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Structural Microfoundations of Innovation: 

Relational Stars and Quality of Inventive Output 

 

 

ABSTRACT 

 

Applying social network theory, we attempt to uncover the role of individuals as drivers of 

organizational invention. Conceptualizing invention as a process of knowledge search and 

recombination, we go beyond the focus on productive individuals and emphasize the importance 

of individual relational capacities to effectively implement the process of invention. We rely on 

intraorganizational knowledge networks emerging through individual collaboration to identify 

actors who using their extreme collaboration behavior can positively influence the quality of 

their organization‟s inventive output. We develop a taxonomy of three types of such relational 

stars: integrators, connectors, and isolates. We test our ideas in a sample of 106 pharmaceutical 

firms from 1974 to 1998. Our results suggest that all three individual role-sets have positive 

effects on their organization‟s inventive quality and that the positive effects are much more 

pronounced for quality than quantity of inventive output. Connectors are the strongest drivers of 

quality followed by integrators and isolates. In addition, we show that relational stars 

compensate for each other and that the most effective internal configuration for inventive quality 

includes many integrators combined with many connectors and few isolates.  
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Since Schumpeter (1942) we have known that innovation is a vehicle of economic growth and a 

source of firm performance heterogeneity. Research on the antecedents of innovation has 

extensively focused on the innovative capabilities that firms need to develop in order to initiate 

or respond to frequent technological change. Organizational scholars have convincingly argued 

that innovative organizations are those with superior routines (Nelson and Winter, 1982), 

capabilities (Kogut and Zander, 1992), competences (Henderson and Cockburn, 1994), or 

dynamic capabilities (Teece, Pisano, and Shuen, 1997) of transforming existing knowledge into 

something new. The simple observation that knowledge is the key raw material for innovation 

(Nonaka, 1994) combined with the recognition of individual actions and interactions as the 

realistic locus of knowledge creation (Felin and Hesterly, 2007), directed attention to the role of 

individuals as the microfoundations of the necessary capabilities (Felin and Foss, 2005). Indeed, 

research indicates that firms benefit from investments in individual expertise expressed as well 

above average research productivity (Zucker, Darby, Brewer, 1998; Lacetera, Cockburn, 

Henderson, 2004; Rothaermel and Hess, 2007). As a result, there is a significant degree of 

consensus that the so-called „star scientists‟ positively affect innovative outcomes. However, we 

still have a gap in our understanding with respect to other individual roles and skills that are 

critical for innovation. Is individual productivity the only relevant skill for innovation? 

 

Evidence suggests that innovation is a communal team-based endeavor (Wuchty, Jones, and 

Uzzi, 2007). Innovative performance depends on effective knowledge sharing (Hansen, 1999), 

search (Gavetti and Levinthal, 2000; Katila and Ahuja, 2002), transfer (Tsai and Ghoshal, 1998), 

recombination (Galunic and Rodan, 1998), reconfiguration (Henderson and Cockburn, 1994), 

diffusion (Zollo and Winter, 2002), and renewal (O‟Reilly and Tushman, 2007). Individuals are 

responsible for implementing these knowledge sub-processes through their actions and 
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interactions. Such interactions result in extensive knowledge networks, in which actors occupy 

various positions. Relying on the structural, cognitive, and affective benefits stemming from 

their positions (Nahapiet and Ghoshal, 1998), certain individuals emerge as more effective than 

others to execute the knowledge sub-processes and become highly consequential for the 

innovative performance of the network as whole. In this paper, we make an effort to identify 

them by looking for extreme patterns of individual collaborative behavior. Applying network 

thinking, we argue for the positive effect of three individual structural roles on the inventive 

output of their organizations. We refer to them as „relational stars‟ to emphasize the social aspect 

of their skills and depart from traditional „productivity stars‟. More importantly, we extend our 

current understanding of the effect of productivity stars on quantity of inventive output and 

provide our first contribution by highlighting the role of relational stars as the structural 

microfoundations of inventive quality. In essence, we argue that these actors can exploit their 

patterns of collaborative behavior to not only identify more opportunities for knowledge 

recombination but also select the most promising ones leading to knowledge of higher quality.  

 

In particular, we focus on three types of relational stars: integrators, connectors, and isolates. 

Integrators are the actors who have a very large network of collaborators and therefore have the 

capacity to integrate and recombine knowledge from many different sources. Connectors are the 

individuals who collaborate across knowledge areas, operate as the linking pins among internally 

distant and otherwise unconnected clusters of knowledge and therefore have the capacity to 

engage in high risk and radical trials of knowledge recombination. Isolates are productive 

individuals that are relatively unconnected from their organization‟s network and therefore have 

the capacity to infuse the knowledge base with diverse perspectives as they are the least affected 

from the organization‟s knowledge directions. Conceptualizing invention as a search process of 
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knowledge recombination (Fleming, 2001), the three types correspond to three alternative paths: 

local recombination, distant recombination, and independent knowledge production. Apparently, 

all three individual roles become important for the quality of inventive output not necessarily 

because they are extremely productive but mainly because their collaborative behavior facilitates 

effective recombinant search. It is important to note here that if these types of actors are defined 

relative to their peers in an organization‟s internal network, then every organization would have 

its own share of relational stars. Instead, we define relational stars relative to their counterparts in 

every competing organization‟s network looking for outliers in each of the three categories.  

 

This approach follows existing research on „star scientists‟ where stars are the actors at the top of 

the productivity distribution of all scientists across firms. More importantly, this approach allows 

us to provide an important contribution to the literature on internal networks. Research on 

networks has unveiled that an individual‟s position in the internal network may affect that 

individual‟s involvement in innovation (Obstfeld, 2005), creativity (Fleming, Mingo, and Chen, 

07), and performance (Gargiulo, Ertug, Galunic, 2009). In addition, the structure of the 

knowledge network may affect the overall network‟s innovative performance (Brown and 

Eisenhardt, 1997; Reagans and Zuckerman, 2001; Reagans and McEvily, 2003). Much less is 

known with respect to the effect of nodes in certain positions on the overall network‟s 

performance. Authors of two recent reviews on networks conclude that it is imperative to address 

cross-level network phenomena and understand how micro-level network effects translate into 

macro-level network phenomena (Brass et al., 2004; Ibarra, Kilduff, and Tsai, 2005). With this 

study, we make an effort to document the mechanisms through which the mere presence of an 

individual position (that is, a certain pattern of individual collaborative behavior) may affect not 

only that individual‟s performance but also the performance of the network as whole. In 
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particular, we show that individuals who are outliers in terms of their collaborative behavior in 

three meaningful dimensions can improve inventive quality of their organizations through 

identifying more promising, novel, or diverse knowledge recombinations. 

 

Finally, we provide a contribution to the literature on social capital. In particular, our objective is 

to document how social capital can create human capital (Coleman, 1988) by looking at the 

interaction between human and social capital. Intraorganizational collaborative networks are 

built in order to transform a number of creative individuals into creative collectives (Hargadon 

and Bechky, 2006). Therefore, our relational stars in these networks do not try to exploit their 

position for their own benefit in a competitive environment (Burt, 2000); rather, they operate as 

relational experts to promote collective creativity in a cooperative context (Lingo and 

O‟Mahony, 2010). Relational stars possess the right amount and type of social capital to foster 

invention at the network level but at the same time have the necessary human capital to generate 

knowledge and be part of the network at the first place. Therefore, their importance stems from 

the right blend of human and social capital. Building that social capital requires both opportunity 

and ability (Adler and Kwon, 2002). If we look at their collaborative ties as prisms (Podolny, 

2001) we can safely assume that individuals in relational star positions possess unique skills, 

abilities, and capacities that make them particularly valuable for the inventive performance of 

their organization. In addition, we extend current understanding on the role of knowledge 

brokers by looking at individuals who not only span structural holes but also use their bridging 

ties to link distant knowledge clusters and access a wider share of the network. Further, we 

highlight the important role of individuals who may lack social capital but still positively affect 

the invention process by providing much needed knowledge diversity. Our main argument is that 

organizations with any type of relational stars have an invention advantage. We test our ideas in 
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a sample of 106 large firms in the global pharmaceutical industry using a longitudinal research 

design spanning a 25-year period. We rely on co-patenting events to build extensive knowledge 

networks with over 550,000 observations at the individual level from 1974 to 1998 and employ 

network metrics to define the three types of relational stars. We use counts of these stars at the 

organizational level to predict how important they are for inventive quality. We compare the 

magnitude of the individual effects to identify the individual role that is the strongest driver of 

quality. In addition, we are able to document some very interesting interactions among the three 

types of relational stars and uncover the most effective internal configuration of relational stars. 

Overall, our sample allows us to investigate the extent to which incumbent firms can remain 

innovative and survive technological discontinuities by managing the inventive potential of their 

human capital resources (Tushman and Anderson, 1986; Anderson and Tushman, 1990). 

RELATIONAL STARS AND INVENTIVE QUALITY 

Organizational research on the antecedents of organizational innovation has been dominated by 

the notion of „routines‟ (Nelson and Winter, 1982). The knowledge-based conceptualization of 

the firm as a social community guided by higher-order principles that are irreducible to 

individuals (Kogut and Zander, 1992) spurred significant research efforts linking capabilities 

directly to organizational innovative outcomes (Kogut and Zander, 1992; Henderson and 

Cockburn, 1994; Teece, Pisano, and Schuen, 1997; Zollo and Winter, 2002). However, early 

research in the knowledge-based paradigm emphasized the importance of accounting for 

individuals in order to clearly understand the formation of such organizational capabilities 

(Nonaka, 1994; Conner and Prahalad, 1996; Grant, 1996). Macro-level explanations that link 

capabilities with outcomes without considering individuals as their microfoundations open the 

door for alternative micro-level explanations (Abell, Felin, and Foss, 2008). 
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Theoretical support of individuals as the realistic locus of knowledge (Felin and Hesterly, 2007) 

channeled some research towards the role of human capital in driving organizational innovation. 

Evidence suggests that firms are generally more innovative when they employ highly productive 

individuals with the capacity to generate scientific knowledge. The so-called „star scientists‟ are 

instrumental for knowledge sensing (Lacetera, Cockburn, and Henderson, 2004), renewal 

(Zucker and Darby, 1997), knowledge capture (Zucker, Darby, and Armstrong, 2002), and 

adaptation to radical discontinuities (Rothaermel and Hess, 2007). Therefore, we have a deep 

understanding of the innovative benefits provided by individual knowledge productivity. 

 

However, individual creativity has an apparent social side and is affected by the working 

environment (Amabile et al. 1996; Perry-Smith and Shalley, 2003). Organizations have an 

advantage over individuals because they can internally develop intellectual capital based on 

social interactions among their members (Nahapiet and Ghoshal, 1998). Early research on the 

emergence of industrial R&D suggested that the advantage of the industrial research laboratory 

was that “it could take several men, each lacking the necessary qualifications for successful 

independent research, and weld them into a productive team in which each member compensated 

for the others‟ shortcomings” (Beer, 1959: 71). Hence, apart from individual productivity there is 

a set of social and collaborative skills that is at least as important for fostering innovation. This 

importance is even more pronounced in the innovation literature which suggests that innovation 

is an outcome of a socially intensive process of knowledge transformation. Individuals innovate 

by searching for potential knowledge recombinations between familiar and new components 

(Fleming, 2001). Socialization (Fleming, 2002) and intraorganizational persuasion and conflict 

(Gavetti and Levinthal, 2000) are important components of successful search outcomes. Firms 
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need to integrate disparate pieces of knowledge (Henderson and Cockburn, 1994) and 

dynamically reconfigure their existing knowledge stocks as markets evolve (Galunic and 

Eisenhardt, 2001). Knowledge should be reused, recombined, and accumulated to result in 

innovation (Murray and O‟Mahony, 2007). To effectively implement these processes, 

individuals collaborate within firms and form extensive internal collaborative networks. 

 

The importance of these networks has not been neglected. For instance, there is research 

documenting the effect of individual position on a host of meaningful individual outcomes 

(Brass, 1984; Ibarra, 1993; Morrison, 2002; Cross and Cummings, 2004) and research supporting 

the effect of the network‟s overall structure on network-level outcomes (Tsai, 2002; Argyres and 

Silverman, 2004; Lazer and Friedman, 2007; Yayavaram and Ahuja, 2008). However, although 

there is some evidence that actors in certain positions may affect organizational outcomes as for 

instance, central actors shape their firms‟ future technological capabilities (Nerkar and Paruchuri, 

2005), research on the role of individuals in these networks as drivers of network-level outcomes 

remains sparse. Authors of recent reviews echo this statement by calling for more research 

addressing cross-level network phenomena (Brass et al., 2004; Ibarra, Kilduff, and Tsai, 2005). 

In this study, we make an effort to do that by introducing the concept of „relational stars‟. 

Relational stars are actors whose patterns of collaborative behavior make them valuable for the 

inventive performance of the network as a whole. Their value comes from the structural, 

cognitive, and relational benefits associated with their position in the intraorganizational 

collaborative network (Inkpen and Tsang, 2005). To identify them, we compare the collaborative 

behavior of all individuals across firms in the same industry and select the outliers in three 

dimensions that we believe positively affect the inventive performance of the system. Our logic 

is quite simple: we argue that if certain patterns of collaboration are more impactful than others 
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for invention, then individuals with the capacity to express these patterns are the best positioned 

ones to exploit their positions and explore opportunities for new knowledge of higher quality. 

 

The intraorganizational collaborative network is an instance of a creative collective (Hargadon 

and Bechky, 2006) and a social structure characterized by cooperation rather than competition 

(Tsai, 2002). Individuals work together to enhance the organization‟s knowledge base. Nodes in 

the network are individuals participating in the knowledge co-production process. Ties reflect 

instances of direct collaboration with the purpose of knowledge co-creation. They can be viewed 

as strong ties (Hansen, 1999), which are necessary for effective knowledge transfer (Singh, 

2005) or recombination (Galunic and Rodan, 1998), and play a dual role at they facilitate both 

inflows and outflows of knowledge (Borgatti and Foster, 2003). They can also be viewed as 

prisms to allow us make inferences about the characteristics of the nodes (Podolny, 2001). 

Therefore, we look at both the type of collaborative relations and the utility coming from these 

relations to deduce the value of individuals in certain positions (Kilduff and Brass, 2010). We 

posit that relational stars are very valuable sources of human capital because they have the 

capacity to utilize superior structural, cognitive, and relational benefits associated with their 

collaborative behavior (Nahapiet and Ghoshal, 1998).  

 

The main mechanism underlying our hypotheses is the value of human capital. However, we 

emphasize the role of social capital in the creation of that necessary human capital (Coleman, 

1988). Relational stars are defined as the ones having the „right‟ type and amount of social 

capital. However, the acquisition of that social capital reflects unique abilities and skills on their 

end (Adler and Kwon, 2002). In addition, relational stars possess unique blends of human and 

social capital. Looking at knowledge as both an action and a possibility (Hargadon and Fanelli, 
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2002), these individuals have not only the human capital to co-develop knowledge and be part of 

the network but they also have the relationships to explore for future knowledge possibilities. 

Further, they rely on social interactions to generate possibilities for knowledge recombination 

(Felin and Zenger, 2009). They use their position to shape the network, access and diffuse 

knowledge stocks (Borgatti and Foster, 2003). Relational stars emerge because their alters have a 

positive representation of their skills; a „star‟ position in the network emerges through 

interpersonal collaboration and is the result of continuous adjustments (Kilduff, Tsai, and Hanke, 

2006). The previous discussion suggests that relational stars develop superior human capital 

through their social capital endowments. In what follows, we link individual behavioral patterns 

and organizational outcomes. In reality, a behavioral pattern has two components: what the 

individual can do with that position and what the individual is (derived from the position) 

although the two are closely intertwined. It is important to note that these patterns have certain 

origins beyond individual skills and abilities. Actors emerged in their positions because they 

were also appropriately motivated to collaborate and were provided with the opportunity to do so 

by their organization‟s structures, incentives, or strategies. These other origins are out of this 

paper‟s scope and are briefly addressed in the discussion section. Here, it is important to 

emphasize that a network position is an organizational product as much as it is a product of 

individual skills. Relational stars have the capacity to alter the organization‟s knowledge base 

with high quality inventive output by utilizing their skills and capacity to use the structural, 

cognitive, and relational features of their ties.   

 

Integrators 

Integrators are individuals with an extraordinary amount of collaborative ties in their 
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organization‟s network; normally, these actors occupy a highly central position in the network. 

The positive effect of such a central position on individual level outcomes has been widely 

documented. Centrality is associated with an individual‟s promotions (Brass, 1984), exercise of 

power (Ibarra, 1993), supervisor ratings (Mehra, Kilduff, Brass, 2001), socialization (Morrison, 

2002), innovative performance (Cross and Cummings, 2004), involvement in innovation 

(Obstfeld, 2005), and performance bonus (Gargiulo, Ertug, and Galunic, 2009). However, much 

less is known with respect to the role of such individuals on the performance of the network as a 

whole. Here, we make an effort to link the presence of integrators in an organization‟s 

collaborative network with the inventive quality of its output. To do that, we define integrators as 

universal outliers; integrators are the individuals whose collaborative behavior involves a 

number of alters which is large not relative to their peers in their organization‟s network but 

relative to all individuals in all competing organizations. We argue that organizations employing 

such collaborative outliers enjoy a quality advantage in their inventive output. The tools through 

which integrators drive inventive quality are the knowledge inflows and outflows embedded in 

their collaborative ties. The mechanisms through which flows result in quality are three: 

conceptualizing invention as recombinant search, integrators rely on knowledge inflows coming 

from many different sources to identify not only more potential knowledge recombinations but 

also select the most promising ones among them. Outliers have an advantage in this respect 

because every additional tie has an exponential effect on the number of potential recombinations. 

Second, integrators use their outflows to diffuse a constantly updating knowledge base for 

further recombination. Third, the mere presence of these actors creates the conditions for 

invention to occur. We choose the term „integrators‟ to illustrate their main knowledge function, 

that is, knowledge integration; the term has been previously used to describe actors who bring 
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people together and fill structural holes (Xiao and Tsui, 2007). In addition, we prefer this term 

over central actors to emphasize the outlier status of these individuals. Integrators are not just 

central in their firm‟s network; their number of collaborative ties puts them at the top of the 

distribution when compared with all individuals from all competing organizations.      

 

In particular, integrators through their inflows have the capacity to observe a large number of 

alters, understand who knows what (Borgatti and Cross, 2003), and follow the most promising 

local recombinations. This view is consistent with evidence that knowledge recombined by 

central actors is more likely to be found in their firm‟s future technological capabilities (Nerkar 

and Paruchuri, 2005). Their commanding position allows them to scan the environment, 

understand where relevant knowledge lies, familiarize themselves with a number of different 

knowledge stocks, and experiment with alternative combinations to identify the most valuable 

ones. On the other hand, through their outflows integrators have the capacity to effectuate 

diffusion of a changing knowledge base to initiate further cycles of knowledge refinement. 

Evidence suggests that integrators should be able to diffuse knowledge easier than others as they 

exert significant influence on their peers (Brass, 1984). Eventually, integrators become the 

organization‟s „enabling bureaucracy‟ (Adler, Goldoftas, and Levine, 1999). 

 

As importantly, the presence of integrators creates some necessary conditions for invention to 

occur. They operate as the glue that increases the network‟s density and makes it promising for 

knowledge sharing and learning. Centralized R&D structures have been shown to generate more 

impactful innovations (Argyres and Silverman, 2004) and cohesive structures positively affect 

individual motivations for knowledge sharing (Reagans and McEvily, 2003) and knowledge 

transfer (Reagans, Zuckerman, McEvily, 2004). In addition, integrators play the role of a 
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coordinating mechanism. Their collaborative behavior results in strong ties, shared norms, 

communication codes, trust, and clan-fostering initiatives which are all necessary conditions for 

invention and learning to occur (Tsai and Ghoshal, 1998, Kang, Morris, and Snell, 2007). 

Finally, invention includes significant levels of uncertainty for the individuals involved and 

central actors are the ones sought after by peers under uncertainty (Tushman and Romanelli, 

1983). Arguably, that is because their position also exists at the minds of their peers and signifies 

competence (Kilduff, Tsai, and Hanke, 2006). Therefore, integrators take over decision making, 

reduce uncertainty for peers, and encourage high quality knowledge creation. Overall, integrators 

have the capacity to integrate knowledge locally for high quality recombinations, diffuse the 

updated knowledge base, and create the conditions for further high quality invention to occur.  

 

Hypothesis 1: The quality of a firm‟s inventions is a positive function of the number of 

integrators in its internal collaborative network. 

 

Connectors 

Extensive evidence suggests that individuals who span structural holes in a knowledge network 

are more likely to come up with better ideas (Burt, 2004), are more creative (Fleming, Mingo, 

and Chen, 2007), and can adapt better to changes in the task environment (Gargiulo and Benassi, 

2000). Such knowledge brokers enjoy informational advantages which increase their own social 

capital (Burt, 2000) but may hurt the creation of communal social capital under conditions of 

competition (Ibarra, Kilduff, and Tsai, 2005). However, in a cooperative structure as is the case 

in a firm‟s internal collaborative network (Hargadon and Bechky, 2006), brokers are more likely 

to play the role of relational experts who bring together unconnected knowledge stocks to 

promote the innovative performance of the system (Obstfeld, 2005, Lingo and O‟Mahony, 2010). 



 

 

15 

In an organization‟s knowledge network, individuals are often organized around their knowledge 

domains. As a result, knowledge clusters emerge with their boundaries defined by the nature and 

relatedness of knowledge. Such molecular units within firms are expected to form as a 

disaggregation effect of recent innovations and high-powered incentives (Zenger and Hesterly, 

1997). Bridging ties across these units represent collaboration across knowledge clusters. We 

extend current understanding on the role of brokers by introducing the concept of connectors in 

the collaborative networks. Connectors are actors who span structural holes but at the same time 

connect distant clusters of knowledge. While not necessarily productive or highly collaborative, 

connectors operate as the linking pins among otherwise unconnected and distant knowledge 

stocks. There are not only rich in structural holes; their spanning of such holes also allows them 

to access a large share of the broader collaborative network in which they are embedded.  In a 

sense, they are very efficient knowledge brokers; their collaborative behavior bridges knowledge 

silos within their firm‟s network. Similarly to what we did for integrators, we define connectors 

as actors who span structural holes in their network and access the highest share of their network 

compared to brokers in all other competing organizations‟ networks. With this term, we capture 

individuals who are the best in collaborating across knowledge domains and utilize a very large 

share of their organization‟s knowledge base. The main mechanism through which connectors 

can increase their organization‟s inventive quality is through novel knowledge combinations of 

diverse knowledge stocks. 

 

Research suggests that individuals are more likely to come up with such novel recombinations 

when their ego-networks span boundaries across technologies (Fleming, 2002), disciplines 

(Henderson and Cockburn, 1994), locations (Singh, 2008), or divisions (Kleinbaum and 

Tushman, 2007). Here, we define connectors as actors whose collaborative behavior spans 
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clusters and silos in the knowledge space. Connectors use their ties‟ inflows to access diverse 

sources of knowledge and are therefore more likely to identify potentially novel and high quality 

recombinations. Their capacity to collaborate across knowledge boundaries allows them access 

to heterogeneous knowledge stocks and engagement in high risk inventive trials. In addition, 

they have a broad view of the knowledge landscape and are therefore more likely to guide their 

experiential learning efforts towards more promising knowledge areas. Through their outflows, 

connectors rapidly diffuse new knowledge to distant clusters of knowledge for further quality 

recombinations. Although actual transfer of knowledge through brokerage may be hampered 

because of several complexities (Obstfeld, 2005; Fleming, Mingo, and Chen, 2007), still the 

capacity of connectors to communicate new knowledge across distant knowledge domains 

increases the opportunity for others to engage in high quality recombination. 

 

 

 

In addition, the presence of connectors in an organization‟s collaborative network creates the 

conditions for high quality invention. Connectors promote relaxed structures facilitating 

improvisation (Brown and Eisenhardt, 1997), network heterogeneity facilitating learning 

(Reagans and Zuckerman, 2001), network range supporting knowledge transfer (Reagans and 

McEvily, 2003), and decrease the path length between any two actors in the network thus 

improving its overall performance (Cowan and Jonard, 2003). The presence of connectors in an 

organization‟s network reflects a knowledge base which is nearly decomposable, a characteristic 

which has been linked with inventive quality (Yayavaram and Ahuja, 2008).  

 

Hypothesis 2. The quality of a firm‟s inventions is a positive function of the number of 

connectors in its internal collaborative network. 
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Isolates 

The process of knowledge recombination, especially within intraorganizational knowledge 

networks, can be viewed as a pursuit for local optima (Gavetti and Levinthal, 2000). Actors 

collaborate to generate improvements based on a given set of knowledge resources. This process 

can be self-sustaining and result in significant similarities of knowledge among the actors of the 

collaborative network as recombinations are communicated through diffusion. Therefore, 

internal collaborative networks are vulnerable to falling into competency traps (Levitt and 

March, 1988), a tendency to rely on inferior knowledge spaces when superior alternatives exist. 

As a result, these networks can greatly benefit from individuals who can infuse some knowledge 

diversity into the system of knowledge recombination. Such actors should participate in the 

development of knowledge but be relatively unconnected from the rest of the network to avoid 

overembeddedness and the risk of social capital (Adler and Kwon, 2002). Actors remaining 

uncoupled from an organization‟s network have been characterized as isolates (Tichy, Tushman, 

and Fombrun, 1979). We build on this notion and in an effort to describe how such actors may 

positively affect an organization‟s inventive quality, we define isolates as individuals who are 

almost unconnected from the internal network but at the same time are more productive than 

their counterparts in all of competing organizations‟ networks.  

 

Organizations with the most productive isolates have an increased opportunity for knowledge 

diversity in their system. In turn, this diversity promotes identification of even more promising 

knowledge recombinations which are free from risks of competency traps. The most productive 

isolates remain unaffected by the knowledge directions of the network and have the capacity to 

provide it with additional insights at a high production rate. As importantly, isolates produce that 
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knowledge at minimum coordination costs. Therefore, we shift attention to actors who are 

important for their organization not because of their ties but exactly because of the absence of 

such collaborative ties. In addition, evidence suggests that isolates are more willing to share their 

knowledge (Thomas-Hunt, Ogden, and Neale, 2003). Isolates should not be confused with just 

independent inventors who have been shown to generate both more impactful (Dahlin, Taylor, 

and Fichman, 2004) and less impactful inventions (Singh and Fleming, 2010). Our isolates 

actively participate in their organizations efforts to invent new knowledge and their independent 

but productive collaborative behavior protects their organizations from knowledge 

homogenization at a steady productive rate, thus increasing the chances for the network to 

generate inventions of higher quality.  

 

Hypothesis 3. The quality of a firm‟s inventions is a positive function of the number of 

productive isolates in its internal collaborative network. 

The three types of relational stars will more than likely coexist in an organization‟s collaborative 

network. Although all three have their own direct effects on inventive quality, it is important to 

explore for the effect of their interaction on the system‟s output. Existing literature reflects a 

debate on whether the types of relational stars should complement or substitute each other in 

driving inventive quality. On one hand, the short run performance of the network requires 

efficiency in dissemination of information, while the long run performance requires 

inefficiencies and knowledge diversity (Lazer and Friedman, 2007). Knowledge of low 

complexity diffuses through distant ties, while knowledge of moderate complexity requires 

social proximity (Sorenson, Rivkin, and Fleming, 2006). High risk inventive trials should always 

be followed by intense socialization (Fleming, 2002). Distant ties enable knowledge search while 

local ties facilitate knowledge transfer (Hansen, 1999). Network cohesion and range together 
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encourage knowledge transfer (Reagans and McEvily, 2003). A small world structure 

characterized by high clustering and bridging ties is more effective for collective invention 

(Cowan and Jonard, 2003). Local ties promote coordination while bridging ties increase 

flexibility (Gargiulo and Benassi, 2000). Finally, there is evidence that nearly decomposable 

knowledge bases with both dense networks and bridging ties generate more useful inventions 

(Yayavaram and Ahuja, 2008). Taken together, these studies suggest that the three types of 

relational stars play different but complementary roles in the path towards inventive quality. 

 

On the other hand, researchers have emphasized that knowledge production through 

interpersonal collaboration entails significant costs. The presence of different individual roles 

with extreme heterogeneity of collaborative behaviors may reflect a serious coordination burden 

for their organization. Coordination can become the most important source of knowledge 

production costs and inefficiencies (Langlois and Foss, 1999). Gibbons (1999) asserts that firms 

are not well-oiled machines and suffer greatly from these coordination costs. Felin, Zenger, and 

Tomsik (2009) argue that any social process of knowledge co-creation includes costs and 

productivity losses. Further, Lavie (2006) notes that internal reconfiguration of capabilities, a 

role that relational stars play, consists of major risks and costs. Finally, O‟Reilly and Tushman 

(2007) suggest although the pursuit of knowledge recombination simultaneously through local 

and distant ties may be beneficial, it also involves major challenges because of differences 

between the respective skill sets. Perhaps, the most illustrative case against complementarity is 

evidence by Burt (1997), which suggests that the value of social capital decreases as more people 

do the same work. Therefore, if integrators, connectors, and isolates are just alternative paths to 

knowledge of increased quality then we should observe a substitute relationship among them. 

Taken together, these studies suggest that the three types of relational stars may be inconsistent 
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with each other and greatly increase coordination costs. Therefore, we proceed by juxtaposing 

two competing hypotheses: 

 

Hypothesis 4a (b): Integrators, connectors, and isolates complement (substitute) each other in 

the invention process and thus their interactions are positively (negatively) associated with their 

organization‟s inventive quality. 

 

METHODS 

To test the developed hypotheses, we followed a longitudinal research design in the global 

pharmaceutical industry. Firms in this industry are under constant pressure to continuously 

innovate. In addition, they had to face the emergence of biotechnology as a new paradigm in 

product development, a discontinuity that increased existing pressures to keep innovating in 

order to survive. As a response, pharmaceutical firms engaged in a wide array of alternative 

strategies to remain innovative; they took on alliances, acquisitions, heavy investment in internal 

research, and in human capital to build or maintain innovative capabilities (Rothaermel and 

Hess, 2007). Therefore, the pharmaceutical industry is an ideal setting for this paper to explore 

for the role of relational stars in driving inventive output above and beyond the mentioned 

innovation levers. Our observation period is from 1974 to 1998. Our sample consists of 106 

pharmaceutical firms that were active in the production of human in-vivo therapeutics and were 

founded before 1974. This sample is largely representative of the overall industry as it accounts 

for the vast majority of global sales of pharmaceutical products. We tracked these 106 firms 

forward until 1998. Horizontal mergers are a common incident in this industry; when a merger 

occurs we combine the data of the merging firms into one entity, we continue tracking it forward, 

and we create an indicator variable to capture a merged entity. 
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We constructed the key dependent and independent variables relying on patents granted to these 

firms by the USPTO. Despite some problems, patents have been extensively used to measure a 

firm‟s innovative activities (e.g. Ahuja, 2000; Henderson and Cockburn, 1994). In addition, the 

pharmaceutical industry is the industry which relies most on patents when it comes to intellectual 

property protection compared to all other manufacturing industries (Cohen, Nelson, Walsh, 

2000). We used the NBER patent data file (Hall, Jaffe, and Trajtenberg, 2001) to create the 

patent portfolio for each one of our firms from 1974 to 1998. We tracked all different names 

under which firms patent (including spelling mistakes in the patent dataset) and collected patent 

data for those firms‟ subsidiaries to make sure that we have the full patenting activity for each 

firm. From resulting patent portfolios, we kept information regarding dates of applications, 

citations received, claims made, inventors listed, and assigned technology classes. Many firms in 

our sample are dedicated pharmaceutical firms. However, there is also a number of large 

diversified conglomerates that are also active in other industries. We argue that knowledge 

possessed by inventors in unrelated industries has little to do with our knowledge-based 

arguments. Therefore, we sampled on the resulting patent portfolio for every firm and we relied 

on information from technology classes to keep only patents that are assigned to classes with a 

clear chemistry or biology component and thus are more likely to be related to the technologies 

underlying human therapeutics. 

 

Dependent Variables 

To measure the quality of a firm‟s inventions, we used the number of citations that a firm‟s 

patents in year t received in subsequent years until 2006. Note that although our sample period 

ends in 1998, we track citations until 2006. We relied on the application date for the patents 
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because it is much closer to the actual time of invention than the granting date. Evidence 

suggests that citations received by a patent is a significant predictor of its market value (Hall, 

Jaffe, and Trajtenberg, 2005) and has already been used to measure the usefulness of inventions 

(Yayavaram and Ahuja, 2008). In addition, we used the number of claims made by a firm‟s 

patents to capture a different dimension of their quality. Claims are arguably a measure of a 

patent‟s technical quality and have been used in prior research to measure the quality of a firm‟s 

inventive activities (Singh, 2008). As a robustness check, we also used simple patent counts to 

see if our independent variables have an effect on quantity of inventive output. 

 

Intrafirm collaborative networks and independent variables 

To identify relational stars and create the independent variables for this paper, we developed 

intrafirm co-inventing networks for each firm from 1974 to 1998. We relied on the NBER 

database inventor file and assigned a unique ID to each individual inventor based on a 

combination of last name, first name, and middle name. When there was still a conflict, we 

expanded our matching criteria to include city and state of residence for each inventor. The 

resulting dataset was a file for each firm with unique inventors IDs assigned to each patent from 

1974 to 1998. As a next step, we used UCINET 6 to develop intrafirm co-inventing networks. 

Nodes of our networks were individual inventors and ties were co-patenting events among them. 

Our main argument is that these ties involve knowledge flows and thus, we proceeded by 

characterizing knowledge through a tie which is older than five years as obsolete. Therefore, we 

developed the knowledge networks using a five-year rolling window and assigned the resulting 

values to the last year of each time window (e.g. 1982-1986 values to 1986, 83-87 values to 87, 

etc.). We analyzed our network and kept a wide array of ego-network metrics to define the three 

types of relational stars. Then, we developed three variables at the inventor level: 
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Integrator. This is an indicator variable with a value one if the inventor‟s direct collaborative ties 

are two standard deviations more than the mean number of direct ties of all inventors of all firms 

during the same 5-year window and the inventor has more than two patents in the same period 

(to avoid one-time inventors that contribute little to their firm). Therefore, we captured inventors 

with a great number of alters as collaborators.
2
 

 

Connector. In the theoretical part of the paper, we emphasized that connectors are not only 

knowledge brokers in terms of spanning many structural holes, but they are also individuals who 

connect distant clusters of knowledge and therefore have access to a large share of their firm‟s 

collaborative network. Therefore, to capture connectors we relied on a combination of two 

network metrics. First, we selected inventors with more than two patents and more than the mean 

number of collaborative ties in the firm‟s network. In this way, we retained only inventors who 

were not one-time inventors and who had enough ties to have a meaningful connecting impact. 

Second, we kept inventors whose ego-network density was lower than .333. Hence, we sampled 

on inventors who span structural holes; this cutoff point suggests that existing ties among a 

connector‟s alters were less than one third of all potential ties among them. Third, among the 

remaining inventors, we characterized as connectors those whose two-step reach in the network 

was higher than the mean. Therefore, among the inventors who spanned structural holes, we 

selected those whose ties allowed them to reach a larger share of the firm‟s internal collaborative 

network. The two step reach measure captures the percentage of the network‟s nodes that a node 

has access to through its direct and indirect ties. Hence, we combined density with reach in order 

                                                 
2
 We also experimented with a number of alternative empirical definitions for integrators. We used the number of 

direct ties that are both one and three standard deviations above the mean. Results remained robust. We strongly 

prefer these ego network-based metrics over alternative ones like bonanich or betweenness centrality because our 

theory is developed using the benefits of direct ties (and knowledge flows through these ties) without taking into 

account the structure of the overall network.  
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to identify inventors who span structural holes and at the same time have access to a broader 

share of the network.
3
 An indicator variable with a value of one was assigned to inventors whose 

ego-networks passed all of the above mentioned cutoff points. 

 

Isolate. This is an indicator variable with a value one if the inventor has patents that are three 

standard deviations above the mean number of patents of all inventors with fewer than three 

collaborative ties during the same five-year window.  We chose to accept this low level of 

connections for isolates to support our claim that they have an opportunity to somehow affect the 

knowledge directions of their organization. However, having two or fewer ties still makes these 

inventors relatively isolated from their firm‟s network. At the same time, isolates are the most 

productive inventors among those with a small number of collaborative ties. 
4
 

 

Using these indicator variables at the inventor level, we developed our independent variables at 

the firm level using counts of integrators, connectors, and isolates, that each firm possesses in 

each year from 1974 to 1998 (again counts from time window 74-78 go to 1978, counts from 75-

79 go to 79, etc.).
5
 

                                                 
3
 We also experimented with a number of alternative empirical definitions for connectors. We used initial cutoff 

points of more than two patents and only more than two ties. We also defined connectors using the broker and 

nbroker measures from UCINET. The broker measure captures the absolute number of pairs in an actor‟s network 

which remain unconnected. The nbroker measure is the broker metric normalized by the size of the network. Also, 

we used only density metrics to define connectors as knowledge brokers. We stayed with the combination of two 

metrics to better reflect the conceptual definitions of connectors.  
4
 We also experimented with a number of alternative empirical definitions for isolates. First, allowing for no ties 

(complete isolation) resulted in very few inventors with more than two patents. Second, we altered the size cutoff 

point from three to five to the mean number of collaborative ties to relax the conditions of isolation. Results 

remained unchanged. We kept the strong cutoff point of three ties for the final measure to make a conservative test 

and stay closer to our claims of relative isolation of these inventors. 
5
 When empirically defining our three individual roles, we follow two approaches: first, we allow individuals to be 

characterized as integrators, connectors, and isolates while they may at the same time be productivity stars. Second, 

we add the restriction of them not being productivity stars to capture the ones who play these roles without being 

necessarily very productive. We report results from the second approach to present a very conservative test of our 

hypotheses. In any case, not many individuals were at the same time productivity and relational stars. Evidence 

suggests that increased interaction for knowledge co-creation negatively affects individual productivity and that 

individual productive capacities are negatively associated with increased teamwork (McFadyen and Cannella, 2004; 

Jones, 2009). 
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Control Variables 

We included a series of control variables to control for other factors that have shown to affect a 

firm‟s inventive output. First, in every model we included the dependent variable (citations, 

claims, or counts) lagged as a right hand side variable to make a very conservative test of our 

hypotheses, address any remaining endogeneity concerns, and possibly control for a specification 

bias. Further, we controlled for the number of biotech patents and the ratio of biotech to all 

patents to capture the performance and focus of firms in the emerging biotechnology paradigm 

which may also affect their overall inventive output. To identify biotech patents, we relied on the 

definition of a biotech patent provided by the Patent Technology Monitoring Division (PTMD) 

of the U.S. PTO. We also included the number of all patents (complete patent portfolio of each 

firm without sampling) assigned to each firm to rule out the effect of overall inventive 

performance or increased propensity to patent on the inventive output related to human 

therapeutics. In addition, we included the number of total alliances and the number of 

exploration alliances (upstream knowledge-oriented alliances) in our models to control for the 

effect of alliance activity on inventive output. We collected data on every firm‟s alliances 

portfolio from the BioScan directory and the ReCap database, data sources that are the arguably 

the most comprehensive of alliance activities. We also included the number of biotech-related 

acquisitions in our model to control for the effect of rapid talent infusion on inventive output. 

We relied on the SDC Platinum database for data on acquisitions. Finally, we used controls for 

merged entities (merged) as horizontal mergers are very common in the industry, for national 

origin (US and EU), and for the main industry of each firm‟s activities as there are many firms 

that are large diversified corporations with a presence in human therapeutics (Pharma).  
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We included in our models the number of star inventors (stars) that each firm possesses. We 

followed prior research and defined stars based on their above average productivity. At the 

inventor level, a star is an indicator variable with a value one if the inventor has patents that are 

three standard deviations above the mean number of patents of every other inventor in the same 

five-year time window. At the firm level, stars is a variable counting the number of star 

inventors for every five year window. Hence, we controlled for the impact of star inventors on 

their firm‟s inventive output. More importantly, we controlled for network size which is arguably 

one of the main drivers of the development of integrators, connectors, and isolates. The larger the 

network the more the opportunities for individuals to establish connections and become 

integrators or connectors and the greater the probability to find more isolates. Hence, by 

controlling for network size we were able to run very conservative tests for our hypotheses as we 

were able to show that integrators, connectors, and isolates all affect innovative output above and 

beyond any effect of the overall network size. By including network size which is the number of 

inventors in every five-year window, we also controlled for the size of each firm and we had a 

fine-grained measure of research investment in inventive activities. 

 

Estimation 

Our three dependent variables (patent citations, claims, counts) are all nonnegative overdispersed 

count variables. Therefore, we used the negative binomial estimation method which provides a 

better fit for the data than the restrictive Poisson. Both fixed- and random- effects specifications 

would allow us to control for any remaining unobserved heterogeneity (Greene, 2003). We run a 

Hausman test which suggested that there are no significant differences between the two 

estimation methods. Therefore, we chose to rely on a random-effects specification, which is 

preferable in our case because we want to include time invariant covariates as control variables 
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(Hsiao, 2003). However, as a robustness check, we also used the fixed-effects specification and 

our results remained the same. Overall, we included the dependent variable lagged as a control, 

and we constructed our independent variables using 5-year rolling windows. Therefore, along 

with the rich set of control variables we believe that we did our best to address any endogeneity 

concerns (Hamilton and Nickerson, 2003). For better interpretation of the results and in order to 

create our interaction terms for hypothesis four, we standardized all independent variables before 

entering them in the regressions (Cohen et al. 2003). To further alleviate simultaneity concerns 

and enhance any causality claims, we lagged the control variables related to innovative 

performance, alliances, and acquisitions by one year.  

 

RESULTS 

Table 1 depicts descriptive statistics and bivariate correlations for our variables. Correlations 

among our independent variables are well below the recommended ceiling of 0.70. To further 

evaluate the threat of collinearity, we estimated the variance inflation factors (VIFs) for each 

coefficient, with the maximum estimated VIF being 3.44, which is again well below the 

recommended threshold of 10 (Cohen et al. 2003). However, we observe that correlations among 

our types of relational stars, although below the recommended threshold, are still slightly 

elevated. This is the result of aggregation of roles at the firm level and does not reflect 

similarities at the individual level. To support this claim, we submit the correlation table at the 

individual level (Table 2), which shows that for our 550,000 individual observations, correlations 

among our independent variables are very close to zero showing that the three types of relational 

stars capture strongly different individual roles in a firm‟s network. A second observation that is 

worth noting from the bivariate correlations is the role of network size as a significant driver of 
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relational stars. Hence, we are confident that by including it as a control variable we are able to 

account for a strong firm-level driver of our independent variables and establish their importance 

above and beyond any effect coming from the size of network and the number of inventors in 

any firm‟s network.  

„Place Tables 1-2 about here‟ 

Tables 3-4 depict the regression results for our two alternative measures of inventive quality: 

citations and claims. Table 5 reports the regression results for inventive quantity using our 

independent variables to predict simple patent counts. For every dependent variable we follow a 

similar approach. Model 1 includes only control variables. In Model 2, we add the direct effects 

of the three types of relational stars. In Model 3, we also include the two-way interactions among 

our independent variables and finally in Model 4, we add the three-way interaction among the 

relational stars. For every dependent variable, each subsequent model significantly improves the 

respective baseline model. 

 

Hypothesis 1 predicts a positive effect of the number of integrators on inventive quality. From 

Model 2, integrators are positively and significantly associated with citations (p<0.001) and 

claims (p<0.001). This effect remains after inclusion of the various interactions thus providing 

support for our first hypothesis. Hypothesis 2 predicts a positive effect of the number of 

connectors on inventive quality. Similarly, connectors are positively and significantly associated 

with citations (p<0.001) and claims (p<0.001) and their effect remains after the addition of 

interactions in models 3 and 4, thus offering support for our second hypothesis. Finally, in 

hypothesis 3 we predict a positive effect of isolates on quality. Isolates are positively and 

significantly associated with both citations (p<0.001) and claims (p<0.001) and remain positive 

after inclusion of interactions, thus supporting our third hypothesis. As can be seen from Table 5, 
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the three types of relational stars also have similar positive and significant effects on quantity of 

inventive output. 

„Place Tables 3-4 about here‟ 

Although all three types of relational stars seem to have similarly positive effects on both 

inventive quality and quantity, we report here some interesting results from assessing the 

magnitudes of these positive effects.  A standard deviation increase in the number of integrators 

results in a 9 percent increase in the number of citations, a 10 percent increase in claims, and an 

8 percent increase in patent counts. A standard deviation increase in the number of connectors 

results in a 21 percent increase in citations, 24 percent increase in claims, and 15 percent increase 

in patent counts. Finally, a standard deviation increase in the number of isolates results in a 5 

percent increase in citations, 9 percent increase in claims, and 6 percent increase in patent counts. 

The first important observation comes from identifying a pattern that seems robust for all three 

individual roles. Although all three have a positive effect on inventive quantity, their positive 

effect is much stronger when it comes to inventive quality. The second important observation 

comes from comparing the positive effects of the three roles. Connectors have the strongest 

effect on quality and quantity, followed by integrators and isolates. Therefore, we conclude that 

relational stars are more important for quality than they are for quantity and that individuals who 

span structural holes but at the same time reach out for a larger share of the network have the 

strongest effect on inventive quality. 

 

Our results from the interactions among the three roles suggest a substitute relationship between 

relational stars. The coefficient of the interaction between integrators and connectors is negative 

and significant when predicting citations (p<0.001) and claims (p<0.001). The interaction 

between integrators and isolates is negative and significant for citations (p<0.001) but not 
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significant for claims. Finally, the interaction between connectors and isolates is negative and 

significant for both citations (p<0.001) and claims (p<0.001). Interestingly, the coefficient of the 

triple interaction is positive and significant for both citations (p<0.001) and claims (p<0.001). 

These results are similar when predicting inventive quantity and simple patent counts.
6
 We 

conclude that there seems to be a strong substitution between the positive effects on inventive 

quality coming from the three types of relational stars. Integrators, connectors, and isolates rely 

on various levels and composition of social capital to affect inventive quality for their 

organizations. However, the paths taken by the three roles seem to be just alternative paths to the 

same outcome: novel recombination of knowledge which may have its source in selecting the 

most promising recombinations among a large number of potential ones (integrators), in 

experimenting with novel recombinations between distant and unrelated clusters of knowledge 

(connectors), or in producing recombinations that remain unaffected by the organization‟s 

knowledge directions and therefore provide necessary diversity (isolates). These results are 

consistent with Burt‟s (1997) claim that positive effects of social capital are contingent on the 

number of individuals doing the same work. Based on this argument, we can also speculate that 

the interaction between integrators and isolates is not always significantly negative because these 

two roles are the farthest away from each other in their paths to knowledge recombination. From 

the results of triple interaction, we can conclude that the combined presence of three relational 

stars alleviates some of the negative effects from the two-way interactions. 

„Place Figures 1-4 about here‟ 

To provide a more intuitive and clear understanding of the interaction results, we display them 

graphically in Figures 1-4. In Figure 1, we plot the interaction between integrators and 

                                                 
6
 Our results for the direct and interaction effects remain robust (sign and significance) even when we include the 

squared terms for stars, integrators, connectors, and isolates thus controlling for any non-linear relationships 

between relational stars and inventive quality.  
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connectors and predict its effect on citations. We observe that clearly integrators have a much 

stronger positive effect on citations when the level of connectors is low. However, the two lines 

do not intersect. This is evidence of the very strong positive effect of connectors on citations (the 

lowest point of the pink line is still higher than the highest point of the blue line) and of the fact 

that the two roles compensate for each other but are not perfect substitutes. In Figure 2, we plot 

the interaction between integrators and isolates. We observe that the positive effect of integrators 

is slightly bigger when isolates are low than it is when isolates are high. This is further evidence 

of these two roles being very far from each other when it comes to their approach to knowledge 

recombination. Similarly, the two lines do not intersect showing that although compensating for 

each other, the two roles are not perfect substitutes. In Figure 3, we present the interaction 

between connectors and isolates. The positive effect of connectors is much stronger for low 

levels of isolates. Interestingly, the two lines intersect pointing to a clear substitution effect 

between connectors and isolates. A way to interpret this finding is to think that the positive 

effects of connectors and isolates both come from novelty and diversity of knowledge 

recombinations (albeit using different paths) and therefore are so close to each other that they 

substitute for each other‟s effect. Finally, in Figure 4 we plot the results of the triple interaction. 

We observe that the positive effect of integrators is the strongest when both connectors and 

isolates are low and decreases as the level of connectors and isolates increases. A very interesting 

finding is that the highest positive effect on citations comes when integrators and connectors are 

high but isolates are low. In fact, even the lowest point of that line is higher than any other line‟s 

highest point. This is further evidence of the substitution between connectors and isolates and 

provides important insights into the interactions among the three roles and the internal 

configuration that seems to be the most positively associated with inventive quality.  
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We also report some interesting results from our control variables. Dedicated pharmaceutical 

firms, European firms, and merged entities seem to perform worse in terms of inventive quality 

but generally not in terms of quantity. U.S. firms are better in inventive quality but not in 

inventive quantity. Alliances (total or only exploration) have no significant effects while 

acquisitions are negatively related with both inventive quality and quantity. Overall innovative 

performance is positively associated with citations and counts but negatively with claims. The 

performance and focus of firms in biotech has no consistent effect on inventive quality. When 

including our independent variables in Models 2, 3, and 4, we observe a negative effect of 

network size on inventive quality pointing to negative returns of scale on quality and some weak 

positive returns of size on inventive quantity. Productivity stars have a weak positive effect on 

inventive quality in Models 4 of citations and claims and a negative effect on inventive quantity 

in Model 2. Therefore, if productivity stars have a positive effect, it holds only for quality of 

inventive output. However, the results for stars should be interpreted with caution as we define 

them as star inventors and not as star scientists as prior literature does. In addition, the results for 

both network size and stars should be treated with caution because of elevated correlations 

between network size, stars, and our independent variables.  

 

DISCUSSION  

In this study, we extended current research on the role of individuals as origins of organizational 

innovative outcomes. In particular, we developed a theory on some of invention‟s structural 

individual microfoundations. We moved beyond existing research focus on individual 

productivity which may have obscured the importance of other critical individual skills for 

successful invention. Invention is increasingly a team-based endeavor (Wuchty, Jones, and Uzzi, 
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2007) and is often an outcome of knowledge recombination from existing knowledge stocks 

(Fleming, 2001). Therefore, there is a set of collaborative and social skills that individuals need 

to possess to facilitate invention process. To identify these individual roles more likely to drive 

quality of invention, we applied social network thinking to intraorganizational collaborative 

networks emerging through co-patenting individual efforts. Conceptualizing invention as a 

process of recombinant search, we argued for the critical role of three individual types: 

integrators, connectors, and isolates. Integrators are the individuals who have a very large 

network of collaborative ties. Sourcing knowledge from many alters, integrators have the 

capacity to explore for a great number of alternative knowledge combinations and select the most 

promising among them. Connectors are the individuals whose collaborative ties span structural 

holes in their organization‟s knowledge network and at the same time link not only unconnected 

but also distant clusters of knowledge. Their broad view of the knowledge network allows them 

to experiment with novel and diverse knowledge recombinations and therefore affect the quality 

of inventive output. Isolates are productive individuals who remain relatively unconnected from 

the collaborative network; they are independent producers of knowledge. Isolates are important 

because of the absence of collaborative ties. They can infuse the knowledge base with diversity 

as their knowledge remains unaffected by the organization‟s knowledge directions and therefore 

help avoid competence traps. Apparently, all three individual roles become important for the 

quality of inventive output not necessarily because they are extremely productive but mainly 

because their collaborative behavior facilitates effective recombinant search and high quality 

invention. We used the term „relational stars‟ to emphasize the social nature of these critical 

individual capacities. 

 

Our results show that all three types of relational stars have strong positive effects on the 
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inventive quality of their organizations. They are also positively associated with simple quantity 

of inventive output. Interestingly, they all appear to be much more impactful for inventive 

quality than quantity, suggesting that their collaborative behavior is even more important for 

generating inventions of higher quality rather than just more inventions. Comparing the 

magnitude of the positive effect on quality between the three types, we found that connectors 

have the largest positive impact on inventive quality, followed by integrators and isolates. 

Therefore, although all three are positive quality drivers, if one wants to prioritize one over 

others then connectors appear to be the most important individuals for invention. In addition, we 

found robust negative interaction effects between the individual roles. These results suggest that 

the ways in which relational stars affect quality of invention may just be alternative paths to the 

same outcome: a novel recombination of knowledge which may have its source in a number of 

different collaborative behaviors. However, the plots of these interactions revealed that two of 

our three interactions were simple compensating effects and not perfect substitutions. Although 

the positive effect of integrators was even stronger when connectors were low, still having many 

integrators and many connectors was better than having few connectors. We found the same 

result for integrators and isolates. Only connectors and isolates exhibited clear substitution 

effects. The three way interaction results provided very important insights for the most effective 

internal configuration of roles. The presence of many integrators combined with many 

connectors and few isolates had the most positive effects on inventive quality.  

 

Our arguments and findings have several significant theoretical implications. First, we make an 

important contribution to the emerging literature on individuals as the microfoundations of 

organizational capabilities (Felin and Foss, 2005). We were able to show that at least when it 

comes to invention, certain individuals exhibit patterns of collaborative behavior which make 
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them really valuable as sources of organizational capabilities to generate high quality inventions. 

With our findings, we echo early research on the promise of the industrial research laboratory to 

bring together “intuitive minds”, “experimenters”, and “observers” to result in successful 

inventions (Beer, 1959: 71), roles which arguably correspond to isolates, connectors, and 

integrators, respectively. More importantly, these individuals affect inventive quality without 

being necessarily extremely productive; instead, it is their collaborative behavior which provides 

them with opportunities for novel invention. We were able to show that relational stars positively 

affect inventive outcomes. Relying on a large sample of incumbent firms in the 

biopharmaceutical industry, we also showed that relational stars can make incumbent firms the 

origins of innovation under conditions of technological change in the industry (Tushman and 

Anderson, 1986; Anderson and Tushman, 1990). This finding opens the door for many research 

questions. Productivity stars are arguably driven solely by individual intellect and are a resource 

of given supply. Therefore, firms can either identify them ex ante or just try to hire them away 

from competition. On the other hand, relational stars can be an organizational product as well. 

What can firms do to identify or internally develop them? Which are the origins of relational 

stars? These are individuals who had both the ability and opportunity to become relational stars. 

Therefore, future research can follow the „ability‟ path and build on existing evidence that such 

stars are often more educated, professional, read the literature more, and make greater use of 

individuals that are outside the organization (Allen and Cohen, 1969). Communication stars are 

generally technically competent (Tushman and Scanlan, 1981), are perceived by others as a 

source of work-related expertise (Kilduff, Tsai, and Hanke, 2006), become relational stars 

because of their prior performance (Lee, 2010) and of strong technical contributions (Fleming 

and Waguespack, 2007). Alternatively, future research can follow the „opportunity‟ path and 
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identify contexts which create opportunities for internal development of relational stars by 

training (Hatch and Dyer, 2004), incentives (Kaplan and Henderson, 2005), alliances or 

acquisitions (Paruchuri, Nerkar, and Hambrick, 2006; Paruchuri, 2010), human resource 

practices (Adler, Goldoftas, and Levine, 1999), or corporate culture logics (Felin, Zenger, and 

Tomsik, 2009).  

 

Second, our study has important implications for research on intrafirm knowledge networks. 

Prior research has been able to document that position of individuals in these networks matters 

for their own individual outcomes and that the structure of the network affects network 

outcomes. Here, we showed how micro-level network phenomena can translate into macro-level 

network outcomes and how the presence of individual nodes in a network (relational stars) 

affects network level outcomes (inventive quality of the organization). Two recent reviews in the 

topic suggested that such efforts are necessary (Brass et al. 2004; Ibarra, Kilduff, and Tsai, 

2005). To do that, we theoretically and empirically defined our relational stars as outliers in 

some meaningful network metrics not relatively to their peers in the same network but relatively 

to all individuals in every competing organization‟s network. Therefore, we were able to capture 

the best individuals from every category and suggest that firms with some of the best in their 

network will have an inventive quality advantage. For example, when it came to defining 

integrators we looked at the number of collaborative ties that every individual from every firm 

had during a certain five year time window. We argued that individuals at the top of that 

distribution were positioned to have the greatest opportunity to identify promising knowledge 

combinations. By definition, every additional tie resulted in an exponential increase in the 

number of alternative combinations. To be sure, our approach assumes that we can compare 

relational stars that had the position because of their own ability and relational stars who became 
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that because of firm-specific structures or incentives. Combined with the issues outlined in the 

previous paragraph, future research should attempt to understand whether the two types of 

relational stars have similar positive effects. 

 

Third, our study has significant implications for research in social capital. Our overarching idea 

was that knowledge co-creation and collaboration behavior, which is a strong form of social 

capital, results in the creation of human capital (Coleman, 1988). We were able to show that 

individuals with the right type and amount of collaborative ties had a superior capacity for 

knowledge recombination that resulted in quality of inventive output. To do that, we relied on a 

context where the network is not characterized by competitive relationships; rather, it is a 

structure that mostly resembles a creative collective (Hargadon and Bechky, 2006). In such a 

cooperative context, centrality seems to uncover the tertius iungens orientation (Obstfeld, 2005) 

in our integrators and they become sources of high quality invention. In addition, we extend 

current understanding on the positive role of knowledge brokers as experts fostering system-level 

innovation (Lingo and O‟Mahony, 2010) by defining connectors as individuals who are 

knowledge brokers but at the same time link distant clusters of knowledge and access a wide 

range of the network. Connectors have the capacity to not only be more creative themselves 

(Fleming, Mingo, and Chen, 2007) but also uncover promising links by bridging knowledge 

silos. Our findings on isolates highlight the fact that even a lack of social capital can be very 

important in cooperative contexts like collaboration networks. We emphasized the need for 

diversity which can be provided by the often neglected role of productive isolates. Finally, our 

findings on interaction among the three types of relational stars provide additional evidence to 

support a contingent view of social capital (Burt, 1997), where its importance depends on the 

number of other individuals with similar levels of social capital. We submit here an additional 
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limitation of our study: we relied on co-patenting to build internal knowledge networks and 

assume the creation of social capital from these ties. Although there is research supporting our 

claim that co-patenting involves significant knowledge flows (Singh, 2005), we were only able 

to observe co-patenting and assume knowledge flows. Hence, future research can exploit other 

sources of individual collaboration to extract information about individual social capital. 

 

We conclude with our study‟s implications for managerial practice. Received wisdom suggests 

that individual productivity is the most important skill for innovation and therefore managerial 

incentive structures are often built to maximize effort and productivity. Our study suggests that 

the sole focus on productivity, effort, and star knowledge workers may be misleading. First, 

innovation is a deeply social process of knowledge recombination and collaborative skills are 

required for effective execution. Second, star workers are in limited supply and therefore come 

with important caveats: they may appropriate all of the value they create, leave the organization 

and transfer their knowledge to competitors (Almeida and Kogut, 1999), and they are pretty 

visible to the market and therefore more likely to be hired away (Gardner, 2005). In addition, 

except for their ex ante identification, there is no other straightforward way for managers to 

internally build them. On the other hand, relational stars are free from those weaknesses. First, 

they are not in limited supply: relational stars can be identified ex ante or developed internally 

through encouragement of collaboration. Individuals whose performance depends on interactions 

with others cannot transfer easily their performance to other organizations (Groysberg, Lee, and 

Nanda, 2008) and are therefore also less likely to leave. Individual collaboration generates 

spillovers (Oettl, 2009) and therefore firms can internalize these externalities and avoid full value 

appropriation by the individuals involved. In addition, they are less visible to the market because 

of their embedded nature in the organization‟s knowledge networks that it becomes less likely 
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for them to become the target of competition. More importantly, managers can design practices, 

incentives, structures, or reward schemes to internally develop relational stars. Managers can do 

that by incentivizing the right type of collaboration among employees and develop internally the 

skills of their intellectual capital resources which may remain untapped.   
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Table 1                    

Descriptive Statistics and Bivariate Correlation Matrix 

  Variable Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 Patent citations 323.26 476.90                  

2 Patent claims 523.10 767.36 0.89                 

3 Patent counts 46.73 67.70 0.88 0.94                

4 Firm merged 0.12 0.33 0.14 0.15 0.18               

5 European firm 0.30 0.46 0.06 0.13 0.18 0.08              

6 US firm 0.34 0.47 0.31 0.23 0.17 0.16 -0.47             

7 Pharma firm 0.46 0.50 -0.23 -0.24 -0.24 0.01 0.03 -0.06            

8 Biotech patents 18.30 26.66 0.58 0.63 0.68 0.36 0.13 0.18 0.04           

9 Biotech ratio 0.42 0.45 -0.15 -0.13 -0.13 0.16 0.07 -0.13 0.35 0.18          

10 All patents 67.90 96.84 0.80 0.85 0.88 0.10 0.13 0.22 -0.30 0.58 -0.24         

11 Alliances 1.64 3.47 0.14 0.16 0.20 0.27 0.02 0.13 0.06 0.42 0.16 0.14        

12 Exploration alliances 0.72 1.62 0.17 0.21 0.23 0.28 0.04 0.12 0.02 0.43 0.13 0.18 0.88       

13 Acquisitions 0.25 1.04 0.13 0.14 0.16 0.30 0.03 0.12 0.08 0.35 0.13 0.12 0.33 0.38      

14 Stars 4.26 11.01 0.51 0.57 0.72 0.22 0.18 0.03 -0.12 0.60 -0.04 0.62 0.26 0.26 0.18     

15 Network size 237.38 292.67 0.74 0.79 0.87 0.26 0.18 0.06 -0.28 0.61 -0.11 0.79 0.25 0.28 0.19 0.76    

16 Integrators 2.69 8.25 0.25 0.26 0.40 0.08 0.14 -0.13 -0.03 0.34 0.03 0.33 0.14 0.14 0.07 0.65 0.51   

17 Connectors 4.06 4.25 0.31 0.31 0.44 0.12 0.10 0.01 -0.08 0.41 0.00 0.38 0.19 0.17 0.08 0.63 0.49 0.51  

18 Isolates 2.97 3.80 0.65 0.69 0.66 0.13 0.07 0.30 -0.16 0.42 -0.10 0.58 0.12 0.14 0.13 0.33 0.56 0.01 0.07 

Note: N = 2442 firm-year observations   
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Table 2      

Descriptive Statistics - Correlation Matrix At the Individual Level 

    Mean S.D. 1 2 3 

1 Star 0.019 0.136    

2 Integrator 0.012 0.108 -0.02   

3 Connector 0.010 0.099 -0.01 -0.01  

4 Isolate 0.009 0.092 0.03 -0.01 -0.01 

Note: N = 550921 individual-level observations   
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Table 3                 

Results of Random-Effects Negative Binomial Regression Predicting Number of Citations 

Variable   Model 1   Model 2   Model 3   Model 4 

Constant  0.456
●●●

  0.556
●●●

  0.624
●●●

  0.644
●●●

 

  (0.064)  (0.065)  (0.066)  (0.066) 

Firm merged - 0.219●●● - 0.191●●● - 0.163●●● - 0.165●●● 

  (0.051)  (0.051)  (0.052)  (0.051) 

European firm - 0.146●● - 0.163●● - 0.130●● - 0.117● 

  (0.073)  (0.073)  (0.073)  (0.073) 

US firm  0.274
●●●

  0.274
●●●

  0.271
●●●

  0.268
●●●

 

  (0.074)  (0.074)  (0.074)  (0.074) 

Pharma - 0.222●●● - 0.232●●● - 0.250●●● - 0.261●●● 

  (0.062)  (0.062)  (0.062)  (0.061) 

Citations lagged  6.7E-04
●●●

  6.2E-04
●●●

  6.1E-04
●●●

  6.0E-04
●●●

 

  (4.6E-05)  (4.9E-05)  (5.0E-05)  (4.9E-05) 

Alliances  3.7E-03  4.4E-03  5.0E-03  3.0E-03 

  (7.4E-03)  (7.4E-03)  (7.5E-03)  (7.5E-03) 

Acquisitions - 0.026●● - 0.009 - 0.014 - 0.014 

  (0.016)  (0.015)  (0.015)  (0.015) 

Exploration alliances - 0.018 - 0.015 - 0.017 - 0.017 

  (0.017)  (0.017)  (0.017)  (0.017) 

All patents  6.0E-04
●●

  7.5E-04
●●●

  1.0E-03
●●●

  1.3E-03
●●●

 

  (3.0E-04)  (3.0E-04)  (3.0E-04)  (2.9E-04) 

Biotech patents - 3.8E-04 - 1.3E-03
●●●

 - 1.8E-03
●●

 - 1.4E-03
●●

 

  (7.9E-04)  (8.2E-04)  (8.5E-04)  (8.4E-04) 

Biotech ratio  0.025  0.024  0.020  0.019 

  (0.043)  (0.043)  (0.044)  (0.044) 

Network size  1.1E-04 - 1.4E-04 - 3.1E-04
●●●

 - 4.1E-04
●●●

 

  (1.1E-04)  (1.2E-04)  (1.2E-04)  (1.2E-04) 

Stars  0.008 - 0.027  0.033  0.046● 

    (0.024)   (0.024)   (0.029)   (0.027) 

Integrators    0.059●●●  0.092●●●  0.091●●● 

    (0.019)  (0.019)  (0.019) 

Connectors    0.105●●●  0.179●●●  0.198●●● 

    (0.017)  (0.020)  (0.020) 

Isolates    0.084●●●  0.072●●●  0.056●●● 

    (0.015)  (0.017)  (0.017) 

Integrators x Connectors     - 0.039●●● - 0.041●●● 

      (0.007)  (0.007) 

Integrators x Isolates     - 0.007 - 0.018●● 

      (0.009)  (0.012) 

Connectors x Isolates     - 0.069●●● - 0.120●●● 

      (0.015)  (0.018) 

Triple Interaction        0.031●●● 

        (0.006) 

No. of observations / groups   2414 / 106   2414 / 106   2414 / 106   2414 / 106 

Log likelihood  -14377.75  -14349.79  -14705.61  -14628.84 

Chi square  1044.97  1117.87  1167.81  1214.54 

Δ chi square       72.90●●●   122.84●●●   169.57●●● 

Notes: ● p < 0.1; ●● p < 0.05; ●●● p < 0.01; standard errors in parentheses 
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Table 4                 

Results of Random-Effects Negative Binomial Regression Predicting Number of Claims 

Variable   Model 1   Model 2   Model 3   Model 4 

Constant  0.287
●●●

  0.452
●●●

  0.498
●●●

  0.517
●●●

 

  (0.064)  (0.066)  (0.067)  (0.067) 

Firm merged - 0.370●●● - 0.317●●● - 0.296●●● - 0.294●●● 

  (0.060)  (0.060)  (0.060)  (0.060) 

European firm - 0.230●● - 0.257●●● - 0.238●●● - 0.236●●● 

  (0.073)  (0.073)  (0.073)  (0.073) 

US firm  0.144
●●

  0.109
●
  0.104

●
  0.099

●
 

  (0.072)  (0.073)  (0.073)  (0.073) 

Pharma - 0.155●●● - 0.170●●● - 0.179●●● - 0.183●●● 

  (0.062)  (0.062)  (0.062)  (0.062) 

Claims lagged  5.8E-04
●●●

  6.0E-04
●●●

  5.7E-04
●●●

  5.3E-04
●●●

 

  (3.6E-05)  (3.5E-05)  (3.8E-05)  (3.8E-05) 

Alliances - 6.9E-03 - 6.8E-03 - 6.9E-03 - 1.1E-02 

  (9.0E-03)  (9.1E-03)  (9.2E-03)  (9.2E-03) 

Acquisitions - 0.080●●● - 0.036●● - 0.044●● - 0.045●● 

  (0.021)  (0.019)  (0.020)  (0.020) 

Exploration alliances - 0.009 - 0.005 - 0.004 - 0.003 

  (0.019)  (0.019)  (0.019)  (0.019) 

All patents - 7.8E-04
●●

 - 6.9E-04
●●

 - 4.1E-04 - 4.3E-05 

  (4.0E-04)  (3.7E-04)  (3.9E-04)  (3.8E-04) 

Biotech patents  7.6E-04 - 7.9E-04 - 1.1E-03 - 7.6E-04 

  (8.3E-04)  (8.5E-04)  (9.0E-03)  (9.0E-04) 

Biotech ratio  0.038  0.036  0.030  0.033 

  (0.047)  (0.048)  (0.049)  (0.049) 

Network size  4.6E-05 - 4.5E-04
●●●

 - 5.0E-04
●●●

 - 5.8E-04
●●●

 

  (1.2E-04)  (1.4E-04)  (1.4E-04)  (1.4E-04) 

Stars  0.011  0.008  0.029  0.044● 

    (0.029)   (0.027)   (0.030)   (0.030) 

Integrators    0.078●●●  0.103●●●  0.101●●● 

    (0.021)  (0.021)  (0.021) 

Connectors    0.144●●●  0.203●●●  0.215●●● 

    (0.018)  (0.022)  (0.022) 

Isolates    0.112●●●  0.100●●●  0.088●●● 

    (0.017)  (0.018)  (0.019) 

Integrators x Connectors     - 0.028●●● - 0.030●●● 

      (0.007)  (0.007) 

Integrators x Isolates      0.002 - 0.006 

      (0.010)  (0.011) 

Connectors x Isolates     - 0.071●●● - 0.127●●● 

      (0.017)  (0.023) 

Triple Interaction        0.027●●● 

        (0.007) 

No. of observations / groups   2414 / 106   2414 / 106   2414 / 106   2414 / 106 

Log likelihood  -15662.21  -15617.65  -15601.71  -15594.06 

Chi square  1177.35  1294.44  1339.04  1371.50 

Δ chi square       117.09●●●   161.69●●●   194.15●●● 

Notes: ● p < 0.1; ●● p < 0.05; ●●● p < 0.01; standard errors in parentheses 
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Table 5                 

Results of Random-Effects Negative Binomial Regression Predicting Number of Patents 

Variable   Model 1   Model 2   Model 3   Model 4 

Constant  1.347
●●●

  1.441
●●●

  1.517
●●●

  1.536
●●●

 

  (0.077)  (0.077)  (0.078)  (0.078) 

Firm merged - 0.072●● - 0.051● - 0.043 - 0.046 

  (0.040)  (0.040)  (0.040)  (0.040) 

European firm - 0.494●●● - 0.500●●● - 0.467●●● - 0.452●●● 

  (0.093)  (0.093)  (0.092)  (0.092) 

US firm  0.068  0.041  0.022  0.020 

  (0.091)  (0.091)  (0.091)  (0.091) 

Pharma - 0.081 - 0.091 - 0.117● - 0.136●● 

  (0.075)  (0.075)  (0.074)  (0.074) 

Patents lagged  2.9E-03
●●●

  2.8E-03
●●●

  2.5E-03
●●●

  2.2E-03
●●●

 

  (5.3E-04)  (5.2E-04)  (5.3E-04)  (5.2E-04) 

Alliances  6.5E-03  7.4E-03
●
  7.6E-03

●
  5.6E-03 

  (5.4E-03)  (5.3E-03)  (5.4E-03)  (5.4E-03) 

Acquisitions - 0.045●●● - 0.028●●● - 0.032●●● - 0.033●●● 

  (0.012)  (0.012)  (0.012)  (0.012) 

Exploration alliances - 0.018● - 0.016● - 0.016● - 0.015 

  (0.012)  (0.012)  (0.012)  (0.012) 

All patents  1.3E-03
●●●

  1.3E-03
●●●

  1.4E-03
●●●

  1.7E-03
●●●

 

  (3.0E-04)  (2.9E-04)  (3.0E-04)  (3.0E-04) 

Biotech patents - 1.1E-03
●●

 - 1.5E-03
●●●

 - 1.9E-03
●●●

 - 1.5E-03
●●

 

  (6.6E-04)  (6.6E-04)  (6.8E-04)  (6.8E-04) 

Biotech ratio  0.140●●●  0.139●●●  0.141●●●  0.142●●● 

  (0.026)  (0.026)  (0.025)  (0.025) 

Network size  3.5E-04
●●●

  1.3E-04
●●

  4.2E-05 - 6.2E-06 

  (9.0E-05)  (9.5E-05)  (9.5E-05)  (9.6E-05) 

Stars - 0.026● - 0.043●●●  0.008  0.014 

    (0.018)   (0.018)   (0.020)   (0.020) 

Integrators    0.053●●●  0.084●●●  0.086●●● 

    (0.015)  (0.015)  (0.015) 

Connectors    0.073●●●  0.131●●●  0.145●●● 

    (0.014)  (0.016)  (0.016) 

Isolates    0.077●●●  0.078●●●  0.067●●● 

    (0.011)  (0.013)  (0.013) 

Integrators x Connectors     - 0.031●●● - 0.035●●● 

      (0.005)  (0.005) 

Integrators x Isolates     - 0.013●● - 0.019●● 

      (0.007)  (0.008) 

Connectors x Isolates     - 0.045●●● - 0.086●●● 

      (0.011)  (0.015) 

Triple Interaction        0.020●●● 

        (0.004) 

No. of observations / groups   2414 / 106   2414 / 106   2414 / 106   2414 / 106 

Log likelihood  -9490.39  -9458.37  -9431.04  -9421.45 

Chi square  826.29  901.45  967.37  996.14 

Δ chi square       75.16●●●   141.08●●●   169.85●●● 

Notes: ● p < 0.1; ●● p < 0.05; ●●● p < 0.01; standard errors in parentheses 
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Figure 1. Interaction between integrators and connectors
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Figure 2. Interaction between integrators and isolates
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Figure 3. Interaction between connectors and isolates
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Figure 4. Triple interaction among individual roles
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