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Summary

This thesis describes a method, based on probabilistic reasoning, for matching geometric
features extracted from a 2-D image with features of a similar type from some model. The
feature measurements are represented in a form that is invariant (or nearly so) to some un-
known transformation between scene and model spaces. Thus it may be that some measure-
ments can be used directly; others will have to be represented in the form of relations between
pairs of features in order to achieve the invariant property. The scene and model features and
measurements may thus be viewed as a pair of attributed, relational graphs, and the matching
problem can then be viewed as one of graph matching.

The model nodes are used as a set of candidate labels for the scene nodes (the objects). The
problem is then posed as the calculation of all of the labelling probabilities for each object
given the measurement information (the posterior probabilities), and the labelling that yields
the highest probability is selected as the correct one. In order to make the problem tractable,
by making certain independence assumptions, the conditional probabilities are expressed in
terms of the measurement error distributions and some priorprobabilities. The resulting for-
mula may then be iterated, in a manner akin to a traditional probabilistic relaxation process.
The form of the measurement error distributions is dependent on the type of geometric fea-
ture, the measurement noise model and the nature of the unknown scene-to-model transfor-
mation: some examples are presented.

A number of variations on the basic labelling algorithm are described, of which some have
implications for real-time applications. The algorithm can also be readily implementated on
several different types of parallel-processing computers.
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Chapter 1

An introduction to two-dimensional
feature matching

Matching is a task that appears as a component of many problems in computer vision. It
typically arises when we wish to find some sort of correspondence between an image and
some model of some aspect of the image, or between two images.Thus it is needed for 2-D
and 3-D object recognition, for depth recovery from binocular or motion stereo, for image
fusion and registration, and for many other problems. In this work, we restrict the range of
applications to those in which we are required to establish acorrespondence between a 2-D
image and a 2-D model.

In order to describe the matching problem, we start by considering the two sources of infor-
mation: thescene and themodel. The scene in this case is in the form of an image, which
for example could contain some objects of interest, or an image taken from a vehicle of its
surroundings, or a view of the ground taken from a satellite or aeroplane. The model is usu-
ally some sort of idealised representation of some characteristic features to be found in the
scene; in particular we consider cases in which the scene andmodel include the spatial loca-
tions of the features. Take for example the scene in Fig. 1.1(a); this is a single-band infrared
image of the ground taken from an aeroplane, stored as a grey-scale image. Since the fea-
tures of interest in this case are the roads, the corresponding model is the road map shown
in Fig. 1.1(b). In this example, the model covers a much larger area than the scene, and in-
cludes the whole of the (rotated) scene region. We can also stretch our definition of a model
a little to include a second image; thus the scene and model could be, for example, the two
images of a stereo pair, of which one (the “model” image) is regarded as a reference image.

Our task is then to find some correspondence between the sceneand model. This task con-
sists of three parts: extracting a set of features from the scene, extracting from the model
a second set of features of comparable type, and matching theextracted features from the
scene with those from the model. It is this last task, of matching the features, that is the sub-
ject of this work — we have assumed that some means already exists for finding the relevant
scene and model features. We consider here features of a simple geometrical type, such as
points, line segments or corners.

In any non-trivial application there is some unknown transformation between the scene and
model spaces. We have mostly concentrated on applications in which this unknown trans-
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2 Chapter 1. Introduction

(a) scene (b) model

Figure 1.1: Example of a scene and corresponding model

formation is a 2-D Euclidean transformation; in other words, there is (at most) an unknown
translation and rotation. We also show how the method can be extended to incorporate other
transformations provided that they are reasonably close tobeing Euclidean. Thus for exam-
ple the method can handle a scaling error, provided that the error is not too large.

In the example of Fig. 1.1, we process the aerial image to extract the roads in the form of
pixel strings, and then approximate these strings as a set ofstraight line segments, discarding
those that are shorter than some threshold. These line segments constitute the scene feature
set. We also create a second set of line segments that are an approximation of the roads from
the map; these form the model feature set. These two sets are shown in fig 1.2. We then look
for corresponding pairs of features in the two sets. In this example, this set of corresponding
pairs could then be used, if desired, to locate the aerial image on the map.

In this work, the approach we have taken to find the correspondences is based on probabilis-
tic reasoning. The model features are used as a set of potential labels for the scene features.
We compute the probabilities of the various possible labellings, taking into account all of
the measurement information available to us. We then take the view that the best labelling
is the one with the highest probability (the Maximum A Posteriori probability). In order to
calculate the probabilities, a Bayesian approach is used toreformulate the probabilities in
terms of the measurement distributions: these distributions provide a direct means of incor-
porating the measurements in to the calculation. Much reliance is placed on the use of rela-
tions between pairs of features, in order to capture the contextual information in both scene
and model. The methodology also handles many-to-one labellings, which are frequently re-
quired in a computer vision context. This approach leads to an evidence-combining formula
which prescribes in a unified and consistent manner how measurements relating to both in-
dividual features and pairs of features, together with any available prior world knowledge,
should be jointly brought to bear on the labelling problem.
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(a) scene (b) model

Figure 1.2: Scene and corresponding model with extracted line segment features

The resulting update rule can then be iterated to ensure a consistent solution. The iterated
rule is seen to have many parallels with more traditional probabilistic relaxation approaches
to feature matching, although our method appears to converge more quickly. The derivation
of our rule from a simple probabilistic statement removed many of the heuristic elements
of the traditional relaxation methods; in particular we provide a rationale for the calculation
of the compatibility coefficients. It also offers a clear methodology for designing such pro-
cesses.

The compatibility coefficients that characterise probabilistic relaxation algorithms are de-
fined in this case in terms of the relation measurement error distributions. Hence measure-
ments are incorporated into all iterations of the relaxation process via these compatibility
coefficients — this represents the most significant point of departure from the earlier work
of [40]. The support function, which is also derived from theformulation, rather than be-
ing ad hoc, is in the form of a product rule; we show how this form can be approximated
by the summation rule (as used by Rosenfeldet al. [50] and others) in cases where the con-
textual information is low. The theoretical framework alsoshows how the prior information
should be used to initialise the probabilistic relaxation process. This contrasts with the ap-
proach adopted by Li [42] who commenced the iterative process from a random assignment
of label probabilities.

The feature matching method that we present here owes its early inspiration to the probabilis-
tic relaxation scheme of Kittler and Hancock [40]; however the introduction in this work of
relations between the features makes the method applicableto a much wider range of match-
ing applications. The use of relations follows in particular from the work of [42, 43]. The
algorithm evolved via [37, 38] into its present form [13, 15]. The non-iterative version was
described in [18], with a more complete description in preparation [12]. Enhancements to
the algorithm appeared in [16, 17, 19], and an application was described in [48]. The rela-
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tionship of the method to neural network approaches appeared in [14, 36].

In what follows, we begin by setting out the framework for thematching theory in Chapter 2.
We then develop the theory for the labelling scheme in Chapter 3, and discuss the effects of
relaxing the scheme in Chapter 4. The evaluation of the termsin the labelling scheme is
covered in a general way in Chapter 5, and is then described indetail for specific feature
types in Chapter 6. Chapters 7 and 8 deal with various modifications that can be made to
the algorithm, those in Chapter 7 being concerned with real-time issues. In Chapter 9 the
algorithm is tested on a selection of different applications, and sensitivity to parameter values
is examined. Some implementation issues are briefly coveredin Chapter 10. We deferred
the discussion of other matching algorithms and their relationship with the one described
here to Chapter 11, on the grounds that it is easier to make thecomparisons once our method
has been fully described. Finally we make some observationson the method in Chapter 12,
and discuss some ways in which the work could be continued.



Chapter 2

Object labelling and graph matching

In this chapter we first express the matching problem as one ofobject labelling; then, by
considering the type of measurement information availableto us, we show how it is also a
problem of matching attributed relational graphs. We first discuss the feature sets, and define
what we mean by labelling in this context. We then discuss in ageneral sense the measure-
ments that can be made on the features in the scene and model and the transformation be-
tween the scene and model measurement spaces. Uncertainties in this transformation lead to
the idea of relations between pairs of measurements, givingrise to the idea that the scene and
model measurement information can be represented as a pair of attributed relational graphs.
Finally we give examples showing how different types of attributes and relations are appro-
priate to different levels of knowledge about the transformation between scene and model
measurement domains.

2.1 Feature sets and object labelling

Consider a scene from which we have by some means extracted a set of features. We refer
to a scene feature as anobject,1 and we call the set of scene features the object set,O, of N
members,i.e.

O = fO1;O2; : : : ;ONg

Similarly there is a set of model features, which we use aslabels for the objects. Ideally we
would like to label all of the objects in a single operation, in order to ensure that the labellings
are consistent with each other; this is known as the “message-centred” approach. In prac-
tice though we are unable to find an algorithm that can achievethis reliably in a reasonable
time. We therefore turn our attention instead to a method that labels each object individually
— the “object-centred” approach. (Later on in Chapter 4 we look at a method of ensuring
consistency between the individual labellings.)

We define a distinct label setΩi for each objectOi inO. TheseN labels sets may, but need not,
consist of the same members. Either way, we need to distinguish between the different sets

1The term “object” is frequently used to denote some more complex structure that corresponds to some com-
plete physical entity; here it refers to a single feature.

5



6 Chapter 2. Object labelling and graph matching

because in the derivation of the labelling rule (Chapter 3) we need to be able to distinguish
labels of different objects. On the other hand, where the distinction between the label sets is
not important, the suffix is dropped.

We use the symbolsαi;βi; : : : to denote specific labels from the setΩi, although the object
suffices of the labels are frequently omitted to avoid clutter. The symbolLα

i denotes the
labelling of objectOi with label αi. The symbolsωi or υi denote a general label, or label
“variable”, from the setΩi, typically used when we perform some operation over the whole
label setΩi.

In each label setΩi there areMi + 1 features,Mi of which are obtained directly from the
model; the remaining member is thenull label /0, which is used to label objects for which no
other label is appropriate. As we shall see later, the null label is unique in that it does not
correspond to any physical feature extracted from the model. It has three functions; it can
be used to:

� represent model features that are missing as a result of errors in the model;

� represent model features which are “outside” the model in applications where the scene
covers a larger area than the model;

� act as a label for spurious scene features that are generatedas a result of noisy scene
images or imperfections in the feature extraction.

The consequence of including the null label is that it is thenalways possible to find a label
for all of the objects, thereby making it simpler to express the labelling process in a relatively
homogeneous manner.

Thus we have presented the matching process as one of labelling. We consider that each
object ultimately has only one “correct” label; on the otherhand, because there is a separate
label set for each object, and because the same label can appear in more than one label set,
the same label can be assigned to more than one object.

2.2 Feature measurements

Each scene featureOi is characterised by a set ofKm values that are referred to here as the
scene featuremeasurements xi:

xi =

n

x(1)i ;x(2)i ; : : : ;x(Km)

i

o

We also use the unsubscripted variablex to denote the complete set of measurement sets:

x = fx1; : : : ;xNg

These measurements will usually include the position of thefeature within the image, and
(depending on the application) may include others,e.g. the orientation, size or colour of the
feature. Because the scene image will usually contain noise, and because the feature extrac-
tion process is subject to errors, the measurements themselves will also contain errors, and
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can therefore be viewed as instances of some corresponding random variables. We might
note however that these random variables are not necessarily independent, and it may be nec-
essary to specify a joint distribution for them. As is customary, we frequently use the same
symbol to denote both a measurement and the random variable of which it is an instance.

We can also make a corresponding set ofKm measurementsXα on each model featureα:

Xα =

n

X(1)
α ;X(2)

α ; : : : ;X(Km)
α

o

and similarly we abbreviate the set of all label measurementsets thus:

X = fX1; : : : ;XMg

In keeping with the usual notion of a model as some sort of reference, we adopt the conven-
tion that the model measurements do not contain errors, and so do not have corresponding
random variables. In applications for which this is not the case, the model errors are assumed
to have been incorporated into the scene measurements.

Further discussion of the measurements has to be postponed until we have considered what
we know of the relationship between the scene and model measurement spaces.

2.3 The relationship between the scene and model measurements

In order to perform the labelling, we have to compare scene and model measurements. To do
this, the measurements must be expressed in the same domain,for example by transforming
the scene measurements to the model domain (or vice versa). This transformation usually
has two components, known and uncertain. Thus in the examplein Chapter 1 we may know
the relative scale of the scene and model, but the relative displacement may only be known
approximately — the image lies somewhere within the map — andthe relative orientation
not at all. We assume that all of the available certain information about the transformation
has already been applied (e.g. the image has been scaled to match the map). We are then left
with the uncertain component of the transformation, which forms the crux of the labelling
problem.

We denote byΦ the uncertain transformation operator that maps measurements from the
scene space to the model space. Thus if we have some set of measurementsxi associated
with objectOi, then these measurements can be expressed in the model domain by a setx0i,
where

x0i = Φxi

In other wordsΦ represents the knowledge we have that enables us to relate measurements
in the scene to those in the model. In general we know something aboutΦ but cannot de-
fine it completely – it may for example include parameters whose values are unknown, or
parameters that may be represented as random variables.

There are two extremes, in which eitherΦ is defined precisely or nothing is known about
it at all. If Φ is completely unknown, we cannot solve the matching problemat all, since
we have no means of comparing measurements in the two spaces.On the other hand, when
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we knowΦ precisely, the problem becomes trivial because scene measurements are then
mapped onto the model domain precisely, and the labelling process reduces to one of looking
for the “nearest” label to each object.

Most of the time, however, our knowledge ofΦ is uncertain but nevertheless significant,
and usually we can explicitly represent the uncertainty inΦ in the form of a finite set ofKΦ
uncertain (but constant) parameters,fc(1); : : : ;c(KΦ)

g. These parameters might for example
represent the relative position or orientation of the two sets of features. We distinguish be-
tween two categories of these parameters. We may know nothing at all about a parameterc(l).
Alternatively for some other parameterc(m) we will know something about its value. In the
former case, we cannot use the measurements directly; we must resort to using some combi-
nation of them. In the latter case, we may know for example that c(m) lies within some finite
range; we can incorporate this information by modellingc(m) as a random variable, perhaps
using maximum entropy principles to estimate a possible distribution for it.

Consider for example a simple application in which the features are points, and in which
there are two measurement types (Km = 2): the components of the position vector of the
features. In this case, the operatorΦ reduces to the addition of a constant vector to the scene
measurements to map them onto the model space. If the location of the scene with respect to
the model is uncertain, this vector is uncertain, and so we have two uncertain transformation
parameters (KΦ = 2). If nothing at all is known about the parameter values, they are of no
direct use towards the labelling process at all; if something is known about them, they can
be used to provide some information towards the labelling process. On the other hand, there
may be somedifferential information that we can derive from the measurements from two or
more objects that is invariant to the uncertain transformation, and can be usefully compared
with corresponding quantities derived from the model. It isthe use of this differential infor-
mation, and the way in which we incorporate it into the labelling process, that represents the
main advance over previous MAP labelling methods.

2.4 Higher-order measurements; attributed relational graphs

In the above discussion, we concluded that in general we cannot necessarily use all of the
measurement types directly to solve the matching problem; this is because the uncertainty
in the transformationΦ means that we cannot in general map all of the measurements from
the scene domain to the model domain without loss of information. What we can do instead
is to combine measurements from ensembles of objects, to generate quantities known asre-
lations that are invariant to the transformationΦ. A relation betweenn objects is called an
n-ary relation. Although in principle any order of relation may be used for our purposes,
there is a rapidly-increasing computational cost asn increases; we therefore only consider
applications that can be solved using binary relations alone (i.e. n = 2). Examples of binary
relations are: the relative position of one object with respect to another, or relative size or
orientation. Topological or symbolic relations (e.g. “objectOi is on the top of objectO j”)
are not in general considered here. (However when we consider methods of improving the
performance of the matching algorithm in Chapter 7, we do in effect consider relations of
the type “objectOi is within range of objectO j”. It will be evident from this that symbolic
relations could easily be incorporated if desired.) We notethat, because we are considering
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binary relations only, it is not always possible to find sufficient relations that are invariant to
the transformation; in such cases, the loss of information is likely to be severe.

We may regard the set of objects as a set of nodes in a graph (thescene graph), for which we
can define sets of attributes and relations. Consider first those object measurement types (Ka

of them, whereKa � Km) that can be used directly; that is, there is sufficient information in
Φ that the object measurements can be usefully compared with the model measurements di-
rectly. Then the set of such measurements that are associated with each objectOi are defined
as theattributes ai of the graph nodeOi:

ai = fa(1)i ; : : : ;a(Ka)

i g

In other words there areKa attribute types associated with the particular matching problem.
We denote bya the entire set of scene attributes:

a = fa1; : : : ;aNg

In some applications it may be more convenient to selectKa attributes that are some function
of the relevantKa measurements, rather than to use the measurements as attributes directly.

Similarly, the binary relations derived from pairs of object measurements may be regarded
(also after mapping into the model space) as the relations onthe arcs joining the nodes. There
areKr relationsr(k)i j of different types between each pair of nodesOi andO j:

ri j = fr(1)i j ; : : : ;r(Kr)

i j g

where (provided that measurement information is not duplicated within the relations) we
would expect thatKr � Km. If all of the measurement information is expressed in the at-
tributes and relations, we would expect that the total number of attribute and relation types
will not be less than the number of measurement types,i.e.

Ka +Kr � Km

The set of all relations between nodeOi and all of the other nodes is denoted byri, where

ri = fri1;ri2; : : : ;ri i�1;ri i+1; : : : ;riNg

and the entire set of object relations, between all possiblepairs of nodes, is denoted byr.
Thus the scene graph is an attributed, relational graph.

A corresponding model graph can also be constructed from themodel labels and measure-
ments, where model nodeα hasKa attributesAα:

Aα = fA(1)
α ; : : : ;A(Ka)

α g

and there areKr relationsRαβ between nodesα andβ, where

Rαβ = fR(1)
αβ ; : : : ;R

(Kr)

αβ g

We can see therefore that the labelling problem can also be seen as one of graph matching.
If relations are computed between all possible pairs of nodes, the graph is fully connected.
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As we have seen, the attributes and relations are derived from noisy measurements, which
have been mapped into the model space with some additional uncertainty due to the uncertain
transformationΦ; thus the attribute setai can be viewed as instances of some underlying
random variables[ai], whose distribution is made up of two components, due to two entirely
different causes:

� measurement noise, which is generally uncorrelated between objects, and

� the transformation between scene and model, whose uncertainty (when present) is gen-
erally highly correlated between objects,

and similarly for the relations. On the other hand, because of the assumption earlier that the
model measurements are precise, the model attributesA and relationsR can be calculated
precisely from the model measurements. Now we would expect that, for each objectOi, there
should be some labelαi from the setΩi that is its correct label; for this label the attributes
Aα should then correspond to the expected value of[ai]. The same argument can be made
for the relations.

Because the relations (and possibly the attributes) are created from functions of the measure-
ments, the form of the transformation operator is differentin each case; we therefore denote
the transformation operators for the attributes and relations byΦa andΦr respectively.

In order to avoid further confusion, we should note that the terms “scene feature”, “object”
and “scene node” all refer to the same thing; the different terms merely provide a difference
of emphasis. The terms “model feature”, “label” and “model node” are likewise synony-
mous.

2.5 Some examples

Consider the hypothetical application discussed above (Section 2.3), in which the nodes rep-
resent point features, and in which each objectOi has two associated (positional) measure-
mentsxi = (xi; yi); that is,Km = 2.

Example 1 transformation known precisely (KΦ = 0).

In this case, as was stated earlier, the problem is relatively trivial. SinceΦa is known pre-
cisely (i.e. its distribution is a delta function), we use the transformed position measurements
x as the attributesa:

ai = xi

and no relations are needed (Ka = 2, Kr = 0). Because of the measurement noise, the correct
labels will not correspond exactly; instead, to find the bestlabelling, we look for labels that
minimise the Mahanalobis distance between the scene and model attributes.

Example 2 translation unknown (KΦ = 2).
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We can no longer use the measurements as attributes, becausewe do not know how to map
the scene measurements into the model space. However we can use relations in the form of
the differences between pairs of measurements, since thesewill be invariant to the unknown
translation:

ri j =
�

x j�xi
�

ThusKa = 0, Kr = 2.

Example 3 translation uncertain (KΦ = 2).

We know the translation between scene and model spaces, but only approximately (for ex-
ample we may know that the translation lies between some limits). We therefore use the
transformed position measurements as attributes, but we also use the difference relations of
the previous example, since they represent the measurementinformation in a more accurate
form (Ka = 2, Kr = 2). In this example we say that the attributes areweak and the relations
strong, i.e. the relations have a relatively narrow distribution compared with the attributes.

Example 4 translation and orientation unknown (KΦ = 3).

In this case, the scene is subjected to an unknown Euclidean transformation with respect to
the model. We can now only use the scalar difference between the position measurements
as a relation (Ka = 0, Kr = 1):

ri j =
�

�x j�xi

�

�

The information pertaining to relative orientation, whichis half the total available measure-
ment information, is no longer of any use; higher-order relations would be needed to express
this lost information.

Example 5 translation, orientation and scale unknown (KΦ = 4).

In other words, this corresponds to an unknown similarity transformation. There are no
second-order relations that are invariant to this transformation, so none of the measurement
information is of any use; we therefore cannot solve this problem without recourse to higher-
order relations (Ka = 0, Kr = 0).
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Chapter 3

Theoretical framework for object
labelling using Bayesian reasoning

In this chapter, by formulating the labelling problem in theframework of Bayesian proba-
bility theory, we derive a formula which enables us to calculate the labelling from the given
measurements. We start by expressing the labelling problemin terms of a Maximum A
Posteriori (MAP) labelling probability. Then by using Bayes’s rule and by making a se-
ries of assumptions, we are able to expand and factorise the MAP probability so as to ex-
press it in terms of the measurement information (i.e. attributes and relations) available to
us. The explicit use of relations as evidence in computing the contextual MAP probability
of the labelling represents a crucial point of departure from previous work on probabilistic
labelling [40] which relied on attributes only.

3.1 Formulation of the labelling problem as a Maximum A Pos-
teriori labelling rule

As was mentioned in the previous chapter (Section 2.1), in order to make the labelling prob-
lem tractable, we are adopting the object-centred approach; that is the labelling for each ob-
ject is calculated independently from the others. We define the “best” label for an object to
be the one that generates the highest MAP probability; that is, the objectOi will be assigned
the labelωMAP

i , provided that it is the most probable labelling given all the information we
have for the system (i.e. all of the object and label attributes and relations). We cantherefore
state the MAP rule as follows: the most appropriate label of objectOi is ωMAP

i where

ωMAP
i = arg

�

max
ωi2Ωi

Pr
�

L
ωi
i ja;r;A;R

�

�

In our approach, the model attributes and relations,A andR, are regarded as known con-
stants rather than random variables, and therefore always appear as conditional quantities.
For conciseness they are generally omitted in the expressions that follow, and are assumed
to be implicitly included. In other words, the MAP rule is written as:

ωMAP
i = arg

�

max
ωi2Ωi

Pr
�

L
ωi
i ja;r

�

�

(3.1)

13
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In this expression, we note that much of the measurement information may be in some sense
duplicated; for example there areN2 relations derived from onlyN objects.

3.2 Reformulation of the MAP rule in terms of known quantities

We do not know how to evaluate the conditional probability onthe right-hand side of (3.1)
directly, so we seek to express it in terms of known quantities. Because we are going to adopt
an approach based on Bayes’s Theorem, we would expect to incorporate the measurement
information by deriving an expression for a specific conditional labelling Pr(Lα

i ja;r) based
on the probability density functions (p.d.f.s) of the attributes and relations conditional on
the appropriate labellings, and on some view of the prior labelling probabilities. That is, we
would expect to find in the expression terms such as:

� p(aijL
α
i ), the p.d.f. for the attribute vector given the labellingLα

i , evaluated at the
pointai. The shape of the p.d.f. will be determined by the uncertain processes involved
in generatingai (i.e. in feature extraction and mapping into the model domain). The
p.d.f. will be offset by the attribute vectorAωi of the label in the matchLα

i .

� p(ri j jL
α
i ;L

β
j ), the p.d.f. for the relation vector given the labellingsL

α
i andLβ

j , evalu-
ated at the pointri j; its form will be determined by similar reasoning.

� Pr(Lα
i ), the a priori probability of the labellingLα

i , i.e. the probability based on some
reasoning that does not incorporate any knowledge of the attributes or relations.

We next consider if we can reduce the number of attributes andrelations that the labelling
is dependent on, by:

Shrinking the set of relations. Since the relation setri includes relations between objectOi

andall other objects, measurements fromall objects are used in generatingri. From
perhaps a rather simplistic viewpoint, we might then argue that in that case adding fur-
ther relations cannot provide any more information. This may not strictly be true; on
the other hand because in practice we usually iterate the MAPexpression (as we dis-
cuss later in Chapter 4), information from the remaining relations will be incorporated
in successive iterations. We therefore reduce the number ofrelations that are consid-
ered for the labelling of objectOi to the setri. Restricting the number of relations in
this way is also consistent with the decision to pursue the object-centred approach: we
are restricting the information to that which concerns the object being labelled.

Shrinking the set of attributes. We can consider two classes of attributes: those whose
corresponding measurements were also used to generate the relations, denoteda0j, and
the remaining ones, denoteda00j . The attributes of the former class can be computed as
some functionf of the relevant attributes of objectOi and the corresponding relations,
i.e.

a0j = f
�

a0i;ri j
�

and so it seems reasonable to exclude the attributesfa0j;8 j 6= ig. In the latter class,
because there are no relevant relations, the information contained in such attributes



3.2. Reformulation in terms of known quantities 15

a00j of objectO j may still be of use in the labelling of objectOi; all such attributes are
therefore retained.

We therefore make the assumption:

Assumption 3.1. The labelling of object Oi is only significantly affected by the values of
attributes and relations involving that object, and by those attributes of other objects for
which there are no corresponding relations.

Comment: In some applications (e.g. Example 2 in Section 2.5) we can in fact calculate all
of the discarded attributes and relations from the remaining ones, in which case the assump-
tion is clearly valid. In other applications the assumptionmay not be strictly true; however
we argue that the loss of information is likely to be small, and therefore that the assump-
tion is still a reasonable one. We also note that, as a result of this assumption, none of the
measurement information is now duplicated.

Thus the conditional items in the probability term of the MAPrule (3.1) can be reduced in
number:

Pr
�

L
α
i ja;r

�

= Pr
�

L
α
i ja

0

i;a
00

;ri
�

(3.2)

wherea00 is defined as the whole set of such attributes:

a00 =
�

a001; : : : ;a
00

N

	

Using the definition of conditional probability, we can write:

Pr
�

L
α
i ja

0

i;a
00

;ri
�

=

p
�

L
α
i ;a

0

i;a
00

;ri
�

p
�

a0i;a
00

;ri
� (3.3)

As was said above, we hope ultimately to generate an expression that includes terms for the

p.d.f.s of the relations. Now the p.d.f.p(ri jjL
α
i ;L

β
j ) for the relations between objectsOi and

O j includes the labellingLβ
j as well asLα

i , whereas the terms in (3.3) only include at most

a reference to the labellingLα
i . We therefore use the theorem of total probability to expand

both numerator and denominator over the label set for each ofthe possible object labellings
in turn, to ensure that all labellings appear for all other objects (including the labellingLβ

j ):

Pr
�

L
α
i ja

0

i;a
00

;ri
�

=

∑
ω12Ω1

: : : ∑
ωi�12Ωi�1

∑
ωi+12Ωi+1

: : : ∑
ωN2ΩN

p
�

L
ω1
1 ; : : : ;L

ωi�1
i�1 ;L

α
i ;L

ωi+1
i+1 ; : : : ;L

ωN
N ;a0i;a

00

;ri
�

∑
ω12Ω1

: : : ∑
ωi2Ωi

: : : ∑
ωN2ΩN

p
�

L
ω1
1 ; : : : ;L

ωi
i ; : : : ;L

ωN
N ;a0i;a

00

;ri
�

(3.4)

The next step is to factorise the term that appears in the numerator and denominator of the
above equation. This can be done in different ways, each of which may need a different set
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of further assumptions. In the approach that we favour,1 it is factorised as follows:

p
�

L
ω1
1 ; : : : ;L

ωN
N ;a0i;a

00

;ri
�

=

p
�

ri ja0i;a
00

;L
ω1
1 ; : : : ;L

ωN
N

�

� p
�

a0i;a
00

jL
ω1
1 ; : : : ;L

ωN
N

�

�Pr
�

L
ω1
1 ; : : : ;L

ωN
N

�

(3.5)

We evaluate each of the terms in (3.5) in turn. In consideringthe first term, we make the
assumption:

Assumption 3.2. The relations in the set ri are conditionally independent of each other.
That is, ri j by itself provides no information about rik.

Comment: Since relations are derived from feature measurements, allof the relationsri

are derived from measurements that include those made on objectOi. Thus any error on
these measurements will be common to all of the relationsri, making it unlikely that the
relations will be independent from each other. On the other hand, this common measurement
information represents only half of the information used toderive the relations; the other half
comes from the remaining nodesO j; j2Ni , whose errors are likely to be independent.

If we make the assumption, this term can be further factorised:

p
�

ri ja0i;a
00

;L
ω1
1 ; : : : ;L

ωN
N

�

= ∏
8 j 6=i

p
�

ri j ja0i;a
00

;L
ω1
1 ; : : : ;L

ωN
N

�

(3.6)

We again seek to reduce the amount of conditional information. With this in mind, we make
the following assumptions:

Assumption 3.3. The relations ri j do not depend on the attributes a0i alone (i.e. without
knowledge of a0j).

Comment: The errors in these attributes are likely in practice to be dominated by system-
atic errors in transforming them to the model domain. The relations on the other hand are
generally selected to be invariant to such errors, so are likely to be dominated by noise due
to feature extraction. Thus the assumption is reasonable.

Assumption 3.4. The relations ri j do not depend on the attributes a00.

Comment: This is reasonable since the attributesa00 were the ones that were not used in
the derivation of the relations.

Using these two assumptions, (3.6) can be simplified to:

p
�

ri ja0i;a
00

;L
ω1
1 ; : : : ;L

ωN
N

�

= ∏
8 j 6=i

p
�

ri j jL
ωi
i ;L

ω j
j

�

(3.7)

We next address the second factor on the right hand side of (3.5):

1See Section8.3 for an alternative derivation.
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Assumption 3.5. The attributes a0i;a
00 are conditionally independent of each other.

Comment: As we have remarked previously, there could be systematic errors in the at-
tributes which would invalidate this assumption. However it has to be made; the conse-
quence is to ignore the systematic nature of the errors.

Then the second factor on the right hand side of (3.5) can be simplified:

p
�

a0i;a
00

jL
ω1
1 ; : : : ;L

ωN
N

�

= p
�

ai jL
ωi
i

�

∏
8 j 6=i

p
�

a00j jL
ωi
i

�

(3.8)

Finally we consider the last factor of (3.5):

Assumption 3.6. The prior (unconditional) labelling probabilities are independent.

Comment: We argue that,without any measurement information, knowing the label for
one object tells us nothing about that of another. This assumption is made more plausible
by the decision to allow the same label to be used for more thanone object (Section 2.1),
a consequence of our object-centred approach. One might think that, if a given object has
a particular label, other objects are less likely to have that label. On the other hand, we do
encounter situations in practice in which it is important that more than one object can have
the same label, and this assumption reflects such situations.

We can then factorise the third factor of (3.5):

Pr
�

L
ω1
1 ; : : : ;L

ωN
N

�

= ∏
8 j

Pr
�

L
ω j

j

�

(3.9)

So, substituting (3.7), (3.8) and (3.9) into (3.5), we get:

p
�

L
ω1
1 ; : : : ;L

ωN
N ;a0i;a

00

;ri
�

=

Pr
�

L
ωi
i

�

p
�

ai jL
ωi
i

�

∏
8 j 6=i

p
�

ri j jL
ωi
i ;L

ω j

j

�

p
�

a00j jL
ω j

j

�

Pr
�

L
ω j

j

�

Using this in (3.4) we obtain the following expression for the conditional labelling probabil-
ity:

Pr
�

L
α
i ja

0

i;a
00

;ri
�

=

Pr
�

L
α
i

�

Q
�

L
α
i

�

∑
ωi2Ωi

Pr
�

L
ωi
i

�

Q
�

L
ωi
i

�

where

Q(L
α
i ) = p

�

ai jL
α
i

�

�

∑
ω12Ω1

: : : ∑
ωi�12Ωi�1

∑
ωi+12Ωi+1

: : : ∑
ωN2ΩN

(

∏
8 j 6=i

p
�

ri j jL
α
i ;L

ω j

j

�

p
�

a00j jL
ω j

j

�

Pr
�

L
ω j

j

�

)
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Each factor in the product in the above expression depends onthe label of only one other
object apart from the objectOi under consideration. We can therefore rearrange and simplify
it, and express the conditional labelling probability formulae as:

Q(L
α
i ) = p

�

ai jL
α
i

�

∏
8 j 6=i

∑
ω j2Ω j

p
�

ri j jL
α
i ;L

ω j

j

�

p
�

a00j jL
ω j

j

�

Pr
�

L
ω j

j

�

(3.10)

Pr
�

L
α
i ja

0

i;a
00

;ri
�

=

Pr
�

L
α
i

�

Q
�

L
α
i

�

∑
ωi2Ωi

Pr
�

L
ωi
i

�

Q
�

L
ωi
i

� (3.11)

The quantityQ(L
α
i ) is known as thesupport function for the matchLα

i ; it encapsulates the
information available that provides support for updating the prior probabilityPr(L

α
i ).

Thus (3.10) and (3.11) tell us how to express the match probabilities conditional on attributes
and relations as a function of the three quantities referredto earlier:

� information about the attributes,

� information about the relations and

� the prior match probabilities

The label that gives the largest updated (or a posteriori) probability is then chosen as the
correct label.

We can view (3.10) and (3.11) as an update rule, that updates the prior match probabilities
by combining them with measurement information in the form of attributes and relations:

Pr
�

L
α
i

� a,r
�! Pr

�

L
α
i ja;r

�

We note however that the measurement information may have been considerably diluted by
the various independence assumptions.

This completes the derivation of the object-centred MAP update rule. In the next chapter
we discuss how iterating the rule might ensure a consistent labelling. In the following two
chapters (Chapters 5 and 6), we discuss how the terms in the labelling rule should be evalu-
ated.



Chapter 4

Iterating the update rule

In this chapter we explain why the object-centred approach to object labelling described in
the previous chapter can generate solutions that are not globally consistent. We describe a
heuristic method that can rectify this problem: this methoduses the update rule of the pre-
vious chapter in a relaxation (or iterative) scheme to encourage convergence to a more con-
sistent global labelling.

4.1 A drawback of the object-centred approach

In setting out the MAP rule in the form of (3.1) in the previoussection, we were assum-
ing that the labelling of each object was independent of the labelling of any of the other
objects (the object-centred approach); that is, we attemptto maximise the posterior prob-
ability Pr(L

α
i ja;r) of the labelling of each objectOi individually. This is in contrast to the

message-centred approach, in which one would attempt to maximise the joint posterior prob-
ability Pr(Lα1

1 ; : : : ;L
αN
N ja;r). The effect of this approach was evident in the final formula

(3.10, 3.11), in which only the prior probabilities, which in practice generally contain little
information, were combined with the attributes and relations to build up evidence for a par-
ticular labelling. Thus although the evidence for some particular labelling might be strong
based on therelations with some particular labellings of the remaining objects, the conse-
quence of this object-centred approach is that no account was taken of whether these other
labellings (that were used to provide this evidence) were inthemselves good labellings. In
other words, if the relationsri j between objectsOi andO j match the relationsRαβ between
labelsαi andβ j, this will provide good support (according to (3.10)) for the labellingLα

i ,

irrespective of the plausibility of the labellingLβ
j of O j with β j.

We present a simple illustration of this effect, in which thefeatures are line segments:

O

O

1

2

(a) scene

β

γα

(b) model

19
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The scene has been subjected to some unknown translation androtation with respect to the
model, and noise has been added (in the form of some small arbitrary rotations of the line
segments). When the MAP updating rule of (3.10) and (3.11) was used, objectO1 was la-
belled with labelα, whereas objectO2 was labelled with labelγ. These two labellings are
clearly inconsistent with each other. On the other hand, thelabelling for each objecton its
own was completely reasonable. We can see that this conflict arises because the objects were
labelled independently from each other — we have not made useof the fact that the labelling
L

α
1 was the MAP labelling when deciding on the label forO2. Incidentally, we should note

that, although for exampleO1 was labelled with labelα, it should be fairly obvious in this
example that the support for this labelling can not have beenall that much greater than that
for labelβ.

4.2 Why iterating the update rule might help

We might summarise the update rule of (3.10, 3.11) as follows: we have some set of prior
labelling probabilities, whose values have been determined by some means unrelated to the
measurements we are considering here. The rule then expresses how to “improve” these
probabilities by incorporating new information in the formof attributes and relations. What
we would ideally like to do, in order to generate a consistentsolution, is somehow to “im-
prove” the prior probabilities before we combine them with the attributes and relations.

An obvious heuristic step is therefore to apply the update rule a second time, this time using
the results of the first iteration as the prior probabilities— after all, we have not indicated as
yet how the prior probabilities should be obtained, and naturally we want to use the best ones
available to us. It seems reasonable that “prior” probabilities obtained in this way would be
more useful to us than those we used for the first iteration. Wecan then repeat the process as
many times as is needed to meet some convergence or consistency criterion, progressively
propagating information from node to node across the graph in the manner of a relaxation
algorithm, so that the final best labelling will be selected by combining strong relations with
plausible neighbouring labellings. We take on trust here that the iterative proceduredoes
converge to a stable, consistent and unambiguous solution.However, extensive testing of
the algorithm on a wide range of applications, together withwork by other authors [55, 56]
encourages us to believe that the asymptotic solutions are indeed consistent and unambigu-
ous in the sense defined by Hummel and Zucker in [33].

The objection to this scheme might be expressed as follows: since our formula generates the
value Pr(Lα

i ja
0

i;a
00

;ri), the label probabilitygiven the measurement information, the impli-
cation is that the term Pr(Lα

i ) denotes some probability that doesnot already include this
information. Putting it another way: if we are calculating probabilities dependent on a set of
measurements by combining the measurements with a set of probabilities that already incor-
porates this information, the updated probabilities should be no different from the previous
set. We reject this view, for two reasons:

� Our view is that the update rule indicates how to update a set of label probabilities; it
does not give any indication of how the prior probabilities are to be obtained, implying
that the best possible information should be used for this atall times.
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� From Assumption 3.1. in the previous chapter, the update rule uses restricted sets of
attributes and relations, so that on the first iteration the posterior probability being
calculated is Pr(Lα

i ja
0

i;a
00

;ri). On each subsequent iteration, more of the remaining
information is incorporated, so that on convergence, the posterior probability being
calculated is Pr(Lα

i ja;r). In other words, we would maintain that adifferent posterior
probability is being calculated each time.

4.3 The relaxation rule

The above discussion suggests that it might be possible to improve the solution to the prob-
lem of labelling, as defined by (3.1), by combining (3.10) and(3.11) in a relaxation scheme.
To implement such a scheme, in the (n+1)th iteration we use for the prior probabilities Pr(L

α
i )

the posterior probabilities that were calculated by thenth iteration (c.f. [33, 40]):

Q(n)
(L

α
i ) = p

�

aijL
α
i

�

∏
8 j 6=i
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ω j2Ω j
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(4.1)
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(4.2)

The relaxation scheme is initialised using the original update rule (3.10) and (3.11),i.e. by
setting Pr(1)(Lα

i ) to be the prior probability Pr(Lα
i ). When the algorithm terminates, we use

equation 3.2 to determine the MAP labelling. The remaining issue is therefore to decide
how many iterations are needed. A simple heuristic would be to terminate when a certain
labelling is reached, that is when each object is assigned one label only with probability 1,
the probabilities for all other labels for that particular object being zero. Since the form of
updating rule that we have derived can only approach the state of unambiguous labelling
asymptotically, in practice we must adopt some heuristic rule. Some possibilities are listed
here:

� Since the algorithm in its iterated form is a relaxation algorithm, and noting the dis-
cussion in Section 4.2:

(i) iterate enough times to ensure that all of the measurement information has been
propagated to all of the nodes, then

(ii) iterate once more to ensure that the relational information is combined with plau-
sible labellings.

This rule would suggest that, for applications in which the scene and model graphs are
fully-connected (all possible relations are included), two iterations should be enough.
As our results indicate later on (Chapter 9), we find that verylittle improvement was
gained by iterating more than twice in most cases.

� Terminate if, for each scene node, one of the match probabilities exceeds 1�ε1, where
ε1 � 1.
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� Terminate if, during the current iteration, none of the probabilities changed by more
thanε2, whereε2 � 1.

� Terminate if, during the current iteration, both of the following conditions are met:

(i) the probability of the labelling selected by the MAP ruleincreased, and

(ii) the probability of all of the other labellings decreased.

� For real-time applications, the algorithm should terminate after some fixed number of
iterations.

� Terminate if none of the labellings are changed by the current iteration.

When the iterative rule was applied to the example in Section4.1, with the termination crite-
rion that each MAP labelling must have a probability of at least 0.9999, the algorithm termi-

nated after 3 iterations. Of the two possible consistent labellings, the final labellingfLα
1 ;L

β
2g

was reached after the second iteration.

It is worth noting that the relation p.d.f. termp
�

ri jjL
α
i ;L

β
j

�

in the expression for the sup-

port function (4.1) plays a similar role to the compatibility coefficients of other relaxation
methods (e.g. [33, 50]); that is, it quantifies the compatibility between the matchesLβ

j and

L
α
i . This relationship is explored further in Chapter 11.

4.4 Drawbacks of iteration

There are three important practical implications that result from the inclusion of iteration in
the algorithm:

� Since the relation p.d.f.s are used in each iteration, they have either to be stored or to be
recalculated on each iteration. If they are stored, this creates by far the largest demand
for data storage in the implementation of the algorithm (N2

(M+1)2 coefficients in the
worst case), which placed a severe restriction on the size ofmatching problem that can
be handled. If they are recalculated each time, the extra computation considerably
increases the total computational load. On the other hand, for large problems, either
the number of relations used or the number of labels that haveto be calculated can
usually be substantially reduced (see Chapter 7).

� More computation is required, since several iterations areneeded. However if only a
few iterations are needed, and the relation p.d.f.s are stored for the whole computation,
the extra computation required for the iterations is a smallfraction of the total.

� The amount of computation required is not known in advance, which might be a prob-
lem for a real-time implementation. In practice it is usually possible to put a (modest)
upper limit on the number of iterations needed.



Chapter 5

Evaluation of the terms in the
labelling formulae

The relaxation process of equations 4.1 and 4.2 requires theevaluation of three types of
terms: the prior probabilities, which we describe first, andthe p.d.f.s for the attributes and
relations. Much of the detail of the p.d.f. evaluation is specific to the particular type of fea-
ture; in this chapter we discuss only the general aspects, leaving the more specific discussion
to Chapter 6.

5.1 Assignment of the prior match probabilities

The prior (i.e. unconditional) match probability Pr(Lα
i ) represents the probability of the la-

bellingLα
i in the absence of any measurement information. The estimation of these proba-

bilities is usually a rather rough-and-ready affair, inevitably so since prior probabilities are
by their nature quantities lacking in information. On the other hand, the method is not unduly
sensitive to the values chosen.

We sometimes have some knowledge that an unconditional match probability involving the
null node may be different from the others (typically it is larger); we denote this value by
the constantζ. Then, unless any evidence is available to the contrary, from the Principle of
Indifference the prior probabilities of the remaining labellings for a given object are assumed
to be equal to each other:

Pr
�

L
ωi
i

�

=

(

ζ if ωi = /0
1�ζ
Mi

8ωi 6= /0 (5.1)

For example, if the numberN of scene nodes is larger than the total numberM of model
nodes, it might be reasonable to suppose that aroundN�Mi of the scene nodes will be la-
belled with the null model node. In this case we would putζ = (N�M)=N, and adjust the
other prior probabilities according to (5.1). Alternatively we may know that, due say to poor
image quality, we can estimate that some proportion of the scene features is likely to be spu-
rious. We would therefore setζ to this proportion.

23
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If we have no information concerning the likely incidence ofnull labellings, we extend the
Principle of Indifference and setζ equal to the other prior match probabilities,i.e.

8ωi Pr
�

L
ωi
i

�

=

1
Mi +1

We illustrate the above argument in Fig. 5.1, in which the scene is taken from a greetings
card and the model is the outline of a bird. The features in this example are line segments

(a) scene

(b) model

Figure 5.1: Greetings card scene and corresponding bird model with extracted line segment
features

corresponding to edges. In this case, the scene is much larger than the model, and the task is
to locate an instance of the model within the scene. The scenegenerated 88 features, and the
model 6 features. Thus the null match prior probability was assigned a value of (88-6)/88.
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5.2 Evaluation of the attribute p.d.f.

To evaluate the attribute p.d.f.p(aijL
α
i ), we use the attribute values as a set of arguments

for the p.d.f. The problem that remains is therefore to determine the form of the p.d.f. itself.
The p.d.f. can have one of two forms: thenull p.d.f. p(aijL

/0
i ), when the label in question is

the null label, and thenon-null p.d.f. p(aijL
ωi 6= /0
i ), when the label in question corresponds to

a physical model feature. We discuss each case in turn.

5.2.1 The attribute p.d.f. for non-null labellings

As was discussed in Section 2.4, the scene attributes are derived from the mapping of some
of the scene measurements into the model measurement space.We assume that in practice
the scene measurements will already have been transformed in such a way that the true,i.e.
noiseless (but unknown) attribute values will be close to the corresponding attributes of the
correct label attribute values. For example, if the original image and model were of differ-
ent (but known) scales, we assume that the image (or model) isrescaled appropriately. We
can then assume that the object attributes and those of thecorrect label differ only by the
two types of error introduced respectively by the noise in the scene and the scene-to-model
transformation uncertainties. In order to be able to evaluate the expressionp(ai jL

α
i ), where

α is some non-null label, we need to express these two types of error explicitly, using the
total probability formula to incorporate the uncertain element of the transformation,Φa:

p
�

ai jL
α
i

�

=

Z

p
�

ai jL
α
i ;Φa

�

p
�

Φa jL
α
i

�

dΦa (5.2)

In the absence of any measurement information,Φa is independent of the matchLα
i ; that is,

p
�

Φa jL
α
i

�

= p(Φa)

Hence (5.2) simplifies to:

p
�

ai jL
α
i

�

=

Z

p
�

ai jL
α
i ;Φa

�

p(Φa) dΦa (5.3)

The first term,p(ai jL
α
i ;Φa), is a p.d.f. that describes the effect of the attributes given the

transformationΦa; that is, it models the uncertainty in the scene attributes due to the mea-
surement errors that result from the feature extraction process. The second term,p(Φa),
models the uncertainty in the transformation from the sceneto the model domains. We con-
sider each of these terms in turn.

The influence of the attributes given the relationship between the frames of reference

We have a set of attributesai of objectOi. If label α is the correct label forOi, and we are
able to precisely map the scene onto the model using the transformation operatorΦa, then
the label attributesAα are the correct values for the object attributesai, and will therefore be
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the mean for their distribution. Thus becauseα is thecorrect label, the attribute p.d.f. will
be some function of the form:

p
�

ai jL
α
i ;Φa

�

= F [Φa(ai)�Aα]

whereF (x) is typically some unimodal function with a maximum atx = 0. For example, if
the measurement error distribution is Gaussian, and the attributes are some linear combina-
tion of the measurements, then

p
�

ai jL
α
i ;Φa

�

=

1

(2π)
Ka
2
jΣj

exp

�

1
2
[Φa(ai)�Aα]

T Σ�1
[Φa(ai)�Aα]

�

= NΦa(ai)
(Aα; Σ) (5.4)

whereNx(x̄;Σ) denotes a (multivariate) Gaussian distribution for the random variablex with
meanx̄ and covariance matrixΣ.

If we consider now another label,β say, that is not the correct label,Aβ will not be the correct
value for the mean of the distribution. Because the p.d.f. isunimodal, with a maximum at
the mean value, evaluating the p.d.f. with the correct labelis highly likely to give a larger
result than with an incorrect one. (A similar argument applies to the evaluation of the relation
p.d.f.s.) This observation gives us confidence that the update rule of (3.10) and (3.11) in
combination with the decision to use the MAP labelling decision rule of (3.1) is likely to
give the required labelling.

The relationship between the scene and model frames of reference

BecauseΦa is a constant, ideally it should be regarded as a parameter whose value should
be estimated as part of the labelling process. However, for this labelling method, the pre-
ceding arguments indicate that we must regard it as another random variable, and we must
therefore decide on its likely distribution in order to perform the integration in (5.3). Without
knowledge of the application, we can only make a few general comments here.

In some applications we will know enough about the relationship between the coordinate
systems in order to map the attributes precisely. For example, we might wish to match line
segments in an application for which the relative orientation of scene and model is known.
In this case there might be just one attribute type: the segment orientation. In such a case, the
p.d.f. for the attribute transformation,p(Φa), collapses to a delta function, and (5.3) becomes
(for non-null matches):

p
�

ai jL
α
i

�

= p
�

ai jL
α
i ;Φa

�

Alternatively we may only be able to estimate the mean and variance ofΦa. In this case, from
maximum entropy considerations,p(Φa) should take the form of a Gaussian distribution. If
all that we know is thatΦa lies within some regionD of volumeD, then maximum entropy
considerations indicate that a uniform distribution over that region is appropriate:

p(Φa) =

� 1
D if Φa 2D

0 otherwise
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5.2.2 The attribute p.d.f. for null labellings

In previous methods that used null nodes [10], the attributes were simply discarded when
the null node was used as the label. Our method requires that measurements are used for all
labellings, so a distribution must be estimated for attributes that are labelled with the null
label. There are two reasons why a null labelling might be generated. The model may be
incomplete, in which case some model nodes will be missing and the null node provides an
alternative label. Alternatively, if the image is noisy, wemay find that the feature extraction
process generates spurious nodes, which should therefore be labelled with the null model
node. We consider these two situations in turn.

Incomplete model

In some applications, because the model is imperfect it may have some missing nodes. For
example, in the stereo matching application described in Chapter 9 (where we designate one
image to be the “scene” and the other the “model”), there may be an edge in the scene that
is occluded in the model, or it may lie just outside the borderof the model. In such a case,
we take the view that the missing node does exist, but its attributes and relations with other
nodes are unknown; this node therefore has the character of a“wild card”, to which we can
match all nodes in the scene whose genuine match is missing. That there is only one null
model node presents no problem, because our theory explicitly permits one model node to
label many object nodes. If we wish to explicitly reflect the existence of several null nodes,
the prior probability of the null match should be adjusted accordingly (Section 5.1).

From this viewpoint, we consider that the measurementsA /0 for the null node have unknown
values, so we can interpret them as a set of random variables.Therefore in order to determine
the appropriate form of the p.d.f., we use the theorem of total probability to expand the p.d.f.,
making the measurementsA /0 explicit:

p
�

ai jL
/0
i

�

=

Z

p
�

ai jA /0;L
/0
i

�

p
�

A /0 jL
/0
i

�

dA /0 (5.5)

This first term under the integral,p(aijA /0;L
/0
i ), is the conditional p.d.f. forai given the loca-

tion of the missing null model node. It is therefore of the same form as the p.d.f.p(aijL
α
i )

in the non-null case (in which, we may remember from Chapter 3, the model measurement
Aωi was included implicitly).

For the second term,p(A /0jL
/0
i ), knowledge of the labelling provides no information without

the object measurements; hence

p
�

A /0 jL
/0
i

�

= p(A /0)

All we can say about the model measurements in general is thatthey must lie within the
model domain. All we know about the set of measurements of thecorrect labels is that they
must lie within the scene domain. For this term we again adoptthe maximum entropy ap-
proach; thusA /0 should be uniformly distributed over the smaller of the scene and model
attribute domains, which we denote by the symbolDa

0, and which has a volumeDa
0. For
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many applications, the extent of the model domain is not welldefined, in which case the
scene domain is used.

In practice, the second termp(A /0)will have a much larger variance than the first,p(aijA /0;L
/0
i ),

and will therefore dominate the result; hence we put

p
�

ai jL
/0
i

�

=

1
Da

0

; 8ai 2Da
0

whereDa
0 is the size ofDa.

Spurious image nodes

Because the scene data is usually noisy, not only will this affect the measurements of genuine
features extracted from the scene, but it also creates the possibility that spurious scene nodes
may be generated that do not correspond to actual physical features at all. We cope with this
situation by permitting such spurious nodes also to be labelled with the null model node. In
this case, the null node has no physical existence, so it neither has attributes nor has relations
with any other model node. Thus the conditional part of the expression for the attribute p.d.f.
(i.e. the matchL

/0
i in the expressionp(aijL

/0
i )) tells us nothing about the attributes involving

the spurious scene nodes, and hence provides no informationtowards evaluating the p.d.f.
We therefore take the maximum entropy view again, and assumethat in the absence of any
other information the p.d.f. is uniformly distributed within the scene attribute domainDa

00 .
Hence

p
�

ai jL
/0
i

�

=

1
Da

00

; 8ai 2Da
00

whereDa
00 is the size ofDa

00. This result is not necessarily the same as for the previous case
of missing model nodes, depending on the relative extents ofthe scene and model domains.
In a particular application, a view must be taken as to which is the more likely cause of null
labellings. Fortunately the algorithm proves to be fairly insensitive to the value of the null
match p.d.f. (see Section 9.2). The size of the actual domainused,Da, is denoted byDa, so
the attribute p.d.f. for a null match is given by:

p
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ai jL
/0
i

�

=

1
Da

; 8ai 2Da (5.6)

5.2.3 Evaluation of the attribute domain size

In order to evaluate the null p.d.f., we have to estimate the domain sizeDa of the attribute,
i.e. then-volume occupied by all the possible values that the multivariate attribute random
variable can take. The method we employ here to find then-volume is fairly crude: we take
the product of the approximate ranges of the individual attribute types.

5.3 Evaluation of the relation p.d.f.

The reasoning behind the procedure for evaluating the relation p.d.f.,p(ri jjL
α
i ;L

β
j ), is broadly

the same as that for the attribute p.d.f. Again, the form of the p.d.f. depends on whether or
not a null label is involved.
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5.3.1 The relation p.d.f. when neither label is the null label

As before, the two types of error in the object measurements can be represented separately
using the total probability formula:

p(ri j jL
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j ;Φr

�

p(Φr) dΦr (5.7)

When deciding which relation types are to be used, the aim is to choose a set that is invariant
to the transformationΦr. Where this is the case,p(Φr) is a delta function and we can express
the relation p.d.f. as:

p(ri jjL
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By analogy with the attributes, the mean of the p.d.f. is given by the model relations. Thus
if we were again to use the example where the relations are mutually independent and have
a Gaussian distribution, the non-null p.d.f. would have theform:

p(ri j jL
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j ) =Nri j
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Rαβ; Σ
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5.3.2 The relation p.d.f. when at least one label is null

In the case for which one label only is null, the remaining label on its own provides little
useful information towards the form of the p.d.f. Thus this case is treated in the same way
as that for which both labels are null. In both cases we refer to the p.d.f. as the null p.d.f.
Using similar reasoning to that for the attributes, this p.d.f. is assumed to be uniform over
the scene relation domainDr, with value 1=Dr, e.g. :

p
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ri jL
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i
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=

1
Dr

; 8ri 2Dr (5.8)

The relation domain sizeDr is estimated in a similar fashion to that of the attributes. For
example, consider an application in which points are to be matched, and there is an unknown
translation. The relation set consists of an angle and a distance measurement, the angle has
a range of 360�, and the distance measurement typically has a rangeR commensurate with
the image size (the geometric mean of the width and height, say). Hence we estimateDr to
be 360R.

5.3.3 Compatibility coefficients

We remarked earlier (Section 4.3) that the relation p.d.f. performs a role analogous to the
compatibility coefficients of other relaxation methods. One of the differences is that the
p.d.f. clearly is not dimensionless (its values have units that are the reciprocal of the ran-
dom variable concerned), unlike the compatibility coefficients of Hummel and Zucker [33]
for example. We also find it convenient to talk in terms of compatibility coefficients. We
therefore normalise the p.d.f. values (without affecting the outcome of the update rule), by
dividing by some neutral value. The null match density wouldappear to be an appropriate
value for this: a null labellingLβ

j cannot express support either for or against a labelling
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L
α
i because there is no contextual information. Thus coefficient values greater than unity

represent evidence that the matches are to some degree compatible, and values in the range
[0: : :1) indicates some incompatibility. We note that taking the logarithm of these values
would then generate coefficients of the form used by Hummel and Zucker.

5.4 A comment on p.d.f. evaluation

As was discussed in Chapter 3, each object is labelled independently of the others, and the
assumption was also made that the attributes and relations are independent. This assumption
has an unfortunate consequence when we come to evaluate the attribute and relation p.d.f.s
using the formulae of (5.3) and (5.7). In these formulae, we remember that application of
the total probability theorem uses the p.d.f. for the uncertain transformation,p(Φ). Now the
transformationΦ applies to the whole scene; that is, there is in practice a strong correlation
between the transformations applied to each individual object. Because of the independence
assumptions, this fact is completely ignored, so that the transformation applied to each ob-
ject is taken to be independent from all of the others, possibly entailing a serious loss of
information.

To minimise the effect of this problem, we should therefore look for sets of attributes and
relations that minimise dependence onΦ, so that the p.d.f.p(Φ) is as compact as possible.
Indeed this is exactly the reason that we use relations as well as attributes: it is the ability
to replace a set of attributes by some equivalent set of relations that gives us a chance of
finding a superior distribution forΦ. Thus a set of relations (or attributes) that is invariant to
a transformation is equivalent to a set of relations (attributes) for which the transformation
p.d.f. p(Φr) (or p(Φa)) is compact.



Chapter 6

Points and line segments as features

In this chapter we continue the discussion of the previous chapter on the evaluation of the
attribute and relation p.d.f.s, in particular of those thatdo not depend on a null labelling. To
do this, we must first decide on the types of attributes and relations to be used. This in turn
will depend on the following:

� What actual geometric feature do the nodes on the graphs represent, and hence what
measurements are associated with these features?

� What knowledge do we have of the relationship between scene and model spaces?

Having selected the sets of attributes and relations, we show how to use the results of Chap-
ter 5 (equations (5.3) and (5.7) respectively) to evaluate the p.d.f.s. In the examples of this
chapter, the uncertainty of the scene-to-model transformation and the measurement errors is
assumed to be additive; thus the application of the uncertain operatorΦ becomes the sub-
traction of the random variableΦ, and (5.3, 5.7) can be written as convolutions:
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We first discuss how the preceding theory may be applied to problems in which the features
are points in 2-D space. We then extend the discussion to features that are straight line seg-
ments. In addition the segments may be undirected (i.e. they have a 180� ambiguity in their
orientation) or directed (no such ambiguity).

6.1 Points as features

Points represent the simplest type of feature; such features may be generated for example
by a corner- or junction-detection process. They have just two associated measurements,
which identify their position in 2-D space. We assume that the errors from each feature are

31
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independent of those of other features, in order to satisfy the independence assumptions in
Chapter 3.

As was mentioned above (and was discussed in Section 2.5), the selection of attribute and
relation types is determined by our knowledge of the relationship between scene and model
spaces. We consider first an example in which there is an unknown translation between scene
and model; that is, the relative position between scene and model planes is unknown but
the relative scale and orientation are known. There are therefore no attributes, because we
cannot relate the position of an isolated scene feature withthat of an isolated model feature
in any way, except to say that (presumably) the label for the scene feature liessomewhere
within the model. Thus the second term under the integral in (6.1),p(Φr), is a uniform p.d.f.
over the whole model attribute space, and we can say that:
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1
Da

(Because it is constant, this term will cancel out in the update rule of (3.10)).

On the other hand there will be two relation types, specifying the position of one node relative
to another. We could use for example a Cartesian representation, so that each objectdi is
represented by the measurement pairxi = (xi;yi). The relations would then be:

r(1)i j = x j� xi

r(2)i j = y j� yi

The second term under the integral in (6.2),p(Φr), is a delta function, so that
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Hence to evaluate the relation p.d.f. we need to know the distribution of the image noise,
which must be estimated from knowledge of the feature detection process. If for example
we know that the measurement errors for a feature are uncorrelated (which is normally the
case for point features), and have a Gaussian distribution with variancesσ, it follows that:
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Next we consider some variations on the above example.

Scene orientation unknown: If the scene orientation is unknown, the transformation p.d.f.
p(Φr) is no longer a delta function. If the Cartesian representation of the relations were to
be retained,p(Φr) would be difficult to determine. Instead we use a polar representation
centred onOi; the relationsri j are then represented by the distanceρ and relative orientation
θ of O j from Oi (and corresponding relationsP, Θ for the model):

i

j

φ ij

ij
ρ
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If the measurement noise variance is small, the p.d.f. has two independent components: one
in the radial direction, which remains a delta function, andone in the angular direction, which
is uniform over the whole angular range. Therefore the angular measurements no longer con-
vey any useful information, and we retain only the distance between the nodes as a relation:

r(1)i j = ρi j

The result for the Gaussian example would then be:
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Small unknown error in scale: In this case, using a polar representation again, the angular
component ofp(Φ) is a delta function. If the scaling error is expressed as an unknown scale
factors = 1+δ, whereδ is uniformly distributed in the rangejδj< ε, the relations are:

r(1)i j = ρi j +δρi j

r(2)i j = θi j

Thus the distance componentφd of Φr is here the quantityδρ, which (ignoring the errors in
ρ) will have a uniform distribution with range proportional to the distance in question,i.e.

p(φd) =
1

2ερ
; �ερ < φd < ερ

Some observations of a practical note are in order. Firstly the two distributions,p(rijL
α
i ;L

β
j ;Φ)

and p(φd), have to be convolved in order to evaluate the relations. If they were for exam-
ple Gaussian and uniform distributions respectively, the convolution integral would be te-
dious to evaluate. It is usually the case that the form of the former distribution can be cal-
culated, whereas that of the latter is often estimated heuristically; it may therefore be con-
venient to use a distribution forp(φd) that makes the integral easier to do. For example, if

p(rijL
α
i ;L

β
j ;Φ) has a Gaussian distribution, it would simplify matters to make the distribu-

tion for p(φd) Gaussian also, with standard deviationερ.

Secondly, because the width of the distribution varies withthe distance between the features,
for distant pairs of features the distribution becomes relatively broad, so that the informa-
tion provided by the relation will become correspondingly less useful. Since the occurrence
of pairs with a given separation increases with the separation, useful computational savings
may sometimes be made by omitting the calculations involving distant feature pairs. This is
discussed in more detail in Section 7.2.2.

Positional information as attributes: In some applications,e.g. stereo matching, it is of-
ten the case that some positional information relating the image and model is available. For
example, a feature at a given height in one image is likely to be at a similar height in the
other; also there will be some horizontal correlation. Thisinformation can be included as
pairs of positional attributes. The distribution used for these attributes is likely to be broader
than those of the relations, particularly in the horizontaldirection. The relations are there-
fore still included, even though it might seem that the same information is included twice.
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The measurement information is available in a stronger formas relations; on the other hand,
as attributes the information can be used to prune out improbable labellings from the calcu-
lation at the outset (see Section 7.3).

In such an application, the distributions forΦ will have to be estimated from knowledge of
the camera separation and the likely distance of the features from the cameras.

6.2 Line segments as features

The other feature type we consider in this chapter is the linesegment. Line segments are
typically created from an edge detection process. Edge detectors usually consist of several
stages: an image is filtered to enhance the edges; the enhanced image is differentiated in
two orthogonal directions, and the maxima of the resulting images are detected. The pix-
els corresponding to the maxima are linked into strings, andpolygons are then fitted to the
strings. The edges of the polygons are the straight line segments that are used as features
for the matching process. In other applications (e.g. road matching), intensity ridges may be
detected, and approximated as a set of line segments in the same way.

A line segment is a more complicated type of feature than a point, and the derivation of the re-
lations and their distributions is correspondingly less straightforward. We begin by defining
which measurements are used (Section 6.2.1). Then, using the case of an unknown Euclidean
transformation, we choose an appropriate set of attributesand relations (Section 6.2.2), with
their corresponding variances and covariances. As was donefor the point features, we dis-
cuss what attributes and relations we need for other types ofunknown transformation (Sec-
tion 6.2.3). Finally (Section 6.2.5) we distinguish between directed and undirected line seg-
ments.

6.2.1 Measurements for line segments

A line segment is defined by four measurements: these are usually the positions in 2-D space
of its two endpointsa andb. Using a Cartesian representation local to the segment and
aligned with it, we define errors for each measurement:

∆ ax∆ ya

∆ bx

∆ by

a

b

y

x

In what follows, we make the following simplifying assumptions:
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1. The error in the position of a segment endpoint can be characterised by two indepen-
dent distributions, one collinear and one perpendicular tothe segment; the respective
variances are denoted asσxx andσyy.

2. The errors of the two endpoints of a segment are independent.

3. The errors of a segment are independent of those of other segments (c.f. point features).

The last assumption is not always valid; for example two neighbouring segments could have
a common endpoint. However such cases are the the exception rather than the rule.

To simplify the notation, we also assume in this section thatthe distributions of the endpoint
errors are constant throughout the problem. It is a minor additional complication to deal with
cases in which this is not true.

When deriving the relations, it is more convenient to represent the measurements as the po-
sition of the segment centre pointc and its lengthl and global orientationθ. The errors
(∆cx; ∆cy) are aligned with the segment as before:

θ

yc∆
∆ xc

l

c

Thus, assuming that the measurement errors are small compared to the segment length:

∆cx =

∆bx +∆ax

2

∆cy =

∆by +∆ay

2

∆θ =

∆by�∆ay

l
∆l = ∆bx�∆ax

The corresponding measurement error variances are then given by:

σcxcx =

σxx

2

σcycy =

σyy

2

σθθ =

2σyy

l2

σll = 2σxx

σcxcy = σcxθ = σcxl = σcyθ = σcyl = σθl = 0

Because of the way that the segments are generated, the segment lengthl turns out to be less
useful than the other three measurements, mainly because inpractice lines are often broken
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in an arbitrary manner. As a result we tend to avoid using the segment length to generate
attributes and relations, although it is still needed in estimating the relation variances. This
is discussed further in Section 6.3.

6.2.2 Attributes and relation types for an unknown Euclidean transformation

Initially we consider an unknown Euclidean transformationbetween scene and model (un-
known relative position and orientation but known relativescale). In this case none of the
three (useful) measurement types can be used as attributes,but we can use them to define
three relations that are invariant to the transformation. We chose three that were simple to
express: the angle between the segmentsψ, and the position of the centre of one segment
with respect to that of the other expressed in a local polar representationρ, θ:

θ ij

ij
ρ

ψij

j

i

Other choices are possible; for example a local Cartesian representation could have been
used for the relative centre position in place of the polar one.

Because the relations are invariant to the transformation,Φr is a delta function, and hence
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The errors in the relations can be expressed in terms of the measurement errors:

∆ρi j = �cosθi j∆cix �sinθi j∆ciy �cosθ ji∆c jx �sinθ ji∆c jy
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∆ψi j = ∆θ j�∆θi

Although we have not specified the distributions of the measurement errors, we can exploit
the independence assumptions in Section 6.2.1 to calculatethe variances and covariances for
the relation errors:
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σρi jθi j
=

1
4ρi j
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σρi jψi j = 0

σθi jψi j
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In earlier work (e.g. [13]), it was assumed that the errors in the relations had variances that
were constant over the set of objects. It is apparent from theabove expressions that, since
several of the covariance matrix terms are functions of the relations themselves, this assump-
tion was an oversimplification. It was also assumed that the covariance matrix was diagonal,
which is clearly not the case for the particular set of relations we have chosen.

6.2.3 Other types of unknown transformation

There are many different types of unknown transformation that can be handled in a similar
way to the Euclidean example above. We give two examples, onein which more information
is available, and one in which there is less.

Unknown translation: In this case, because the relative orientation of scene and model
is known, the segment orientation can be used as an attribute. The relationψ (the angle be-
tween the segments) is then redundant, and is therefore no longer used.

Unknown Euclidean transformation with small scaling error: Although the unknown
transformation is nominally Euclidean, in practicesmall scaling errors or other distortions
are often encountered. In order to generate a set of relations that are invariant to scaling
errors, we have two options:

(i) discard the distance relationρ entirely, which entails a loss of a substantial proportion
of the structural information, or

(ii) use ternary relations, an option that was rejected fromthe outset (p. 8).

In practice however, as in the case of point features, small amounts of scale distortion may
be accommodated by adding an extra error term to the distancerelations that is proportional
to the distance itself. The only variance term that is affected is that forσρi jρi j , which (by
analogy with that for the point features, p. 33) becomes:

σρi jρi j =

�

cos2 θi j +cos2 θ ji
� σxx

2
+

�

sin2θi j +sin2θ ji
� σyy

2
+ (ερi j)

2

where as beforeε2 is the variance of the scale error. The effect of this adjustment for the
scaling error is to give emphasis to relations of nearby nodes in contrast to those of more
distant nodes.

We remember however from the previous chapter (Section 5.4)that this solution suffers from
the drawback that the scaling error is being modelled as aseparate random variable for each
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relation. This is clearly not true, and means that we are ignoring the fact that the scaling
error is a single constant. On the other hand,because the scale factor error is not modelled
as a single random variable, we can also use this method to model an arbitrary unknown
deformation, provided that the amount of deformation increases with distance.

There are other systematic errors which we may also wish to model in a similar way. Con-
sider for example an image of some structure for which we havea 3-D model: we wish to
match corresponding features from the image and model. If the position of the camera is
known approximately, the model can be projected into the image plane, with some error.
Using knowledge of the projection process, extra terms can be added to the variances in a
similar manner to that for the scaling error. For stereo matching, the epipolar constraint can
similarly be used.

6.2.4 Unsystematic errors

In an application such as stereo image matching (described in Section 9.3), the unknown
transformation between the images can be very roughly modelled as a translation. However
this is a poor representation of the transformation, as the amount of translation for any fea-
ture pair will depend on the depth of the scene at that point. For this type of application it is
not worth using the noise model for the relations derived in Section 6.2.2; instead we use a
simpler model, for which the variances for the relation types are independent and constant
throughout. The difficulty with this approach is that valuesfor the variances must be esti-
mated somehow.

Again, when finding the correspondence between an image and the projection of a 2-D model
(Section 9.4), the assumption is made that the unknown transformation is Euclidean. A better
uncertainty model could be found by assuming that the pose ofthe 3-D model is subject to
errors, and explicitly propagating these errors through the projection process.

6.2.5 Directed and undirected line segments

A comment is in order concerning angle measurements in relation to line segments. A seg-
ment is defined by its pair of endpoints. In some applicationsthe endpoints are ordered,i.e.
we know which way round the segment is. In the case of segmentsderived from edge detec-
tion for example, the direction of the segments can be definedsuch that, if one looks along
this direction, the intensity gradient of the image is positive towards (say) the right-hand side.
These segments aredirected segments; for them the segment orientation will be in the range
(�180� : : :+180�], and arithmetic involving the orientation will be performed modulo 360�.

On the other hand, if we consider for example segments extracted by the detection of inten-
sity ridges, or segments extracted from outline drawings, we do not know which way round
the segment is, so the endpoints are not ordered, and the segment orientation will have an am-
biguity of 180�. The segment orientation will therefore be in the range(�90� : : :+90�], and
arithmetic on this measurement will be performed modulo 180�. Such a segment is anundi-
rected segment. Less information is available as a result of the ambiguity, although some of
it may be retrieved using a modification to the matching algorithm (Section 8.2).



6.3. Estimating the measurement errors 39

There will also be cases for which both directed and undirected segments exist. For example,
the scene may generate directed segments from an edge detection process. In such a case, the
direction of the segment depends on the relative image intensity on either side of the edge.
On the other hand, the model may well not have this information, and undirected segments
will be generated. In such a case, the angle arithmetic will have to be performed modulo
180�.

6.3 Estimating the measurement errors in practice

In Sections 6.1 and 6.2, it was shown that the distributions of the attributes and relations
could be expressed in terms of the measurement distributions, which in turn were determined
by one or two variance terms, providing that the form of the measurement error distributions
are known or can be estimated. In this section we discuss somepossible origins of the mea-
surement errors, which in turn gives an indication of how to assign values to the variances.
In practice these variance values may only be approximate; however the method is not un-
duly sensitive to the actual values. We discuss the errors interms of the variancesσxx andσyy

of the errors of a segment endpoint (defined in Section 6.2.1); for point features, the single
error varianceσ (Section 6.1) can be deduced by the same means as forσyy.

The matching algorithm has been evaluated on a number of different applications, for which
the features were variously directed and undirected line segments and points. Several dis-
tinct sources of positional errors in the feature measurements were identified:

1. For all of the feature types, noise in the image creates errors, usually quite small.

2. For line segments, errors were caused by uncertainties inthe collinear location of the
segment end points, mainly due to line breakage. Line breakage occurs for different
reasons in different applications:

(a) Although the feature was genuinely a straight line, image noise and feature oc-
clusion sometimes caused the feature detection process to break the segment into
smaller ones. Occlusions are also caused by the image boundary.

(b) The underlying feature was a curve that was approximatedby a set of straight line
segments in both scene and model: here the position of the segment endpoints
along the curve is often arbitrary, and does not in general correspond between
scene and model.

3. Because of the above causes of line breakage, the line features may sometimes be
deliberately further broken into smaller pieces in order togive them a better-defined
physical location.

The actual noise parameters for errors of type 1 should be found from an analysis of the
processes that generate the segments from the original image; such an analysis can be found
for example in [21], which provides a means for estimatingσxx andσyy directly.

Errors of type 2 and 3 essentially affect onlyσxx. In practice the effect of line breakage is that
the location of segment endpoints in a direction collinear with the segment is poorly defined,
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resulting in a large value ofσxx that swamps the effect of errors of type 1. If the errors are
assumed to be uniformly distributed over a range of�l=2, σxx should be set to a value of
l2
=12. Note that, if this approach is taken, the value ofσxx is clearly different for different

segments, especially for errors of type 2; the covariance expressions of Section 6.2.2 would
therefore have to be modified accordingly.

For errors of type 2, since the correspondence of segment lengths between scene and model
is poor (i.e. ∆l is very large), the segment length provides little useful information. For er-
rors of type 3, the segment lengths are fairly well-defined, but tend to be very similar; thus
again they contain little information. Either way, becauseof these practical considerations
we avoid using the segment length to generate attributes andrelations. However, as we have
seen, it is still needed in estimating the relation variances.



Chapter 7

Real-time issues

In many practical machine vision problems, the time taken for the algorithm to be computed
is important. Storage requirements of the algorithm also have an impact on real-time per-
formance, since in general larger data stores have slower access times. Sometimes there is
a strict upper limit on the time available for computation — such applications are often de-
scribed as “hard” real-time. We do not mind how long the program takes, provided this cri-
terion is met. On the other hand sometimes there is no hard andfast limit, but there may be
some rough time limit beyond which the performance would be regarded as unacceptable —
a “soft” real-time application. Most software in the end hassome requirement of this type, as
there is usually a limit to the patience of even the most patient computer user. Since the basic
iterative rule described in the previous chapters can be expensive in terms of both compu-
tation time and storage requirements, we need to examine theextent of these requirements,
and then look at ways in which the computational load can be reduced in practice.

As discussed in Chapter 11, we use the term “compatibility coefficient” to denote a nor-
malised relation p.d.f. Where the distinction is not important we use the terms interchange-
ably.

7.1 Identifying the problem

The iterated MAP update rule, derived in Chapters 3 and 4, is summarised overleaf:

41
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From this we can see that the most frequently-executed part of the algorithm is the multi-
ply/accumulate operation that constitutes the inner-mostloop of the calculation of the sup-
port functions. There are two parts of this computation thatcan dominate the processing
time: the multiply/accumulate itself, and the calculationof the relation p.d.f.s. Thus both
parts require processing power that is directly related to the number of compatibility coef-
ficients. Since it takes significantly longer to compute a compatibility coefficient than to
perform a multiply/accumulate, and since the coefficients are reused at each iteration of the
relaxation process, it is highly desirable to store them (assuming that more than one itera-
tion is required). This constitutes the main storage requirement for the algorithm; thus the
storage requirement is also directly related to the number of compatibility coefficients.

We can see therefore that the key to reducing the computational requirements is to reduce
the number of compatibility coefficients. As we have said, the coefficients are the same for
each iteration, so there are four remaining loops, and the problem is one of fourth order.
More precisely, the numberNr of non-trivial coefficients to be calculated is approximately
the square of the total number of labellings,i.e.

Nr �

 

N

∑
i=1

Mi

!2

whereMi is the number of possible non-null labels for objectdi. These coefficients can be
considered as a four-dimensional array, which it is convenient to portray in the form of an
array of sub-arrays (Fig. 7.1). There areN2 sub-arrays, each of which corresponds to a dif-
ferent (ordered) pair of scene nodes, and each sub-array hasM2

i elements. There are∑i Mi

rows and columns in the entire array. We can see that this ordering of the coefficients also
lends itself to an efficient indexing arrangement for performing the multiply/accumulate op-
erations in the expression for the support function (7.1).

We have identified three approaches by which we may be able to reduce the number of co-
efficient calculations. We can:

� identify relations containing little information that canbe dealt withen masse (in ef-
fect, pruning the scene and model graphs),
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Figure 7.1: Arrangement of coefficients in a 2-D array

� reduce the total number of possible labellings, and

� reduce the number of features to be matched (initially, at least).

We consider each approach in turn. Before we do, though, one point should be stressed in re-
lation to hard real-time applications. The basic algorithmdescribed above has an amount of
computation that can be precisely determined in advance if the sizes of the scene and model
feature sets and the number of iterations are known. In practice, the number of iterations
needed can be fixed in advance, so that the time needed to compute the matches can indeed
be predetermined. This property is an essential requirement for a “hard” real-time applica-
tion. Apart from the multiprocessing option, the methods described below all suffer from
the same defect: the computation time can no longer be determined in advance, although
the execution time of the unmodified algorithm still serves as an upper bound.

7.2 Identifying degenerate relations

7.2.1 Eliminating impossible pairs of nodes

Consider an application in which scene covers a much larger area than the model, for ex-
ample when we are attempting to locate an object in a cluttered scene (e.g. the example of
Section 5.1, discussed also in [15]). There will be many pairs of nodes in the scene for which
there cannot possibly be a corresponding pair in the model; that is, at least one of the labels
must be the null label. Each of these scene pairs correspondsto a complete sub-array in
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Fig. 7.1. The values of the subarray terms are therefore all zero, with the exception of the
right-hand column and the bottom row; the latter are the onesthat involve the null label and
therefore have the value of unity (i.e. the p.d.f. value is 1=Dr). The consequences of this are
threefold:

� The compatibility coefficients do not have to be individually calculated.

� If storage for each individual sub-array is allocated separately, no storage need be al-
located for these sub-arrays.

� Apart from the bottom row of the subarray, the inner, multiply/accumulate loop in
the support function expression (7.1) consists of a single non-zero term, obviating the
need to perform the multiply/accumulate for the whole row. For the bottom row, some
computational savings are also possible.

We can adopt a similar strategy in the case of applications for which the model covers a
much larger area than the scene, such as the example described in Chapter 1. However in
this case it is the model which will contain pairs for nodes for which there are no possible
matches in the scene. In this case, if we wish to economise on coefficient storage, it will
be necessary to change round the storage strategy, so that each sub-array corresponds to a
particular ordered pair of model nodes. Also the inner loop no longer processes consecutive
zero-valued coefficients, so the computational savings arenot so significant.

7.2.2 Restricting the range over which relations are included

Since we consider all possible pairs of nodes in the scene andmodel, it follows that, provided
that a sufficiently rich set of relation types is used, there may be a large amount of redundancy
in the set of compatibility coefficients. That is, if the relations between nodesOi andO j are
sufficient to define nodeO j completely with respect toOi, and similarly for nodesOi and
Ok, then it follows that nodeOk would be defined completely with respect toO j. In practice
our information is not perfect, and also we recognise that having the information implicitly
is not the same as having it available explicitly. However wecan still restrict the number
of nodes that a given node has relations with, for example by only considering node pairs
separated by less than some given distance.

The mechanics of this scheme operate in a similar way to thoseof the previous one (Sec-
tion 7.2.1); the difference is that, for the node pairs that are excluded, the values of all of the
corresponding compatibility coefficients are set to unity,indicating that we have no view as
to whether the two possible matches concerned provide support for each other or not. We
can therefore make the same economies in calculating and storing the coefficients as in Sec-
tion 7.2.1; on the other hand, instead of omitting the corresponding multiply/accumulate op-
erations, we have to replace them with accumulate operations.

This scheme is particularly appropriate for the situation in which we assume that the relative
scale of scene and model is known, but which contains some small error. In this case, as was
discussed in Chapter 6, the variance used for the distance relations will be small for node
pairs that were close, but which would become increasingly large for node pairs that were
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further apart. Once the node pairs are sufficiently far apartfor the relation distribution to
be dominated by the scaling error, the corresponding compatibility coefficients can be set to
unity.

7.3 Pruning the label sets

When first analysing an application, usually theN label setsΩi;8i2f1: : :Ng, are considered
to contain the sameM members; that is, each object can be labelled with any model label,
and the total number of coefficients to be calculated is therefore� (NM)

2. However if some
of the measurements can be used as attributes in the application, and the attribute p.d.f. is
bounded, then it may be possible to eliminate some of the labellings from the outset. Thus
for some labellingLα

i , it may be the case thatp(aijL
α
i ) = 0. This means that the labelling

L
α
i is impossible, so that we can remove the labelα from the label setΩi from the outset.

This corresponds to the deletion of a row and column from the array of Fig. 7.1.

For example we might know that the projection of the scene onto the model is Euclidean,
and that the relative orientation of the scene is known to within a limit of �µ. Also let us
assume that the scene noise is such that the uncertainty due to noise of the orientation of
any individual scene node is within say�ν. Then the attribute p.d.f. lies entirely within the
domain[�µ�ν; : : : ;+µ+ν], and so all of the possible matches whose relative orientations
differ by more thanjµ+νj can be ignored.

7.4 An example

We tested the strategies of Sections 7.2 and 7.3 using the road-matching application described
in the Introduction. In the example used here (Fig. 7.2) segments longer than 8 pixels were
used: there were 13 segments in the scene, which was 60 pixelssquare, and the map, which
was scaled to match the scene, contained 161 segments and covered an area of about 10 times
that of the scene (it is about 190 pixels square). Matched segments are shown as black lines,
and unmatched segments in the map are shown in grey. The matched segments were used
to calculate the position and orientation of the image with respect to the map; this is repre-
sented in Fig. 7.2 by the correspondence of the cross and pointer symbols in the scene and
map.

We ran the matching algorithm initially without any of the enhancement schemes; 4043676
(non-null) compatibility coefficients were computed, and the algorithm converged in one
iteration,1 taking 46s of c.p.u. time on a Sun Sparc10. Approximately 91%of the execution
time was spent calculating the coefficients, and 5% performing the single relaxation step.

We next examine the effect on the algorithm of applying each of the three strategies described
above. They were first tested separately, and then combined.

1The criterion for convergence was that one labelling for each node should have a probability of at least
0.9999.
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(a) image (b) map

Figure 7.2: Matching of road segments

Eliminating impossible pairs of nodes

Since the model is larger than the scene, we will be searchinghere for pairs of model nodes
which cannot simultaneously label any pair of scene nodes. The largest likely separation be-
tween pairs of model segments was estimated by finding the largest separation between pairs
of scene segments, and adding the corresponding standard deviation (52 pixels in total). All
possible pairs of model segments outside this range were then eliminated from the calcula-
tion as described above. In this case 869700 coefficients were computed. The algorithm still
converged in one iteration, taking 14s to complete, and the same labelling was generated as
before.

Restricting the range over which relations are included

For this strategy we specified the maximum distance between segments in the model over
which relations would be considered. We set this distance to30 pixels, with the result that
489996 coefficients were computed. Two iterations were required to reach convergence, and
the algorithm took 10s to run. This time for three of the nodesthe labelling was different; in
each case there were two reasonable candidate labels, and the alternative was picked.

We can restrict the range of distances between segments in the scene; however when we
tested this, four iterations were needed, with the result that the execution time was increased
to 12s.
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Pruning the label sets

In this case we assumed that the orientation of the map with respect to the scene is known
to within �30�; this enabled us to restrict the set of possible labellings to those in which
the segment orientations match to within this range. The number of potential matches was
reduced from 2106 to 688; 419184 coefficients were generated, with an execution time of
5s.

Combining the schemes

When we combined the three schemes for reducing the computation, the number of coeffi-
cients computed was 43832 and the computation time 1.7s. Thesame labellings were gen-
erated as for the original example.

All of the above results are presented in Table 7.1 for ease ofcomparison.

scheme for reducing no. of no. of execution
no. of coefficients coefficients iterations time (sec)

none 4043676 1 46
eliminate impossible pairs 869700 1 14

reduce relation range 489996 2 10
pruning label sets 419184 1 5

3 schemes combined 43832 1 1.7

Table 7.1: Performance figures for the schemes for reducing the number of coefficients

7.5 Hierarchical matching

In some applications, the quality of the measurement information for some objects may be
superior to that for others. For example, if line segments are being matched, longer segments
are likely to have a better-defined orientation than shorterones, and are less likely to have
been spuriously generated. With the hierarchical approach, all the features shorter than some
threshold length are discarded, leaving a subset of the “better” (i.e. longer) scene features that
is nevertheless still large enough to reliably establish anoverall match with the model. Given
that the scene segments are more likely to have been accidentally broken than those of the
model, it may also be possible to prune out the shorter model features in a similar fashion.
Indeed, on this basis, each separate label setΩi can be pruned using a threshold length based
on the length of the particular objectdi.

A preliminary match is then determined using the reduced object and label sets, and the re-
sults of this match used to determine a more accurate transformation between scene and
model. Using this information it is often then possible to generate one or more additional
attributes, thereby using the method of Section 7.3 to eliminate many more of the possible
labellings; the matching algorithm is then rerun using the original complete node sets.
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(a) image (b) map

Figure 7.3: Image of road network and map showing the respective node sets

We illustrate the technique using the road-matching example again. This time, all of seg-
ments were included: the scene contained 39 nodes and the model 303 nodes. This would
have generated about 1:4�108 compatibility coefficients, although this number could be ef-
fectively reduced by about an order of magnitude using the method of the previous section.
However the problem was still too large to run on any of the machines available to us at the
time; had such a machine been available, extrapolation fromother results indicated that the
execution time would have been of the order of 2 minutes on a Sun Sparc10 c.p.u.

The relative position of scene and model were unknown, so no attributes were available.
We used the segment length as a means of ordering the node sets; all of the nodes below
a certain length were then eliminated from consideration for the first pass. This threshold
was set heuristically, to generate sets of reasonable size.In the example shown in Fig. 7.3,
a threshold of 15 pixels was used, yielding sets of sizes 6 and72 nodes for the scene and
model respectively. This generated about 3:7�104 coefficients for the first pass, converged
in two iterations and executed in 1:4s on the Sun Sparc10. The result of this pass is shown in
Fig. 7.4: the crosses and arrows in the image and map indicatetheir respective relative po-
sition and orientation, and matched and unmatched nodes areshown respectively as coarser
and finer line segments. The original roads (before segmentation) are indicated on the map
by the finest lines.

As Fig. 7.4 indicates, from the first pass it was possible to estimate the position and orienta-
tion of the scene with respect to the model; having done this,it was then possible to estimate
the accuracy of the match. So for the second pass, all possible labellings whose estimated
positions were in error by more than three standard deviations were discarded. A less rigor-
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(a) image (b) map

Figure 7.4: Correspondences after the 1st pass, showing thecomputed relative position and
orientation

ous pruning was also applied to labellings with orientationmismatches: all labellings whose
estimated orientations were in error by more than 30� were discarded. The more generous
tolerance was adopted because the extra line segments included in the second pass were the
shorter ones, and hence were likely to have larger orientation errors than those used in the
first pass. In the second pass 2:2�103 coefficients were generated, one iteration was suf-
ficient for convergence and the execution time was 1:0s. The results are shown in Fig. 7.5;
here the relative orientation derived from the first pass wasused to rotate the map to align
it with the image. One short road segment (shown as a finer linethan the correctly matched
segments in Fig. 7.5(a)) was incorrectly matched to the nullmodel node.

In order to demonstrate the importance of selecting the nodesubsets according to their saliency,
the first pass was rerun, but this time nodes were selected at random to create sets for both
image and map of about the same size as for the first pass above.In this case, although the
match that resulted appears to be in roughly the same region of the map as before, it was in
fact entirely incorrect (Fig. 7.6). This is apparent from the different direction of the dotted
pointers in Figs. 7.4(b) and 7.6(b).

7.6 Parallel processing

If we examine once again the labelling rule at the beginning of this chapter (p. 42), it is appar-
ent that many of the computations can be performed independently from each other. Working
from the innermost loop outwards, we can make the following observations:
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(a) image (b) map

Figure 7.5: Correspondences after the 2nd pass, using the results of the 1st pass to rotate the
map

(a) image (b) map

Figure 7.6: Incorrect result after the 1st pass, using random node selection
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The summation loop of (7.1): The terms of the summation are all independent, and can
therefore be computed in parallel; the summation can also bepartly parallelised, but
will need log2 M j serial operations (M j is the size of the label setΩ j).

The product loop of (7.1): The factors of the product are similarly all independent; the prod-
uct needs log2 N serial operations, whereN is the object set size.

The loop over the label set Ωi: The labellings within this loop are all computed indepen-
dently.

The loop over the object set O: Provided that the modification to the algorithm described
in Section 8.1 is not used, the labellings within this loop are all independent and can be
performed in parallel. If the modification is used, the labelling probabilities calculated
for objectOi are needed for the labelling of objectOi+1, so that parallel computation
at this level is no longer possible.

The relaxation loop: Clearly each iteration of this outermost loop is dependent on the re-
sults of the previous iteration; no parallelisation is possible.

In each case where parallelisation is possible, each compatibility coefficient is only used on
a single processor, and so the coefficient calculations should be performed on that processor.
In the last two cases (parallelising the label or object set loops) the amount of interprocessor
communication required is very small, so that a speedup linear with the number of processors
can reasonably be expected.

Parallelising the algorithm at the finest level (i.e. in the innermost loop) is appropriate for
single-instruction multiple-datastream architectures (e.g. the AMT DAP range) and vectoris-
ing architectures (e.g. the earlier Cray machines). Parallelising at the coarser levels is appro-
priate for more loosely-coupled machines such as the Meiko Computing Surface or even for
a set of networked machines.
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Chapter 8

Variations on the matching algorithm

As the details of the matching algorithm unfolded in Chapters 2 to 6, there were inevitably
some heuristic decisions that had to be made. As is usual withsuch decisions, things do
not necessarily have be done quite the way they are done. In this chapter, we discuss how
changing some of these rules could lead to some slight modifications to the algorithm.

8.1 Asynchronous updating

In Chapter 4, we observed that the update rule might usefullybe iterated, leading to the it-
erative rule repeated here:
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In the discussion about why the update rule might be iterated(Section 4.2), the point was
made that the best possible available information concerning the labellings should be used
for the prior probabilities Pr(n)(L

ω j
j ). At the beginning of an iteration, the best information

available is given by the posterior probabilities calculated in the previous iteration, so that
the posterior probabilities from iterationn were used as the prior probabilities for iteration
n+1.

We can extend this argument, so that the latest available probabilities are used each time the
probabilities for a new object are updated. For example in iterationn, when the the new label
probabilities for objectOi are being calculated, those for objectsO j;8 j < i; have already
been updated. In this case, the newly-calculated values forO j, Pr(n+1)

(L
ω j
j ), can be used in

place of Pr(n)(L
ω j

j ) when calculating the support (8.1) for objectOi. (However, while the
probabilities forOi are in the process of being calculated, we should of course take care that
the new label probabilities forOi itself arenot used in (8.2); otherwise the requirement that
the label probabilities should sum to unity will be violated.)
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To get the most benefit from this technique, the objects (scene features) should if possible
be ordered in descending order of their saliency, or “quality”. In this way the best features,
which should have better-defined measurements, are processed first. For example, if the fea-
tures are line segments, the variances of the relation distributions for longer segments are
smaller than those for shorter ones (Section 6.2.2); also they are less likely to be spurious
features generated by noise (c.f. Section 7.5). They would therefore be ordered by length,
O1 being the longest andON the shortest. The use of ordered object sets is particularlyuseful
if the update rule is not iterated: more information is available when processing the objects
for which the measurement information is weaker.

8.2 Improving the contextual information for undirected line seg-
ments

When the selection of attribute and relation types appropriate to line segments were dis-
cussed in Section 6.2, this selection was essentially made using some basic principles to-
gether with some common sense. Reference was made to the distinction between directed
and undirected segments (p. 38); in particular it was pointed out that if undirected segments
are used as opposed to directed segments, a significant amount of information was lost due
to the 180� ambiguity of orientation of the segments. This ambiguity can lead to an incorrect
match, as we may see by considering the simple labelling problem shown below:

i

j
k

(a) scene

γ

α

β

(b) model

Figure 8.1: Anomalous match due to orientation uncertainty

Here, when object i is labelled with labelα, it gets support (assuming one orientation) from
the labelling of object j with labelβ. It also gets support (assuming the opposite orientation)
from the labelling of object k with labelγ. When we are calculating the overall support for
the labelα, then because we accumulate evidence of relations of objecti with neighbouring
nodesindividually, this label gets strong support. However it is obvious in this casefrom
the whole context that the label is wrong, and we need somehow to exploit this contextual
information.

One way of incorporating this information is as follows. Foreach labelling, we assume that
each of the scene and model segments being matched does actually have a specific orienta-
tion. There are then in effect two possible labellings to consider for each pair of segments:
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one for when the segments are pointing in the same direction and one when they are point-
ing in opposite directions. We then calculate the support function twice, once for each of the
two possible labellings, now performing calculations on angle measurements modulo 360�

instead of modulo 180�. The larger value of the support function is then assumed to be the
correct one.

Because each pairing of scene and model segments now has two labellings, the amount of
computation could increase fourfold: a separate support function for each labelling has to be
computed, and there are twice as many relations to consider.However, this extra computa-
tional burden can be reduced by a factor of two. Consider again the set of relations between
pairs of line segments that was discussed in Chapter 6:

θ ij

ij
ρ

ψij

j

i

Of the three relation types, this process clearly only affects the angle relation typesθi j and
ψi j. Furthermore we are really only interested in the relative orientations of the particular
scene and model features whose support function is currently being calculated (fOi, αg in
Fig. 8.1), not of the other features that are being used in thecalculation (fO j, βg, fOk, γg
etc.). In the case of the relative direction relationsθi j andθαβ, only the orientation of label
α with respect to objectOi affects the relation values, and not the orientation ofβ with respect
toO j, whereas in the case of the relative orientation measurementsψi j andψαβ, both relative
orientations are relevant. Therefore if we continue to measureψi j modulo 180�, but measure
θi j modulo 360�, only the relative orientations ofOi andα affect the computation and not the
relative orientations ofO j andβ. In other words, when we are calculating the support for the
labellingLα

i , the ambiguities of the orientations of the features involved in other labellings
are no longer relevant. Thus although we still need to calculate the support forLα

i twice,
the two possible relative orientations for the labelling ofthe other objects do not have to be
included in the computation.

This variant is again particularly appropriate if the update rule is not iterated. In the iterated
case, the extra contextual information provided by this scheme is effectively provided by
subsequent iterations.
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8.3 An alternative factorisation of the total probability expres-
sion

In the derivation of the update rule in Chapter 3, the total probability term in (3.4) can be fac-
tored in different ways. The factorisation that leads to thepreferred update rule was shown
in (3.5). We describe here an alternative derivation of the rule using a different factorisation,
based on an early version of the method [38].

Assumption 8.1. The attributes and relations are derived from different measurements (i.e.
there are no attributes of type a0 — Section 3.2); hence the attributes and relations are in-
dependent.

Comment: This in theory excludes the use of weak attributes for which the corresponding
relations are strong, used in the example of Section 2.5, Example 3. In practice, attributes
of typea0 whose errors are dominated by uncertainty in the scene-to-model transformation
can also usually be handled.

Thus in this version, no distinction is made between the two categories of attributes,a0 and
a00. In this version of the algorithm, the total probability term in (3.4) is then factored as
follows:
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The first term can be simplified if further assumptions are made:

Assumption 8.2. The attributes are conditionally independent (see Assumption 3.5., p. 17).

Hence:
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The second term of (8.3) can be further factorised as follows:
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We then make a pair of further assumptions, which we regard asself-evident:
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Assumption 8.3. The probability of labelling L
α
i is only dependent on labelling L

β
j if the

relation ri j is given; conversely, the relation ri j only affects labelling L
α
i if labelling L

β
j is

given.

Hence (8.4) can be written:

Pr
�

L
ω1
1 ; : : : ;L

ωi�1
i�1 ;L

α
i ;L

ωi+1
i+1 ; : : : ;L

ωN
N j ri

�

= Pr
�

L
α
i

�

p(ri) ∏
8 j 6=i

Pr
�

L
ω j

j jL
α
i ;ri j

�

and (8.3) becomes:

p
�

L
ω1
1 ; : : : ;L

ωi�1
i�1 ;L

α
i ;L

ωi+1
i+1 ; : : : ;L

ωN
N ;a;ri

�

=

Pr
�

L
α
i

�

p(ri) p
�

ai jL
α
i

�

∏
8 j 6=i

Pr
�

L
ω j

j jL
α
i ;ri j

�

p
�

a j jL
ω j

j

�

= Pr
�

L
α
i jai

�

p(ai) p(ri) ∏
8 j 6=i

Pr
�

L
ω j
j jL

α
i ;ri j

� Pr
�

L
ω j

j ja j

�

p
�

a j
�

Pr
�

L
ω j

j

� (8.5)

Using this expression in (3.4) and then factorising gives:
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The compatibility coefficient,c(L
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j ;L
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i ) = Pr(L
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j ), can be further expanded

and simplified (using Assumption 8.3. again) in order to express it in terms of known quan-
tities:
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The form of the compatibility coefficient depends on which ofthe labels, if any, are null. We
assume that the non-null relation p.d.f. is unimodal. If forexample it were Gaussian, then
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Figure 8.2: Coefficient values as a function of the scene relation

(using the notation of Section 5.3) it would have the form:
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Fig. 8.2 illustrates a simple example of how the compatibility coefficient might vary as a
function ofri j, showing the different forms whenα or β or neither is the null label. In this
example there is one relation type and three non-null model nodes (i.e. M = 3). When the
model nodeα is not the null node, it has a relation value of 0 with itself, and 1 and 5 with
the other two non-null model nodes. The noise distribution is Gaussian, with a variance of
1/2. The remaining parameters were:ζ = 1=(M+1) = 1=4, andDr = 100. We make some
observations about how the compatibility coefficient varies as a function ofri j:

α 6= /0;β 6= /0: Near the pointri j = Rαβ, the term in the denominator for the labellingLβ
j

tends to dominate, and so the coefficient will tend towards a maximum value which is
less than 1=Pr(Lβ

j ) =M=(1�ζ). Asri j moves away from this region towards another
model relation value, the value will drop away sharply as theneighbouring p.d.f. starts
to dominate in the denominator. Fig. 8.2 also shows that, if the nearest neighbour is
very close, this will push the peak value in the opposite direction

α 6= /0;β =

/0: The maximum value has 1=ζ as an asymptote. The coefficient approaches a
minimum value asri j approaches each of theRαω j ;ω j 6= /0.

α =

/0: Unity.
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Thus the compatibility coefficients formed in this way have some interesting differences
from those derived in Chapter 3:

� They are by definition asymmetrical in the two labellingsL
α
i andL

β
j (from (8.6)) —

they represent the ratio of the probability of the labellingL
β
j , given its relations with

another labellingLα
i , to that without. In other words, they can be viewed as a kind

of elemental support function, indicating the support given by labellingLα
i to the la-

bellingLβ
j .

� They are intrinsically normalised, and thus dimensionless.

� If the supporting label is null (α =

/0), this provides support neither for nor against the

labellingLβ
j , regardless of the labelβ. This “no view” value is unity.

� The converse is not true: if the labelling being considered is the null labelling (β =

/0),
but the supporting one is not, the supporting labellingdoes provide information. If
the scene relationri j is consistent with the null label being in the vicinity of oneof the
non-null labels, the coefficient has a low value, and vice versa. Thus the support for
the null label will be higher if none of the other labels is nearby.

8.4 Excluding the attributes from the iterations

The relaxation rule (4.1, 4.2) derived in Chapter 4 incorporates both attributes and relations
at each stage in the iterated rule. This differs from the earlier version in [13], which incor-
porated only the relations at each iteration. We see no particular merit in this earlier version,
but we include it here for completeness.

The rule was derived as follows. As in the previous section, we assume that there are no
attributes of typea0 (Section 3.2). Bayes rule is applied to the update rule of (3.10, 3.11) in
order to replace the prior probabilities by probabilities conditional on the attributes:
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This rule thus describes how to add relational information only to a set of probabilities that
already contain information of the attributes, and thus canbe used as an iterative rule of the
form:
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The probabilities are initialised by applying Bayes rule once more:
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Chapter 9

Evaluating the performance of the
matching algorithm

We fist consider some ways in which the performance of the matching algorithm might be
assessed. We then discuss examples of three different applications of the algorithm. The
first is the road matching example used earlier (Chapters 1, 6, 7). This application is used
to demonstrate the convergence rate of the algorithm, and also to test its sensitivity to the
parameter values and to scaling errors. The second is a stereo matching example, and the
third is an application to establish the correspondence between an image and a 2-D projection
of a 3-D model.

9.1 Evaluation of the match accuracy

When using the algorithm as a component of a larger machine vision application, it is im-
portant to be able to estimate the quality of the result in some way. There are three useful
heuristic indicators: the distance between correspondingfeatures once the scene-to-model
transformation has been determined, the amount of support for the MAP labellings, and the
number of null matches.

Distance between corresponding segments

Once the MAP labellings have been determined, the scene-to-model transformation is de-
termined by performing a least-mean-square fit between the corresponding features. From
this calculation it is also possible to find a measure of the average distance between matched
pairs of features. At present a heuristic approach is taken,using just the centre of gravity of
the features.
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Labelling support

Let us look again at the support function (4.1) for the labelling L
α
i defined in Section 4.3:
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On convergence (i.e. asn!∞), each objectO j will have one label, the MAP label, for which

the probability Pr(∞)(L
ωMAP

j

j ) should equal unity, and the remaining labelling probabilities
should have a value of zero. Thus there is just one non-zero term in the summation in the
above expression, which can be rewritten:
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We assume that each of the (non-null) distributions involved is unimodal, with maximum
corresponding to an exact match. The maximum possible valueof this MAP support func-
tion can readily be calculated. The ratio of the actual valueto this maximum, averaged over
all the scene nodes, gives a measure of the goodness of fit of the overall result.

Number of null matches

Where good labellings cannot be found, the algorithm usually assigns the null label. Thus
an abnormally large number of null labels usually indicatessome problem with the over-
all match. The drawback with this indicator is that experience is required in the particular
application in order to be able to judge how many null matchesare acceptable.

9.2 Road matching

We tested the algorithm on a series of 19 aerial images (Fig. 9.1) that were extracted from
a larger image, which mostly consisted of a suburban road network. A relaxation algorithm
that detected intensity ridges (based on [29]) was used to locate the roads, to which line seg-
ments were fitted using a least-mean-square fit algorithm. These line segments are clearly
undirected (in the sense of Section 6.2.5). All of the imagescorresponded to locations on the
same map, reproduced in Fig. 9.2. The image size was chosen inorder to give the feel of a
typical navigation problem: the image is significantly smaller than the map, and the task is to
find the position and orientation of the image with respect tothe map. The orientation of the
images was not assumed to be given, while the image and model scales are closely matched;
the unknown transformation can therefore be assumed to be Euclidean, with no attributes
and three relation types (Section 6.2.2). All image and map segments shorter than 8 pixels
were discarded. The noise model used the covariance matrix method of Section 6.2.2.

The correct position and orientation of the image with respect to the map are known in these
tests, so the match accuracy can be found from the mean position and orientation of the
matched segments. The algorithm generated consistent matches for all 19 images, and all
were correct except for image 17. Unfortunately in this casean incorrect, but highly plausi-
ble, match was found instead of the correct one (Fig. 9.3). Inthe figure, the incorrect labels
are shown as dark segments, and the correct position of the image is also indicated.
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Figure 9.1: The 19 test images, with line segments superimposed
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Figure 9.2: The map

(a) image 17

Correct position for image

(b) Map, showing incorrectly-labelled segments

Figure 9.3: Map showing incorrect labelling for image 17
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9.2.1 Convergence rate

The number of iterations needed are shown in Table 9.1. A goodmatch is defined as one for

Fig. 1 2 3 4 5 6 7 8 9 10
iterations for good result 1 1 1 2 32 2 3 2 3 2
iterations for final result 2 2 3 2 33 4 4 3 5 3

Fig. 11 12 13 14 15 16 17 18 19
iterations for good result 2 2 1 3 2 2 2 2 2
iterations for final result 3 11 3 4 2 2 3 3 2

Table 9.1: Number of iterations required for convergence

which all the labels are basically “correct”, except that perhaps one or at most two are incor-
rectly matched to the null node. The algorithm was terminated when each MAP labelling
probability had a value of at least 0.9999. When the final labelling is reached, typically the
null labels are replaced by the correct ones; also a non-nulllabelling may change in cases
where there is a choice of good labels. The result for image 5 deserves further comment.
There were some spurious scene nodes and missing model nodes; also some of the scene
nodes were poorly orientated with respect to their correct label segments. All of the seg-
ments were labelled as null until the 32nd iteration.

9.2.2 Sensitivity to parameter values

In this application four parameter values are needed: the null match p.d.f. value, the prior
probability of a null label and the two variances associatedwith the position of a segment
endpoint. A rationale for the calculation of default valuesfor each one has already been
discussed; however it is not obvious that the values generated will always be very precise.
We accordingly examine the sensitivity of the labelling result to each of them in turn. In
each case, the default values are used for the remaining parameters. We used image 9 for
the tests; for this image the default values of the parameters generated one (genuinely) null
label, corresponding to a missing model feature.

Null p.d.f. value

Since there are no attributes in this instance, we are concerned only with the value of the
relation null p.d.f. This is given by 1=Dr, whereDr is the size of the relation space (Sec-
tion 5.2.3). There are two angle relations,θ andψ, and one distance relationρ (Section 6.2.2).
The modification of Section 8.2 is used, soθ has a range of 360�, while ψ has a range of
180�. The image is square, with side 60 pixels, soρ has a range of 60 pixels. HenceDr =

360� 180� 60, and its reciprocal gives the default p.d.f. value. This is the default value
used to generate the results in Table 9.1.

We would expect the null p.d.f. value primarily to affect thenumber of null labellings. In
order to test the sensitivity of the algorithm to this value,we multiplied the default value
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multiplier for null p.d.f. value 0.001 0.01 0.1 0.5 1 2 � 5
no. of null matches 1 1 2 2 2 2 all

no. of iterations for final result 2 2 4 4 5 9 1

Table 9.2: Variation of labelling withDr

by a range of factors, the results being shown in Table 9.2. The results suggest that the
default p.d.f. value is on the borderline of the range of goodvalues, and that a lower value
would be safer. The value used as the default was based on the scene parameters; using the
model parameters would give a lower value for the p.d.f. Otherwise the algorithm is very
insensitive to this parameter.

Null label prior probability ζ

The default value for this parameter (Section 5.1) is 1=(1+M), whereM is the number of
non-null labels; in this example,M = 161. We used the same image (image 9) for this test,
so that the default value ofζ generated one null label, as before. Again, we would expect
the value ofζ primarily to affect the number of null labellings. The results were surpris-
ing: values ofζ up to 0.95 gave identical results to the default value of 1/162, with two null
labels. Settingζ to zero forced all labels to be non-null — inevitably, because from the up-
date rule (4.2), once a labelling probability has a zero value, it will remain at zero. A nearby
(but incorrect) segment was selected instead. Similarly, settingζ to one forced null labels
throughout.

Variances of the segment endpoint position, σxx and σyy

When calculating the default value forσxx, the errors of the segment endpoints along the
segment,∆ax and∆bx, were assumed to be uniformly distributed over the range�1=2l (see
Section 6.3). A range of values either side of this default value was then tested (Table 9.3).
In all cases, the non-null matches were good ones; in the casefor which there were no null

multiplier for σxx � 0:03 0.1 0.3 1 3 10 30 100 � 300
no. of null matches all 6 4 2 1 1 1 0 all

iterations for final result 1 10 6 5 3 6 6 141 1

Table 9.3: Variation of labelling withσxx

matches (multiplier = 100), the scene node that should have been labelled with the null node
was labelled with a plausible non-null model node. It appears from the table that the default
value is roughly in the middle of the usable range of values, and that the actual value chosen
is not very critical.

A subjective examination of image 9 suggested that a reasonable value forσyy would be in
the region of 1 pixel2. Values either side of this were tried, and the results shownin Table 9.4.
Again, the algorithm seems to be tolerant to a reasonably wide range of values.
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σyy � 0:02 0.05 0.1 0.2 0.5 1 2 5 10
no. of null matches all 9 9 5 3 2 2 1 all

iterations for final result 1 16 4 6 7 5 5 4 1

Table 9.4: Variation of labelling withσyy

Some general comments are in order concerning the variance values, which are illustrated
by the above results. For both variances, using too small a value restricts too severely the
permitted degree of misalignment between scene and model; this causes null labels to be
chosen, as might be expected. When large values are chosen, the non-null p.d.f.s become
broader, with a lower peak value. There are two consequencesof this:

� because the p.d.f.s are widened, they lose their discriminatory power, which may cause
slow convergence, and

� once the peak values of the p.d.f.s are lower than the value ofthe null p.d.f., null labels
will necessarily be chosen.

9.2.3 Sensitivity to scaling errors

Here we examine the sensitivity of the method to scaling errors, and test the effectiveness
of modelling the scaling error as noise as described in Section 6.2.3. For this experiment,
the map was misscaled by a range of factors. Segments that were shorter than 8 pixels in the
scaled map were discarded. Default values for all of the parameterswere used. The results
are shown in Table 9.5, indicating the performance of the algorithm both with and without

scale � 0:4 0.5 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.5
with extra term no yes yes yes yes yes yes yes yes nullgood match?

without extra term no no no yes yes no no null null null
iterations for with extra term 5 7 4 3 2 3 3 14 43 1
final result without extra term 13 7 4 4 2 20 21 1 1 1

Table 9.5: Variation of labelling with scaling error

the extra term in the relation distance variance. Note that,if the map scale factor iss, a value
of j1� sj is used for the factorε of the extra variance term. These results indicate that, by
incorporating the extra term for the unknown scale error in the distance error variance, the
range of unknown scale factors that the algorithm can tolerate is significantly increased. Asε
is increased, the results indicate that more iterations areneeded. This is to be expected, since
the effect is to degrade the more distant relations, which means that more iterations will be
needed to spread the contextual information across the whole scene (c.f. the first termination
condition in the list in Section 4.3, p. 21).

9.3 Stereo image matching

For this application we used a stereo pair of images of an office scene, each image measur-
ing 246 by 246 pixels. The edges in the two images were detected and fitted with directed
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straight line segments. We assumed that the two images have the same orientation, so that
the segment orientation was used as an attribute, with a standard deviation of 5�; there were
therefore two relation types (Section 6.2.3 — “Unknown translation”). We were not able to
exploit the epipolar constraint with the method as it stands; instead we assumed that the fea-
tures in one image were within 40 pixels horizontally and 20 pixel vertically of the features
in the other image; this information was used to prune the labelling sets (Section 7.3). Line
segments less than 6 pixels long were discarded. The left-hand image, which contained 229
segments, was used as the model and the right-hand one, with 238 segments, as the scene.
We increased the prior probability of a null labellingζ to 0.25 to reflect the greater likelihood
of null matches.

Fig. 9.4 shows a typical result of the matching of the stereo image pair. Note that the algo-
rithm permits more than one scene node (the right-hand imagein this case) to be matched to
the same model (left-hand image) node. Here corresponding line segments in the two images
are indicated by white lines; black lines correspond to those that remained unmatched. We

(a) (b)

Figure 9.4: Matching edge segments from a stereo pair of images

had no ground truth for this problem, but we were able to identify only one or two incorrectly-
matched segments. In particular it is worth noting that the segments that constitute the extra
window panes in the right-hand image are not matched (which is correct). However the ex-
tra picture that appears on the wall in the left-hand image is(in part) incorrectly matched to
the middle of the three pictures in the right-hand image.

9.4 3-D to 2-D matching

This example was a simulation of a typical underwater inspection task in the offshore petroleum
industry. The structure being inspected was a scale model ofpart of a typical offshore oil rig



9.4. 3-D to 2-D matching 69

jacket (Fig. 9.5), for which a 3-D CAD model was provided.

Figure 9.5: Scale model of jacket

In real life, the camera would be mounted on an underwater remotely-operated vehicle (ROV).
Because the ROV is moving, both under its own power and under the influence of unknown
currents, the pose (position and orientation) of the ROV with respect to the jacket is nor-
mally difficult to ascertain accurately. The task here is, byusing an initial rough estimate of
the ROV position, to establish the correspondence between the image and the model, and
thereby to generate a more accurate estimate of the ROV position. The procedure was as
follows:

1. Using the initial guess of the camera pose, project the cylinder edges from the 3-D
CAD model onto the image plane as a set of directed line segments.

2. Extract the cylinder edges from the image in the form of a set of directed line segments.

3. Establish the match between the two sets of segments.

4. Using a gradient descent method, with a cost function based on the mismatch between
the segment pairs, iteratively refine the camera pose.

We used the matching algorithm to implement Step 3. It is relatively easy to establish that the
camera is upright, so we were again able to use the segment orientation as an attribute, with
two relations as in the previous example (Section 9.3). Because corresponding segments
were disparate in length, it was found to be useful to break them up into shorter segments,
of length roughly corresponding to the cylinder diameter.
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An example is shown in Fig. 9.6. In Fig. 9.6(a), the image is shown with a projection of
the model superimposed; this projection was made using the initial estimate of the camera
pose. In Fig. 9.6(b) the model is again projected onto the image, this time using the updated
camera pose generated by the system.

(a) initial projection (b) final projection

Figure 9.6: Projections of the model onto the image
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Implementing the matching
algorithm

At the time of writing, the algorithm exists in the form of a pair of C programs:

gf2arg - generates an attributed relational graph from a set of geometric features. It will
optionally generate the corresponding sets of covariance matrices.

matcher - from the scene and model graph, generates a list of objects with their correspond-
ing labels.

Other utilities are also available to assist the visualisation of the results, including:

find where - uses a least-mean-square algorithm together with the label correspondences to
fit the scene features to those of the model. Hence it finds the position and orientation
of the scene w.r.t. the model.

xgf, xmgf - two utilities, each of which can create a display of geometric features optionally
overlaid on a background image. Between them, they were usedto create most of the
figures in this thesis.

The complete labelling algorithm can be summarised by the following steps:

1. Using knowledge of the available measurement types and ofthe scene-to-model trans-
formation, select the attribute and relation types appropriate to the problem (Chap-
ter 2).

2. From the model features, calculate the model attributes and relations.

3. From the scene features, calculate the scene attributes and relations.

4. If the method of Section 6.2.2 is being used, use the scene noise model together with
knowledge of the scene-to-model transformation to generate the attribute and relation
distributions; otherwise estimate them.

71
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5. Evaluate the attribute and relation p.d.f. terms,p(aijL
α
i ) andp(ri jjL

α
i ;L

β
j ), using the

methods of Chapters 5 and 6. We assumed a Gaussian distribution for the non-null
p.d.f.s.

6. Set iteration countern= 0. Initialise the probabilities Pr(0)(Lα
i ), using the prior proba-

bilities whose values are determined from (5.1) by the method described in Section 5.1:

Pr(0)(L
α
i ) = Pr(L

α
i ) (10.1)

7. For each label of each object, compute the support function (4.1):
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8. For each label of each object, find the updated probabilityP(n+1) of the match (4.2):

Pr(n+1) �L
α
i

�

=

Pr(n)
�

L
α
i

�

Q(n)
�

L
α
i

�

∑
ωi2Ωi

Pr(n)
�

L
ωi
i

�

Q(n)
�

L
ωi
i

�
(10.3)

9. Using one or more of the termination criteria from Section4.3: if, for each objectOi,
the termination criteria are satisfied, go to step 10; otherwise increment the iteration
countern and go to step 7.

10. For each objectOi, choose the labelling that has the highest probability.

The flow of data through the algorithm is shown in Fig. 10.1.
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Chapter 11

A comparison of the method with
other graph matching techniques

The graph matching problem is an important one in computer vision, and many workers have
described a multitude of different methods over the years. We briefly discuss some of these
methods, and then discuss the relationship between our method and those other methods that
are more closely related to it.

11.1 A review of labelling methods

The matching problem has been approached in many different ways in the computer vision
literature [2, 3, 6, 9, 10, 11, 20, 23, 24, 27, 28, 49, 52, 54, 58, 60, 63]. The early attempts,
still widely popular, are based on graph search methods. These techniques generally rely on
heuristic measures to reduce the complexity of the inherently NP-complete search problem
to a more manageable level. More recent are the efforts basedon energy minimisation using
simulated annealing [1, 26, 35], mean field theory [25] or deterministic annealing [7, 8, 31,
41, 61], neural networks [53], and relaxation labelling [4,5, 20, 22, 24, 33, 45, 46, 50, 57].

The relaxation labelling approach in particular has the advantage that it replaces the basic
NP-complete search method with one of polynomial complexity. Although probabilistic
relaxation has been shown to offer a very effective method for attributed relational graph
matching, its foundations and consequently the relaxationprocess design methodology are
heuristic. The work of Kittler and Hancock [40, 29], directed towards theoretical underpin-
ning of probabilistic relaxation using a Bayesian framework, proved very successful. It led
to the development of an evidence-combining formula which fuses observational and prior
contextual information in a theoretically sound manner. The polynomial combinatorial com-
plexity has been reduced even further using the concept of a label configuration dictionary.
Unfortunately, the methodology is applicable only to low level matching problems such as
edge or line postprocessing. The main reason for this limitation is that, after the initialisation
stage, in which observations are used to compute the initialnoncontextual probabilities for
the object labellings, the process does not make use of the measurements.

75
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Some workers have attempted to remedy this problem by heuristic means. Yamamoto [62]
used an information-theoretic approach to derive a compatibility measure from relational
measurements, and then from this measure generated by heuristic means compatibility coef-
ficients to fit the relaxation method of Rosenfeldet al. [50]. Li [42] incorporated relational
measurements into compatibility coefficients which figure in his probability-updating for-
mula. In this way he overcame a major criticism of the probabilistic relaxation approach
in [40], as measurements are used in all stages of the iterative process to encourage a consis-
tent labelling. However, his solution retained the heuristic framework of probabilistic relax-
ation as introduced by Hummel and Zucker [33]. In particular, the compatibility and support
functions are specified heuristically.

There is a similarity between the structure of the probabilistic relaxation algorithms and some
neural network algorithms [30, 36, 47]. In [14] the authors explicitly draw a parallel between
perceptron-based neural networks and the method describedhere; this parallel is summarised
in Section 11.3.

In our approach, the MAP rule was developed into a method for assigning probabilities to
the labellings; a heuristic decision was then made to iterate this rule to achieve a consistent
result. We offer no proof that a consistent solution will be obtained, although we find that in
practice it is. There have however been some attempts to place the relaxation aspect of the
labelling problem on a sounder theoretical footing. For instance the method of Hummel and
Zucker [33] was shown to lead to a consistent solution (albeit using a different definition of
consistency). However, the form of their update rule and support function are different from
ours, and in practice converges much more slowly (see [42]).Recent work by Stoddartet
al. [55, 56] show how methods similar to ours can be cast as optimisation problems.

11.2 Comparison of this method with other relaxation methods

In this section we compare our method to those of other workers, in particular to the methods
of Kittler and Hancock [40], Rosenfeld, Hummel and Zucker [50], Hummel and Zucker [33]
and Li, Kittler and Petrou [43].

The derivation of our method is similar in principle to that of Kittler and Hancock, with
the important difference that we include binary as well as unary information. In both cases
a MAP probability is sought, and in both cases the support function is initially derived in
the form of a multiple summation of a product, which is of exponential complexity (equa-
tion 3.11 in our case). In [40], this problem is resolved in one of two ways: either the model
is sufficiently small that a dictionary method may be used, orit is assumed that the neigh-
bouring nodes that interact directly with a given node are independent of each other, which
enables the factorisation of the support function. With ourmethod, the inclusion of the bi-
nary information leads to a form of the support function which can be factorised without the
need for any further assumptions; this means that we can apply it to large problems in which
each node interacts with all of the other nodes. In this factorised form our support function is
then in a similar form to that derived in [40]. This type of product-of-sum support function
has also been derived, using different approaches, by several other authors [34, 39, 44, 64].

If we compare our updating rule (4.2) with that proposed by Rosenfeldet al., we can see that
they are of the same form (our support functionQ being related to their support functionq
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by Q = 1+q), although the form of the support function (4.1) is different. However we can
show that their method is the limiting case of our method if weassume that the contextual
information conveyed by the binary measurementsri j is small, and if there are no attributes.1

From the discussion of compatibility coefficients in Section 5.3, we may normalise the p.d.f.
in (4.1) without affecting the overall result; thus we may put
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Substituting (11.3) into (11.1), we obtain:
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which, on expanding the product and ignoring second and higher order terms, becomes
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Thus if theπs in this form of the support function are equivalent to the weighted correlation
coefficients of Rosenfeldet al., we can see that the two methods are equivalent. In prac-
tice however, the p.d.f.p(ri j jL

α
i ;L

β
j ) is likely to have variances that are small compared

to the range of the corresponding measurements, with correspondingly large peak values

and rapidly diminishing tails (section 5.2.1); therefore the assumption thatjπ(Lα
i ;L

β
j )j �

1Alternatively, attributes could be incorporated in the initialising of the probabilities, as described in Sec-
tion 8.4.
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1 is not valid. Attempts to use the method by scaling down theπs were not satisfactory:
matches were more frequently incorrect than those obtainedusing the support function of
equation (4.1), and the number of iterations required for convergence was typically greater
by about one order of magnitude.

There is another important difference from the work of Rosenfeld et al and especially also
from that of Hummel and Zucker [33]: the compatibility coefficients used by these authors
were symmetric with respect to their arguments, while thosethat we have derived in general
are not (see Chapter 6). Thus in our method the matchL

α
i does not necessarily give to match

L
β
j the same support as the latter gives to the former. Hummel andZucker showed that the

updating scheme using symmetrical coefficients is equivalent to the optimisation of a global
cost function. The asymmetry of our compatibility coefficients implies that this equivalence
does not apply in our case.

The method of Liet al. uses a similar form of support function to that of (11.6), andtheir
compatibility coefficientsπ are similar, although they are derived heuristically. The updat-
ing rule is a modified form of the projected gradient algorithm of Hummel and Zucker. From
the analysis earlier, it is clear that the approach of Liet al. corresponds to the case of low con-
textual information. This assumption clearly does not hold, since once again the variances
of the distributions they used are small. Also their scheme needed many more iterations to
converge (typically 30 – 50), whereas our scheme reaches a stable solution typically within
a couple of iterations.

11.3 Comparison of this method with the neural network approach

Neural networks have often been used in labelling problems.However, from our point of
view, they have two significant drawbacks: they usually require a long training period, par-
ticularly for problems with many features, and their design, in terms of the number of nodes
needed and the form of activation functions, is largely heuristic. In [14] it was shown how a
MAP labelling algorithm could be represented in terms of traditional neural network compo-
nents. The particular form of the algorithm used for the comparison was the variation of our
method described in Section 8.4, in which the probabilitiesare initialised with values that
are conditional on the attributes. In the neural network representation, the algorithm takes
the form of a perceptron-based network, and explicitly indicates the number of nodes needed
and the form of the activation functions. The architecture is shown in Fig. 11.1. The evalu-
ation of the support function in the labelling algorithm is represented as the two perceptron
layers in the network. The inputs on the first iteration are the probabilities conditional on
the attributes. The compatibility coefficients, which contain the scene and model relational
information, form the weights in the first layer. This is similar to a traditional perceptron de-
sign, in which the model information is contained in the weights; the difference is that these
weights no longer have to be learnt, but are given by the theory. The form of the activation
functions is no longer heuristic; they are logarithmic and exponential for the first and second
layers respectively. There is also a final auxiliary layer that provides a normalisation func-
tion to ensure that the labelling probabilities sum to unity. These probabilities are then fed
back to the input layer if the iterative version of the algorithm is used.
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An alternative neural net representation was also briefly explored; this version is shown in
Fig. 11.2. For simplicity, the attribute information is notincluded in the figure. Again two
layers of perceptron-like nodes are used to calculate the support functions. This time the la-
belling probabilities are represented as the weights of thefirst layer, and the scene and model
measurements in the form of compatibility coefficients constitute the input. The weights are
therefore initialised either by the prior probabilities, if the standard MAP rule is used (Sec-
tion 3.2), or by the probabilities conditional on the attributes if the scheme of Section 8.4 is
used. Thus the weights no longer contain the model information; in this respect this repre-
sentation has perhaps more in common with the Hopfield model [32]. The auxiliary layer
and exponential activation function of the representationof Fig. 11.1 are now implicit in the
mechanism that uses the support functions of the output to update the weights of the first
perceptron layer. The outputs on convergence in this case are not binary; rather they give an
indication of the relative supports for the set of labellings. In practice however, after iterat-
ing, one labelling support will usually significantly dominate the others.

In Fig. 11.2, the network for a single object is shown. In the standard version of the algo-
rithm, in which the probabilities for all the objects are updated simultaneously, this network
would have to be replicated for each object. On the other hand, if the asynchronous updating
scheme of 8.1 is preferred, a single copy of the network is sufficient, but the process must
be iterated for each object.

The representation of Fig. 11.2 could be extended to includethe explicit generation of the
compatibility coefficients by means of a layer of radial basis functions.
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Chapter 12

Discussion

12.1 A review of the method

In this work, we have developed an algorithm for matching two-dimensional structures com-
posed of geometrical features. We found that the method is reliable, rugged, computationally
efficient and readily parallelisable, and for many applications has no arbitrary parameters to
adjust.

The algorithm requires the following inputs from the user: the scene and model feature mea-
surements, the total possible range of the scene measurements (for the null p.d.f. values) and
the distributions of both the scene measurement errors and the uncertainty in the scene-to-
model transformation. Provision of the feature measurements in a suitable form is usually
straightforward. The scene measurement range was deduced from the image size and the
type of feature being extracted.

The distributions in principle present more of a problem. The measurement error distribution
depends in turn on knowledge of both the feature extraction process, which may be awkward
to analyse, and the noise model of the original imaging process, which may be difficult to
obtain. The transformation error distribution may also be awkward to calculate. Process-
ing the distributions to obtain the required attribute and relation distributions is also usually
complicated. In the applications that we have tried so far, we assumed that the attribute and
relation distributions were Gaussian; some estimate of themeasurement variances had there-
fore to be provided in order to compute the variances and covariances. When attributes were
used, a cutoff value for the attribute distribution was alsoprovided to reduce the number of
potential labellings.

The power of the method ultimately stems from two basic decisions. The first was to use
the Maximum A Posteriori probability rule (the MAP rule) to determine the correct object
labelling. The MAP rule required the direct expression of the measurement information; this
in turn led us to the second decision: to express the information in terms of relations based
on measurements from pairs of features, which enabled us to disentangle the errors due to
measurement noise from the uncertainty in the overall relationship between the scene and
model measurements.

83



84 Chapter 12. Discussion

The MAP rule

The use of the MAP rule required the evaluation of posterior match probabilities. Because
the values of these probabilities were not known directly, Bayes’s rule was then used to ma-
nipulate them into a form that consisted of quantities that could be computed. In this way,
a relaxation rule was created for which all of the terms had a direct physical interpretation,
with the consequence that a methodology to evaluate them wasapparent. The result is an
algorithm that requires no arbitrary parameters to be supplied; for those parameters that are
required, a methodology is provided to calculate them either from the process that generated
the features from the scene or from properties of the original scene itself.

Use of binary relations

There are two types of unknown quantity in the matching problem: the measurement noise
and the uncertainty in the transformation between scene andmodel. The measurement noise
is likely to be substantially independent between the various scene features, whereas the
transformation uncertainty is highly correlated. Indeed for many applications the latter can
be represented by two or three parameters; these two types ofunknowns therefore need to be
disentangled. Because the transformation uncertainty canbe so concisely represented, it is
often possible to find measurement quantities that are invariant to it, and this is the approach
taken in this work. The elementary (unary) measurements do not usually have the required
invariance; instead measurements from combinations of features (i.e. relations) were used
that were found to have the required invariance. The number of features involved in a rela-
tion should be as low a possible, because the computation time (in the worst case) increases
exponentially with this number. For many applications, a set of binary relations (i.e. based on
pairs of features) could be found that were essentially invariant to the transformation while
still adequately representing the structure of the scene and model features. This work was
therefore restricted to such binary relations.

We conclude by summarising the principal benefits of the method:

� the derivation of the update rule from the Maximum A Posteriori probabilities indi-
cates how all of the terms in the rule are to be evaluated;

� the algorithm is tolerant of measurement errors, the presence of spurious scene fea-
tures and the absence of model features;

� a noise model for the measurements is explicitly included; and

� the algorithm converges significantly faster than many relaxation methods, often only
needing two iterations, and usually generates a consistentresult after a single iteration.

12.2 Philosophers’ Corner

Clearly no thesis that is to be submitted for the degree of Doctor of Philosophy is complete
without some philosophical discussion. In our case, the discussion topic is (briefly) on the
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various interpretations of the term “probability” and hence on the justification of the way in
which we assign values to probabilities in this work. There are a number of fervently-held
but differing views as to what a probability actually is, although the three basic axioms of
probability are accepted by all of them. In [59], Weatherford identifies four broad classes of
interpretation that are widely held:

The classical view: This view can only cope with situations in which there is some“atomic”
set of events which are finite in number, mutually exclusive and assumed to be equiprob-
able. The probability of each outcome is then the reciprocalof the number of possible
outcomes. The probability calculus then enables us to assign values to various com-
binations of these outcomes. Particularly importantly from our point of view, it em-
braces the Principle of Indifference (or the Principle of Insufficient Reason): any two
events are to be considered equiprobable if we have no means of deciding which is the
more probable. Thus if we are tossing a coin, we assume that the coin is fair, with a
probability of 1/2 for each outcome. Even if we know the coin is not fair, unless we
know more about its imperfections, we still assume an equiprobable outcome.

The relative frequency view: This is perhaps the most commonly-taught view. In this view
some experiments are made; the probability of a particular outcome happening is then
defined as the ratio of the number of actual such outcomes to the total number of ex-
periments, as the number of experiments tends to infinity. Ofcourse we can never con-
duct an infinite number of experiments, so in practice the number has to be sufficiently
large to satisfy some criterion. Thus for the coin-tossing experiment, accurate prob-
ability values can be found regardless of the fairness of thecoin, provided of course
that the coin does not wear out in the process.

The a priori view: This view was a development of the classical approach, but attempts to
enlarge in a rigorous manner the range of situations that canbe handled, beyond those
covered by the classical approach. It defines probability as“a measure of the logi-
cal support for a proposition on given evidence” [59]. The associated theory attempts
to generate useful probability values even when only a smallnumber of experiments
have been performed. It does however appear to make harsh judgements about the
fairness of the coin if a small number of tosses all produce the same outcome.

The subjective view: In this view, a probability value is what a particular individual be-
lieves it to be. Thus it is clearly related to the way people place bets. If I know the
person tossing the coin well, I might make my own mind up aboutthe likely outcome,
particularly if there is money involved.

The labelling algorithm can be viewed as the combining of a set of probabilities (the prior
probabilities), with a set of measurements which are instances of some random variables,
to create a further set of probabilities (the posterior probabilities). Thus to implement the
algorithm, in addition to providing the measurements, we have to assign values to the prior
probabilities, and also establish the distributions of therandom variables. Deciding what dis-
tribution to use is in effect assigning relative values to the probabilities of all of the possible
values of the corresponding random variable. We discuss these two probability assignments
in turn.
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Prior probabilities

When we assign values to the prior probabilities (Section 5.1), we make (in general) two
assumptions. We take some view of the likely proportion of null matches (i.e. we make a
guess) in order to assign a value to the prior probability of anull match. This seems to cor-
respond to the subjective view of probability. We then use the Principle of Indifference to
assign equal values to the remaining probabilities, which clearly corresponds to the classical
view.

Probability distributions

Distributions have to be established for the scene attributes and relations, and possibly for
the scene-to-model transformation. For attributes and relations, there are two types of dis-
tributions (Chapter 5): those that involve a null match and those that do not:

Distributions involving a null labelling: We argued that a uniform distribution was appro-
priate, largely on the basis once again of the Principle of Indifference. In this case, as
we are dealing with a random variable of the continuous type,we are looking at a lim-
iting case of what the classical view can handle, and use arguments that perhaps more
properly belong to the subjective approach.

Distributions not involving a null labelling: Here we argued that the precise distribution
to be used could be estimated from knowledge of the feature extraction process, push-
ing the problem further back up the processing path to some point outside the range of
the discussion here. What we actually did in practice was to assume a Gaussian dis-
tribution, as this was felt somehow to fit in with what was observed from a subjective
examination of typical images. Thus in practice we are clearly in the subjective camp
again.

Thus we see that the justification for assignment of probability values is largely based on a
combination of the classical and subjective views. Clearlywe are not performing any ex-
haustive randomised experiments to determine the values, so the relative frequency view in
particular isnot relevant here. We argue that in all four views have their place, depending
on the particular problem; no one of them has an intrinsic “rightness” that some of their pro-
ponents would claim. We take the modest successes so far of our labelling method to add
weight to this view.

12.3 Future work

There are inevitably many ways in which the work described here can be extended, and the
following suggestions by no means form a complete list.
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Theoretical analysis

More theoretical underpinning is needed, particularly in assessing the effect of some of the
independence assumptions, and in establishing the convergence of the iteration scheme. Some
work on the latter aspect has been undertaken by others [55, 56]. If the relation of the scheme
to optimisation methods were better understood, perhaps a more rigorous approach could
be taken to the decision of when to stop iterating. At present, one or more of the heuristic
schemes of Section 4.3 is used.

Attribute and relation types

The types of attributes and relations used at present, particularly the latter, were chosen on a
fairly arbitrary basis — they seemed reasonable. A methodology is needed to establish the
relative merits of different choices. Alternatively, for computational efficiency, it would be
desirable to use a set of relations that had a diagonal covariance matrix.

Higher-order relations

When modelling uncertainties in the scene-to-model transformation, we attempt to select re-
lations that are invariant to the transformation. Because we only consider binary relations at
present, the method is limited to transformations to which these binary relations are invari-
ant (or approximately invariant). For example in the case ofline segment matching, we are
in principle limited to an unknown Euclidean transformation. If higher-order relations (par-
ticularly ternary) could be incorporated without undue extra computational cost, the range
of applications could be considerably extended.

Extension to “21
2-D” problems

If the use of higher-order relations is infeasible, we may beable to represent the transforma-
tion uncertainties as noise. A simple example of this was theincorporation of small scaling
errors in Section 6.1. In the applications of Chapter 9 that have a three-dimensional aspect,
the method currently ignores the 3-D aspect and treats the problem as one of straightforward
2-D matching. Thus in the stereo matching example (Section 9.3), the effect of the epipo-
lar constraint on the possible feature misalignment was ignored. Similarly, in the example
of Section 9.4 where image features were matched to a 3-D model for which the projection
parameters are known approximately, no account was taken ofthe manner in which these
parameters propagate through the projection process. In both cases, if the parameters are
known approximately, it should be possible to model their uncertainty as part of the scene
feature measurement errors.

Improved feature extraction

In a typical machine vision application, the matching algorithm will form just one of many
components that make up the system. The algorithm is only as good as the measurement
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information that goes into it, and so applications of this method would benefit if more effort
were spent on developing improved methods of feature extraction. One might say that the
purpose of feature extraction is to reduce the amount of datain the original image to man-
ageable proportions. At the same time, it is important that the minimum possible amount of
useful information is lost in the process. If we look at the road matching examples of Fig. 9.1,
the representation as line segments is crude, to say the least. In particular the curvature in-
formation has been largely lost, and the roads are broken in arbitrary places. In the stereo
example of Fig. 9.4, edges are also from time to time broken inthe wrong places. These
sort of effects represent a degradation of the features, which puts a corresponding burden
onto the matcher. The work of Sha’ashua and Ullman [51] deserves further investigation in
this respect. A wider range of feature types could also be examined, including in particular
corners and junctions.

Feature quality

In the feature extraction process, it would be useful if it were possible to assess the “quality”
of the features. This information could be used both to improve the assessment of the prior
probabilities (particularly that of the null labelling), and also to improve the measurement
noise modelling.

Improved evaluation of the labelling accuracy

Again regarding the algorithm as a system component, it is important that the algorithm
should attempt to indicate whether the feature correspondences were likely to be the “cor-
rect” ones. At present this is done by examining the overall fit of the matched features using
a heuristic least-mean-square approach, and reporting theoverall mismatch. The number of
null matches obtained and the mean support in practice also give useful information about
the quality of the result. A more rigorous approach would be preferable.

Comparison of performance with other methods

As was discussed in Chapter 11, there are many different methods of feature matching. It
would be instructive to compare quantatively the performance of the present method with
other, more established methods, particularly in respect of robustness, computational com-
plexity and ability to deal with a wide range of applications.
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