Structural measures for multiplex networks

Federico Battiston, Vincenzo Nicosia and Vito Latora

School of Mathematical Sciences, Queen Mary University of London

Mathematics of Networks 2014 - Imperial College London, Sept. 10, 2014

- General formalism for multiplex networks
- Measures to characterise the multiplexity of a system
 - Basic node and link properties
 - 2 Local properties (clustering)
 - 3 Global properties (transitivity, reachability, centrality)
- Validation of all measures on a genuine multi-layer dataset of Indonesian terrorists

A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers.

- Node index i = 1, ..., N
- Layer index $\alpha = 1, ..., M$

General formalism for multiplex networks

A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers.

- Node index i = 1, ..., N
- Layer index $\alpha = 1, ..., M$

For each layer α :

- lacksquare adjacency matrix $A^{[\alpha]} = \{a_{ii}^{[\alpha]}\}$
- node degree $k_i^{[\alpha]} = \sum_i a_{ii}^{[\alpha]}$
- $\sum_{i} k_{i}^{[\alpha]} = 2K^{[\alpha]} \qquad K^{[\alpha]} \text{ is the size of layer } \alpha$

A multiplex is a system whose basic units are connected through a variety of different relationships. Links of different kind are embedded in different layers.

- Node index i = 1, ..., N
- Layer index $\alpha = 1....M$

For each layer α :

- adjacency matrix $A^{[\alpha]} = \{a_{ii}^{[\alpha]}\}$
- node degree $k_i^{[\alpha]} = \sum_i a_{ii}^{[\alpha]}$
- $\sum_{i} k_{i}^{[\alpha]} = 2K^{[\alpha]} \quad K^{[\alpha]} \text{ is the size of layer } \alpha$

For the multiplex:

- vector of adjacency matrices $\mathbf{A} = \{A^{[1]}, ..., A^{[M]}\}.$
- vector of degrees $\mathbf{k}_i = (k_i^{[1]}, ..., k_i^{[M]})$.

Vectorial variables are necessary to store all the richness of multiplexes.

Aggregated topological network:

lacksquare adjacency matrix $\mathcal{A} = \{a_{ij}\}$:

$$a_{ij} = \begin{cases} 1 & \text{if } \exists \alpha : a_{ij}^{[\alpha]} = 1\\ 0 & \text{otherwise} \end{cases}$$
 (1)

- node degree $k_i = \sum_j a_{ij}$
- $\sum_i k_i = 2K$

General formalism: aggregated matrices

Aggregated topological network:

■ adjacency matrix $A = \{a_{ii}\}$:

$$a_{ij} = \begin{cases} 1 & \text{if } \exists \alpha : a_{ij}^{[\alpha]} = 1\\ 0 & \text{otherwise} \end{cases}$$
 (1)

- node degree $k_i = \sum_i a_{ii}$
- $\sum_i k_i = 2K$

Aggregated overlapping network:

■ adjacency matrix $\mathcal{O} = \{o_{ii}\}$:

$$o_{ij} = \sum_{\alpha} a_{ij}^{[\alpha]}$$
 edge overlap (2)

- node degree $o_i = \sum_i o_{ij} = \sum_{\alpha} k_i^{[\alpha]}, \quad o_i \geq k_i$
- $\sum_i o_i = 20$

General formalism: aggregated matrices

Aggregated topological network:

■ adjacency matrix $A = \{a_{ii}\}$:

$$a_{ij} = \begin{cases} 1 & \text{if } \exists \alpha : a_{ij}^{[\alpha]} = 1\\ 0 & \text{otherwise} \end{cases}$$
 (1)

- node degree $k_i = \sum_i a_{ii}$
- $\sum_i k_i = 2K$

Aggregated overlapping network:

■ adjacency matrix $\mathcal{O} = \{o_{ii}\}$:

$$o_{ij} = \sum_{\alpha} a_{ij}^{[\alpha]}$$
 edge overlap (2)

- node degree $o_i = \sum_i o_{ij} = \sum_{\alpha} k_i^{[\alpha]}, o_i \ge k_i$
- $\sum_i o_i = 20$

Scalar variables describing system's multiplexity cannot disregard the layer index $[\alpha]$. Generalisation to the case of weighted layers: $a_{ii}^{[\alpha]} \to w_{ii}^{[\alpha]} \quad k_i^{[\alpha]} \to s_i^{[\alpha]} \quad o_{ii} \to o_{ii}^w$

- 78 nodes
- 911 edges representing 4 social relationships:
 - Trust (weighted edges)
 - Operations (weighted edges) Communications

 - **4** Businness (only few information)

LAYER	CODE	N _{act}	K	S	0	O ^w
MULTIPLEX	М	78	623	/	911	1014
Trust	Т	70	259	293	/	/
Operations	0	68	437	506	/	/
Communications	С	74	200	200	/	/
Businness	В	13	15	15	/	/

Figure : Coloured-edge representation of a subset of 10 nodes for the multiplex network of Indonesian terrorist: green edges represent trust, red edges communications and blue edges common operations.

The multi-layer network of Indonesian terrorists

LAYER	CODE	N _{act}	K	S	0	O ^w
MULTIPLEX	М	78	623	/	911	1014
Trust	Т	70	259	293	/	/
Operations	0	68	437	506	/	/
Communications	С	74	200	200	/	/
Businness	В	13	15	15	/	/

A layer-by-layer exploration of node properties: the case of the degree distribution.

Different layers show different patterns.

Basic node properties: cartography of a multiplex

Participation coefficient: $P_i = 1 - \sum_{lpha=1}^{M} \left(rac{k_j^{[lpha]}}{o_i}
ight)^2$

1 Focused nodes
$$0 \le P_i \le 0.3$$

2 Mixed-pattern nodes
$$0.3 < P_i \le 0.6$$

3 Truly multiplex nodes
$$P_i > 0.6$$

Z-score of the overlapping degree: $z_i(o) = \frac{o_i - < o >}{\sigma_o}$

$$Simple nodes -2 \le z_i(o) \le 2$$

Basic node properties: cartography of a multiplex

Edge overlap and social reinforcement

Oij	Percentage of edges (%)
1	46
2	27
3	23
4	4

Edge overlap and social reinforcement

Oij	Percentage of edges (%)
1	46
2	27
3	23
4	4

Probability conditional overlap:

$$F(a_{ij}^{[\alpha']}|a_{ij}^{[\alpha]}) = \frac{\sum_{ij} a_{ij}^{[\alpha']} a_{ij}^{[\alpha]}}{\sum_{ij} a_{ij}^{[\alpha]}}$$

$$F(a_{ij}^{[\alpha']}|a_{ij}^{[\alpha]}) \rightarrow F^{\mathrm{w}}(a_{ij}^{[\alpha']}|w_{ij}^{[\alpha]})$$

The existence of strong connections in the Trust layer, which represents the strongest relationships between two people, actually fosters the creation of links in other layers.

$$C_{i,1} = \frac{\text{# of }}{\text{centered in i}}$$

$$C_{i,1} = \frac{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{jm}^{[\alpha']} a_{mi}^{[\alpha]})}{\sum_{\alpha} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{mi}^{[\alpha]})}$$
(4)

$$C_{i,1} = \frac{\text{\# of}}{\text{\# of}}$$
 centered in i

$$C_{i,1} = \frac{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{jm}^{[\alpha']} a_{mi}^{[\alpha]})}{\sum_{\alpha} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{mi}^{[\alpha]})}$$
(4)

$$C_{i,2} = \frac{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \sum_{\alpha'' \neq \alpha, \alpha'} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{mi}^{[\alpha']})}{\sum_{\alpha} \sum_{\alpha' \neq \alpha} \sum_{j \neq i, m \neq i} (a_{ij}^{[\alpha]} a_{mi}^{[\alpha']})}$$
(5)

 $C_{i,1}$ and $C_{i,2}$ show different patterns of multi-clustering and are not correlated with o_i .

Transitivity and clustering

We call configuration model (CM) the set of multiplexes obtained from the original system by randomising edges and keeping fixed the sequence of degree vectors $\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_N$, i.e. keeping fixed the degree sequence at each layer α .

Variable	Real data	Randomised data
C_1	0.26	0.17
C_2	0.26	0.18
T_1	0.21	0.15
T_2	0.21	0.16

Measures of multi-clustering for real data are systematically higher than the ones obtained for randomised data, where edge correlations are washed out by randomisation

Navigability: shortest paths and interdependence

The interdependence λ_i of node *i* is defined as:

$$\lambda_i = \sum_{j \neq i} \frac{\psi_{ij}}{\sigma_{ij}} \tag{6}$$

where σ_{ii} is the total number of shortest paths between i and j and ψ_{ii} is the number of interdependent shortest paths between node i and node j.

For a duplex we can construct the following adjacency matrix:

$$\mathcal{M}(b) = bA^{[1]} + (1-b)A^{[2]}, \qquad \mathcal{M}(b=0.5) = \mathcal{O}$$
 (7)

The symmetry/asymmetry of the curves tell us about the interplay between the layers in determining the centrality of the multi-layer system. Both layers T and O dominate C in determining the centrality of the multiplex.

 We suggested a comprehensive formalism to deal with systems composed of several layers

- We also proposed a number of metrics to characterize multiplex systems with respect to:
 - 1 Node degree
 - 2 Node participation to different layers
 - 3 Edge overlap
 - 4 Clustering
 - 5 Transitivity
 - 6 Reachability
 - Eigenvector centrality
 - 8 You can find more in the paper

"Structural measures for multiplex networks", *Phys. Rev. E* **89** 032804 (2014). F. Battiston, V. Nicosia and V. Latora, the LASAGNE team at Queen Mary University of London.

Acknowledge financial support from the

