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Structural Matching by Discrete Relaxation
Richard C. Wilson and Edwin R. Hancock

Abstract—This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic

aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching.

Broadly speaking there are two main aspects to this study. Firstly we focus on the issue of how relational inexactness may be

quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the

Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is

controlled. We investigate three different realizations of the matching process which draw on contrasting control models. The main

conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively

control a large population of contaminating clutter.

Index Terms—Structural graph matching, discrete relaxation, energy minimization, Bayesian, graph edit, clutter, MAP estimation,

SAR images, infrared images.

——————————   ✦    ——————————

1 INTRODUCTION

ELATIONAL structure matching has been a task of piv-
otal importance since the inception of machine vision.

It was the seminal paper of Barrow and Popplestone [1]
that first established the relational graph as a practical rep-
resentation for scene matching. Moreover, the subsequent
paper of Barrow and Burstall [2] presented some viable
structural matching techniques based upon the idea of
searching for maximal cliques in the association graph.
More recently, Horaud and Skordas [20] have exploited
these concepts in the domain of stereo correspondence.
However, these early structural matching techniques are
only effective when exact relational descriptions are to
hand. Effective relational matching must be capable of ac-
commodating two classes of error. The first of these are
initialization errors which result from ambiguities in object
appearance. These ambiguities may be the consequence of
either unary attribute variations or uncertainties in the
measurement acquisition process. The second source of
error is structural disturbance of the relational descriptions
under match. These structural errors result from either poor
initial image segmentation or the presence of noise and
clutter. Based on these observations, there are two impor-
tant modeling issues. The first of these is the way in which
consistency of match is measured. Perhaps of even greater
importance for practical vision systems, is the way in which
structural corruption caused by clutter or noise is identi-
fied. In other words, the goal is not only the location of op-
timally consistent matches, it is also the rectification of
structural errors.

Because of the pivotal importance of relational matching
in high and intermediate level vision, a diverse family of
algorithms have been developed with the aim of meeting

these dual goals of gauging consistency and overcoming
structural errors. For instance, the quest for a measure of
relational consistency has been central to the work of
Shapiro and Haralick [27] and of Boyer and Kak [3]. The
control of structural errors was not only the motivation be-
hind Barrow and Popplestone’s [1] idea of searching for
maximal subgraphs of the association graph, it also led San-
feliu and Fu [24] to their graph edit process. However, al-
though individually effective, the available algorithms
originate from distinct methodological foundations. In con-
sequence their relationship to one-another is not easily ap-
preciated. Moreover, there has been little attempt to pro-
vide any objective experimental comparison. Our aim in
this paper is therefore to provide both a theoretical and ex-
perimental comparison of a number of contrasting match-
ing techniques. The framework for this study is a recently
reported Bayesian approach to relational matching that is
capable of both gauging consistency and rectifying struc-
tural errors [31], [32].

1.1 Related Literature

It was precisely the observation that effective relational
matching is limited by both initialization error and struc-
tural error that stimulated much of the classical work on
structural pattern recognition of the 1980s. In a nutshell,
this work aimed to realize relational matching by inexact
means. Shapiro and Haralick not only identified the diffi-
culties associated with the search for subgraph isomor-
phisms when the graphs under match are corrupted reali-
zations of one-another [26], but also proposed a relational
distance metric which could be used to gauge structural
differences [27]. According to Shapiro and Haralick [26],
missing or extraneous entities are accommodated by in-
serting null nodes into the graphs without penalty. A simi-
lar idea was pursued by Sanfeliu and Fu [24] who propose
a distance measure based on the number of structural edit
operations needed to transform corrupted graphs into their
exact equivalents. The edit operations include node rela-
beling, node deletion or insertion together with an analo-
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gous set of operations for edges. Associated with each class
of operation is an associated cost. Structural matching at-
tempts to minimize the global cost. This graph edit idea has
recently been extended by Messmer and Bunke [22] who
develop an error tolerant technique for locating subgraph
isomorphisms in a large model base. Wong and You [34]
have taken some steps towards placing the inexact graph
matching problem on an information theoretic footing by
introducing the concept of the entropy associated with a
structural match. Some of the practical advantages of
structural matching have been demonstrated by Kim and
Kak [21] who show how discrete relaxation can be used to
match bi-partite graphs representing range-images and
CAD models.

Despite the progress made in the structural matching of
inexact graphs, one of the perceived limitations of the ap-
proach has been its exclusively symbolic nature and its fail-
ure to draw on the wealth of measurement information
available in realistic matching problems. This shortcoming
has been addressed by Boyer and Kak [3] who develop a
structural matching technique that measures attribute de-
viations between graphs using the logarithmic conditional
information. Christmas, Kittler, and Petrou [5] draw on a
Gaussian model of binary attribute relations to compute
compatibility coefficients in a Bayesian relaxation scheme.
This evidence combining approach is a probabilistic relaxa-
tion scheme which represents a significant enhancement of
the ideas originally pioneered by Rosenfeld, Hummel, and
Zucker [23] and first exploited in the graph-matching do-
main by Faugeras and Price [7]. Yang and Kittler [35] ex-
tend these ideas to higher order attribute relations using the
apparatus of mean-field theory [13]. Notwithstanding their
successes, these attribute-based methods place heavy de-
mands upon the reliable estimation of the underlying
model parameters [4], [8], [33].

Interest in the matching of symbolic structures has re-
cently received a renewed impetus with the success of as-
pect graphs as a hierarchical representation of 3D shape [6],
[10] and with the need to index into large model-bases [25].
Moreover, in a recent series of papers [31], [32] we have
demonstrated that the rejection of structural methods as an
effective means of matching may be regarded as premature.
Basic to our recent work is the idea of developing a finer
way of gauging the cost of symbolic consistency using an
explicit model of the various types of noise and segmenta-
tion error anticipated to be present. Key to the approach is
the construction of a Bayesian model of relational inexact-
ness. The underlying model is extremely simple and as-
sumes that matching errors occur with a uniform and
memoryless probability distribution. This model leads to an
exponential measure of relational consistency which draws
on the Hamming distance between the structural units of
the graphs under match.

1.2 Paper Overview

The techniques described above represent a disparate
family of algorithms for measuring relational consistency
and correcting structural errors. However, they originate
from distinct methodological foundations, and in conse-
quence their relationship to one-another is not easily ap-

preciated. Moreover, there has been little attempt to pro-
vide any objective experimental algorithm comparison.
Our aim in this paper is to take advantage of our Bayesian
framework [31], [32] to provide both a theoretical and ex-
perimental comparison.

We commence our study by showing how the expo-
nential Bayesian consistency measure approximates the
conventional relational distance metric [27] and the action
of a Hopfield associative memory [18], [28], [29] under
suitable limiting conditions. The conventional relational
distance measure corresponds to conditions when the uni-
form probability of matching errors is vanishingly small;
the Hopfield memory corresponds to the case when the
match error-probability is close to 1/2. Although each of
these approximate methods is inferior in performance to
the compound exponential functional, we are able to es-
tablish operating conditions under which they prove to be
most effective.

Turning our attention to the control of clutter, there are a
number of ways in which this new measure of relational
consistency may be exploited to enhance the matching
process when noise is a limiting factor. The most straight-
forward of these is to attempt to locate the most consistent
matches while simultaneously labeling clutter in an optimi-
zation process. This is the strategy adopted by Boyer and
Kak [3], and, by Christmas, Kittler, and Petrou [4]. Here the
structure of the graphs remains unmodified in the matching
process; in other words, extraneous nodes are simply
tagged with a null-label. A second strategy is to use the
consistency measure to identify candidate matches for in-
clusion in an association graph; clutter may then be rejected
by employing a constraint filtering process [2], [31] similar
to that originally described by Barrow and Popplestone [1].
This is a hybrid technique which combines optimization
ideas with classical constraint filtering techniques. A third,
and novel alternative, is to use the consistency measure to
control the reconfiguration of the graphs in an active
matching strategy [32] using graph-edit operations. In this
way clutter is excluded by deleting nodes and reconfigur-
ing the edge set of the graphs. Although this process has
many of the conceptual ingredients of the graph edit proc-
ess of Sanfeliu and Fu [24], it differs in two important re-
spects. Firstly, the Bayesian measure of relational consis-
tency implicitly gauges the cost of structural errors using
only a single model parameter. Secondly, the MAP frame-
work directly couples the structural edit operations to the
attributes of the raw image entities. Our second aim in this
paper is therefore to show how these alternative strategies
for controlling clutter can be accommodated within our
framework for modeling relational consistency. Moreover,
we offer some comparison of their relative robustness to
noise and clutter.

The outline of this paper is as follows. Section 2 intro-
duces the formal ingredients of our method and describes
our abstraction of scenes in terms of relational graphs. The
MAP (maximum a posteriori probability) estimation
framework that underpins our matching technique is re-
viewed in Section 3. In Section 4 we describe our approach
to modeling relational consistency using the concept of a
label error process. Section 5 develops various approxima-
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tions of the exponential consistency measure and identifies
the relationship to various alternatives described elsewhere
in the literature. Section 6 explores different strategies for
controlling clutter and noise. Section 7 presents a compara-
tive sensitivity analysis of both the different consistency
measures and the different clutter control mechanisms.
Real-world experiments are presented in Section 8. Finally,
Section 9 presents some conclusions and suggests directions
for further investigation.

2 RELATIONAL GRAPHS

We abstract the matching process in terms of attributed
relational graphs [3], [10], [4], [27]. We use the triple

G = (V, E, $) to denote the graphs under match, where V is

the set of nodes, E is the set of arcs, and $�= {xi, "i Œ V} is a
set of unary measurements associated with the nodes. Our
aim in matching is to associate nodes in a graph

G1 = (V1, E1, $1), where $1
1

1= " Œxu u V,n s, representing

data to be matched against those in a graph G2 = (V2, E2,

$2), where $2
2

2= " Œxv v V,n s, representing an available

relational model. This matching process is facilitated using
constraints provided by suitable relational subunits of the

model graph G2. Unmatchable nodes originating from noise
or clutter elements are accommodated by augmenting the

model-graph nodes with a null-label f. In other words, this
null-label may be used to tag data-graph nodes for which
no acceptable match exists in the model. Formally, the

matching is represented by a function f:V1 Æ V2 < f from

the nodes in the data graph G1 to those in the augmented

model graph G2. The function  f  consists of a set of Carte-
sian pairs drawn from the space of possible matches be-

tween the two graphs, i.e.,  f Õ V1 ¥ (V2 < f). The function
provides a convenient device for indexing the nodes in the

data graph G1 against their matched counterparts in the

model graph G2. We use the notation (u, v) Œ f to denote the

match of node u Œ V1 against node v Œ V2 < f.
In performing the matches of the nodes in the data graph

G1 we will be interested in exploiting structural constraints

provided by the model graph G2. We use subgraphs that
consist of neighborhoods of nodes interconnected by arcs.
For convenience we refer to these structural subunits or N-
ary relations as super-cliques. The super-clique of the node

indexed j in the graph G1 with arc-set E1 is denoted by the

set of nodes Cj = j < {i | (i, j) Œ E1}. We use the notation

R u u uj C j

=
F
HG

I
KJ1 2, , . . . ,

to denote the N-ary symbolic relation represented by the

nodes of the super-clique Cj Ã V1 in the data graph G1. The
matched realization of this super-clique is denoted by the
relation

Gj C
f u f u f u

j

=
F
HG

I
KJ1 2c h c h, , . . . , ( ) .

Our aim is to modify the match to optimize a measure of
global consistency with the constraints provided by the

model graph G2. The constraints available to us are pro-
vided by the N-ary symbol relations on the super-cliques of

the model graph G2. The critical ingredient in developing
our matching scheme is the set of feasible structure pre-

serving mappings between each super-clique of graph G1

and those of graph G2. The set of feasible mappings, or dic-

tionary, for the super-clique Cj is denoted by Qj = {Si} where

Si = i < {j | (i, j) Œ E2}. Each element Si of Qj is therefore a
relation formed on the nodes of the model graph; we de-

note such consistent relations by Si = (v1, v2, ...). The diction-

ary of feasible mappings for the super-clique Cj consists of
all the consistent relations that may be elicited from the

graph G2.

In practice, the dictionary of relations must be con-
structed so as to allow for super-clique size differences due
to node loss and merging. We accommodate this effect by
padding model graph super-cliques with sufficient dummy
nodes so as to raise them to the same cardinality as their
data-graph counterparts. The nodes of the padded model-
graph relations are then permuted so as to preserve the
cyclicity of the non-dummy nodes. An illustrative example
is shown in Fig. 1. This process effectively preserves the
adjacency structure of the surviving model graph nodes
while leaving dictionary invariant to potential scene trans-
lations, scalings or rotations. The idea of padding relations
in this way was originally suggested by Shapiro and
Haralick [27], [26]. However, whereas Shapiro and
Haralick’s dummy nodes are inserted without penalty, our
consistency model described in Section 4 associates a prob-
ability with insertions.

Fig. 1. Example of super-clique mapping.

3 MAP ESTIMATION

Our aim in performing graph matching is to iteratively re-
label the nodes of the data graph so as to optimize a global
MAP criterion. From the standpoint of information theory,
we therefore seek the matched configuration of nodes that
has maximum a posteriori probability with respect to the
available unary measurement information. More formally,
the aim is to realize an iterative label reassignment process
that optimizes the quantity

P f
p f P f

p
| ,

, |

,
$ $

$ $

$ $
1 2

1 2

1 2

c h c h b g
c h

=                       (1)

where P( f) is the joint prior for the current matching con-

figuration. The quantities p($1, $2 | f) and p($2, $2) are,
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respectively, the conditional measurement density and the
probability density function for the sets of unary measure-
ments. We commence our development by making the as-
sumption that the different pairs of unary measurements
are conditionally independent of one-another given the
current state of match. Under these conditions, the joint
conditional density appearing on the right-hand side in (1)
may be factorized over the set of Cartesian pairs that con-

stitute the matching function. Suppose that xu
1  is the unary

attribute residing at the node u of the data graph G1 and

that xv
2  is the unary attribute on the node v of the model

graph G2. Measurement independence allows us to factor-
ize the joint-conditional density in the following manner
over the Cartesian pairs (u, v) belonging to the matching
function f

p f p u vu v

u v f

$ $1 2
1 2, | , | ,

,

c h d i
b g

=
Œ

’ x x                 (2)

As a result of this assumption and applying the Bayes
theorem, the above expression can be recast in terms of the

a posteriori matching probabilities P u v u v, | ,x x1 2d i  and the

matching priors P(u, v) for the match f(u) = v

p f p u v
p

P u vu v

u v f

u v
$ $1 2

1 2

1 2

, | , | ,
,

,
,

c h d i
d i
c hb g

=
Œ

’ x x
x x

         (3)

Because the unconditional measurement densities

p($1, $2) and p u vx x1 2,d i  are independent of the match labels

and are hence a static property of the data under consid-
eration, the local optimum of the a posteriori probability
may be located by applying the following iterative decision
rule to update the matching configuration

f u
P u v

P u v
P f

v V

u va f d i
c h b g=

Œ »
arg max

, | ,

,2

1 2

f

x x
                (4)

In the above formula, arg maxv VŒ »2 f  indicates that the

assigned label v at the node u in the data graph G1 is such as
to maximize the a posteriori probability over the space of

feasible matches V2 < f.

Essentially, we are concerned with developing an itera-
tive reassignment process for locating an optimal match
that satisfies certain constraints upon relational consistency.
In order to apply this global optimization strategy we re-
quire three additional ingredients. These are:

1) a model of the a posteriori matching probabilities,
2) a model of the joint prior, and
3) an effective algorithm control strategy.

The most critical of these is a means of modeling the joint
priors P( f) so as to gauge the overall consistency of the sur-
viving relational structure. It is the modeling of relational
consistency that is the focus of our attention in the next sec-
tion of this paper. The issues of control are discussed in
Section 6. Details of the modeling of a posteriori matching
probabilities are application dependent and are hence de-
ferred until we address the issue of experimental validation
of the technique in Section 8.

4 RELATIONAL CONSISTENCY

In this section we describe the development of our rela-
tional consistency measure [31], [32]. The underlying mod-
eling of structural consistency is Bayesian and commences
from the joint prior for the individual super-clique matches

[31], [32], i.e., P(Gj). This model of the matching probability
can be viewed as providing a means of imposing con-
straints on consistent relational matches. Rather than im-
posing attribute constraints, we draw on an objective Baye-
sian model of relational corruption which is posed at the
symbolic level. This results in a consistency metric which is
a compound exponential function of relational distance
(Hamming distance). Underlying this metric is a purely
symbolic model of relational consistency, namely, the dic-

tionary of structure preserving mappings Qj. Attribute rela-
tions are the modeling province of the a posteriori matching

probabilities P u v u v, | ,x x1 2d i .
As we noted in Section 2, the consistent labelings avail-

able for gauging the quality of match are represented by the

set of relational mappings from Cj onto G2, i.e., Qj. As de-
manded by the Bayes rule, we compute the probability of
the required super-clique matching by expanding over the

basis configurations belonging to the dictionary Qj

P P S P Sj j i i
Si j

G G
Q

e j e j c h=
Œ

Â | .                              (5)

The development of a useful relational consistency
measure from this expression requires models of the proc-
esses at play in matching and of their roles in producing
errors. These models are represented in terms of the joint

conditional matching probabilities P(Gj | Si) and of the joint

priors P(Si) for the consistent relations in the dictionary. In
developing the required models we will limit our assump-
tions to the case of matching errors which are memoryless
and occur with uniform probability distribution.

To commence our modeling of the conditional prob-
abilities, we assume that the various types of matching er-
ror for nodes belonging to the same super-clique are memo-
ryless. In direct consequence of this assumption, we may
factorize the required probability distribution over the
symbolic constituents of the relational mapping under con-

sideration. As a result the conditional probabilities P(Gj | Si)
may be expressed in terms of a product over label confu-
sion probabilities

P S P f u vj i k k
k

Si

G | |e j c hd i=
=

’
1

                             (6)

Our next step is to propose a two component model of
the processes which give rise to erroneous matches. The
first of these processes is initialization error, which we aim
to rectify by iterative label updates. We assume that initiali-
zation errors occur with a uniform and memoryless prob-

ability Pe. The second source of error is structural distur-
bance of the relational graphs caused by noise, clutter or
segmentation error. It is the rectification of these errors
which poses the greatest challenge to relational matching. It
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is not only the motivation of the structural edit operations
of Sanfeliu and Fu [24], but also of the null match process of
both Boyer and Kak [3] and Christmas, Kittler, and Petrou
[4]. It is the effective control of these structural errors which
is our main concern in Section 6. For the time being we as-
sume that structural errors can also be modeled by a uni-

form distribution which occurs with probability Pf. In other

words, if the match allocated to the node uk is null or if a
match to a dummy node is being considered, then a uni-

form probability Pf is assigned. As we shall demonstrate
experimentally in Section 7, this uniform modeling of
structural errors is somewhat naive. For instance, it fails to
account for simple situations such as a structurally consis-
tent island being surrounded by a sea of background nodes.
In-fact, when we develop our constraint filtering strategy,
we altogether circumvent the need for a distribution de-
scribing structural errors. In the case of graph-editing, on

the other hand, the uniform probability Pf can be more eas-
ily understood as being the prior associated with the node
deletion hypothesis. At this point, suffice to say that we

introduce the distribution of Pf largely for reasons of formal
expediency.

Under these dual assumptions concerning the nature of
matching errors the confusion probabilities appearing un-
der the product of (6) may be assigned according to the
following distribution rule

P f u v

P f u v

P P f u v

P P f u v

k k

k k

e k k

e k k

c hd i

c h
e jc h c h
e j c h

| =

= =

- - =

- π

R

S
||

T
|
|

f

f

f

fif or dummy

if

if

1 1

1

          (7)

As a natural consequence of this distribution rule the joint
conditional probability is a function of three distinct
quantities

• The first variable is the total number dummy nodes

padding the model graph relation Si to the same size

as the data graph super-clique Cj. This quantity,

which is denoted by y(Gj, Si), is equal to the size dif-

ference between the structure preserving mapping Si

and the data graph super-clique Cj, i.e., y(Gj, Si)= |Cj| -

|Si|. It conveys only information concerning the
structural compatibility of the super-cliques under
comparison and is not directly related to the overall
consistency of match.

• The second quantity is the number of null-labels as-

signed to the nodes of the data super-clique Cj, which

we denote by Y(Gj). This quantity conveys informa-
tion concerning the degree of noise or clutter residing
in a data-graph super-clique.

• The third quantity measures the consistency of match
between the non-null elements of the data-graph re-

lation Gj and the non-dummy nodes of the model-

graph relation Si. This quantity counts the number of

locations at which there are conflicts between the cur-

rent matching assignment Gj residing on the super-

clique Cj and those non-dummy assignments de-

manded by the relational mapping Si. In other words,
our measure of relational consistency is the Hamming

distance H(Gj, Si) between the non-null matches be-

longing to Gj and the unpadded components of the

feasible relational mapping Si. Since it excludes
dummy nodes and null-matches, the Hamming dis-

tance H(Gj, Si) is directly concerned neither with the
measurement of structural differences nor the clutter
fraction.

With the three variables counting the number of null
matches, dummy nodes and matching errors, the joint con-
ditional probability of matching is equal to

P S P

P P P P

j i

S

e

H S

e

C H S S

j i j

j i j j i j j i

G
G Y G

G G Y G G

|
,

, , ,

e j

e j e jc h

e j e j

e j e j e j e j

=

- - -

+

- - -

f

y

f f

y

1 1 1 (8)

Collecting terms together, we arrive at the following ex-
pression for the conditional matching probability

P S

P P
P

P P

P

P

j i

e

C

e

S

e

e

H S
j

j i j
j i

G

G Y G G

|

, ,

e j

e jc he j
e jc h c h

e j e j e j

=

- -
- -

L

N
M
M

O

Q
P
P -

L
N
M
M

O
Q
P
P

+

1 1
1 1 1f

f

f

y

(9)

All that now remains is to specify our model for the joint
priors of the structure preserving mappings drawn from

the dictionary, i.e., P(Si) "Si Œ Qj. Here we assume that each
of the mappings is equi-probable, i.e.,

P Si
j

c h = 1

Q
.

Drawing on this model, our final development is to re-write
the power-terms appearing in (9) using the natural expo-
nential function. Substituting the resulting simplification of
(9) into (5), we arrive at the following expression for the
joint matching probability

P

K
k H S k S

j

C

j

e j i j i j
S

j

i j

G

Q
G G Y G

Q

e j

e j e j e j{ }

=

- + +F
H

I
K

L
NM

O
QP

Œ

Â exp , ,f y

(10)

where

K P PC e

C

j

j

= - -1 1c he jf .

The two exponential constants appearing in the above ex-
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pression are related to the matching-error probability and
the null match probability. It is a straightforward matter to

show that ke

P

P
e

e
=

-
ln

1c h
 and k

P P

P

e

f
f

f
=

- -1 1c he j
. The probability

distribution may be regarded as providing a natural way of
softening the hard relational constraints operating in the
model graph. The most striking and critical feature of the

expression for P(Gj) is that the consistency of match is
gauged by a series of exponentials that are compounded
over the dictionary of consistently mapped relations. As we
shall demonstrate in the next section, it is this feature that
distinguishes it from alternatives reported in the literature
[3], [4]. Each relational mapping contributes a single expo-
nential to the probability of match. In consequence, our
method is able to operate in a robust manner when the
space of relational mappings is large. We illustrate this
point experimentally in Section 7 where we compare our
exponential consistency measure with one based upon a
linear sum of Hamming distance. Moreover, the impor-
tance of the different constraints is graded by a natural
symbolic measure of relational affinity, namely Hamming
distance; relational mappings of large Hamming distance
contribute insignificantly while those of small Hamming
distance dominate.

Finally, we construct a global relational consistency
measure Q so as to model the joint prior P( f). Our philoso-
phy is to approximate the joint prior by averaging the su-
per-clique matching probabilities over the nodes of the data
graph. The consistency of the current match is therefore
measured by the quantity

Q
V

P j
j V

=
Œ

Â
1

1
1

Ge j                                (11)

With this measure to hand we are now in a position to
make iterative updates in the matching function  f using the
MAP decision rule given in (4). However, before we pro-
ceed to detail algorithms for controlling and updating the
match, we pause to consider how the relational consistency
measure Q relates to some alternatives reported elsewhere
in the literature.

5 APPROXIMATING THE CONSISTENCY FUNCTIONAL

The novel feature of our relational consistency measure Q is
its compound exponential structure; this distinguishes it
from many alternatives described in the literature. Our aim
in this Section is to elucidate the relationship with these
alternative approaches by considering suitable limiting
conditions for the exponentials appearing in (10).

5.1 The Hard Limit

We commence our comparative investigation by consider-
ing the conditions under which our exponential consistency
measure performs the function of counting consistently
matched super-cliques. Our motivation for exploring this
limit is that clique counting lies at the heart of Shapiro and
Haralick’s relational distance metric [26]. The Shapiro and
Haralick scheme minimizes the numbers of inconsistently
matched N-tuples from the graphs under match. It is there-
fore equivalent to our method which attempts to maximize

the number of consistent super-cliques. The clique counting

limit occurs when ke Æ •, i.e., when Pe Æ 0. Under these
conditions the exponential Hamming distance functions
appearing in equation (10) approach their Dirac delta-
function limits, i.e.,
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The combined exponential function
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effectively weights those consistently matched fragments of
the super-cliques according to how many dummy nodes
are added or how many null-labels are assigned. Provided

that Pf < 1
2 , then the larger the number of assigned null-

labels or dummy nodes the smaller the weight. Shapiro and
Haralick [26] allowed null insertions with zero associated
penalty. In order to nullify the effect of the exponential

weighting, we must choose the value of Pf so that kf = 0.

This is the case provided Pf = 1
2 .

Under these conditions each super-clique contributes to
the overall consistency of match Q in a binary way; incon-
sistent super-cliques make a zero contribution while con-
sistent super-cliques contribute an amount

KC

j

j

Q
.

In other words, the probability distribution P(Gj) counts the
number of zero Hamming distance super-cliques, and the
goal of relational matching process is to maximize the
quantity
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As a result of performing updates to maximize QH, the
consistently matched portion of the graph will consist of
those super-cliques for which there is a relational mapping
of zero Hamming distance; the set of nodes satisfying this

condition is denoted by W = {i Œ V1 | $Si Œ Qj.st.H(Gj, Si) =
0}. Moreover, most of the computations involved may be
effected by table look-up to identify the existence or other-
wise of zero Hamming distance configurations.

It is immediately obvious that the resulting consistency
measure will lead to deadlocks in the update process. If the
consistency of individual super-cliques can not be restored
by single label replacements, then the update process will
be unable to iteratively improve the overall quality of
match by deterministic means. The only way to escape such
deadlocks is via an expensive stochastic optimization
scheme [12]. It is also clear that the method can not be ap-
plied effectively unless there are a substantial number of
consistent super-cliques present in the initial match used to
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seed the relaxation scheme. Moreover, since the consistent
super-cliques are unique in their label structure, the itera-
tive overheads associated with the matching process are
considerably reduced. Once a super-clique has zero Ham-
ming distance, there is no further improvement to be
gained by label updates; the nodes contained within it may
be removed from the set under consideration for further
updating. One way of controlling the matching process is to
rank super-cliques according to their Hamming distance. In
this way islands formed by abutting zero Hamming dis-
tance super-cliques may be identified. The available com-
putational resources may be concentrated at the perimeters
of the islands to extend the regions of consistency. In this
way the updating process may be propagated as a “brush
fire” from the consistently matched portions of the graph,
obviating the need for exhaustive iterative search. In-fact,
this type of optimization process is closely related to tabu-
search [14], [15]; a detailed report describing the use of tabu
search in conjunction with the framework outlined in this
paper can be found in the recent account of Williams, Wil-
son and Hancock [30].

5.2 The Soft Limit

The second interesting limit of our graph-matching crite-
rion is the case when the exponentials may be approxi-

mated in a linear way. This is the case when keH(Gj, Si) Æ

0. This limit occurs when the constant ke approaches zero,

i.e., when the error probability Pe~ 1
2 . Under these condi-

tions the compounding of exponentials under the sum-
mation in (10) can be approximated by a linear sum of
Hamming distances over the set of relational mappings,
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Again it is interesting to consider the case in which there
is zero penalty associated with null matches and dummy

nodes, i.e., Pf = 1
2 . Under these conditions, maximization of

the global consistency measure Q is achieved by minimiz-
ing the following aggregate Hamming-distance measure
between the two graphs
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Several features of this approximation deserve further
comment. In the first instance, the minimization of a lin-
ear function of Hamming distance as a measure of total
error is precisely the function performed by the Hopfield
memory in the associative recovery of patterns. In the case
of a binary label set, the computation of compound
Hamming distance can be effected on simple linear neu-
rons. This observation immediately raises issues relating
to the limitations of the method. In the Hopfield memory,
it is well known that the linear compounding of Hamming

distance restricts the number of patterns that can be effec-
tively recalled due to inter-pattern competition [11]. The
linear approximation may therefore only be anticipated to
work effectively when the set of relational mappings is
small.

An obvious way of overcoming this storage difficulty
is to prune all but the salient structure preserving map-
pings from the dictionary. One heuristic yet effective
strategy is to delete structure preserving mappings
which correspond to matches for which there is little ob-
servational evidence. In fact, the weighting of Hamming
distance according to the exponential size difference

factor exp [-kfy(Gj, Si)] provides a natural way of ex-
cluding structurally inconsistent matches. An alternative
is to tailor a specific pruned dictionary to each individ-
ual node using information concerning the initial
matching probabilities.

6 CONTROLLING THE MATCHING PROCESS

In the previous section we concentrated on how consistency
is measured. On its own, attempting to optimize the global
consistency measure Q, will only have the effect of rectify-
ing initialization errors. Of greater practical importance is
the identification and correction of structural errors caused
by the addition of noise or clutter. Our aim in this section is
to describe three contrasting strategies which exploit the
consistency concept to overcome structural errors during
the matching process [31], [32]. The first of these draws di-
rectly upon the rather naive uniform probability model de-
scribed in Section 4 and attempts to label clutter segments
with a null label f while simultaneously correcting initiali-
zation errors. The second strategy uses the classical concept
of the association graph [2]. Operating without regard to
null matches, i.e., with Pf = 0, we first attempt to correct
initialization errors and then construct the association
graph for the optimal set of matches. Clutter is then identi-
fied in a post-processing operation that involves searching
for maximum cliques of the association graph [31]. The fi-
nal strategy is to use our consistency measure to identify
nodes that are potential structural errors. By deleting these
nodes from the graph and reconfiguring the edge-set we
perform an active matching process [32]. This latter tech-
nique aims to simultaneously optimize not only the labeled
match of the graph but also to restore its intrinsic relational
structure so as to rectify both sources of error described in
Section 4.

6.1 Null Labeling by Optimization

Our aim here is to simultaneously both rectify initialization
error and label extraneous nodes in an optimization process
that aims to maximize the a posteriori probability of match

P(f | $1, $2). Details of the development of the MAP up-
date scheme have already been furnished in Section 3. Sub-

stituting for P(Gj) from (10) into the MAP update rule of (4),
the assignment of matches is realized on a node-by-node
basis as follows:
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In applying the decision rule of (16), the control of the

parameters Pe and Pf becomes an issue of critical impor-
tance in regulating the number of null matches. Analysis of
(10), reveals that it does not become energetically favorable
for an erroneous match to switch to the null category until

Pe

P

P
<

-

f

f1 .

Since our ultimate aim is to eliminate initialization error,
we take the view that the parameter Pe should be treated in
the spirit of a control variable much like the temperature in
an annealing process [12]. Accordingly, we reduce Pe to a
small terminal value according to some deterministic itera-
tion dependent schedule. The probability of structural er-
rors Pf, on the other hand, is a fixed property of the graphs
and should remain at a constant value that reflects prior
expectations concerning the level of structural corruption.

As we will demonstrate experimentally in Section 8, the
null-labeling idea is most effective when the data represents
a subgraph of the model. Here there is little structural cor-
ruption of the structure preserving mappings in the dic-
tionary and the probability distribution appearing in (8) is
relatively justifiable. In other words, the process can ac-
commodate initialization errors but not structural errors.

6.2 Constraint Filtering Applied
to the Association Graph

The optimization scheme described in the previous subsec-
tion iteratively corrects initialization errors while identify-
ing extraneous nodes as belonging to the null category. One
of the difficulties with this scheme lies in controlling the

value of the null match probability Pf. If this is set too high
then there is a danger of labeling the entirety of nodes as

null. If, on the other hand, the value of Pf is too low then a
substantial fraction of extraneous nodes will remain mis-
matched. An alternative strategy which is less demanding
in terms of parameter control is to locate a set optimal

matches with disregard to the null label f. Clutter is then
removed by constraint filtering aimed at identifying con-
sistently matched subgraphs. One strategy that suggests
itself is to draw on the association graph idea of Barrow
and Burstall [2]. Nodes in the association graph represent
putative matches; the edges indicate that the matched
nodes are connected in both the data and model graphs.
Consistently matched subgraphs are maximal cliques of the
association graph.

Our strategy in exploiting the association graph to iden-
tify structural errors is as follows. We first locate a set of
matches so as to optimize the configuration probability

given in (10) by setting the value of Pf to 1
2 , i.e., by disre-

garding the null-label f. In other words
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The net anticipated effect of this process is to eliminate
initialization errors. However, residual inconsistencies per-
sist in the form of the erroneous matching of segments for
which no feasible match exists. We therefore require a post-
processing step which discards unmatchable elements to a
null category. This is applied once the optimization process
reaches convergence and no further iterative improvements
in the consistency of match occur. In keeping with the phi-
losophy of the association graph we commence by forming

a new graph ¢ = ¢ ¢G V E1 1 1,c h  which contains the consistently

labeled portions of G1. To form ¢G1  we first eliminate arcs

whose mapping does not appear in G2 to construct the new

edge-set ¢ = ŒE u u f u f u E1 1 2 1 2 2, | ,c h c h c hd i{ }. We next remove

disjoint nodes which are no longer connected by an arc;
these nodes have no support and may therefore be consid-
ered to be unmatchable. The resulting node set is denoted

by ¢ = Œ ¢ ŒV u u v E v V1 1 1| , ,c hn s . Disjoint nodes are consigned

to the null category, i.e., u V f uœ ¢ fi =1 a f f . The graph ¢G1

now consists of a number of internally connected yet po-
tentially disjoint patches, in which all the nodes satisfy the

arc consistency constraint. Suppose that Li denotes the in-
dex-set of one of these disjoint graph partitions. If there are
p such partitions, then

¢ =
=

V ii

p

1 1
LU

and there are no interconnecting edges, i.e., if i π j then

L Li j E¥ « ¢ = ∆e j 1 .

If correct matching were the only process which generated
consistency, then ¢G1  would contain only the correctly la-

beled portion of the graph. However, a small amount of
spurious consistency is generated from local matches be-

tween unmatchable segments and regions of G2. Since the

probability of accidentally forming a partition of size |Li|

in the initial labeling is equal to V i

2

- L
 we gauge the over-

all consistency of each partition by the number of nodes
contained within it. In practical matching applications the
regions of spurious consistency are small, typically much
smaller than correctly labeled regions, and in this case it is
sufficient to reject those regions whose size falls below
some threshold value T

|Li| < T fi "u Œ Li [ f(u) = f]                       (18)

In this way we can effectively filter-out relational units
which are not consistently matched. This constraint filtering
process can be regarded as a rudimentary form of graph
editing that is applied to locate consistent subgraphs once
the optimization of consistent matches has converged.
Good results can therefore be anticipated if the matching
process is concerned with locating fragmented subgraphs.
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If, on the other hand, the structural errors uniformly per-
meate the graphs then a finer editing strategy is required.

6.3 Active Matching With Graph-Edit Operations

Under conditions of extreme structural error, relational
fragmentation will severely limit the matching methods
described in Sections 6.1 and 6.2. The basic problem origi-
nates from topological disruption of the consistent relations
residing in the dictionary by the addition of structural er-
rors. For instance, if the relational structure being matched
is a Delaunay graph representing a Voronoi tessellation of
the image plane, then a single additional clutter node may
create many additional graph edges [32]. One way of over-
coming this problem is to edit-out extraneous nodes. In this
way the relational structure of the data graph is recon-
structed in an active matching process. This process is il-
lustrated in Fig. 2. As originally proposed by Sanfeliu and
Fu [24], graph editing was realized as a cost minimization
process. There were separate edit operations and associated
costs for node deletion or insertion, edge deletion or inser-
tion, and, for edge or node relabelings. Because we confine
ourselves to Delaunay graphs, our edit operations are con-
siderably simplified. The reason for this is that the edge-sets
associated with node insertions or deletions are automati-
cally generated from the Voronoi tessellation. In other
words, our edit process only involves node insertion or
deletion, and, node relabeling.

Fig. 2. An example of Delaunay graph editing by node deletion. The
original graph is shown on the left, while the edited graph resulting
from a node deletion is shown on the right.

We have recently shown how this process of active
graph reconfiguration or editing can be realized as a MAP
estimation process similar to that described in Section 3
[32]. However, rather than confining itself purely to node
relabeling, the algorithm now encompasses the possibility
of node insertions or deletions together with the implied
modification of the Delaunay edge-set. Details of the deri-
vation are outside the scope of this paper. The basic idea is
to gauge the net effect of deleting a node by examining
those contributions to the consistency measure that arise
from modification of the super-cliques containing the node
in question. This set is constructed by identifying those

nodes that form a super-clique with node u in graph G1, i.e.,

Cu -{u}, and determining the new super-clique set for these

nodes in the reconfigured graph ¢G1 . We let cu
+  denote the

super-clique set of object u in graph G1 and cu
-  denote the

corresponding super-clique set in the reconfigured graph

¢G1 . With this notation the change in the MAP criterion

caused by the deletion of the node u is proportional to
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By contrast, when considering the change in the MAP
criterion caused by re-insertion of the node u it is the super-

clique set cu
+  to which we turn our attention. The corre-

sponding change to the MAP criterion is proportional to
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The decision criteria for node deletion or re-insertion are

as follows. We delete node u provided D Du u
+ -

<  and rein-

state it provided D Du u
+ -

> . In other words, the rule for as-

signing nodes to the null category is

D Du u f u+ -
< fi =a f f                                (21)

Once the graph has been reconfigured or edited in this
purely structural manner, labeling consistency must be re-
stored to those portions of the graphs to have undergone
structural modification. This is effected by modifying the
labels assigned to the nodes of the data-graph. Adhering to
our MAP philosophy, the labeling consistency is main-
tained provided that the mapping function  f is updated in
the following way
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The graph reconfiguration process of (21) and the node
relabeling operation of (22) combine to perform a function
analogous to Sanfeliu and Fu’s graph edit operations [24].
Rather than requiring the specification of a series of heuris-
tic cost terms, the dual operations of node deletion or in-
sertion, and, node relabeling are both regulated by the null

match probability Pf and the error probability Pe. Since the

parameter Pe fulfills the role of a control variable which
imposes incremental hardening on the constraints residing
in the dictionary, our structural error model has only one

free parameter Pf. This provides certain advantages in
terms of ease of control over the heuristic edit costs of San-
feliu and Fu [24].

7 SENSITIVITY ANALYSIS

There are two aspects to our comparative sensitivity study.
In the first instance, we are interested in comparing the ef-
fectiveness of our compound exponential consistency
measure with its approximate counterparts. In this way we
offer some comparison with the methodology adopted by
of Shapiro and Haralick [27], and, the plethora of Hopfield-
like implementations of relational matching [28], [29]. The
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second aspect of our experimental study concerns the dif-
ferent strategies adopted in the control of structural errors.
Here we give some direct performance assessment of the
three alternative strategies described in Section 6.

In order to provide some objective performance meas-
ures, we have conducted the bulk of our experiments using
synthetic relational graphs. In order to embark on this
study, we have seeded Voronoi tessellations from random
dot patterns and computed the associated Delaunay graph.
The nodes of the graph are therefore the random dots,
while the arcs indicate that the associated Voronoi regions
are adjacent to one-another. In order to simulate the effects
of clutter and segmental dropout, we have both added dots
at random locations and deleted random dots from the
patterns used to seed the Voronoi tessellation. This has the
effect of corrupting the topology of the associated Delaunay
graph.

In addition to the structural errors introduced by ran-
dom dot insertions and deletions, we have also added ran-
dom initialization errors. Associated with each node in the
Delaunay graph is a uniformly distributed random unary
attribute vector. This unary attribute is used to compute
initial match probabilities. Uncertainties in the measure-
ments used in the discrete relaxation scheme are modeled
by randomly perturbing the unary attributes of the data-
graph with a Gaussian error distribution so as to produce a
specified fraction of initial matching errors. The initial
matching probabilities are computed from exponential dis-
tributions of the Mahalanobis distance between attribute-
vector pairs computed using an estimate of the variance-
covariance matrix S, i.e.:
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Where appropriate, initial null matches are assigned a

probability P(u, f) = Pf which is independent of the attrib-
ute values. Our assumed model for the matching priors is
one of uniformity over the model graph i.e., P(u, v)=

(|V2|)
-1

. In our simulation studies, we use only a single
scalar attribute at each node. For the majority of the ex-
periments described here, the unary attribute errors are
generated so that the level of initialization error from the
winner-take-all assignment of matches is approximately 50
percent.

7.1 Consistency Measure

Our first set of experiments are aimed at comparing the
effectiveness of the different limiting approximations to the
compound exponential consistency measure developed in
Section 5. The two cases of interest are the hard-limit and
the linear limit; the respective limits under which the ap-

proximations apply are, Pe Æ 0 and Pe Æ 1
2 .

7.1.1 The Hard-Limit

Turning our attention first to the case of the hard limit, Fig.
3 shows the final fraction of correct matches as a function of
the fraction of added clutter as defined above. The dotted
curve is the result of applying the approximation of (13),
while the solid curve is the result of applying the exponen-
tial consistency measure. For each of the points in the
graph, the matching algorithm has been initialized in a state
where 50 percent of the matches are incorrectly assigned.
The exponential form of the consistency criterion consis-
tently outperforms its hard-limiting counterpart until the
fraction of graph corruption exceeds 60 percent. Moreover,
even when the graphs are perfect realizations of one-
another, the hard limit is only capable of rectifying some 10
percent of the initialization errors. In other words, the hard
limit is not only sensitive to structural errors in the graphs,
it is also extremely limited in its capacity to recover from
significant levels of initialization error.

Fig. 3. Comparison of performance of the hard-limit (dotted curve) with
the exponential criterion (solid curve).

The sensitivity of the hard limit to initialization error is
investigated more thoroughly in Fig. 4. This plot shows the
final matching accuracy as a function of the fraction of ini-
tially correct matches for structurally consistent graphs. The
points on the scatter-gram represent the results of applying
the matching process using the hard-limit consistency
measure, while the dotted-curve shows the result obtained
using the exponential consistency measure. The exponential
version of the consistency measure is capable of recovering
a fully consistent match even when as few as 15 percent of
the initial matches are correct. By contrast, the hard limit is
only effective when the number of initialization errors is
less than 50 percent. Moreover, the drop-off in performance
is very rapid. In fact, the performance of the hard-limit is
crucially dependent on the presence of a significant number
of correctly matched super-cliques from which to seed the
iterative matching process.
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7.1.2 The Linear Limit

To commence our investigation of the linear form of the
consistency measure we have performed some experiments
on uncorrupted graphs. Here the only source of error is due
to mis-initialization. Fig. 5 shows the final fractional accu-
racy as a function of graph size when the initialization error
is 50 percent. The dotted curve is the result obtained using
the exponential consistency measure while the lower
dashed-curve is the result of applying the linear approxi-
mation. Whereas the exponential form recovers a com-
pletely consistent labeling irrespective of graph size, the
linear form results in a degradation in performance which
increases with graph size. In the latter case, the match is
effectively a random configuration of symbols.

Fig. 4. Recovery from initialization errors for the hard-limit (diamond
points) and the exponential criterion (dotted curve).

Fig. 5. Comparison of linear and exponential forms: exponential (dotted
curve); linear (dashed curve); pruned exponential (solid curve); pruned
linear (dot-dashed curve).

By applying the dictionary pruning strategy, the results
described above can be dramatically improved. Each dic-
tionary is pruned by excluding 80 percent of the mappings
on the basis of initial match probabilities. In the case of the
linear consistency measure which is shown as a dot-dashed
curve, final matching accuracies of between 60 percent and

90 percent can be obtained. Moreover, as the graph size
increases the relational mappings become less ambiguous
and the matching performance increases. As shown by the
solid curve, in the case of the exponential consistency
measure, the pruning process results in a small improve-
ment in performance. This effect is attributable to the fact
that the pruning strategy reduces matching ambiguities for
large graphs.

Having established that the linear consistency measure
can be rendered operable under conditions in which errors
are dominated by mis-initialization, we proceed to investi-
gate the effects of structural corruption. Fig. 6 compares the
pruned linear consistency measure with its exponential
counterpart using the data described in Section 7.1.1. The
graphs used in this study are relatively large (40 nodes) and
hence represents the domain where the linear approxima-
tion can be anticipated to be effective in controlling initiali-
zation errors. The dotted-curve in Fig. 6 reveals that al-
though inferior to the exponential consistency measure, the
pruned linear form considerably outperforms the hard limit
(Fig. 3). This is an interesting observation. It indicates that
even drawing on Hamming distance in a suboptimal way is
more effective than the relatively coarse consistent clique
counting of Shapiro and Haralick [27].

Fig. 6. Comparison of pruned linear and exponential consistency
measures.

7.2 Clutter Control

Our aim here is to offer a quantitative comparison of be-
tween different strategies for controlling structural errors.
Accordingly, we have performed a series of simulation ex-
periments to establish the effective operating limits of the
three strategies for rectifying structural errors described in
Section 6. Fig. 7 shows the fraction of the original graph
correctly matched as a function of the fraction of added
clutter. The solid line represents the result of active match-
ing with graph-edit operations (see Section 6.3). The dashed
line is the result of applying constraint filtering to the asso-
ciation graph of the optimal matches (see Section 6.2). Fi-
nally, the dotted line is the result of null-labeling (see Sec-
tion 6.1). It is clear that the active matching method consis-
tently outperforms both null-labeling and constraint filter-
ing. Errors do not appear until the fractional corruption
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exceeds 20 percent. Even when the clutter fraction is as high
as 50 percent, then 80 percent matching accuracy is achiev-
able. By contrast, the two remaining methods are 10-20 per-
cent more susceptible to error. However, it is interesting to
note that the constraint filtering technique has a tangible
performance edge over null-labeling. This is largely attrib-
utable to the difficulties encountered in controlling the pa-
rameter of the null match. For comparison, Fig. 8 shows the
fraction of residual noise after matching; this represents the
fraction of added noise which is not assigned to the null
category. Again, the best performance is obtained using
graph-edit operations, with null-labeling delivering the
poorest performance.

Fig. 7. Fraction of graph correctly matched.

Fig. 8. Residual noise fraction.

8 REAL-WORLD IMAGERY

Having presented a sensitivity analysis for the various re-
alizations of our matching scheme, in this section we will
confront real-world data. We provide two examples of the
application of our matching framework. In both applica-
tions we are concerned with matching aerial image data
against digital map data. The first example the application
involves the matching of road networks detected in infra-
red line scan images. Here the fidelity of the ground truth

information is good and, additionally, the segmentation
process is effective in providing a stable relational descrip-
tion for matching. As a result there are few structural errors
and in consequence the control of clutter is not an issue of
critical importance. The second application is far more de-
manding. It involves the matching of hedge structures de-
tected in synthetic aperture radar images. Here there are
two factors which make the effective control of structural
errors an issue of critical importance. Firstly, the imagery is
dominated by speckle noise which results in significant
clutter. The second limitation stems from the poor quality of
the ground truth map information for hedge structures. This
is due largely to the fact that they are the artifacts of vegeta-
tion and are subject to the vagaries of changing land-use.

8.1 Aerial Infrared Images

We are interested in comparing the effectiveness of the
various consistency measures described in Section 5 when
applied to the matching aerial scenes against digital map
data. For the experimental aspects of this study we take the
application of matching road networks detected in the im-
age data against their corresponding map representation.
The image data under study was obtained using an infrared
line scan sensor. In addition to the transformational differ-
ences due to changes of viewpoint and scale, there is barrel
distortion in the horizontal direction due to the geometry of
the line-scan process. This effect is most marked at the im-
age periphery. Image scan in the vertical direction is con-
trolled by aircraft motion across the ground. Irregularities
in the aircraft flight-path due to banking or turbulence in-
troduce vertical scanning distortions. An example image is
shown on the left-hand side of Fig. 9 while the right-hand
image is the digital map data available for matching. The
left-hand image in Figs. 10 and 11 represents digital map
data while the right-hand image shows the road network
segmented from the image data using a relaxational ridge
detector [19].

Our matching of the two scenes is based on finding cor-
respondences between the T-junctions which delineate the
road network. According to our graph-based abstraction of
the matching process the nodes represent T-junctions while
the arcs signify the existence of a connecting line-structure.
Initial match probabilities are assigned using (22) on the
basis of angle differences between the line-structures
forming the junctions. Figs. 10 and 11 illustrate the match-
ing results obtained using the compound exponential crite-
rion of (10) with the MAP update rule of (16); correct
matches are shown in Figure 10 while matching errors are
contained in Fig. 11. Initially, of the 158 T-junctions in the
map 35 match correctly, 66 match in error and 57 are null
matched. After application of the iterative update proce-
dure described in Section 6.1, 72 match correctly, 77 match
to the null category and only 9 are incorrectly matched; the
fraction of correct matches has therefore increased from
0.22 to 0.46. An illustration of the iterative improvement
resulting from the application of the discrete relaxation
scheme specified by (16) are illustrated in Table 1. Each row
lists the results obtained with successive iterations of the
scheme with the label error probability reduced according
to a deterministic schedule. The columns in Table 1 show



646 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  6,  JUNE  1997

the numbers T-junctions which are correctly matched, in-
correctly matched or null matched. Also listed in Table 1 is
the prevailing value of the label-error probability.

TABLE 1
RESULTS OF MATCHING

Iteration Correct Incorrect Null Pe

0 46 63    0 -
1 57 52    0 0.300
2 68 41    0 0.234
3 67 42    0 0.182
4 73 36    0 0.142
5 75 34    0 0.110
6 76 33    0 0.086
7 76 25    8 0.067
8 79 17 13 0.052
9 76 16 17 0.041

10 80 11 18 0.032

Under similar initial matching conditions, when the hard
limiting criterion of (13) is applied the corresponding frac-
tion of correct matches in the final labeling is 0.34. Al-
though this result is inferior, the match is still useful. By
contrast the soft limiting criterion of (15) is completely inef-
fective in locating any kind of useful global match; it is
dominated by null matches and matching errors.

  

(a)                                             (b)

Fig. 9. Aerial infrared image (left) and digital map (right)}

Fig. 10. Correct matches between the map (left) and the infrared
data (right).

8.2 Synthetic Aperture Radar Data

Evaluation of our methodology for rectifying structural
errors is concerned with matching hedge structures seg-
mented from synthetic aperture radar (SAR) images against
their cartographic representation in a digital Ordnance Sur-

vey map. The hedge structures responsible for radar reflec-
tions appear as intensity ridges in the raw data. As with the
infrared data, we again perform feature detection by ap-
plying a relaxation operator to the output of a set of orien-
tational line-detectors. The primitives used in matching are
linear segments extracted from the raw feature contours.
Fig. 12 illustrates the processing operations applied to the
raw SAR image together with the results of applying the
graph edit operations described in Section 6.3. Fig. 12a.
shows the original SAR image. The extracted hedge fea-
tures used in matching are shown in Fig. 12b. The relational
graphs used in the matching process are Delaunay trian-
gulations computed from the linear segments in the SAR
data and the digital map. Figs. 12c and 12d show the model
and data graphs used for matching.

Fig. 11. Incorrect matches between the map (left) and the infrared
data (right).

The initial matches between the linear segments ex-
tracted from the SAR data and their map representation
are established on the basis of the affinity between the
vectors of the angle differences between model and data
lines using (22).

The experimental matching study is based on 95 linear
segments in the SAR data and 30 segments contained in the
map. However only 23 of the SAR segments have feasible
matches within the map representation. Fig. 12e shows the
initial matches for the line segments in the SAR data; the
black lines are correct matches while the gray lines are
matching errors. With the same coding scheme Fig. 12f
shows the final result once the iterative graph-edit process
has converged. Here those lines edited from the graphs
have been deleted from the figure. Comparing Figs. 12e and
12f, it is clear that the main effect of the graph-edit opera-
tions, has been to delete the majority of the clutter segments
from the SAR data graph. To give some idea of relative per-
formance merit, in the case of the initial matching configu-
ration 20 of the 23 matchable segments are correctly identi-
fied with 75 incorrect matches, while after application of the
graph-editing method the final graph contains 19 correct
matches, only 17 residual clutter with 59 nodes deleted
from the data graph.

The comparison of the three strategies for controlling
structural errors on the SAR data is summarized in Table 2.

The table lists the fraction of nodes correctly matched Fc
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and together with the fraction of mis-labeled error-nodes

Fn. A perfect result would be one for which Fc = 1 and Fn = 0.
Of the three schemes, the null-labeling approach gives the
poorest results. Distinguishing between the graph-edit
technique and the constraint filtering technique is less clear-
cut. Although the constraint filtering method results in a
larger fraction of correctly matched nodes, there is also a
greater fraction of residual structural errors. One way of
reconciling these figures is to note that the matchable line
segments in Fig. 12b, represent a number of fragmented
subgraphs. It is under these conditions that the constraint
filtering technique is the most applicable. As demonstrated
by the simulation studies in Section 7, the active graph-
editing technique offers the best performance when struc-
tural errors permeate genuine structure in a uniform way.

  
(a)                                             (b)

  
(c)                                             (d)

  
(e)                                             (f)

Fig. 12. Graph editing. (a) Original image. (b) Extracted line segments.
(c) Model graph. (d) Data graph. (e) Initial match. (f) Final edited
match.

TABLE 2
SUMMARY OF MATCHING RESULTS FOR THE SAR DATA

Control strategy Fc Fn

Constraint filtering 0.96 0.56
Null labeling 0.57 0.77
Graph edits 0.77 0.47

9 CONCLUSIONS

Our main contributions in this paper have been twofold.
Firstly, we have provided a uniform Bayesian framework
for understanding a diverse family of relational matching
algorithms. The second aspect has been to provide some

extensive experimental comparisons. From the theoretical
perspective, we have explored a number a ways in which
relational consistency can be gauged. Based on an experi-
mental study, the most effective of these appears to be us-
ing a sum of exponential Hamming distance functions. The
linear and delta-function limits of the exponentials are both
suboptimal in their performance. Having established the
most effective choice of consistency measure, we have pro-
vided some comparative study of different strategies for
accommodating structural inexactness. These include null
labeling, graph editing and the use of the association graph.
Here we found that the best performance was delivered by
a graph-editing technique. However, when combined with
the compound exponential consistency measure in a hybrid
matching algorithm, the association graph also produced
encouraging results.
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