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We explore in detail the structural, mechanical, and thermodynamic properties of a coarse-grained
model of DNA similar to that recently introduced in a study of DNA nanotweezers [T. E. Ouldridge,
A. A. Louis, and J. P. K. Doye, Phys. Rev. Lett. 134, 178101 (2010)]. Effective interactions are used
to represent chain connectivity, excluded volume, base stacking, and hydrogen bonding, naturally
reproducing a range of DNA behavior. The model incorporates the specificity of Watson–Crick base
pairing, but otherwise neglects sequence dependence of interaction strengths, resulting in an “av-
erage base” description of DNA. We quantify the relation to experiment of the thermodynamics of
single-stranded stacking, duplex hybridization, and hairpin formation, as well as structural properties
such as the persistence length of single strands and duplexes, and the elastic torsional and stretch-
ing moduli of double helices. We also explore the model’s representation of more complex motifs
involving dangling ends, bulged bases and internal loops, and the effect of stacking and fraying
on the thermodynamics of the duplex formation transition. © 2011 American Institute of Physics.
[doi:10.1063/1.3552946]

I. INTRODUCTION

A single-stranded molecule of DNA (ssDNA) consists of
a chain of alternating sugar and phosphate groups.1 Attached
to each sugar is a base, adenine (A), thymine (T), cytosine
(C), or guanine (G). Bases are inherently planar, and their ten-
dency to from coplanar stacks and undergo hydrogen bonding
leads to the formation of double-stranded helices (dsDNA).
The canonical Watson–Crick base pairs (bp), C–G and A–T,
are called complementary base pairs because they form the
most stable hydrogen bonds.

The different base identities, along with the rules of com-
plementarity, allow information to be encoded into the sin-
gle strands.2 In nature, this allows both strands of a double
helix to carry the genetic information required for life. Re-
cently, this information-carrying property has been harnessed
in nanotechnology. A set of single strands can be designed
with a pattern of complementarity that specifies a certain two-
or three-dimensional structure (usually formed from branched
double-helices) as the global free energy minimum of the sys-
tem. Strands can then be mixed and self-assembled, provided
the sequences are well designed. When combined with its
structural properties (dsDNA is stiff on the nanoscale, with
a persistence length of around 50 nm or 150 bp,3 and ssDNA
has the flexibility to act as hinges between duplex sections),
such selective interactions make DNA an ideal material for
nanoscale self-assembly.

The self-assembly of short strands (oligonucleotides) was
first demonstrated by the Seeman lab, who created a four-
armed junction.4 Junctions of this type, and more complex

a)Author to whom correspondence should be addressed. Electronic mail:
t.ouldridge1@physics.ox.ac.uk.

motifs,5, 6 have been used to create lattices7, 8 and ribbons.6

Three-dimensional structures have also been realized: ini-
tially, the Seeman group constructed a cube9 and a truncated
octahedron10 in several discrete stages. Polyhedral cages that
rapidly form as solutions of oligonucleotides are cooled have
since been developed.11–15 These examples illustrate the po-
tential of DNA as a material for controllable nanoscale self-
assembly.

An alternative approach to self-assembly, DNA origami,
was recently developed by Rothemund.16 In this case, a long
single strand is folded into a desired structure by short “sta-
ple” strands, allowing the assembly of an enormous range
of two-dimensional structures. This approach has been ex-
tended to three dimensions, either by linking together two-
dimensional sheets,17 or by using the twist of DNA to form in-
herently three-dimensional folded strands.18 Additional meth-
ods of three-dimensional self-assembly are possible: self-
interactions within a single strand have been used to create
a tetrahedron,19 and other structures have been created from
preassembled components involving DNA and other organic
molecules.20, 21

DNA nanotechnology is not limited to the self-assembly
of static structures, as hybridization can also be used to
drive nanodevices.22 Such devices typically undergo struc-
tural changes due to duplex formation or toehold-mediated
strand displacement (wherein a strand in a partially formed
duplex is replaced by a strand which can form a more com-
plete duplex). The earliest designs, such as the “tweezers” of
Yurke et al.,23 required sequential addition of single strands
to force a system through a conformational cycle, or along
a track.24, 25 The use of enzyme-facilitated hydrolysis,26 or
fuel in metastable states such as single-stranded hairpins,27
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has allowed the design of autonomous devices. The selec-
tivity of DNA binding has also been used to perform sim-
ple logic operations,28 offering the potential for “intelligent”
nanostructures or devices, which respond to certain features
of their environment.

As discussed above, much of DNA nanotechnology re-
lies either largely or entirely upon B-DNA duplex hybridiza-
tion from single strands (although other transitions can be
exploited, such as the formation of single-stranded “i motif”
structures29). Furthermore, some biologically relevant behav-
ior [such as the opening of transient “bubbles” (stretches of
broken base pairs) within helices and the extrusion of cruci-
form structures in negatively supercoiled DNA (Ref. 30)] re-
lies primarily on the properties of single and double strands,
and the competition between the two.

Information about the intermediate states in assembly
processes, which are often difficult to resolve in experiment
yet crucial to the processes as a whole, would aid the de-
sign of nanostructures and nanotechnology. Computer mod-
eling, provided it can capture the transition between single-
and double-stranded DNA, has the potential to offer signifi-
cant insight into these systems.

At the most detailed level, atomistic simulations us-
ing force fields such as AMBER or CHARMM offer an in-
timate representation of DNA.31 A large-scale systematic
study of the structural properties of short sequences as rep-
resented by AMBER has been carried out by the Ascona B-
DNA Consortium.32 Unfortunately, the number of degrees of
freedom (including those of the solvating H2O molecules)
prohibits the simulation of large molecules for long peri-
ods of time. For example, simulations of double helices (on
the scale of 10–20 base pairs) have only recently been ex-
tended to time scales of ∼1 μs.33, 34 The use of enhanced
sampling techniques has given atomistic simulations some ac-
cess to hybridization transitions in the smallest duplexes35 and
hairpins,36, 37 although larger systems remain prohibitively ex-
pensive to model.

At the other end of the spectrum, continuum models of
DNA (Ref. 38) treat the double helix as a uniform medium.
While these approaches can provide important insight into
DNA behavior on long length-scales, they are by definition
unable to deal directly with processes involving duplex hy-
bridization or melting.

To gain further insight into hybridization, coarse-grained
models, which represent DNA through a reduced set of de-
grees of freedom with effective interactions, are required.
Models of DNA with approximately ten coarse-grained units
per nucleotide have been successfully used to study the in-
teraction of DNA with lipids,39, 40 but in order to explore
assembly transitions simpler models are required. In partic-
ular, models whose coarse-grained scale is approximately
that of the nucleotide may provide the ideal compromise
between resolution and computational speed for assembly
transitions.

The simplest available coarse-grained models are statisti-
cal, neglecting structural and dynamical detail. These models
use sequence-dependent parameters that describe the free en-
ergy gain per base pair relative to the denatured state, with
extra parameters used for initialization of duplex regions and

to describe unpaired sections within the structure. Among the
most popular are the Poland–Scheraga41 and nearest-neighbor
models,42, 43 generally used in the context of polynucleotide
and oligonucleotide melting, respectively. A particularly im-
portant variant of the nearest-neighbor model, which has been
shown to reproduce experimental melting temperatures of du-
plexes ranging from 4 to 16 bp in length with a standard devi-
ation of 2.3 K, was introduced by SantaLucia and Hicks.42, 43

In this model, the concentrations of oligonucleotides A and
B, and their duplex AB, are given by

[AB]

[A][B]
= exp(−β(�HAB − T �SAB)), (1)

where the constants �HAB and �SAB are computed by sum-
ming contributions from each nearest-neighbor set of two
base pairs, together with terms for helix initiation and various
structural features, all of which are assumed to be temper-
ature independent. Such a description, in which �HAB and
�SAB are temperature independent, constitutes a “two-state”
model.

Alternatives to these purely statistical models have also
been proposed. Everaers et al.44 have suggested a lattice
model of DNA explicitly designed to unify nearest-neighbor
and Poland–Scheraga models, with the added advantage
that some structural information is also preserved. Peyrard–
Bishop–Dauxois models45 represent base pairs through a
continuous one-dimensional coordinate, allowing dynamical
simulations of denaturation bubbles in polynucleotide DNA.
None of the models discussed, however, provides a suffi-
ciently sophisticated representation of the three-dimensional
structure of DNA to allow the detailed study of the transitions
involved in nanotechnology.

To study the processes involved in nucleic acid structure
formation, a fully three-dimensional coarse-grained model is
required. “Rigid base-pair” models, in which undeformable
base pairs are the fundamental unit, have been used to study
perturbations to DNA such as those induced by enzymes.46

By definition, such models cannot represent the transition
from single strands to duplexes, and hence are inappropri-
ate for the study of assembly processes. Lankaš et al.47 di-
rectly compared rigid base-pair and rigid base models that
were parameterized to reproduce positional time-series that
were generated from atomistic simulations of B-DNA. In-
terestingly, they found that the rigid base models, in which
the base pairs are deformable and nucleotides are the es-
sential unit of simulation, generated a more local represen-
tation of the interactions than rigid base-pair models did,
suggesting that the individual bases are a more appropriate
level of description for structural and mechanical properties of
B-DNA.

Several rigid base models, and others in which each
nucleotide has stiff internal degrees of freedom, have been
proposed in the last decade. These models represent nu-
cleotides by several interaction sites, and can be divided into
two kinds. First, some modelers parameterize their effec-
tive force fields by direct comparison with either atomistic
simulations or data from crystal structures. An alternative
is to take a more heuristic approach, designing force fields



085101-3 A coarse-grained DNA model J. Chem. Phys. 134, 085101 (2011)

to provide a reasonable description of a range of large-scale
properties (such as melting temperatures of helices) when
compared to experiment: these two approaches could be
described as “bottom–up” and “top–down,” respectively.

Bottom–up approaches have been used to study RNA
nanostructures,48 the response of DNA minicircles to
supercoiling,49, 50 the behavior of B-DNA over a range of
conditions,51 binding of DNA to the nucleosome52 and
the properties of the resultant model as a function of
parameterization.53 Although systematically coarse-graining
removes some of the arbitrary choices in designing a minimal
model, there are drawbacks. First, the resultant force field will
be biased toward the structures with which it was parameter-
ized: in particular, equilibrium duplex structures are often the
primary source of information, and hence single-stranded be-
havior is not necessarily well reproduced. Perhaps more sig-
nificantly, the transition between ssDNA and dsDNA may be
poorly represented: indeed, none of the bottom-up approaches
described above have been used to investigate melting tran-
sitions in a rigorous way, with the focus being largely on
structural properties. Second, “representability problems”54

mean that careful fitting to distribution functions will not
necessarily reproduce thermodynamic properties in a reliable
fashion.55 Finally, it is not yet known how accurate atomistic
simulations are in reproducing the duplex hybridization tran-
sition.

All coarse-grained models represent a compromise,
and an appropriate model must be chosen for the in-
vestigation at hand. Current examples of bottom–up ap-
proaches are well-suited to studying fluctuations in the
vicinity of the equilibrium structure in question. By con-
trast, top–down approaches appear to lend themselves to
the study of larger changes, particularly assembly transi-
tions. Top–down approaches have been used to study duplex
denaturation,56 hairpin formation,57, 58 RNA folding59, 60 and
mechanical unfolding,61, 62 Holliday junction formation,63 du-
plex thermodynamics,64, 65 and overstretching.66

For this paper we are mainly concerned with developing
a model that can treat the formation of complexes involving
single strands and B-DNA, with the particular goal of describ-
ing processes that are relevant to the self-assembly of DNA
nanostructures and the dynamics of nanodevices,67 but also
with a view toward biological applications. We thus require
a good representation of the structural, mechanical and ther-
modynamic properties of both single- and double-stranded
DNA.

An important property to reproduce is the tendency of
consecutive bases to form coplanar stacks, with an average
separation of about 3.4 Å,68 which is shorter than the equi-
librium separation of phosphates (along the backbone) of ap-
proximately 6.5 Å.69 The difference between the two length-
scales helps determine the shape of B-DNA, which forms a
double helix to exploit the stacking interactions. Helicity can
also play an important role in the kinetics of assembly, in
particular leading to frustration of bonding when strands are
topologically constrained.70

The two length-scales also mean that single strands are
ordered in a helical structure at low temperatures. At higher
temperatures, where entropy dominates, they are disordered

and significantly less stiff.1, 71 Such unstacked strands are
extremely flexible relative to duplexes, permitting the forma-
tion of DNA structures which involve sharply bent single-
stranded regions, such as hairpins. Furthermore, stacking has
significant consequences for the thermodynamics and kinet-
ics of assembly (the role of stacking in the thermodynamics
of duplex formation is discussed in Sec. III B 3).

For complex assembly processes involving several inter-
actions, it is important not only to correctly reproduce prop-
erties like melting temperatures, but also the experimentally
measured transition widths so that certain features such as hi-
erarchical assembly are preserved. More generally, the widths
of the transitions determine the response of melting temper-
atures to concentration changes (Sec. III B 2). Finally, a rea-
sonable representation of the elastic properties of DNA is im-
portant if the model is to be used to study systems involving
DNA under stress, such as minicircles.72

Whereas the many other top–down models in the liter-
ature each have their strengths and weaknesses, we believe
that none are currently optimized for the particular suite of
properties that we desire to accurately reproduce. For exam-
ple, most have either ignored the stacking transition of sin-
gle strands57, 58, 63 or enforced helicity largely through dihe-
dral and angular potentials imposed on the backbone of a sin-
gle strand.56, 64–66 In addition, where it was considered, the
melting transition in previous models was generally signifi-
cantly wider than experimentally reported.58, 63–65 In Ref. 67
we briefly introduced a model designed to represent ssDNA,
B-DNA and the transition between them, and demonstrated
its utility for nanodevices by simulating a full cycle of DNA
tweezers.23 We should note that the model is fitted at a fixed
salt concentration, and that sequence dependence in the model
is limited to Watson–Crick selectivity of hydrogen bonding.
This means that aside from the fact that only AT and GC can
form hydrogen bonds, all interactions are sequence indepen-
dent and hence the model has an “average base” perspective,
so sequence-dependent effects will be suppressed. In partic-
ular, the model does not distinguish between the strength of
AT and GC base pairs or the strength of stacking for the var-
ious possible combinations of neighboring bases. However,
for some physical effects that may be partially obscured by
sequence heterogeneity, our average base model may simplify
the analysis.

The aim of the current paper is to give a detailed descrip-
tion of our modeling approach. In Sec. II, we present a slightly
modified version of the model that appeared in Ref. 67,
and discuss its philosophy, parameterization, and simula-
tion. The model’s representation of DNA behavior is pre-
sented in Sec. III. We first discuss model DNA structure
and thermodynamics (Secs. III A and III B), before consid-
ering its mechanical properties (Sec. III C) and the repre-
sentation of certain motifs such as hairpins (Sec. III D). Fi-
nally, we include an extensive discussion of the strengths
and weaknesses of our approach in Sec. IV. The support-
ing appendices include a detailed representation of our model
potential (Appendix A), a statistical model for stacking
(Appendix B), and a statistical model for duplex formation
that explicitly accounts for the effects of stacking and fraying
(Appendix C).
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II. METHODS

A. The model

1. Philosophy of the model

In designing a model, we have aimed to embed the ther-
modynamics of transitions involving ssDNA and dsDNA (in
the most common B-form) into a three-dimensional, dynam-
ical, coarse-grained representation that provides a reasonable
representation of structural and thermodynamic properties.
This ambition naturally coincides with a top–down approach.
We are not primarily concerned with the chemical details of
interactions, but rather their net effect with regard to the prop-
erties of DNA. In addition, we have attempted to capture these
properties by using only pairwise excluded volume, backbone
connectivity, hydrogen-bonding, stacking, and cross-stacking
interactions (with no explicitly length- or loop size-dependent
potentials59, 64, 65). The model we present here is a slightly
modified version of that which appeared in Ref. 67, with the
changes improving the representation of dsDNA flexibility
and making the potential continuous and differentiable, a re-
quirement for simulation methods which need forces, such as
Langevin dynamics.73

An additional consideration in model design is the need
for computational efficiency. In our model, all interactions are
pairwise (i.e., only involve two nucleotides, which are taken
as rigid bodies). This pairwise character allows us to make
effective use of cluster-move Monte Carlo (MC) algorithms,74

which provide efficient equilibrium sampling.
Our model consists of rigid nucleotides, illustrated in

Fig. 1. The three interaction sites lie in a line, with the base
stacking and hydrogen-bonding/base excluded volume sites
separated from the backbone excluded volume site by 6.3 and
6.8 Å, respectively. The orientation of bases is specified by a
normal vector, which gives the notional plane of the base: the
relative angle of base planes is used to modulate interactions
(rather than through the use of off-axis sites).

2. The potential

In this section we present an overview of the potential.
Further details are given in Appendix A. Model nucleotides
interact in a pairwise fashion with other nucleotides in the sys-
tem. Interactions between nearest neighbors (nn) on a strand
are distinct from all others, allowing for strand connectivity
and stacking. The potential can therefore be written as a sum
over nn pairs, and a sum over all others

V =
∑

nn

(Vbackbone + Vstack + V ′
exc)

+
∑

other pairs

(VHB + Vc_stack + Vexc). (2)

Vbackbone is a finitely extensible nonlinear elastic (FENE)
spring (see Appendix A), with an equilibrium length of 6.4 Å,
representing the covalent bonds which hold nucleotides in a
strand together.

Vstack represents the tendency of bases to form coplanar
stacks: it is a smoothly cut-off Morse potential between base-
stacking sites, with a minimum at 3.4 Å. It is modulated by an-

Base repulsion site

Backbone repulsion site

Hydrogen−bonding site

Stacking site(a)

(b)

(c)

FIG. 1. (a) Model interaction sites. For clarity, the stacking/hydrogen-
bonding sites are shown on one nucleotide and the base excluded volume
on the other. The sizes of the spheres correspond to interaction ranges: two
repulsive sites interact with a Lennard-Jones σ (Appendix A) equal to the
sum of the radii shown [note that the truncation and smoothing procedure
extends the repulsion slightly beyond this distance (Appendix A)]. The dis-
tance at which hydrogen-bonding and stacking interactions are at their most
negative is given by the diameter of the spheres. Visualization was found to
be clearer with nucleotides depicted as in (b), with the subfigures (a) and (b)
representing identical nucleotides on the same scale. The ellipsoidal bases al-
low a representation of the planarity inherent in the model, with the shortest
axis corresponding to the base normal. (c) A 12-bp duplex as represented by
the model.

gular terms which favor the alignment of normal vectors, and
the alignment of the normal vectors with the vector between
stacking sites. As such, the interaction encourages coplanar
stacks, separated by a shorter distance than the equilibrium
backbone length, leading to helical structures. Right-handed
helices are imposed through an additional modulating factor
which reduces the interaction to zero for increasing amounts
of left-handed twist.

Vexc and V ′
exc, representing the excluded volume of nu-

cleotides, prevent the crossing of chains and provide stiffness
to unstacked single strands. The lack of explicit angular or
dihedral potentials along the backbone allows single strands
to be extremely flexible. For non-nearest neighbors, smoothly
cut-off (and purely repulsive) Lennard-Jones interactions are
included between all repulsion sites on the two nucleotides.
For nearest neighbors, the backbone/backbone site interaction
is not included because the distance between sites is regulated
by the FENE spring.

VHB, representing the hydrogen bonds which lead to
base pairing, is a smoothly cut-off Morse potential between
hydrogen-bonding sites, modulated by angular terms which
favor the antialignment of normal vectors and a collinear
alignment of all four backbone and hydrogen-bonding sites.
VHB is set to zero unless the two bases are complementary (A–
T or G–C). Together with Vstack, VHB causes the formation of
antiparallel, right-handed double helices for complementary
strands.

Vc_stack represents cross-stacking interactions between a
base in a base pair and nearest-neighbor bases on the opposite
strand, providing additional stabilization of the duplex.75, 76

We incorporate it through smoothed, cut-off quadratic wells,
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modulated by the alignment of base normals and backbone-
base vectors with the separation vector in such a way that
its minimum is approximately consistent with the structure
of model duplexes.

Our model currently neglects some features of DNA.
Although it incorporates sequence specificity (in that only
A–T and C–G hydrogen bonds are possible), there is no
sequence dependence in the potentials for either stacking,
cross-stacking, hydrogen-bonding, or excluded volume. We
have made the simplifying assumption that noncomplemen-
tary base pairs have zero attraction, and also neglected
the possibility of alternative base-pair geometries (such as
Hoogsteen1). We also have no explicit electrostatic interac-
tion in the model, which may be expected to be important as
bare ssDNA has a charge of −e per base. For this reason, we
fit to experimental data (where possible) at [Na+] = 500 mM,
where electrostatic properties are strongly screened. Indeed,
at these ionic concentrations, the Debye screening length
is approximately 4.3 Å, smaller than the excluded volume
diameter for backbone-backbone interactions in our model
(∼6 Å). At the shortest distances allowed by the steric inter-
actions, charges would have an energy of ∼2 kT in a Debye–
Hückel approximation. Other authors have attempted to ex-
plicitly include a Debye–Hückel term,64, 65 but also included
a salt-dependent, medium-range attraction between strands in
monovalent salt to facilitate hybridization, the physical origin
of which is unclear.

Many of the simplifications in our model were made to
reduce the number of possible parameters. For example, se-
quence dependence would give 16 combinations of stack-
ing pairs, each pair requiring several parameters to describe
their interaction. We also felt that, as an initial step in model-
ing, it was important to obtain a good physical representation
of the underlying properties of DNA assembly (such as the
generic dependence of melting temperature on length), before
we incorporated sequence specific or low salt effects. Further-
more, some generic effects may be obscured by sequence-
specific terms (for instance, free energy profiles would
have sequence-dependent fluctuations overlying the general
trend).

3. Parameterization of interactions

Parameterizing such a model is a nontrivial process, as it
involves a compromise between the representation of various
aspects of DNA. In particular, a given parameter may influ-
ence a wide range of properties and it is difficult to design a
simple metric to compare the reproduction of thermodynamic
and mechanical DNA behavior. In our case, lengths were ini-
tially chosen by hand to give our approximate B-DNA ge-
ometry. The stacking interaction strength and stiffness were
then altered by hand to be consistent with the experimental
thermodynamics reported for 14-base oligomers by Holbrook
et al.77 Hydrogen-bonding and cross-stacking potentials were
then added, and adjusted to give duplex and hairpin formation
thermodynamics consistent with the SantaLucia parameteri-
zation of the nearest-neighbor model,43 which can be viewed
as an accurate empirical fit to experimental data. For compari-

son with Ref. 43 we considered an “average base pair step”—
see Sec. III B 2—as our model contains limited sequence de-
pendence. Mechanical properties such as persistence lengths
were then compared to experiment and interaction stiffnesses
adjusted by hand to provide improved agreement. This pro-
cess was then iterated until the current set of parameters was
found.

In general, the interaction energy in a coarse-grained
model should be interpreted as a free energy, as it incorpo-
rates a number of implicit degrees of freedom,44, 54 and thus
it is plausible that interaction strengths could be temperature
dependent. To reduce free parameters, we have avoided this
temperature dependence except for the case of the stacking
strength. We found that it was difficult to design a stack-
ing transition with an entropy as small as required (see
Sec. III B 1) while maintaining an appropriate stiffness
for dsDNA. Our stacking strength parameter has therefore
been taken to be linearly dependent on temperature (see
Appendix A: over the range 270–370 K, the stacking strength
increases by ∼6%), in effect reducing the entropy cost of the
transition.

There are two main possible reasons why this tempera-
ture dependence of stacking interaction parameters is required
in our model. First, it may be that it is an intrinsic property
of the stacking interaction. In particular, stacking is thought
to be partially a result of hydrophobic effects,1, 78 and hence
might be expected to be temperature dependent in any model
without explicit water. Second, it may be that the coarse-
graining leads to an overestimation of the entropy of the un-
stacked state relative to the stacked state, which then needs to
be compensated by a temperature dependence in the interac-
tion parameters. In particular, in order to replicate the flexibil-
ity of single strands, we impose no restriction on the confor-
mation of the backbone–backbone, backbone–base, and base
normal vectors except for excluded volume. This lack of con-
straints is certainly a significant simplification, and will allow
some conformations that would likely be excluded by specific
steric clashes in a finer-grained model (such specific geomet-
ric effects would be exceedingly difficult to reproduce in a
bead-spring model such as ours). We deem this likely over-
estimate of available configurations to be an acceptable price
to pay for the flexibility of ssDNA necessary for hairpins and
nanostructures.

B. Simulation technique

The results reported in this paper were obtained using
the virtual-move Monte Carlo algorithm developed by White-
lam and Geissler,74 which allows efficient MC simulation
of strongly bound systems. The algorithm takes a selected
single-particle move, as with conventional MC algorithms,
and then grows a cluster from connected particles according
to energy changes associated with the move. The algorithm
combines collective motion with the large step sizes of MC
(allowing quicker decorrelation and hence equilibration).

The combination of coarse-graining and an efficient MC
algorithm allows sampling of processes that occur on rela-
tively long timescales in real systems. To indicate simulation
efficiency, we considered the formation of a 4 bp duplex at its
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melting temperature, in a periodic box of side length 17 nm
(effective concentration 0.34 mM). A recent study35 consid-
ered a similar system using an atomistic description with con-
tinuous solvent. In the atomistic case, sophisticated sampling
techniques (replica exchange molecular dynamics and um-
brella sampling) were required to provide data for the tran-
sition, which was the sole focus of the study. For our model,
∼8 complete binding and unbinding cycles per hour of CPU
time were observed for an unbiased simulation (i.e., one with-
out enhanced sampling), indicating efficient sampling.

In order to obtain good statistics for the melting tran-
sitions, umbrella sampling79 simulations were performed at
around the melting temperature and the results extrapolated to
other temperatures using single-histogram reweighting.80 The
number of base pairs in a configuration was taken as a discrete
order parameter for the reaction, Q(xN ) (with xN representing
the coordinates of the system), and the simulations were per-
formed using the biasing weight exp (βW (Q)), with W (Q)
chosen iteratively to make the partial partition functions

Zbiased
Q =

∫

dxN exp(−β(V (xN ) − W (Q′(xN )))δQ,Q′ (3)

approximately constant in Q. W (Q) is chosen to flatten free
energy barriers, encouraging the simulation to visit rarely
sampled states, thereby increasing the frequency of barrier
crossing and improving statistics. We extract the unbiased
partition functions using

Zunbiased
Q = Zbiased

Q

/

exp (βW (Q)). (4)

Simulation efficiency precluded the need for multiple um-
brella windows for the study of duplex formation, and the ac-
curacy of single-histogram reweighting was checked for 15-
bp duplexes, for which no systematic error over the range
of extrapolation was found. Simulations of duplex formation
were performed using two strands in a periodic box. Such
simulations show strong finite-size effects due to the neglect
of concentration fluctuations. These effects can be corrected
for if the species are assumed to behave ideally,81 allowing
the extraction of bulk bonding probabilities.

III. RESULTS

A. Basic structure

The model is specifically designed to allow an approx-
imate representation of B-DNA in its double-stranded state.
The relative sizes of the equilibrium backbone separation and
ideal stacking distance lead to a pitch of 10.34 bp per turn
at 296.15 K (23 oC, approximately room temperature) similar
to experimental estimates of 10–10.5.1, 30 Our model length-
scale is chosen so that the average rise per bp at room tem-
perature is equal to 3.4 Å,68 which results in a helix with a
radius (taken as the furthest extent of the excluded volume)

of 11.5 Å, comparable to the experimental value of 11.5–
12 Å.68, 82

If strands are to form a double helix, it is not possible
to optimize the stacking interaction, as consecutive stacking
sites cannot sit directly above one another. Single strands,
however, are not constrained in this way and hence form
tighter helices, with a radius approximately 80% that of a
duplex, similar to the 70%–80% observed for a number of
polynucleotide single helices.82 A pleasing result is that, in
order to alleviate the reduction in stacking, hydrogen-bonded
bases undergo “propeller twisting” whereby bases in a pair
twist in opposite directions in order to better align their stack-
ing centers with adjacent bases in the same strand. Experi-
mentally, propeller twist is seen to vary from around 5◦–15◦

in GC rich regions and from 15◦ to 25◦ in sections with large
AT content.83 In our case we observe an average propeller
twist of 21.8◦ at 296.15 K, which is slightly larger than the
average found for biological sequences.

B. Model thermodynamics

1. Single-stranded stacking transition

The attractive stacking interaction between adjacent
bases causes single strands to form helical stacks at low tem-
perature, with this order being disrupted as the temperature
increases (as illustrated in Fig. 2).1 The literature is divided
on both the nature of the attraction and the thermodynamics of
the transition. The relative contributions of van der Waals, in-
duction, hydrophobic and permanent multipolar electrostatic
interactions are not yet fully resolved.78 There has also been
much debate on the cooperativity with which bases stack. Ves-
naver and Breslauer claim that a 13-base strand undergoes a
completely cooperative transition between helical and random
coil configurations,84 whereas other authors have inferred es-
sentially completely uncooperative transitions for the individ-
ual stacks in poly(C) and poly(A).85–88 Other groups claim
weak to moderate cooperativity, with stacking probability af-
fected by nearby base stacking.89–91 It is clear, however, that
stacking has a large influence on the thermodynamics of dou-
ble helix formation, as the magnitude of the enthalpy and en-
tropy changes of hybridization increase as the single-stranded
state becomes more disordered.77, 84, 90, 92

(a) (b)

FIG. 2. Two possible configurations of a nine-base single strand at 333 K.
(a) All neighbors stacked to form a right-handed helix. (b) Most neighbors
unstacked, giving a flexible, disordered strand.
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Given the uncertainty in stacking behavior, it is difficult
to constrain the model in this regard. To introduce a large de-
gree of cooperativity would, however, require adding inter-
nal degrees of freedom to the nucleotide or including next-
nearest-neighbor interactions. For simplicity, therefore, we
compare the model to reported uncooperative stacking. The
study of Holbrook et al.77 is most appropriate, as it deals with
heterogeneous strands rather than homopolymers, and hence
might be expected to provide a reasonable estimate of the av-
erage stacking strength.

To characterize the stacking properties of our model,
we simulated oligonucleotides consisting of identical nu-
cleotides (preventing the possibility of hydrogen bonding),
and recorded the distribution of the number of neighbors with
a stacking interaction stronger than a minimum value93 as a
function of temperature and oligonucleotide length. For each
strand length (5–9 and 14 bases), two simulations (to check
convergence) were performed at T = 333 K for 1010 MC
simulation steps (a minimum of 7 × 108 steps per nucleotide),
and we extrapolated the results to other temperatures us-
ing single-histogram reweighting. For a 14-base nucleotide,
around 50% of neighbors were found to be stacked at 338 K,
with the transition being so broad that around 30% of neigh-
bors remained stacked at 373 K, and 70% were stacked at
around 306 K.

The stacking was fitted to a simple statistical model
(based on that of Poland and Scheraga for helix formation
in biopolymers94) which is discussed in detail in Appendix B.
The model contains stacking enthalpies95 and entropies �hst

and �sst, such that the statistical weight (the contribution to
the partition function) of an individual pair of stacked bases
is exp(−�hst/RT + �sst/R) relative to the statistical weight
of the unstacked state.96 In addition, the statistical weight is
multiplied by a cooperativity parameter σ for each contiguous
run of stacked bases, and an end-effect term w for each stack
which involves a base at the end of the strand. If σ and w

are unity, each neighbor pair is independent. For 0 < σ < 1,
stacking is cooperative, and for σ > 1 stacking is anticooper-
ative. For 0 < w < 1, end bases are less likely to stack, and
for w > 1 the opposite is true.

The four parameter model was fitted to data from strands
of length 5–9 bases, over a temperature range of 320–352 K,
giving

�hst = −5.55 kcal mol−1,

�sst = −16.0 cal mol−1 K −1,

σ = 0.766, (5)

w = 0.783.

As σ and w are close to unity, our model shows only weak
cooperative and end effects. The entropy and enthalpy param-
eters are similar to those found by Holbrook et al.,77 who esti-
mated �hst = −5.7 and −5.3 kcal mol−1 and �sst = −16.0
and −15.0 cal mol−1 K−1 for two different strands at [Na+]
= 120 mM. Similar results at [Na+] = 50 mM suggest weak
salt dependence in this regime.77

Simulations in which the repulsive steric interactions
were set to zero gave a slightly higher �sst and values of σ
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FIG. 3. Frequency of the total number of stacked bases in a 14-base single
strand at 300 K from simulations of our model, and as predicted by the sim-
pler statistical model with parameters as in Eq. (5).

and w consistent with unity. Thus we conclude that the small
cooperative effects in our model result from excluded volume.
To understand the cause of the cooperativity, consider a chain
of bases A, B, and C , and without loss of generality, consider
B fixed while A and C move relative to it. Due to the require-
ment that base normals must point in the 3′ to 5′ direction
to stack (see Appendix A), the regions of space in which A

and C stack with B do not overlap. Therefore, if A and B are
stacked, the excluded volume that A represents to C only pre-
vents C adopting conformations in which it is unstacked. By
contrast, if A and B are unstacked, the excluded volume of A

can prevent C adopting both stacked and unstacked configu-
rations. As a consequence, C has a slightly higher tendency to
stack if A and B are stacked, and so there is a positive cooper-
ativity. Similarly, end bases experience more freedom due to
the reduction in excluded volume, and are therefore less likely
to stack.

The statistical model is very successful. Figure 3 com-
pares its predictions to the results for a strand length (14
bases) and temperature (300 K) that are both well outside the
ranges that were used in the fitting. Excellent agreement is
found.

2. Duplex formation

Hydrogen bonding between bases can lead to the forma-
tion of bound pairs of DNA strands, which adopt the canonical
“B” double helix structure over a wide range of conditions due
to stacking interactions. In contrast to the stacking transition,
there is a reasonable consensus in the experimental literature
on the melting temperature (Tm) of duplexes.

We fitted our model using the two-state model as
parameterized by SantaLucia,43 which is known to give
a very good prediction of experimental Tm . Note that
we do not reproduce two-state thermodynamics (see Ap-
pendix C), but rather treat Ref. 43 as a useful pa-
rameterization of experimental results for the melting
temperatures of short duplexes. As our model contains no
differentiation between A–T and G–C base pairs, we com-
pare our results to strands consisting of “average bases,”
the parameters for which, �h

step
SL = −8.2375 kcal mol−1 and

�s
step
SL = −22.019 cal mol−1 K−1, were obtained from aver-
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FIG. 4. (a) Tm as a function of strand length at an equal strand concentra-
tion of 3.36 × 10−4 M, as given by our model (crosses connected by a solid
line) and averaged parameters from Ref. 43 (squares connected by a dashed
line). (b) Fraction of ten-base strands bound in duplexes at a concentration of
3.36 × 10−4 M as a function of temperature, from our model (dashed line)
and using the parameters of Ref. 43 (solid line).

aging over all possible complementary base-pair steps in
Ref. 43. We also use the average helix initiation terms �hinit

SL
= 1.1 kcal mol−1 and �s init

SL = 3.45 cal mol−1 K−1, and an ad-
ditional salt correction of �ssalt

SL = −0.12754 cal mol−1K−1

per phosphate for [Na+] = 500 mM, again taken from Ref. 43.
We simulated pairs of complementary oligonucleotides

in a periodic box for a range of strand lengths between 5
and 20 bases.97 Umbrella sampling, using the number of base
pairs with a negative hydrogen-bonding energy as an order
parameter Q, was used to ensure good sampling.

For the purposes of comparison with Ref. 43, we de-
fined a state to be bound if any hydrogen-bonding inter-
action between strands had an energy below a cut-off of
−0.60 kcal mol−1, with typical hydrogen-bonding energies of
a single base pair being larger by a factor of approximately
seven. Doubling the cut-off had no significant effect on our
results. Tm was taken as the temperature at which half of the
strands would be bound in a bulk solution.

The variation in melting temperature with duplex length
is shown in Fig. 4(a), where it is compared to the predictions
of the model of Ref. 43. The agreement in the dependence of
Tm on length is extremely good: this dependence is essentially
a measure of the cooperativity of the duplex forming transi-
tion, which is most strongly influenced by the relative contri-
butions of hydrogen-bonding and stacking/cross-stacking to
duplex stability.

The polynucleotide melting temperature (the melting
temperature for infinitely long strands) at 500 mM [Na+]
for a strand of 50% C–G content, is predicted by the em-
pirical relations given by Blake and Delcourt98 and Frank-
Kamenetskii99 as 365.8 and 363.2 K, respectively. An approx-
imate value for our model can be estimated by simulating a
pair of long, complementary strands in a partially bound state,
and finding the temperature at which the free energy change of
adding an additional base pair to a partially formed duplex is
zero. Simulations of partially formed 100-bp strands (with the
duplex/single-stranded DNA interface at a variety of points)
gave values of T in the range 364–366 K, in good agreement
with the empirical relations.

Figure 4(b) compares the 10-bp duplex yield as a
function of temperature for our model with the predic-
tions of Ref. 43. The widths of the transitions are consis-
tent to within a few Kelvin, with our model consistently

producing a marginally sharper transition for all duplex
lengths. The width of the transition determines the response of
the system to changes in concentration. Consider, for exam-
ple, a simple two-state model of DNA hybridization, as used
in Ref. 43 and expressed in Eq. (1). Assuming equal total con-
centrations of each strand ([A0]), the width of the transition
scales approximately as

�T ∼
kBT 2

m

�H
(6)

and the change in Tm with concentration is given by

dTm

d[A0]
= −

kBT 2
m

[A0]�H
∼

�T

[A0]
, (7)

and hence agreement in both Tm and the transition width at
a given concentration imply agreement in Tm over a range of
concentrations.

3. Free energy profile of duplex formation and fraying

The free energy of duplex formation of a 15-bp duplex is
plotted in Fig. 5 as a function of the number of base pairs (the
order parameter for our umbrella sampling). To avoid com-
plicating features in the free energy profile due to hairpins
and misbonds, which can conceal the underlying trends at low
numbers of bonds, only base pairs that are present in the de-
sired duplex had a non-zero strength of hydrogen bonding in
this simulation. The general form of the free energy profile is
qualitatively similar to that found for another coarse-grained
model of DNA,65 with an initial entropy penalty for the for-
mation of the first base pair, followed by a downhill slope as
the duplex “zips up” in a cooperative fashion. As can be seen,
the formation of the final base pair is actually free energet-
ically unfavorable, and the typical state consists of a duplex
with “frayed” ends. This fraying arises because bases at the
end of the duplex lack the stabilizing influence of neighbor-
ing base pairs on either side and entropy favors the open state.

Although fraying is a widely accepted phenomenon,100

experimental data is rather sparse, though it is established that
weaker AT ends fray more easily than CG capped helices.101

Nonin et al.101 inferred fraying probabilities of terminal AT
base pairs of around 0.375 and 0.7 at 273 and 298 K, respec-
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FIG. 5. Free energy profile of bonding of a 15-bp duplex, as a function of
the number of base pairs, at 343 K.
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tively, and found 0.015 and 0.12 for GC pairs at the same
temperatures (at moderate salt concentrations), whereas Patel
et al.102 found much higher melting temperatures for terminal
base AT pairs, concluding that they were around 50% frayed
at 313 K at high salt concentration. Our model shows approx-
imately 10% fraying at 273 K, increasing to around 21% at
300 K and reaching 50% at approximately 330 K, which are
reasonable values for “average” base pairs. It is worth noting
that the fraying probability for actual DNA will not only de-
pend on the identity of the final base pair, but also its neighbor
due to the sequence dependence of stacking interactions, an
additional sequence-dependent effect that will not be repro-
duced by our model. We note that in many cases, particularly
at low temperature, end base pairs in our model break but re-
main stacked, adopting conformations to maximize stacking
at the expense of hydrogen bonding.

4. Effect of stacking and fraying on thermodynamics
of duplex formation

We attempted to fit the duplex yield as a function of tem-
perature, for each strand length l, using a two-state model of
the form in Eq. (1).

[Al Bl]

[Al][Bl]
= v

Zll

Z2
l

= exp(−β(�Hl − T �Sl)), (8)

where [Al] is the concentration of strand A of length l and [Bl]
and [Al Bl] are the concentrations of its complementary strand
and the bound pair. v is the volume simulated, Zll and Zl are
the statistical weights (contributions to the partition function)
of duplexes and single strands of length l in our simulations
and �Hl and �Sl are the (assumed T -independent) enthalpy
and entropy of transition (we note that for our simulations in
the canonical ensemble, �H corresponds to the change in in-
ternal energy of the system). It was found, however, to be an
unsatisfying fit to the melting curves, and further attempts to
fit �Hl and �Sl as a linear function in l (by analogy with the
nearest-neighbor model) were unsuccessful. The failure of a
simple two-state model should not come as a surprise, how-
ever, as several authors have indicated that the entropy and en-
thalpy of duplex formation show temperature dependence due
to the single-stranded stacking transition.77, 84, 90, 92 A more so-
phisticated statistical model, which explicitly treats stacking
and fraying, is developed in Appendix C. The conclusions
drawn from this improved statistical model are discussed
below.

The actual temperature-dependent transition enthalpy
can be deduced from

�H = −
d

dβ
ln Keq, (9)

where Keq is the equilibrium constant of the reaction. The
enthalpy changes at Tm for our model are slightly larger than
predicted by Ref. 43, which is to be expected as the transitions
are slightly narrower. The discrepancy rises from about 6%
for 5-bp duplexes to around 22% for 20-bp double strands.
The behavior of �S is similar.

To investigate the details of the temperature dependence
of enthalpy changes in duplex formation, we simulated 15-bp
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FIG. 6. Variation with T of enthalpies associated with the formation of a
15-bp duplex. Solid lines represent simulation results, dashed lines the pre-
dictions of the statistical model outlined in Appendix C. The lines labeled
�Htransition give the enthalpy change upon duplex formation for the simu-
lations and the statistical model. The lines labeled Hds and Hss are the en-
thalpies of the duplex and single strands, respectively, relative to a completely
unstacked state. The transition enthalpy in the statistical model is the dif-
ference between the latter two curves. The vertical line denotes the melting
temperature Tm = 342.6 K.

duplex formation over a wide range of temperatures (for clar-
ity, we again only give “correct” pairs an attractive hydrogen-
bonding interaction), with the data shown in Fig. 6. We find
that at low temperatures (up to 342 K) �H becomes more
negative with increasing temperature, with a gradient that
reaches a maximum size of around −0.055 kcal mol−1 K−1

per base pair at approximately 328 K. At 342 K, however,
�H reaches its most negative value, before increasing rapidly
toward zero for higher temperatures.

The statistical model of Appendix C allows us to ana-
lyze this behavior in terms of the enthalpy changes within
the bound and unbound states. As shown in Fig. 6, the en-
thalpy of the bound state is approximately constant at lower
temperatures, whereas the enthalpy of the single strands be-
comes less negative with increased temperature as they un-
stack, causing the measured tendency for �H of the transition
to become more negative with increasing temperatures. As
temperature continues to increase, however, the typical bound
state changes from being a fully formed duplex at low tem-
peratures to a higher enthalpy partially melted state at higher
temperatures. Thus, the enthalpy of the bound state becomes
less negative as fraying becomes more significant, resulting in
the observed increase in �H .

This change in enthalpy due to the stacking transition has
been observed experimentally by several groups,77, 84, 90, 92, 103

who deduced values for the typical enthalpy gradient of
−0.050, −0.05 to −0.1, −0.062, −0.095, and −0.068 to
−0.87 kcal mol−1 K−1 per base pair, respectively, in rea-
sonable agreement with our model. These investigations were
generally performed with either oligonucleotides with several
CG pairs at the end77, 84, 90, 92 or polynucleotides,103 both of
which would massively reduce the impact of fraying. If we
set the fraying contribution to zero, we obtain a typical value
of −0.06 to −0.07 kcal mol−1 K−1, in even better agreement
with experiment.

In addition, Jelesarov et. al.92 also considered a duplex
with AT base pairs at the end of the helix, for which �H



085101-10 Ouldridge, Louis, and Doye J. Chem. Phys. 134, 085101 (2011)

becomes more negative with increasing T at low tempera-
ture, before flattening off by around 310 K, in agreement with
the predictions of our model for the consequences of fraying.
Measurements were not performed at high enough T to check
for an eventual reversal of the gradient of �H with tempera-
ture, but our model predicts the effect should be observable. In
particular, duplexes with large AT end regions and stabilizing
GC cores should demonstrate such an effect.

C. Mechanical properties

A commonly used measure of the large-scale proper-
ties of a polymer is its persistence length. A general defi-
nition is given, for example, in the textbook by Cantor and
Schimmel:104

Lps =
〈L · l0〉

〈l0〉
(10)

with L being the end-to-end vector of the polymer and l0
representing the vector between the first two monomers. For
the case of an infinitely long, semiflexible polymer in which
the correlations in alignment decay exponentially with sepa-
ration, Eq. (10) is equivalent to the commonly used form

〈ln.l0〉 = exp(−n〈l0〉/Lps). (11)

An alternative measure of polymer properties, the Kuhn
length, is defined by107

bK = 〈L2〉/(Lmax) (12)

and gives the length of monomers for a freely jointed chain
with the same maximum end-to-end length Lmax and 〈L2〉

as the polymer in question. For long wormlike chains bK

= 2Lps, but for other models this equivalence may not hold.

1. Double-stranded persistence length

The persistence length of dsDNA is generally accepted to
be approximately 450–500 Å at moderate to high [Na+], cor-
responding to around 130–150 base pairs.3, 105 We performed
three simulations of a duplex of length 202 bp at 296.15 K
for 1.5 × 109 MC steps. We found that base pairs at either
end of single- or double-stranded DNA possess an increased
relative flexibility. In order to obtain persistence length values
that are valid for long strands where end effects are negligible,
the behavior of bases near the end of strands was ignored. The
correlation of the helix axis (defined as the distance between
consecutive base-pair midpoints) at two points was observed
to decay exponentially with distance (Fig. 7), allowing an esti-
mate of L

duplex
ps through Eq. (11). We find a model persistence

length of around 125 base pairs, in reasonable agreement with
experiment. A typical configuration is shown in Fig. 8(a).

2. Single-stranded persistence length for fully
stacked strands

Single strands can be stacked, unstacked, or partially
stacked. We first investigate the case where the single strand
is completely stacked.
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FIG. 7. Decay of the correlation (C) of helix axis plotted against base separa-
tion for a duplex at 296.15 K (squares) and a stacked single strand at 277.15 K
(stars). The lines are fits to exponential decays. Also shown (solid line, no
symbols) is the decay of the correlation of backbone vectors for an unstacked
single strand at 296.15 K.

Mills et al.71 investigated the flexibility of gapped du-
plexes connected by poly(dA) at 4 ◦C, when the bases are
largely stacked into single helices. Although the interpre-
tation depends on the probability of stacking, the intrinsic
persistence length of the stacked regions was estimated to
be in the region of 100 Å, corresponding to approximately
30 bases (stacked regions have a shorter length per segment
than unstacked sections due to twisting). This value is no-
ticeably larger than what is expected for unstacked strands,
but smaller than for duplexes (approximately 150 bases at
high salt concentration). For comparison we simulated sin-
gle strands of 202 identical bases at 4 ◦C for 8 × 109 MC
steps (ignoring the data from the five bases at either end), re-
quiring that all bases maintained a stacking interaction of ≥

−0.60 kcal mol−1 with their neighbors (doubling this value
had no discernible effect). The length-scale over which bend-
ing occurs is much larger than the size of one base [as can be
seen in Fig. 8(b)]. Hence, the relative alignment of vectors be-
tween stacking sites (which now act as the basic steps along
the strand) decays exponentially, allowing a fit of the form
in Eq. (11), from which we concluded that Lstack

ps /〈l0〉 = 41.5
bases (see Fig. 7) for our model. This value is somewhat
higher than that reported by Mills et al.,71 however it should
be kept in mind that this estimate depends on the assumed
properties of unstacked regions, which will be discussed
in Sec. III C 3.

(a) (b)

(c)

FIG. 8. Typical configurations indicating relative flexibility of double-
stranded, stacked single-stranded and unstacked single-stranded DNA. (a)
202-bp double helix at 296.15 K. (b) Stacked single strand of 202 bases at
277.15 K. (c) Unstacked single strand of 160 bases at 296.15 K.
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3. Single-stranded persistence length
for unstacked strands

Unstacked single strands are extremely flexible relative
to dsDNA. This is crucial for nanotechnology, as it allows
structures to contain highly bent ssDNA regions, such as at
the vertices of polyhedra or the hinges of nanomachines.

Poly(dT) (long single stands of DNA in which all the
bases are thymine) is generally assumed to be entirely un-
stacked at room temperature, and has little tendency to form
secondary structure.1, 71 As a consequence, it can be used
to test the inherent flexibility of unstacked single strands.
Gapped helices have been used by Mills et al.,71 who in-
ferred a high salt persistence length of 20–30 Å from rota-
tional decay rates, and Rivetti et al.,106 who studied length
distributions with atomic force microscopy, finding ∼16 Å
for short sections (<5 bases), growing to around 28 Å for
longer regions. Fluorescence resonance energy transfer be-
tween donors and acceptors attached to either end of poly(dT)
has also been used to fit polymer models to chain end-to-end
distributions, with Murphy et al. finding a persistence length
of around 19.4 Å at 500 mM [Na+].69 All of these results sug-
gest persistence lengths on the scale of 2–5 bases.

To compare our model to experiment, we simulated sin-
gle strands of one base type with stacking interactions set to
zero to mimic poly(dT) (four simulations each for a range
of strand lengths were performed at 296.15 K for at least
2.5 × 108 MC steps per nucleotide). A typical configuration
is shown in Fig. 8(c). The decay in correlation of backbone
vectors, plotted in Fig. 7, is not exponential—the decreasing
magnitude of the gradient of ln(C) indicates subexponential
decay. It is therefore impossible to use Eq. (11), and instead
Eq. (10) must be used to evaluate Lps. The persistence length
is observed to rise with the contour length considered (mea-
sured regions were embedded within strands with 30 extra
bases at each end to avoid end effects), as shown in Fig. 9.
Similar behavior is observed for the Kuhn length bK (defined
in Eq. (12) and also shown in Fig. 9), which now no longer
shows a simple relationship to Lps.

The behavior shown in Fig. 9 is typical of polymers for
which local flexibility means that repulsive interactions (such
as excluded volume) between non-neighboring monomers are
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FIG. 9. Persistence length and Kuhn length of ssDNA at 296.15 K plot-
ted against the length of the single-stranded region of DNA analyzed. For
the purposes of comparison, the separation of successive backbone sites is
approximately 6.4 Å.

important.107 In other words, for our model the local con-
formational statistics of completely unstacked DNA chains
are probably better described by a freely jointed chain with
excluded volume than by a wormlike chain. For example,
a wormlike chain model with equivalent overall stiffness
would underestimate the local kinking of the unstacked ss-
DNA strands.

Our results show that for strands of ∼100 bases,
the persistence length obtained using Eq. (10) is similar
to experimentally inferred values (19−30 Å). We note,
however, that quantitative comparison is hindered by the
use of wormlike chain models to infer persistence lengths
in experimental literature. Given the similarity of overall
stiffness, it is plausible that the inaccuracy of the wormlike
chain description of our model also applies to unstacked
DNA in experiment. This would imply that the concept of a
persistence length is less useful for unstacked single strands
than it is for a fully stacked ssDNA or dsDNA, and that future
investigations should consider the possibility of nonwormlike
chain behavior. The differences can be important: for instance
the estimates for the persistence length of stacked ssDNA
reported by Mills et al. assume that unstacked bases behave
as a wormlike chain with persistence length 30 Å. The use of
the wormlike chain may underestimate the local kinking due
to a single unstacked base, leading to an underestimate of Lps

for the stacked region.
Finally, under typical experimental conditions, ssDNA

may be neither in the fully stacked nor in the fully unstacked
regimes. Instead, sequence effects and the thermodynamics of
a broad stacking transition may lead to local heterogeneities in
the mechanical properties of ssDNA strands. The actual con-
formational behavior may therefore be more complex than the
two ssDNA regimes described above.

4. Double-stranded torsional and
extensional stiffness

Torsional rigidity (in the linear regime) is quantified by
an elastic modulus C , which relates applied torque G to re-
sultant twist �θ of a duplex of length l: C = Gl/�θ . Es-
timates for C have been made using cyclization kinetics
and topoisomer distributions for minicircles,3, 108, 109 lumi-
nescence depolarization110 and from twisting of DNA under
tension,111 giving values in the range 170–440 fJ fm. The ef-
fect of salt concentration on C is not entirely clear from the
experimental literature.110

Calculating the response to torsion is nontrivial, as the
curvature of the DNA axis makes the twist between two ends
hard to define. In our previous work,67 we attempted to in-
fer an elastic modulus from the fluctuations in the angle be-
tween successive bases when projected onto the plane perpen-
dicular to the vector joining their midpoints. Unfortunately,
this method overestimates the torsional flexibility, presum-
ably failing to decouple torsional variation from other fluc-
tuations in a base-pair step. In this work, we instead obtain an
approximate estimate of the torsional modulus by consider-
ing the twisting of the central 10 base pairs of a 20-bp duplex,
and the central 20 base pairs of a 30-bp duplex at 296.15 K.
Such short sections are extremely stiff, minimizing the natural
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bending fluctuations. To provide an unambiguous definition
of torsion and twist, MC moves were chosen so that the base
pairs at the end of the central section remained perpendicu-
lar to the vector between their midpoints, allowing the vector
between the midpoints to define an axis about which torsion
could be applied and twist measured.

Simulations were performed in which the torque applied
to the end bases was varied between ±8 pN nm, and the re-
sultant twist used to infer C . A separate estimate was also ob-
tained using the equipartition result for the variance in twist at
zero torque 〈�θ2

twist〉 = kT l/C . Further simulations used the
equipartition result to estimate C under a tension of 9 pN, to
ensure that stretching the duplexes had no effect. All estimates
(for both 10- and 20-bp regions of interest) gave C ∼ 455–
495 fJ fm, suggesting that this is a reasonably robust estimate
of the torsional stiffness of DNA duplexes in our model.

A long molecule of dsDNA under low tension responds
as an extensible wormlike chain, with the behavior initially
dominated by the straightening of the chain, before stretch-
ing the base-pair rise itself becomes relevant as the chain
extension approaches the contour length.112, 113 At higher
forces, the duplex undergoes an overstretching transition and
the B-DNA structure breaks down.114 Experimental estimates
for the extensional modulus K , obtained from fitting force-
extension curves to extensible wormlike chain models, give
K in the region of 1050–1250 pN at high salt.112, 113

The extensional modulus K was estimated by applying
tension to a 100-bp region within a 110-bp double helix,
and fitting the resultant force-extension curve to the result of
Odijk115 for extensible wormlike chains,

x = L0

(

1 +
F

K
−

kT

2F L0
[1 + y coth y]

)

, (13)

where

y =

(

F L2
0

LpskT

)1/2

(14)

and x is the extension resulting from a force F applied to a
duplex of contour length L0 and persistence length Lps. Per-
forming an unconstrained three-parameter fit with the values
of L0, Lps, and K gives an excellent agreement with the data,
as shown in Fig. 10, with K = 2120 pN, L0 = 339.4 Å, and
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FIG. 10. Tension applied against extension for the central 100 bp of a 110-bp
duplex at 296.15 K. The squares are simulation results and the solid line is a
fit using Eq. (13).

Lps = 438 Å (129 bp). The value of L0 is similar to that ex-
pected from the rise of a short duplex (exactly 3.4 Å per base
pair would give L0 = 336.6 Å), and Lps is only slightly larger
than the estimate from the decay of the correlation of the
helix axis (415 Å). This agreement suggests that the exten-
sible wormlike chain model provides a good description of
the model’s properties in this regime, and that the value of
K = 2120 pN is a reasonably robust one for our model.

Our model gives C ≈ 475 fJ fm (slightly larger than
the top of the experimental range of 170–440 fJ fm) and
K ≈ 2120 pN, (about twice as large as typical experimen-
tal estimates). We do not believe the differences are crucial
to the processes we are interested in investigating (although
certain quantities, such as the critical twist density at which
plectonomes are extruded, will be affected). It was found to
be difficult to reparameterize the model to reduce these mod-
uli without decreasing the persistence length, which is already
slightly below experimental estimates. We feel that the current
compromise, in which the persistence length is most faith-
fully reproduced, is a reasonable one as we expect that nanos-
tructures and nanodevices would be more sensitive to bending
than torsional or extensional stiffness.

It is worth noting that recent investigations have sug-
gested that DNA overwinds when stretched.116 Our model
does not reproduce this anti-intuitive behavior, instead
slightly untwisting as the stacking distance is extended. It is
possible, therefore, that the model fails to capture the softness
of a mode of deformation—perhaps the sloping of base pairs
with respect to the axis117—that leads to this behavior. If this
is the case, it is perhaps unsurprising that the estimated mod-
uli are larger than experimental observations

D. Structural motifs

1. Hairpins

DNA hairpins, which occur when a self-complementary
strand binds to itself and forms a duplex stem and an unhy-
bridized loop (Fig. 11), are a common structural motif. They
have biological importance as a mechanism for release of su-
perhelicity through cruciform formation.30 Their relevance to
nanotechnology includes metastable states (either occurring

FIG. 11. A hairpin with a 12-bp stem and an 18-base loop at 343 K.
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by accident67 or through design).27, 70 In addition, they are
an extremely common motif in biological RNA structures.118

Aside from our earlier work using a previous parameteriza-
tion of the current model,67 we are unaware of any simulta-
neous application of a coarse-grained model to the formation
of both hairpins and bimolecular duplexes. Our approach, in
which the single strands have the potential to be extremely
flexible, allows for hairpins and duplexes to have appropriate
relative stabilities.

To demonstrate the ability of our model to represent
hairpins, we simulated systems with stem sizes ranging from
6–12 bp, and loops of 6–18 bases. Four simulations for each
hairpin were performed in the vicinity of Tm for 4 × 1010 MC
steps (corresponding to at least 109 steps per nucleotide). Um-
brella sampling as a function of hydrogen-bonded base pairs
was used to ensure good statistics. In this case, we considered
only states with at least one of the “native” base pairs in the
stem present as being a hairpin, as long loops have the po-
tential to form transient base pairs with little relevance to the
stability of the target structure. SantaLucia has presented pa-
rameters for estimating the melting temperature of hairpins,43

which we again take as a good representation of experimental
results. These parameters include sequence independent
entropy penalties for loop formation and enthalpy/entropy
terms for the stabilizing effect of the first mismatched
base pair in the loop (called a “terminal mismatch”: we
compare to an average �hterm

SL = −2.91 kcal mol−1 and
�s term

SL = −7.33 cal mol−1 K−1). Our results for Tm are
compared to the predictions of Ref. 43 in Figs. 12(a) and
12(b). Tm is defined as the temperature at which a strand is in
a hairpin state half of the time.

The results indicate that our model slightly underesti-
mates Tm for hairpins relative to the predictions of Ref. 43
(and by extension, experiment) by approximately 3 K, which
is slightly less than 1% of the absolute melting temperature (at
the Tm predicted by Ref. 43, our hairpins constitute approxi-
mately 25% of the ensemble rather than 50%). Encouragingly,
the trends with loop length and stem size are well reflected by
our model (this is particularly pleasing, as the dependence on
loop length was not used in parameterization), an indication
that the majority of the physics of hairpin formation is well
represented by our model. We note that our model is less suc-
cessful for the smallest loops (3–5 bases), possibly because
it does not incorporate specific interactions within a tightly
packed loop that may provide extra stability.119 As found with
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FIG. 12. Variation of hairpin melting temperature with (a) loop length and
(b) stem length from our model (symbols connected by dashed lines) and
from Ref. 43.

TABLE I. Effect on the melting temperature of a complementary duplex
due to the addition of a motif. In this table, �Tm is the difference between
the Tm of a structure with the motif and a fully complementary duplex con-
sisting of the same number of complementary base pairs as the motif struc-
ture. For internal mismatches, bulges and bubbles, the motif was placed at
the center of the duplex.

Complementary �Tm (K)

Motif bp Motif size Our model Ref. 43
Dangling end 5 1 base +3.95 +4.24

8 1 base +1.20 +1.44
15 1 base +0.74 +0.61

Bulge 8 1 base −18.58 −23.40
2 bases −24.64 −27.23

15 1 base −8.86 −12.58
2 bases −11.51 −11.67
5 bases −16.91 −13.78

Terminal mismatch 5 1 base/strand +6.85 +6.95
8 1 base/strand +2.73 +2.55

15 1 base/strand +0.74 +0.63
Internal mismatch 8 1 base/strand −8.77 −14.09
/bubble 2 bases/strand −15.77 −21.86

5 bases/strand −25.83 −28.81
15 1 base/strand −5.35 −4.97

2 bases/strand −9.53 −11.60
5 bases / strand −15.62 −15.74

duplex formation, transition widths for our model are slightly
smaller than predicted by Ref. 43 [the difference is very sim-
ilar to that observed in Fig. 4(b)].

2. Mismatches, bulges, and internal bubbles

A variety of other DNA motifs exist, such as du-
plexes involving mismatches between noncomplementary
base pairs or with one strand carrying extra, unpaired bases.
SantaLucia43 has provided parameters for the influence of
these motifs on Tm . In many cases, they are highly sequence
dependent and it is less clear than in the simple double he-
lix case (where the variations in parameters are relatively
smaller) that averaging over �S and �H contributions for
all sequences is a reasonable approach to find an average ef-
fect. It should, however, give a rough estimate of the typical
change in melting temperature due to a motif.

We compared the effect of several motifs on model du-
plex Tm to the predictions of Ref. 43, again averaged over
all possible sequences (Table I). The simplest possible case is
that of a single unpaired base at the end of a strand, gener-
ally referred to as a “dangling end”. Typically, dangling ends
are observed to provide a stabilizing influence, assumed to
result from cross-stacking with the final base pair of the du-
plex, although the degree of stabilization is highly sequence
dependent.43, 78 The cross-stacking interaction included in our
model provides such a stabilizing effect, and the degree of
stabilization is in good agreement with the predictions of
Ref. 43.

In contrast to dangling ends, extra, unpaired bases on one
strand within the helix are highly destabilizing, as they disrupt
the helix structure. In the terminology of SantaLucia, these
are known as bulges. In general, our model slightly underes-
timates the destabilization of helices due to bulges compared
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to the predictions of Ref. 43, although the observed melting
temperatures remain within 2% of the predictions.

If a noncomplementary pair of bases is added to an other-
wise complementary duplex to form a mismatch, the effect is
generally stabilizing at the end of a duplex (this is a “terminal
mismatch”) and destabilizing in the interior. Our model repro-
duces this tendency as shown in Table I, and also captures the
increase in destabilization if the mismatch region is extended
(to form an internal “bubble”). Once again, the destabilizing
effect of motifs internal to the duplex tend to be slightly un-
derestimated relative to the predictions of Ref. 43, and the ob-
served melting temperatures again remain within around 2%
of the predictions.

The motifs provide a good test of the model, as many
were not considered in parameterization (although the dan-
gling ends and terminal mismatches were used to constrain
the strength of cross-stacking). In addition, misbonded struc-
tures involving these motifs may have a role in the kinet-
ics of nanostructure assembly, and hence it is important that
the model provides a reasonable representation of them. Al-
though in some cases the quantitative agreement with Ref. 43
is not perfect, the model represents these motifs in a physi-
cally sensible way and the trends in stability at least qualita-
tively reflect the average properties of DNA. Furthermore, the
typical magnitudes of �Tm are reasonable, with the Tm re-
maining within 2% of the average predictions of Ref. 43. It is
possible that an underestimate of the disruptive effect of extra
bases on the helical structure,30 perhaps because the excluded
volume of bases is smaller than in reality, causes the under-
estimate of �Tm due to internal motifs. This effect, however,
would be expected to be larger for bulges than for mismatched
pairs or symmetric bubbles.

Given the good agreement between the model and
Ref. 43 for a single mismatch added to a 15-bp duplex, we
investigated how the position of the mismatch affected sta-
bility. Tm is plotted against the position of the mismatch in
Fig. 13. As can be seen, there are two distinct regimes, with
the melting temperature initially decreasing as the mismatch
is moved from the end of the strand (where it is stabilizing)
toward the center. Eventually, however, it reaches a plateau at
around five bases from the end of the strand.
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FIG. 13. Melting temperature of 15-bp complementary helix with an addi-
tional mismatch added against the distance of that mismatch from the end of
the strand. The melting temperature in the absence of a mismatch is indicated
via the horizontal line.
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FIG. 14. Free energy profile at 339 K for a 15 base pair duplex with one
additional mismatch placed two bases from the end (squares) and six bases
from the end (crosses).

The cause of this plateau can be identified from exam-
ining the free energy profiles for duplexes with mismatches
located two and six bp from the end (Fig. 14). The first point
to note is that the stability of duplexes with the maximum
number of base pairs (15) is nearly identical, despite the dif-
ference in mismatch position. This suggests that, provided a
mismatch is surrounded by base pairs on either side, chang-
ing its location has little effect on the total free energy. The
difference in Tm arises instead from a difference in the lowest
free energy state.

When the mismatch is near to the strand end (in the
regime where Tm depends on mismatch position), the most
stable state consists of the larger section of duplex formed
with the bases beyond the mismatch unpaired (Fig. 15). In
this regime, the total free energy gain from pairing the bases
beyond the mismatch does not compensate for the free energy
cost of enclosing a mismatch in a helix. As the mismatch is
moved toward the center, the larger section loses bases and so
becomes less stable, with the consequence that Tm drops. At
some point, however, it becomes favorable for the bases in the
shorter region to bond as well. From this point onwards, the
most stable state consists of the two duplex regions surround-
ing the mismatch. The net effect of moving the mismatch
further toward the center only marginally affects the overall

FIG. 15. Typical configurations of a duplex with 15 complementary bp and
one internal mismatch at 335 K. (a) Mismatch two bp from the end of the
strands, with unpaired bases after the mismatch. (b) Mismatch six bp from
the end of the strand, enclosed by two intact helices.
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stability of the duplex. As a result a plateau in Tm should
occur.

As the temperature is lowered, the free energy gain from
base pair formation increases. As a consequence, the number
of bases required before the region beyond the mismatch is
stable as a duplex decreases. For example, we find that for
a mismatch two bases from the end of a 15-bp duplex, the
enclosed mismatch state becomes the most stable just below
320 K.

It is claimed in Ref. 43 that the stability of a mismatch
is independent of its position, except for terminal mismatches
and mismatches occurring one base from the end, which may
cause the final base pair to be unstable. Our simulations sug-
gest, however, that the distance of the mismatch from the du-
plex end at which Tm plateaus should increase with strand
length (as longer strands melt at higher temperature). Further-
more, a similar temperature-dependent influence of motif lo-
cation should hold for all destabilizing internal bubbles and
bulges, as the beginning of the plateau simply indicates the
point at which it is free energetically favorable to enclose the
disruption. This result should be qualitatively robust to the
approximations in the model. In particular, sequence depen-
dence will likely cause fluctuations but not destroy the general
trend.

IV. DISCUSSION

We have examined in detail the structural, mechanical,
and thermodynamic properties of a coarse-grained model of
DNA based on that presented in Ref. 67 (and used there to
simulate a full cycle of DNA tweezers, an iconic nanodevice).
Several small alterations to the model were made in order to
improve the description of DNA flexibility and allow for the
calculation of forces and torques. The aim of the model is to
embed the known thermodynamics of B-DNA into a coarse-
grained representation of DNA while simultaneously provid-
ing a reasonably accurate description of the structural and me-
chanical properties of B-DNA and ssDNA.

The model provides a good quantitative representation
of the three key thermodynamic processes that affect self-
assembly: single-stranded stacking, duplex hybridization, and
hairpin formation. To our knowledge, this is the first coarse-
grained model for which all three processes have been con-
sidered simultaneously.

The mechanical properties of DNA are also reasonably
well represented by the model, with the singled-stranded per-
sistence length (for stacked and unstacked bases) and double-
stranded persistence length, stretch modulus, and torsional
modulus all of similar size to typical experimental estimates.
Importantly, the inclusion of the stacking transition allows
single strands to be unstacked and flexible, which facilitates
the formation of hairpins as well as other DNA nanostructures
for which single-stranded regions are important.

The model contains several simplifications, the most im-
portant of which are the lack of sequence dependence beyond
the specificity of A–T and G–C bonds and the absence of ex-
plicit electrostatic interactions. Without explicit electrostatics,
the model cannot predict screening effects without a new pa-
rameterization at each salt concentration. Furthermore, in its

current state, the model may incorrectly represent structures
that involve the close proximity of strands that are not bound
to each other, where it would fail to capture the cumulative
repulsion resulting from adjacent phosphate sites. The model
is also only capable of representing structures involving B-
DNA and ssDNA, and the equal groove size in the model
may also mask subtle effects related to major and minor
grooving.

Ignoring sequence heterogeneity dramatically lowers the
number of parameters needed for the coarse-grained model.
It also simplifies the analysis of the physical processes, nat-
urally generating results for an “average strand.” This picture
may be particularly advantageous when sequence effects
obscure an important general trend. Of course, there are also
many processes where sequence heterogeneity is critical, for
example, preferred sites for bubble nucleation. Such effects
are not resolved by our model. It is also important to note that
it is not only the relative strength of A–T and C–G hydrogen-
bonding that provides DNA with its sequence dependence.
The stacking interaction is also known to be sequence-
dependent, and this will be relevant in any situation where
the difference in A–T and C–G bond strengths is important.
Furthermore, heterogeneity of stacking interactions can be
relevant in single-stranded motifs, such as hairpin loops,
which will tend to be stiffer if they consist of strongly stacking
bases.

Nevertheless, for many applications in DNA nanotech-
nology, sequence-dependent effects beyond complementarity
are not that critical to design or functionality. For example, in
Ref. 67 we show that the entropy cost of bringing an antifuel
strand in close proximity to the tweezer complex slows down
the displacement-mediated detachment of the first arm of
the fuel strand. Such predictions should be fairly robust and
independent of sequence heterogeneity effects. We also show
how metastable hairpin formation in the antifuel strand can
further affect the free energy profile and the related kinetics
of the displacement process. Again, this general prediction
should be fairly robust, but how it plays out for a particular
set of tweezers will depend on how easily the antifuel strand
sequence forms hairpins. For example, if the metastable
hairpin formation is undesirable, then our predictions could
be supplemented by methods such as the nearest-neighbor
model in order to design strands that minimize hairpin
formation.

Similarly, in the current paper we make a series of pre-
dictions that should be relevant to experiment. For example,
we predict that a maximum in the magnitude of the enthalpy
change of duplex formation, �H , should occur as the temper-
ature nears the polynucleotide melting temperature and fray-
ing begins to reduce the number of base pairs in the bound
state. Details such as the location and magnitude of the max-
imum will depend on sequence-dependent effects such as
the exact melting temperature, whether the end bases form
weaker AT or stronger CG bonds that promote or repress fray-
ing, respectively, as well as the thermodynamics of single-
stranded stacking. But our prediction of a maximum in the
absolute value of �H should be fairly robust.

We also predict that the Tm of a duplex containing a desta-
bilizing motif should depend on the location of the motif in a



085101-16 Ouldridge, Louis, and Doye J. Chem. Phys. 134, 085101 (2011)

temperature-dependent fashion. As the destabilizing motif is
moved toward the center of a duplex, the melting temperature
should decrease before reaching a plateau. The distance from
the end at which the plateau is observed will increase with Tm

and the destabilizing effect of the motif. Both of these effects
result from sufficiently generic properties that we expect them
to be resilient to the approximations of the model.

When compared to the nearest-neighbor model, our
model tends to slightly underpredict the effect of dangling
ends, bulges, terminal mismatches, and internal mismatches
on the duplex melting temperature. Again, it should be kept
in mind that for real DNA the effect of each of these mo-
tifs will depend very much on the exact sequence, whereas
our predictions are for an average over all possible sequence
permutations. Thus, in a system where multiple kinetic traps
are relevant, extra care should be taken when interpreting the
simulations because the relative stabilities of different states
could be somewhat misrepresented.

We also find that the mechanical properties of unstacked
ssDNA are influenced by (excluded volume) interactions be-
tween non-neighboring bases. This would suggest that fu-
ture experimental analyses of the statistics of ssDNA confir-
mations should consider alternatives to the wormlike chain
model, which may be unreliable. Models more akin to a freely
jointed chain with excluded volume may be more appropriate.
In particular, our unstacked ssDNA shows more local kinking
than would be expected from a wormlike chain of equivalent
overall stiffness.

Finally, we have demonstrated that a nearest-neighbor
two-state model of duplex formation can be extended to incor-
porate stacking and fraying. This extension suggests a way to
reconcile the appealing simplicity of nearest-neighbor mod-
els with temperature variation of both single- and double-
stranded states. To develop such a model, however, would
require a much greater consensus in the properties of single-
stranded stacking and fraying than currently exists.

As it stands, we believe the model has the potential
(both in terms of accuracy and computational efficiency)
to open up a range of previously inaccessible problems
involving the interplay between single- and double-stranded
DNA, including many aspects of DNA nanotechnology.
For example, we are investigating the operation of a DNA
walker,26 the force-induced melting of DNA,120 the assembly
of a DNA tetrahedron,11 and binding of hairpins in the
presence of a DNA catalyst.70 The model may also be applied
to biologically relevant processes such as the extrusion of
cruciforms in supercoiled DNA containing inverted repeats.30

Future work will aim to incorporate sequence-dependent
interaction strengths (we note that much of the sequence
dependence should arise from stacking), major and minor

grooving, and an implicit model for electrostatics, as well as
comparing to atomistic simulations to improve the description
of fluctuations on the base pair level.

APPENDIX A: MODEL DETAILS AND
PARAMETERIZATION

The current model is based on that introduced in Ref. 67,
with some changes introduced to give duplexes more flexi-
bility (having performed a wider range of structural tests, the
stiffness was found to be overestimated in the old version).
Truncated interactions have also been quadratically smoothed
(making the potential continuous and differentiable, a prereq-
uisite for simulation with methods like Langevin dynamics).
Although this introduces further parameters, the thermody-
namic and structural properties are largely unaffected by the
details of smoothing.

The functional forms used in the interactions are given
below:

� FENE spring (used to connect backbones)

VFENE(r ) = −
ǫ

2
ln

(

1 −
(r − r0)2

�2

)

. (A1)

� Morse potential (used for stacking and H-bonding)

VMorse(r, ǫ, r0, a) = ǫ(1 − exp (−(r − r0)a))2. (A2)

� Harmonic potential (used for cross-stacking)

Vharm(r, ǫ, r0) =
ǫ

2
(r − r0)2 . (A3)

� Lennard-Jones potential (used for soft repulsion)

VLJ(r, ǫ, σ ) = 4ǫ

(

(σ

r

)12
−

(σ

r

)6
)

. (A4)

� Quadratic terms (used for modulation)

Vmod(θ, a, θ0) = 1 − a(θ − θ0)2. (A5)

� Quadratic smoothing terms

Vsmooth(x, b, xc) = b(xc − x)2. (A6)

These functional forms are combined to give the follow-
ing smooth and differentiable functions:

� The radial part of the stacking and hydrogen-bonding
potentials

f1(r ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

VMorse(r, ǫ, r0, a) − VMorse(rc, ǫ, r0, a)) if r low < r < rhigh,

ǫVsmooth(r, blow, r low
c ) if r low

c < r < r low,

ǫVsmooth(r, bhigh, r
high
c ) if rhigh < r < r

high
c ,

0 otherwise.

(A7)
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• The radial part of the cross-stacking potential

f2(r ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Vharm(r, ǫ, r0) − Vharm(rc, ǫ, r0) if r low < r < rhigh,

ǫVsmooth(r, blow, r low
c ) if r low

c < r < r low,

ǫVsmooth(r, bhigh, r
high
c ) if rhigh < r < r

high
c ,

0 otherwise.

(A8)

• The radial part of the excluded volume potential

f3(r ) =

⎧

⎪

⎨

⎪

⎩

VLJ(r, ǫ, σ ) if r < r ⋆,

ǫVsmooth (r, b, rc) if r ⋆ < r < rc,

0 otherwise.

(A9)

• The angular modulation factor used in stacking, hydrogen bonding, and cross-stacking

f4(θ ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Vmod(θ, a, θ0) if θ0 − �θ ⋆ < θ < θ0 + �θ ⋆,

Vsmooth(θ, b, θ0 − �θc) if θ0 − �θc < θ < θ0 − �θ ⋆,

Vsmooth(θ, b, θ0 + �θc) if θ0 + �θ ⋆ < θ < θ0 + �θc,

0 otherwise.

(A10)

� Another modulating term which is used to impose right
handedness (effectively a one-sided modulation)

f5(φ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if x > 0,

Vmod(x, a, 0) if x⋆ < x < 0,

Vsmooth(x, b, xc) if xc < x < x⋆,

0 otherwise.

(A11)

The potentials and parameters used to describe each in-
teraction are listed in the Table II. When more than one func-
tion is listed for an interaction, the total interaction is a prod-
uct of all the terms. Given the parameters of the main part
of the interaction (for example, ǫ, r0, a, and rc for the VMorse

part of f1(r )), the parameters of the smoothed cut-off regions
are uniquely determined by ensuring continuity and differen-
tiability at the boundaries (r low and rhigh for f1(r )). The nu-
cleotide geometry and definition of the angles and vectors
used in the potential are shown in Fig. 16.

The potential of the system is given by

V =
∑

nn

(Vbackbone + Vstack + V ′
exc)

+
∑

other pairs

(VHB + Vc_stack + Vexc),
(A12)

where the sum over nn runs over consecutive bases within
strands, and V ′

exc has the same form as Vexc except that it does
not include an f4(rex1) term. Note the directional dependence
in the stacking interaction: the angles are defined between
normal vectors of bases and a vector joining bases in the 3′

to 5′ direction. Only complementary base pairs possess non-
zero hydrogen-bond energies.

To ensure right-handed helices, the modulation of stack-
ing interactions is somewhat subtle, involving chiral terms.
Consider two consecutive bases in a strand, i and j , with
i → j corresponding to the 3′ → 5′ direction. The angles θ5

and θ6 are defined as the angles between the normals of i and
j and r

ij

stack (with r
ij

stack being defined as the vector from the
stacking site of i to that of j). Thus, stacked bases have nor-
mals pointing in the 3′ → 5′ direction, allowing the definition
of a local axis. The angles φ1 and φ2, defined in terms of this
axis, provide helicity. For each base we define a normalized
vector v̂α

helicity = r̂i j × r̂α
back−base, where α = i, j and r̂α

back−base
is the normalized backbone site to stacking site vector of base
α. φ1 and φ2 are the angles between v̂α and the base normals:
for a right handed helix, these are < π/2 and the stacking in-
teraction is modulated to disfavor greater angles.

APPENDIX B: STATISTICAL MODEL OF STACKING

It is instructive to characterize the thermodynamics of
the model using a simpler, statistical model, as it highlights
the causes of certain behavior. We treat the stacking transi-
tion using a statistical description based on that of Poland and
Scheraga.94 In this model, a given pair of neighbors can be
either stacked or unstacked, and the list of stacked pairs spec-
ifies the system configuration.

If each stacking pair were independent, the contribution
to the partition function from a configuration (its relative
probability of occurring) would be given by

Zconfig = z0uNi v N j , (B1)

where u and v represent the contributions to the partition
function (“statistical weights”) of a stacked and an unstacked
pair, respectively, Ni and N j are the number of stacked and
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TABLE II. Parameter values in the model. All lengths are defined with respect to a reduced length-scale (1 unit = 8.518 Å), all angles are given in radians
and all energies are defined with respect to a reduced temperature (kT = 0.1 corresponding to 300 K). The variables in the potential are defined in Fig. 16.

Interaction Functional form Parameters
Backbone spring VFENE(rbackbone) ǫ = 2 � = 0.25 r0 = 0.7525
Vbackbone

Hydrogen bond f1(rbond) ǫ = 1.077 a = 8 r0 = 0.4 r low = 0.34
VHB rc = 0.75 rhigh = 0.70

f4(θ1) a = 1.50 θ0 = 0 �θ⋆ = 0.70
f4(θ2) a = 1.50 θ0 = 0 �θ⋆ = 0.70
f4(θ3) a = 1.50 θ0 = 0 �θ⋆ = 0.70
f4(θ4) a = 0.46 θ0 = π �θ⋆ = 0.70
f4(θ7) a = 4.00 θ0 = π/2 �θ⋆ = 0.45
f4(θ8) a = 4.00 θ0 = π/2 �θ⋆ = 0.45

Stacking f1(rstack) ǫ = 1.3448 a = 6 r0 = 0.4 r low = 0.32
Vstack +2.6568 kT rc = 0.9 rhigh = 0.75

f4(θ4) a = 1.30 θ0 = 0 �θ⋆ = 0.8
f4(θ5) a = 0.90 θ0 = 0 �θ⋆ = 0.95
f4(θ6) a = 0.90 θ0 = 0 �θ⋆ = 0.95

f5(cos(φ1)) a = 2.00 x⋆ = −0.65
f5(cos(φ2)) a = 2.00 x⋆ = −0.65

Cross-stacking f2(rc_stack) ǫ = 47.5 r0 = 0.575 rc = 0.675 r low = 0.495
Vc_stack rhigh = 0.655

f4(θ1) a = 2.25 θ0 = π − 2.35 �θ⋆ = 0.58
f4(θ2) a = 1.70 θ0 = 1.00 �θ⋆ = 0.68
f4(θ3) a = 1.70 θ0 = 1.00 �θ⋆ = 0.68

f4(θ4) + f4(π − θ4) a = 1.50 θ0 = 0 �θ⋆ = 0.65
f4(θ7) + f4(π − θ7) a = 1.70 θ0 = 0.875 �θ⋆ = 0.68
f4(θ8) + f4(π − θ8) a = 1.70 θ0 = 0.875 �θ⋆ = 0.68

excluded volume f3(rex1) + f3(rex2) ǫ = 2.00 σ1 = 0.70 r⋆
1 = 0.675

Vexc + f3(rex3) + f3(rex4) σ2 = 0.33 r⋆
2 = 0.32

σ3 = 0.515 r⋆
3 = 0.50

σ4 = 0.515 r⋆
4 = 0.50

unstacked pairs and z0 denotes the trivial contribution from
translation and orientation of the whole strand. As discussed
in Sec. III B 1, the excluded volume of nucleotides means
that pairs of neighbors are not independent. To deal with this,
we introduce two new parameters. The statistical weight of a
continuous section of n stacked pairs is now given by

u(n) = σunw x (B2)

with x being equal to the number of bases in the run of stacked
pairs that lie at the end of the strand. n unstacked pairs con-
tribute the same statistical weight as before

v(n) = vn. (B3)

If σ and w are unity, each neighbor pair is independent,
and we return to Eq. (B1). σ takes the role of a cooperativ-
ity parameter: for 0 < σ < 1, stacking is cooperative, in that
configurations with multiple separate regions of stacking are
disfavored, and for σ > 1 stacking is anticooperative. w ac-
counts for end effects: for 0 < w < 1, end bases are less likely
to stack, and for w > 1 the opposite is true.

Using these definitions, the total partition function for a
strand of length l becomes

Zl =
∑

{ni ,m j ;l}

z0w x
∏

i

σuni

∏

j

vm j . (B4)

Here, {ni , m j ; l} specifies a configuration, ni being the num-
ber of stacked pairs in the i th contiguous sequence of stacked
neighbors, m j being the number of unstacked pairs in the mth
sequence of unstacked bases and x =

∑

i xi is the total num-
ber of bases at the end of the strand involved in stacking.

Defining t = u/v , n =
∑

i ni and letting p be the total
number of stacked regions, we obtain

Zl = Zu
l

∑

{ni ,m j ;l}

w xσ ptn, (B5)

with Zu
l = z0v l−1 being the partition function of a completely

unstacked strand. To compare directly with simulations, we
require the ratio of the probability of observing r stacked pairs
to the probability of observing a completely unstacked strand

Zl(r )

Zu
l

=
∑

{n=r ;l}

w xσ ptn = tr

2
∑

x=0

w x
∑

p

σ p�{x,r,p;l} (B6)

with �{x,r,p;l} defined as the number of distinct configurations
of length l with r stacked pairs, of which x are at the end of
the strand, divided between p contiguous regions of stacking.
The advantage of this representation is that finding �{x,r,p;l} is
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FIG. 16. Illustration of variables used in the potential of the DNA model. (a)
and (b) show the definitions of the vectors used in the potential, and (c)–(f)
show the various angular modulating factors.

simply a matter of combinatorics. It can be shown that

�{x,r,p;l} =
(1 + δ1,x )(r − 1)!(l − r − 2)!

(r − p)!(p − 1)!(l − r − 2 − p + x)!(p − x)!

(B7)

for all possible values of x , r, and p for a strand of length l,
with the exception that �{0,0,0;l} = �{2,l−1,1;l} = 1.

We assume that the temperature dependence of stack-
ing is manifested in the parameter t , which is defined as
t = exp(−�hst/RT + �sst/R), with �hst and �sst repre-
senting the (assumed constant) enthalpy and entropy changes
associated with stack formation. As w and σ arise from ex-
cluded volume effects; they are assumed to be entropic and
hence temperature independent. We fitted this four-parameter
model to data obtained in simulations; the results are shown
in Sec. III B 1.

APPENDIX C: STATISTICAL MODEL FOR DUPLEX
FORMATION

Equation (8) assumes a constant entropy and enthalpy
difference between bound and unbound states. It is well
known, however, that �Sl and �Hl should both become more
negative with temperature, as the unbound strands become in-

creasingly disordered due to unstacking.77, 84, 90, 92 Using the
formalism of Appendix B, we can factor out this effect

[Al Bl]

[Al][Bl]
=v

Zll

Z2
l

=
exp(−β(�H ′

l − T �S′
l ))

(

Zu
l

)2

Z2
l

, (C1)

where in this case �H ′
l and �S′

l are the enthalpy and entropy
difference between the duplex and unstacked single-stranded
macrostates.

Although fitting to Eq. (C1) with constant �H ′
l and �S′

l

was more successful than assuming constant �Hl and �Sl , it
overcorrected for the variations in �Sl and �Hl with temper-
ature. The failure resulted from neglecting the changes in the
bound state with temperature, which were dominated by two
effects:

� As temperature increases, increased fraying leads to
smaller entropy and enthalpy differences between typ-
ical bound states and completely unstacked single
strands, as bound states become more disordered.

� Frayed ends themselves undergo a stacking transition,
once more resulting in the entropy and enthalpy of
bound states relative to unstacked strands becoming
less negative with temperature.

To incorporate these effects within a statistical model, we
separately consider the entropy and enthalpy differences be-
tween unstacked single strands and macrostates with y out of
l possible base pairs formed. We then approximately adjust
for stacking of the frayed ends by treating the 2(l − y) un-
paired bases as undergoing stacking with the same �hst and
�sst as given in Sec. III B 1. Cooperativity and end effects are
ignored as it would be difficult to include them consistently
when stacking is initiated adjacent to a duplex region.

We thus define Zll(y) as

Zll =
∑

y

Zll(y) (C2)

and Zu
ll(y) as the contribution to Zll(y) in which none of the

unpaired bases are stacked. Zu
ll(y) is approximated by

Zll(y) = Zu
ll(y)(1 + exp(−β(�hst − T �sst)))2(l−y). (C3)
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Our hypothesis is that the enthalpy and entropy differ-
ences between unstacked single strands and the states con-
tributing to Zu

ll(y) should be approximately constant for given
l and y, as the temperature variation due to breaking stacks
and fraying has been factored out. The values of Zll(y)/Z2

l

were extracted from the fraying data, and Zu
ll(y)/(Zu

l )2 in-
ferred using Eqs. (B6) and (C3). Fitting to

v
Zu

ll(y)

(Zu
l )2

= exp(−β(�H 0
l (y) − T �S0

l (y))) (C4)

with constant �H 0
l (y) and �S0

l (y) (which represent the
enthalpy and entropy differences between unstacked single
strands and the states contributing to Zu

ll(y)) was very suc-
cessful.

Furthermore, as shown in Fig. 17, �H 0
l (y) (and �S0

l (y),
which is not shown) are to an excellent approximation linear
in l for fixed y. Thus, having factored out sources of varia-
tion with temperature in the initial and final states, we arrive
at a statement similar to the initial hypothesis of the nearest-
neighbor model: adding an extra base pair to a helix (i.e., in-

creasing the length of the strands by one base, and forming
one extra base pair, so that the number of unpaired bases is
constant) contributes a constant enthalpy and entropy change
relative to unstructured single strands.

This finding suggests an extension of the nearest-
neighbor model to non-two-state behavior to incorporate fray-
ing and stacking, and thus predict the values of �S(T )
and �H (T ) for oligonucleotides. To achieve this descrip-
tion, fraying and stacking transitions must be sufficiently
well characterized, and the assumption that helix stabil-
ity is predominantly due to nearest-neighbor effects must
hold, as it does in our model. It should be noted that
at low temperatures, certain oligomers may also have
significant contributions to the single-stranded state from
hairpins, which are not incorporated into this statistical
description.

We are finally in a position to characterize the hybridiza-
tion transition with completely temperature-independent pa-
rameters. Combining Eqs. (8), (B6), (C2), (C3), and (C4), we
find

Keq = exp(−β(�Hl − T �Sl)) = v
Zll

Z2
l

=

∑

y exp
(

−β
(

�H 0
l (y) − T �S0

l (y)
))

(1 + exp(−β(�hst − T �sst)))2(l−y)

∑

r exp(−β(�hst − T �sst))r
∑2

x w x
∑

p σ p�{x,r,p;l}

,

(C5)

�Hl = −
d

dβ
ln Keq =

∑

y

(

�H 0
l (y) + 2(l − y)�hst exp(−β(�hst − T �sst)

1 + exp(−β(�hst − T �sst))

)

Zll(y)

Zll

− 2

∑

r

(

r�hst Zl(r )
)

Zl

. (C6)

Equation (C6) is used in Sec. III B 4 to produce the fit
of �H15 to simulations. The first term gives the enthalpy of
duplexes with respect to unstacked single strands and the sec-
ond term the enthalpy of two single strands with respect to
their unstacked state. As can be seen, the agreement is good
over a wide range of temperatures. Had hairpins been possi-
ble in the simulations of Sec. III B 4, they may have distorted
the enthalpy at temperatures far below Tm . Hairpins were ex-
cluded to make the interpretation of the results clearer, and
their presence would have made the single-stranded state en-
thalpy more negative. This change would have led to a smaller
transition enthalpy between single strands and duplexes at
these temperatures.
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(2010).
51P. D. Dans, A. Zeida, M. R. Machado, and S. Pantano, J. Chem. Theory

Comput. 6, 1711 (2010).
52K. Voltz, J. Trylska, V. Tozzini, V. Kurkal-Siebert, J. Langowski, and J.

Smith, J. Comput. Chem. 29, 1429 (2008).
53A. Morriss-Andrews, J. Rottler, and S. S. Plotkin, J. Chem. Phys. 132,

035105 (2010).
54A. A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002).
55M. E. Johnson, T. Head-Gordon, and A. A. Louis, J. Chem. Phys. 126,

144509 (2007).
56K. Drukker, G. Wu, and G. C. Schatz, J. Chem. Phys. 114, 579 (2001).
57M. Sales-Pardo, R. Guimera, A. A. Moreira, J. Widom, and L. Amaral,

Phys. Rev. E 71, 051902 (2005).
58M. Kenward and K. D. Dorfman, J. Chem. Phys. 130, 095101 (2009).
59F. Ding, S. Sharma, P. Chalasani, V. V. Demidov, N. E. Broude, and N. V.

Dokholyan, RNA 14, 1164 (2008).
60S. Pasquali and P. Derreumaux, J. Phys. Chem. B 114, 11957 (2010).
61C. Hyeon and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 102, 6789

(2005).
62C. Hyeon and D. Thirumulai, Biophys. J. 92, 731 (2007).
63T. E. Ouldridge, I. G. Johnston, A. A. Louis, and J. P. K. Doye, J. Chem.

Phys. 130, 065101 (2009).
64E. J. Sambriski, V. Ortiz, and J. J. de Pablo, J. Phys.: Condens. Matter 21

(2009).
65E. J. Sambriski, D. C. Schwartz, and J. J. de Pablo, Biophys. J. 96, 1675

(2009).
66S. Niewieczerzał and M. Cieplak, J. Phys.: Condens. Matter 21, 474221

(2009).
67T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, Phys. Rev. Lett. 104,

178101 (2010).
68S. Pitchiaya and Y. Krishnan, Chem. Soc. Rev. 35, 1111 (2006).
69M. C. Murphy, I. Rasnik, W. Chang, T. M. Lohman, and T. Ha, Biophys.

J. 86, 2530 (2004).

70J. Bois, S. Venkataraman, H. M.T. Choi, A. J. Spakowitz, Z. Wang, and N.
A. Pierce, Nucleic Acids Res. 33, 4090 (2005).

71J. B. Mills, E. Vacano, and P. J. Hagerman, J. Mol. Biol. 285, 245 (1999).
72S. A. Harris, C. A. Laughton, and T. B. Liverpool, Nucleic Acids Res. 36,

21 (2008).
73T. Schlick, Molecular Modeling and Simulation (Springer-Verlag, New

York, 2002).
74S. Whitelam, E. H. Feng, M. F. Hagan, and P. L. Geissler, Soft Matter 5,

1521 (2009).
75M. Swart, T. van der Wijst, C. F. Guerra, and F. M. Bickelhaupt, J. Mol.

Model. 13, 1245 (2007).
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