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Abstract: The fatty acid amide hydrolase (FAAH) is an enzyme responsible for the degradation of
anandamide, an endocannabinoid. Pharmacologically blocking this target can lead to anxiolytic
effects; therefore, new inhibitors can improve therapy in this field. In order to speed up the process
of drug discovery, various in silico methods can be used, such as molecular docking, quantitative
structure–activity relationship models (QSAR), and artificial intelligence (AI) classification algorithms.
Besides architecture, one important factor for an AI model with high accuracy is the dataset quality.
This issue can be solved by a genetic algorithm that can select optimal features for the prediction.
The objective of the current study is to use this feature selection method in order to identify the most
relevant molecular descriptors that can be used as independent variables, thus improving the efficacy
of AI algorithms that can predict FAAH inhibitors. The model that used features chosen by the
genetic algorithm had better accuracy than the model that used all molecular descriptors generated
by the CDK descriptor calculator 1.4.6 software. Hence, carefully selecting the input data used by AI
classification algorithms by using a GA is a promising strategy in drug development.
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1. Introduction

Long-term disability in middle-aged people, decreased life quality, increased mortality,
and high financial costs are key issues associated with chronic pain [1]. Therapeutic
options exist, but their use is frequently limited by the presence of serious side effects
(e.g., respiratory depression, tolerance, and dependence for opioids). Over 60% of affected
patients report dissatisfaction with currently available treatments [2–4]. Thus, there is a
growing need for developing therapeutical agents with improved efficacy, tolerability and
side effect profile in order to reduce the unnecessary and escalating burden of chronic pain.

The endocannabinoid system is emerging as a critical modulator of nociception, am-
plification of endocannabinoid signaling leading to analgesia in several preclinical models
of acute and chronic pain. One of the main degradative enzymes for endocannabinoids,
the fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system by cleaving
primarily the lipid messenger anandamide. Molecules inhibiting this enzyme are associated
with highly potent analgesic and anti-inflammatory effect and developing such molecules
represents a promising direction in finding a satisfactory treatment for chronic pain [5].
Several drug discovery campaigns have identified potent reversible FAAH inhibitors, such
as oleoyl-based molecules (aldehydes, α-ketoamides, α-ketoesters, trifluoromethyl esters,
heterocyclic derivatives), carbamates, substituted 2,4-dioxopyrimidine-1-carboxamides,
and benzothiazole derivatives. The chemical space of such inhibitors is characterized by a
high diversity [6].

The discovery of new drugs is problematic due to the high cost of testing a large
number of molecules and the time necessary for this process [7]. Different in silico methods
have been used in drug design to speed up the development of new active compounds,
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such as molecular docking that predicts the most likely pocket of a protein where a small
molecule will bind and its affinity, and the quantitative structure–activity relationship
models (QSAR), which generate a mathematical equation between the pharmacological
action and the chemical structure of a drug [8,9]. This relationship is based on different
contributions of certain molecular descriptors to the molecule activity. Thus, their selection
is a critical step for the successful implementation of this kind of algorithm. P. Ghosh and
M.C. Bagchi used a genetic algorithm for this step in order to discover novel quinoxaline
derivatives with antitubercular activity [10].

The big data sets available have paved the way for machine learning to become a new
trend in solving complex problems in biological systems, such as predicting interactions
between a molecule and its target protein [11–13]. The advantages of this method over
classical dry lab methods are their ability to use high-dimensional data and complex
nonlinear models.

In this case, a model is built, and the molecules that are to be evaluated are represented
in a way that a computer can understand their characteristics. This can be done using
molecular descriptors that can offer certain information, such as atom connectivity or atom
coordinates and molecular fingerprints, which are a set of binary digits that represent
the presence and absence of a particular molecular fragment [14,15]. They transpose
the chemical information into numbers representing certain properties or the existence
of certain atom types or structural motifs, their number of occurrences, or the distance
between them. The descriptors and fingerprints generated by the CDK descriptor calculator
1.4.6 are used as inputs for a machine learning classification algorithm [16].

Logistic regression is a method borrowed from statistics that is among the most
commonly used for binary classification problems [17]. Given the large number of features
generated by the software, the accuracy of the algorithm can be affected. However, this
issue can be solved using a genetic algorithm (GA) that creates individuals with different
combinations of features and, in the end, selects the best individual with the optimal
subset of features [18]. The combination of GA with machine learning algorithms alongside
classical methods like QSAR can achieve high effectiveness and robustness. This was
the case for a group that tried to discover a novel antihuman immunodeficiency virus
molecules using this approach ant their model reached a sensitivity of 0.99, a specificity of
0.91, and an accuracy of 0.98 [19]. In search of molecules from the aforementioned class, the
same group used a similar method called GA-ANFIS, which is composed of two phases: a
GA coupled with logistic regression that was later validated with an adaptive neural fuzzy
interference [20]. The coupling of the GA with logistic regression was also successfully
used to uncover new inhibitors for interleukin-1 receptor-associated kinase 4 (IRAK-4) [21].

The Lamarckian evolutionary algorithm that only uses mutations to create new gen-
erations of individuals was also used to design novel molecules based on a given set of
known molecules used to train the model to recognize compatibilities between molecular
fragments and their synthetic accessibility [22,23]. Given the large number of studies that
have successfully implemented a GA in the process of drug discovery, the scope of our
current study was to create a structural model for discovering FAAH inhibitors using
an AI classification algorithm based on logistic regression that uses the most relevant
features selected by a GA in order to improve its accuracy. Datasets of biologically active
molecules characterized by high structural diversity and molecular descriptors used as
input variables can create unwanted noise while training predictive models, thus lowering
the quality of the designed predictive models. Therefore, we aimed to investigate the case
of known FAAH inhibitors and if the implementation of feature selection based on GA
could potentially increase the prediction accuracy by reducing the number of variables
included in the models.
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2. Materials and Methods
2.1. Datasets Preparation

A structure data file (SDF), which is a modified mol file that can have multiple com-
pounds at once, containing all the chemical structures of known human FAAH inhibitors
and their activity expressed as half maximal inhibitory concentration (IC50) values (M), was
prepared from the ChEMBL database [24]. The raw entries were filtered using DataWarrior
v5.0.0 software to remove all compounds with inexact IC50 values and to merge duplicate
entries into a single entry with a calculated average IC50 value [25]. Two decoy datasets
were obtained using RADER, a web server, using the FAAH inhibitors dataset and setting
the Tanimoto coefficient (measures the similarity between two structures) to 0.75 between
the ligands from the SFD and the decoys and 0.9 between ligands in the decoy set [26].
Molecules from the SDF file represented the “inhibitors” class (value = 1), and decoys were
considered the “not inhibitors” class (value = 0).

The data from the SDF file was introduced into the CDK descriptor calculator 1.4.6. as
an input file [16]. Hybrid, constitutional, topologic, electric, and geometrical descriptors
were calculated alongside nine types of molecular fingerprints. The results were exported
as an excel file and were used as inputs (features) for the classification algorithm.

2.2. Genetic Algorithm and Classification Algorithm

Using Sklearn and DEAP (Distributed Evolutionary Algorithms in Python) python
modules, we implemented a GA and a classification algorithm [27,28]. We used logistic
regression for the latter, and it was applied to all individuals generated by GA and in the
case where all features were used to establish a baseline score. The function used for the
binary classification was:

y =
e(b0+b1∗x)

1 + e(b0+b1∗x)
(1)

where y is the predicted output (1 = inhibitor or 0 = not inhibitor), b0 is the bias or
intercept term, and b1 is the coefficient for the single input value (x = value of descriptor
or fingerprint).

We varied certain parameters that affect the model: Pop (population), Gen (number of
generation), CxPb (crossover probability), MutPb (mutation probability), IndPb (probability
of each gene to be replaced), and tournsize (tournament size). In the beginning, a number of
population individuals were generated with a particular subset of features (genes) among
the ones generated. The representation of each individual was characterized by a string of
1 (this gene is present) or 0 (this gene is not present) and a length equal to the number of
descriptors and fingerprints offered by CDK. They were then put in tournaments where
the ones with the highest value in the fitness function based on the y value were selected to
participate in the mating pool and become parents for the next generation. Based on Cxpb
and Indpb, parents swapped genes (features), and some were mutated (turned on or off,
0 transformed to 1 or vice versa) based on the MutPb, thus creating the new generation
that will undergo the same process for a number of generations. In the end, the optimal
subset of features was selected based on the individual with the highest fitness score in the
classification algorithm.

2.3. Performance Metrics

We assessed the performance of each individual using the fitness function represented
by the Matthews correlation coefficient (MCC):

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(2)

where TP is the true positive output, TN is the true negative output, FP is the false positive
output, and FN is the false negative output.
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The best value for MCC is 1, and the worst is −1. It is considered a better metric than
others for binary classification problems because it takes into account the performance in
all four categories of the confusion matrix [29].

3. Results
3.1. FAAH Inhibitor and Decoy Datasets

A dataset composed of 3042 human FAAH inhibitors with biological activity expressed
in IC50 values was prepared using information from the ChEMBL database. Following the
application of filters, a virtual chemical library was built by retaining 1249 compounds from
the original dataset (set A). Using the RADER software, two decoy sets were generated,
one containing 1051 decoys (set D1) and the other 13,379 decoys (set D2) [25].

A total of 281 molecular descriptors and 9 molecular fingerprints were calculated for
sets A and D, and they were exported as an excel file that was later used to gather inputs
for the algorithm.

3.2. Genetic Algorithm and Classification Algorithm Performance Metrics

The baseline score when using all features was 0.810 using the sets A and D1 (model1)
and 0.8437 using sets A and D2 (model2). For model2, an L2 regularization that reduced
overfitting was used to increase the fitness to 0.9124 (model3) [26]. Various experiments
were executed on this model in order to find the optimal subset of descriptors and fin-
gerprints. We tried several combinations of GA parameters starting from a random con-
figuration, Indpb = 0.02, Cxpb = 0.2 and MutPb = 0.2 and tournsize = 5, and we varied
the population (20, 30, 40, 50, 60, 70, 80, 90) for a number of generations until for at least
four generations the maximum individual score remained constant. After finding the
optimal population and generation, we then varied the other parameters, tournsize (4, 5,
6, 7, 8), IndPb (0.01, 0.02, 0.03, 0.04), CxPb (0.1, 0.2, 0.3, 0.4, 0.5), and MutPb (0.1, 0.2, 0.3,
0.4, 0.5), in order to improve our model. In Table 1, we provide the optimal configuration
for each model, the maximum score, and the number of features for the best individual.
Tables 2–6 present the results obtained from varying one parameter at a time for model3.
The optimal results were obtained with the configuration: Pop = 90, Gen = 7, tournsize = 10,
Indpb = 0.04, CxPb = 0.4, MutPb = 0.4 for model1, Pop = 50, Gen = 10, tournsize = 5,
Indpb = 0.01, CxPb = 0.3, MutPb = 0.2 for model2, and Pop = 50, Gen = 11, tournsize = 7,
Indpb = 0.04, CxPb = 0.2, MutPb = 0.4 for model3. Given the stochastic nature of the
GA, we ran five experiments with the best configuration to retrieve an average of the best
individuals generated and determined the optimal subset of features. The best individual
had a score of 0.9348 and only 137 features. Among them, 134 descriptors were from the
initial 281 and 3 fingerprints from the 9 generated by CDK.

Table 1. Optimal configuration for each model.

Model Pop Gen Tournsize IndPb Cxpb MutPb Baseline Score Max N.D.

1 90 7 10 0.04 0.4 0.4 0.810 0.875 141
2 50 10 5 0.01 0.3 0.2 0.8437 0.8986 135
3 50 11 7 0.01 0.2 0.4 0.9124 0.9348 137

max = maximum value among individuals, N.D. = number of descriptors for the individual with the highest score.

The population size is usually in the range of tenths or hundreds of individuals. A
higher number will offer a greater search space, but it will slow down the process. We tried
varying the population size using increments equal to 10, and since no major improvements
were noticed after reaching the value of 50, we concluded that this value is an optimal
choice for the search space and process speed (Table 2).

We also observed that after eleven generations, there was no improvement in the
accuracy, thus, we proceeded to the selection of the rest of the optimal parameters using
only this number of generations (Table 3).
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Table 2. Results after varying the number of population (Pop).

Pop Avg Std Min Max

20 0.9249 0.0019 0.9236 0.9281
30 0.9239 0.0025 0.9170 0.9261
40 0.9207 0.0032 0.9056 0.9236
50 0.9267 0.0030 0.9102 0.9281
60 0.9241 0.0032 0.9123 0.9281
70 0.9257 0.0023 0.9170 0.9281
80 0.9258 0.0022 0.91918 0.9282
90 0.9255 0.0018 0.91482 0.9283

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.

Table 3. Results after varying the number of generations (Gen).

Gen Avg Std Min Max

0 0.8818 0.0167 0.8460 0.9104
1 0.8953 0.0096 0.8672 0.9125
2 0.9007 0.0075 0.8764 0.9125
3 0.9065 0.0050 0.8852 0.9125
4 0.9091 0.0034 0.8967 0.9169
5 0.9096 0.0064 0.8736 0.9169
6 0.9119 0.0057 0.8948 0.9214
7 0.9152 0.0035 0.9078 0.9259
8 0.9159 0.0071 0.8760 0.9259
9 0.9189 0.0043 0.9080 0.9259
10 0.9215 0.0037 0.9124 0.9259
11 0.9240 0.0030 0.9105 0.9281
12 0.9254 0.0019 0.9170 0.9281
13 0.9265 0.0015 0.9214 0.9281
14 0.9267 0.0030 0.9102 0.9281

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.

Table 4. Results after varying the tournament size (tournsize).

Tournsize Avg Std Min Max

4 0.9183 0.0018 0.9123 0.9191
5 0.9254 0.0019 0.9170 0.9281
6 0.9269 0.0025 0.9147 0.9304
7 0.9263 0.0016 0.9214 0.9326
8 0.9278 0.0013 0.9236 0.9304

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.

Table 5. Results after varying the value of each gene to be changed (Indpb).

Indpb Avg Std Min Max

0.01 0.9285 0.0022 0.9192 0.9304
0.02 0.9269 0.0025 0.9192 0.9282
0.03 0.9215 0.0043 0.8989 0.9258

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.
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Table 6. Results varying the value of crossover probability (CxPb).

CxPb Avg Std Min Max

0.1 0.9197 0.0033 0.9101 0.9236
0.2 0.9254 0.0023 0.9147 0.9304
0.3 0.9229 0.0016 0.9169 0.9236
0.4 0.9263 0.0027 0.9147 0.9281
0.5 0.9276 0.9276 0.9276 0.9276

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.

From the number of individuals in the tournament, it was important to select the fittest
ones while also allowing for some diversity among the populations [27]. We concluded
that a number of seven individuals per tournament returned the best accuracy counting, as
14% of the initial population (Table 4).

The optimal values for Indpb, Cxpb, and MutPb were neither too low nor too high,
0.01, 0.2, and 0.4, which allowed the introduction of diversity in our system and prevented
randomness and the disposal of good solutions that could be further improved (Tables 5–8).

Table 7. Results varying the value of mutation probability (MutPb).

MutPb Avg Std Min Max

0.1 0.9277 0.0014 0.9216 0.9282
0.2 0.9278 0.0025 0.9169 0.9303
0.3 0.9292 0.0020 0.9213 0.9303
0.4 0.9307 0.0037 0.9193 0.9348
0.5 0.9287 0.0041 0.9125 0.9327

avg = average value of fitness function, std = standard deviation, min = minimum value among individuals,
max = maximum value among individuals. Values for optimal parameters are bolded.

Table 8. Results varying the value of mutation probability (MutPb).

Experiment Max AvgMax std

1 0.9348

0.9345 0.0004
2 0.9343
3 0.9338
4 0.9348
5 0.9347

Max = maximum value among individuals, AvgMax = average value of maximum value, std = standard deviation.
Values for optimal parameters are bolded.

4. Discussion

The scope of our paper was to build a predictive model for discovering new anxiolytic
agents by inhibiting FAAH. Given the large number of features represented by molecular
descriptors, the binary classification algorithm had low accuracy. In order to improve the
performance, we built a genetic algorithm that could select the best subset of independent
variables. In all our models, the GA improved the score, but as the baseline fitness was
increased by a larger decoy set and using L2 regularization, the increase was lowered up to
a maximum of 0.9348 for model3. The number of features was reduced to a similar amount
for all models: 141 for model1, 135 for model2, and 137 for model3. Thus, around this
value is the minimum number of molecular descriptors needed to characterize a molecule
in order to classify it. In terms of the parameters of the GA that were varied for building
the models, the population exhibited the highest difference. With the increase of molecules
in the dataset, the population was reduced by almost half.

Although useful in increasing a predictive model’s accuracy, genetic algorithms suffer
from several limitations, such as difficult parameter optimization and high computational
costs [30]. Although GAs are robust tools used in a variety of applications, in our case, the
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implementation of a GA-based classification model led to a marginal increase in predic-
tive accuracy.

5. Conclusions

Our work showed once again that the strategy of combining GA with machine learning
methods like logistic regression could be successfully used in the identification of novel
modulators of certain biological targets, such as FFAH in our case. We achieved a reduction
in input data, represented as molecular descriptors, with a modest increase, below 10%, in
the accuracy of the algorithm. We could not reach an accuracy as high as those shown by
other studies in the literature (0.98 for the identification of novel anti-HIV drugs). However,
this limitation can be explained by the small number of known modulators that were used
to train the model and the amount of information given by the used descriptors. This issue
will be addressed in further studies by using software that allows for a larger variety of
molecular descriptors. This version of our algorithm, and further improved versions, will
be used on large subsets of compounds in order to identify new inhibitors for FFAH that
can hopefully be further validated and developed into potential analgesic agents.
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