

The solution u(t; x) to (18) is then approximated by the expansion

uN (t; x) =
NX
j=1

uj(t)�j(x) ;

in the subspace HN = spanf�ig
N
i=1. It should be noted that through the construction of the basis

functions, the approximate solution satis�es uN (t; 0) = 0 and allows arbitrary displacements at

x = L.

A semi-discrete matrix system is obtained by considering the approximate solution uN (t; x) in

(18) with the basis functions employed as test functions (this is equivalent to projecting the system

(18) onto the �nite dimensional subspace HN ). This yields the second-order time-dependent vector

system

Q�~u(t) + C _~u(t) +K~u(t) = ~f(t) (21)

12



where ~u(t) = [u1(t); � � � ; uN (t)]. The mass, sti�ness and damping matrices have the components

[Q]ij =

8>>><
>>>:

Z L

0

�A�i�j dx ; i 6= n and j 6= n

Z L

0

�A�i�j dx+ML ; i = n and j = n

[K]ij =

8>>><
>>>:

Z L

0

EA�0i�
0

j dx ; i 6= n and j 6= n

Z L

0

EA�0i�
0

j dx+ kL ; i = n and j = n

[C]ij =

8>>><
>>>:

Z L

0

cDA�
0

i�
0

j dx ; i 6= n and j 6= n

Z L

0

cDA�
0

i�
0

j dx+ cL ; i = n and j = n

while the force vector is de�ned by

[~f(t)]i =

Z L

0

EA�(t; x)�0i(x) dx

(here 0 denotes a spatial derivative). With the de�nitions ~y(t) = [~u(t); _~u(t)]T ,

W =

"
0 I

�Q�1K �Q�1C

#
; ~F (t) =

"
0

�Q�1 ~f(t)

#
;

the second-order system (21) can be posed as the �rst-order system

_~y(t) =W~y(t) + ~F (t)

~y(0) = ~y0 ;
(22)

where the 2N � 1 vector ~y0 denotes the projection of the initial conditions into the approximating

space.

The system (22) must be discretized in time to permit numerical or experimental implementation.

The choice of approximation method is dictated by accuracy and stability requirements, storage

capabilities, sample rates, et cetera. A trapezoidal method can be advantageous for experimental

implementation since it is moderately accurate, is A-stable, and requires minimal storage when

implemented as a single step method. For temporal stepsizes �t, a standard trapezoidal discretization

yields the iteration

~yj+1 =W~yj +
1

2
F
h
~F (tj) + ~F (tj+1)

i
~y0 = ~y(0) ;

(23)

where tj = j�t and ~yj appoximates ~y(tj). The matrices

W =

�
I �

�t

2
W

�
�1 �

I +
�t

2
W

�
; F = �t

�
I �

�t

2
W

�
�1

13



need only be created once when numerically or experimentally implementing the method. This yields

approximate solutions having Ò (h2; (�t)2) accuracy. For applications in which data at future times

tj+1 is unavailable, the algorithm (23) can be replaced by the modi�ed trapezoidal iteration

~yj+1 =W~yj + F ~F (tj)

~y0 = ~y(0) :

While this decreases slightly the temporal accuracy, for large sample rates with correspondingly small

stepsizes �t, the accuracy is still commensurate with that of the data.

φN (x)

x x x xxN-1 Ni-1 i i+1

φ (x)i

(a) (b)

Figure 6. Linear basis functions (a) �i(x) and (b) �N (x).

6 Experimental Validation

As summarized in Table 1, the magnetization model (6), magnetostriction model (8) and PDE (18)

can be combined to yield time-dependent displacement values of the Terfenol rod for all points along

its length in response to an input current I(t) to the solenoid. This model incorporates magnetic

hysteresis, nonlinear strain properties and the coupling between the external strains generated by

the material and the dynamics of the rod. In its present form, however, the model is not fully

coupled since it does not yet incorporate the dynamic stress e�ects on the e�ective �eld and ensuing

magnetization. This topic is under current investigation.

For the results which follow, experimental data was collected from a broadband transducer devel-

oped at Iowa State University (the general con�guration of the transducer can be noted in Figure 1).

A solid Terfenol-D (Tb0:3Dy0:7Fe1:9) rod having a length of 115 mm (4:53 in) and diameter of 12:7 mm

(0:5 in) was employed in the transducer. Mechanical prestresses to the rod were generated by a vari-

able prestress bolt at one end of the transducer and Belleville washers �tted at the opposite end of

the rod. The results reported here were obtained with a prestress of �0 = 1:0 ksi. Surrounding the

rod were two coils consisting of an inner single layer 150-turn pickup coil and a multi-layer 900-turn

drive coil. A current control ampli�er (Techron 7780) provided the input to the drive coil to produce

an applied AC magnetic �eld and DC bias as necessary. The reference signal to this ampli�er was

provided by a Tektronix spectrum analyzer and the applied magnetic �eld H generated by the drive

coil had a frequency of 0:7 Hz and magnitude up to 70 kA=m.

A cylindrical permanent magnet surrounding the coils provided the capability for generating

additional DC bias if necessary. This permanent magnet was constructed of Alnico V and was slit

to reduce eddy current losses. Note that for the experiments reported here, biases generated in this

manner were unnecessary and the permanent magnet was demagnetized to obtain unbiased data.
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To determine a function '(x) (see (2)) which characterizes transducer anomalies such as end

e�ects, an axial Hall e�ect probe connected to a F.W. Bell Model 9500 gaussmeter was used to map

the 
ux density and corresponding �eld along the length of the rod. The resulting function '(x) is

plotted in Figure 7 with the predominance of end e�ects readily noted.

The measured output from the transducer during operation included the current and voltage in

the drive coil, the voltage induced in the pickup coil, and the rod displacement. The current I(t)

was used to compute the �eld H(t; x) = nI(t)'(x) applied to the rod. From the induced voltage in

the pickup coil, the Faraday-Lenz law was used to compute the temporal derivative of the magnetic

induction B. Integration then yielded the induction and magnetizationM = 1
�0
B�H. Both the �eld

and magnetization were numerically �ltered to remove the small biases due to instrumentation. A

Lucas LVM-110 linear variable di�erential transformer, based upon changing reluctance, was used to

measure the displacement of the rod tip. Corresponding strains at this point were then computed by

dividing by the rod's length. The experimental data collected in this manner is plotted in Figures 8-

10. Throughout the experiments, temperature was monitored using two thermocouples attached to

the Terfenol-D sample and maintained within 5o C of the ambient temperature (23o C).

To employ the magnetization and structural model summarized in Table 1, appropriate parame-

ters must be ascertained. These include the magnetization parameters e�; c; k; a; �s;Ms, the structural

parameters �;E; cD, the spring constants kL; cL and the end mass ML. The values used here are

summarized in Table 2. The magnetization parameters were estimated through a least squares �t

to data as detailed in [22]. The values of � and E are published speci�cations for Terfenol-D while

the damping parameters cD and cL were chosen within a range typical for the material. The spring

sti�ness coe�cient kL was measured through a compression test while the end mass ML was mea-

sured directly. We note that while the speci�cation of parameters in this manner provided adequate

model �ts, they are not optimal. To obtain optimal parameters and corresponding model �ts, it is

necessary to estimate all parameters through a least squares �t to data.
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Figure 7. Empirical function '(x) used to qualify transducer e�ects.
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Magnetization Parameters Structural Parameters Spring and End Mass Dimension

Ms = 7:65 � 105 A=m � = 9250 kg=m3 ML = 0:5 kg L = 115 mm

�s = 1005 � 10�6 E = 3� 1010 N=m2 kL = 2� 106 N=m d = 12:7 mm

a = 7012 A=m cD = 3� 106 Ns=m2 cL = 1� 103 Ns=m

k = 4000 A=m �0 = 1:0 ksi

e� = �0:01

c = 0:18

Table 2. Physical parameters and dimensions employed in the magnetization and structural models.

Magnetization Model

The domain wall model discussed in Section 3.1 and summarized in Table 1 provides a charac-

terization of the magnetization M generated by an applied magnetic �eld H. The performance of

the model under quasi-static (0:7 Hz) operating conditions is illustrated in Figure 8. It is observed

that while the model accurately characterizes the measured magnetization over most of the range,

certain aspects of the transducer behavior are not completely quanti�ed at low �eld levels. The

constricted behavior in the magnetization at low �eld levels has been observed by other researchers

[23, 28] and is hypothesized to be due to 180o domain rotations. While quanti�cation of this e�ect

is ultimately desired, the accuracy and 
exibility of the current magnetization model are su�cient

for control applications in this operating regime.
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A
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Figure 8. Experimental M -H data ({ { {) and model dynamics (||) at x=L with the magneti-

zation M computed using �ltered magnetic �eld data H(t; x) = nI(t)'(x);
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Strain Model

The model summarized in Table 1 characterizes two aspects of the strain in the Terfenol rod. The

magnetostriction � quanti�es the external or active component of the strain while e = @u
@x

provides

the total strain in the rod. The relationship between the two can be noted in the stress expressions

(11) or (16). The total strain @u
@x

incorporates both the elastic properties of the material and the

magnetomechanical e�ects due to domain rotation; hence it is the quantity which models the strains

measured in the transducer rod during experiments.

The modeled strain e(t; L) =
u(t;L)

L
at the rod tip is plotted with experimental data in Figures 9a

and 10a. For comparison, the magnetostriction given by (8) is plotted with experimental data in Fig-

ures 9b and 10b. Recall that while the magnetic �eld, magnetization and strains are time-dependent,

data was collected at a su�ciently low frequency (0:7 Hz) to avoid AC losses and harmonic e�ects.

It is observed in Figure 9 that some discrepancy occurs in both the strain and magnetostriction due

to limitations in the quadratic model (8). The total strain provided by the dynamic model does,

however, include the hysteresis observed in the experimental data. This is a signi�cant advantage

over the modeled magnetostriction which is single-valued. This leads to the highly accurate model

�t observed in Figure 10 where the relation between the input �eld H and the output strain e(t; L)

at the rod tip is plotted.

For comparison purposes, we include in Figure 11 the corresponding model �ts obtained when the

�ltering function '(x) was omitted and an averaged �eld measurement was used to compute M and

�. This was the regime considered in [22] where it was demonstrated that use of magnetostriction

rather than total strain led to an adequate model at low to moderate drive levels but provided

inadequate �ts at high input levels. These conclusions are reinforced by the model �ts observed in

Figure 11. It is noted that even when the saturation magnetostriction was scaled to the maximum

experimentally observed value, the lack of hysteresis in the relation between M and � led to an

inadequate characterization of � in terms of H. A comparison with Figures 9a and 10a again

indicates the necessity of considering the total strains.
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Figure 9. Experimental M -strain data ({ { {) and model dynamics (||) with the magnetiza-

tion M computed using �ltered magnetic �eld data H(t; x) = nI(t)'(x); (a) Total strain e(t; L),

(b) Magnetostriction �(t; L).
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Figure 10. Experimental H-strain data ({ { {) and model dynamics (||) computed using �ltered

magnetic �eld data H(t; x) = nI(t)'(x); (a) Total strain e(t; L), (b) Magnetostriction �(t; L).
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Figure 11. Experimental data strain ({ { {) and model dynamics (||) computed using un�ltered

magnetic �eld data H(t) = nI(t) and a scaled saturation magnetostriction �s; (a) M -� relation,

(b) H-� relation.

7 Concluding Remarks

This paper addresses the modeling of strains generated by magnetostrictive materials when employed

in high performance transducers. The model extends the classical relation (1a), which includes elastic

e�ects and a linear magnetomechanical component, to the regime in which magnetoelastic inputs

are nonlinear and exhibit signi�cant hysteresis. This is necessary to accommodate the dynamics
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observed in current transducers at high drive levels and to provide a model for design and control

applications in such regimes.

The model was constructed in three steps. In the �rst, the mean �eld theory of Jiles and Atherton

was used to quantify the relation between the current input to the solenoid and the magnetization

produced in the rod. This component of the model incorporates both inherent magnetic hysteresis

and saturation e�ects at high �eld levels. In the second step, the magnetostriction due to the

rotation of moments was quanti�ed through consideration of a quadratic model posed in terms of

the magnetization. When combined with the mean �eld magnetization model, this provided a means

for extending the linear magnetoelastic relation (1a) to include the nonlinear dynamics and hysteresis

observed at high �eld levels. Finally, force balancing provided a PDE model which quanti�ed material

displacements due to the magnetostriction. For a given input current, the solution to the PDE yields

the displacements and strains produced by the rod.

While the PDE has the form of a wave equation, the nature of the boundary conditions modeling

the prestress mechanism and end mass precluded analytic solution. Hence we approximated the

solution through a �nite element discretization in the spatial variable followed by a �nite di�erence

discretization in time. This yielded a vector system which could be iterated in time with the measured

electric current or magnetic �eld data employed as input.

The examples illustrated that the resulting model yields the hysteresis observed in experimental

strain data when plotted as function of the magnetization. This is a signi�cant improvement over

the magnetostriction which is modeled as a single-valued function of the magnetization. Finally,

the accuracy of the model is re
ected in the full relation between the input �eld H and strains e

produced by the transducer.
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