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Abstract

Structural modeling of end mills is crucial for predicting deflections and vibrations in milling processes. End mill geometry is
very complex which makes the use of simple beam models inaccurate. Stiffness and frequency response function (FRF) measure-
ments need to be performed to identify the static and dynamic properties experimentally. This can be very time consuming
considering the number of tool–tool holder combinations in a production facility. In this paper, methods for modeling structural
properties of milling tools are presented. Static and dynamic analysis of tools with different geometry and material are carried out
by finite element analysis (FEA). Some practical equations are developed to predict the static and dynamic properties of tools.
Receptance coupling and substructuring analyses are used to combine the dynamics of individual component dynamics. In this
analysis, experimental or analytic FRFs for the individual components are used to predict the final assembly’s dynamic response.
Clamping parameters between the tool and the tool holder may effect the results significantly. These parameters are also identified
from the measurements. The effects of changes in tool parameters and clamping conditions are evaluated. The predictions are
verified by the measurements for different conditions.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Tolerance integrity and surface quality of machine

parts are of prime importance in milling processes as

well as productivity. Static and dynamic deformations

of machine tool, tool holder and cutting tool play an

important role in tolerance integrity and stability in a

machining process affecting part quality and pro-

ductivity. Excessive static deflection may cause toler-

ance violations whereas chatter vibrations result in

poor surface finish. Cutting force, surface finish and

cutting stability models can be used to predict and

overcome these problems. This would require static

and dynamic characteristics of the structures involved

in a machining system [1]. Considering great variety of

machine tool configurations, tool holder and cutting

tool geometries, analysis of every case can be quite

time consuming and unpractical. These properties are
usually obtained experimentally using stiffness mea-
surements and modal analysis [1–3]. In this study, gen-
eralized equations are presented which can be used for
predicting the static and dynamic properties of milling
system components. Due to its wide use in industry,
milling process is considered, however, similar approa-
ches can be applied to other machining operations as
well. The structural models presented in this paper,
together with the process models, can be used in the
development of a virtual machining system where the
physics of the process can be simulated in addition to
the geometry and tool path in conventional CAD/
CAM applications.
Modeling of milling process has been the subject of

many studies some of which are summarized by Smith
and Tlusty [4]. The focus of these studies has mostly
been on the modeling of cutting geometry and force,
stability and prediction of part quality [5–9]. The mech-
anistic approach has been widely used for the force
predictions and also has been extended to predict
deflections and form errors [6–7]. An alternative
method is to use mechanics of cutting approach in



Nomenclature

A area (mm2)
D diameter (mm)
E modulus of elasticity (MPa)
F applied force (N)
I second moment of inertia (mm4)
L length (mm)
Gmn assembly receptance FRF element
Hmn individual receptance FRF element
C viscous damping coefficient (N s/m)
k stiffness (N/m)
x frequency (Hz)
q density (kg/m3)
fd flute depth
R, S mode shapes
kx, kh linear and rotational connection stiffness
cx, cq linear and rotational connection damping

Subscripts

m coordinate
n location of the force
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determining milling force coefficients as used by
Armarego and Whitfield [10].
Another major limitation on productivity and sur-

face quality in milling is chatter vibrations which
develop due to dynamic interactions between the cut-
ting tool and workpiece. Chatter vibrations result in
poor surface finish and reduced tool life. Koenigsberger
and Tlusty [3] and Tobias [11] identified the most
powerful source of self-excitation which is associated
with the structural dynamics of the machine tool and
the feedback between the subsequent cuts on the same
cutting surface resulting in regeneration of waviness on
the cutting surfaces. In the early milling stability analy-
sis, Tlusty used an approximate analytical model [3]
and time domain simulations [12] for predicting of
chatter stability in milling. Minis et al. [13] used
Floquet’s theorem and the Fourier series for the for-
mulation of the milling stability, and numerically
solved it using the Nyquist criterion. Budak and Altin-
tas [14] developed a stability method which leads to
analytical determination of stability limits. The stability
of low radial immersion milling has been investigated
and modeled in [15,16] where cases for the doubled
number of stability lobes are presented. These methods
can be used to generate stability diagrams from which
stable cutting conditions, and spindle speeds resulting
in much higher stability can be determined for given
work material, tool geometry and transfer functions.
Demonstrations of cutting model implementation

in CAD/CAM systems have been done in several.
Altintas and Spence [17] and Yazar et al. [18] demon-
strated that force models could be used to predict form
errors and optimize feedrates based on simulation at
the CAD/CAM stage. Weck et al. [19] demonstrated
determination of chatter free milling conditions in
a commercial CAD/CAM software. Cutting force
coefficients and tool dynamics were needed for these
simulations, which were determined experimentally.
Generation of an orthogonal cutting database for a
work material as Budak et al. [20] did reduces the
amount of experiments, and thus makes implemen-
tation of force models in CAD/CAM more practical.
There is a need for more practical determination of

structural properties of the cutting tool for a virtual
machining system. Kops and Vo [21] determined an
equivalent diameter for end mill based on finite
element analysis (FEA) in order to be able to use beam
equations for deflection calculations, which eliminates
stiffness measurements for each tool. Schmitz [22,23]
used substructuring methods to predict the dynamics of
tool holder–end mill assembly using beam component
modes.
In this paper, a precise modeling of tool structure is

presented for accurate determination of form errors
and stability limits. End mill geometry is very compli-
cated, thus in general, beam approximations do not
provide accurate stiffness and transfer function predic-
tions. Both FEA and analytical methods have been
used for static and dynamic analysis of end mills.
Dynamics of end milling systems are modeled using
two different approaches by a cantilevered beam
approximation and by including tool holder dynamics
as well as clamping flexibility. Simplified, but accurate
equations are presented for end mills, which can be
used in CAD/CAM systems for form error and stab-
ility limit calculations. The analytical results are veri-
fied numerically and experimentally.
2. Deflection analysis of end mills

The main objective of the static analysis is to deter-
mine the deflection of end mills under milling forces.
For static deflection analysis of end mills, the tool
holder is assumed to be rigid and the cantilever beam
model is used. However, the holder and clamping stiff-
ness can also be included in the analysis if they are
known [2]. End mill deflections can be approximated
using the beam model. The loading and boundary con-
ditions of the end mill used in the model are shown in
Fig. 1, where D1 is the mill diameter, D2 is the shank
diameter, L1 is the flute length, L2 is the overall length,
F is the point load, I1 is the moment of inertia of the
part with flute and I2 is the moment of inertia of the
part without flute.
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The moment–area theorems are used to determine

the maximum deflection at the end of the cutting tool

[24].

ymax ¼
FL13

3EI1
þ 1

6

FL1ðL2� L1ÞðL2þ 2L1Þ
EI2

þ 1

6

FL2ðL2� L1Þð2L2þ L1Þ
EI2

ð1Þ

The deflections can be approximated using an

equivalent diameter in Eq. (1) as suggested in [21].

However, the accuracy of the predictions can be

improved by including the flute geometry in the formu-

lation as formulated in the next section.
2.1. Moment of inertia

Models of 4-flute, 3-flute and 2-flute end mills are

used to determine the moment of inertias analytically.

Due the complexity of the cutter cross section along its

axis, the inertia calculation is the most difficult aspect

of the static analysis. The cross sections of the end

mills are as shown in Fig. 2.
In order to determine the inertia of the whole cross

section, inertia of region 1 is first derived, and inertia

of the other regions are obtained by transformation.

The total inertia of the cross section is then obtained

by summing the inertia of all regions. The effect of the

arcs due to flute depths (fd) is added to total inertia.

Regions for 4-flute, 3-flute and 2-flute are shown in

Fig. 3.
The inertia of region 1 is derived by computing

equivalent radius Req in terms of the radius r of the

arc, position of the center of the arc (a) and h. Using

cosine law, the equivalent radius Req for region 1 of

4-flute, 3-flute and 2-flute end mill with respect to
x- and y-axes as [25]

Req4�fluteðhÞ¼ a � sinðhÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2�a2Þþa2 � sin2ðhÞ

q
0< h�p=2

Req3�fluteðhÞ¼ a �cos hþ p
3

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2�a2Þþa2 �cos2 hþ p

3

� �r
0< h� 2p=2

Req2�fluteðhÞ¼�a �cosðhÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2�a2Þþa2 �cos2ðhÞ

p
0< h�p

ð2Þ
The moment of inertia of region 1 of a 4-flute end

mill about x- and y-axes can be written as

Ixx4�flute ¼
ðp=2

0

ðReq4�fluteðhÞ

0

q3 � sin2ðhÞdqdh

" #

� 1

8
p

fd

2


 �4

þ pðfd=2Þ2

2
rþ a� fd

2


 �2
" #

Iyy4�flute ¼
ðp=2

0

ðReq4�fluteðhÞ

0

q3 � cos2ðhÞdqdh

" #

� 1

8
p

fd

2


 �4
" #

ð3Þ

where 0 < q � ReqðhÞ. The same formulation can be
written for region 1 of the 3-flute and 2-flute tool.
After transforming the inertia of region 1, the total
inertias are found as follows

lxx4�flute;TOT ¼ lyy4�flute;TOT ¼ 2ðlxx4�flute þ lyy4�fluteÞ
lxx3�flute;TOT ¼ lyy3�flute;TOT ¼ 1:5ðlxx4�flute þ lyy4�fluteÞ
lxx2�flute;TOT ¼ 2ðlxx2�fluteÞ; lyy2�flute;TOT ¼ 2ðlyy2�fluteÞ

ð4Þ

2.2. FE modeling and analysis of cantilever tool

In order to verify and improve the accuracy of ana-
lytical model predictions, FEA is also used for tool
deflections. For parametric and geometric solid model-
ing, FE modeling and analysis, I-DEAS1 is used.
Many simulations were performed for end mills with
Loading and boundary conditions of the e
Fig. 1. nd mill.
Fig. 2. Cross sections of the 4-flute, 3-flute and 2-flute end mills.
Region 1 of 4-flute, 3-flute and 2-flute e
Fig. 3. nd mill.
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different material, flute diameter, shank diameter, flute
length, overall length and number of teeth. Modulus of
elasticity and density are 200 and 605 GPa, and 8600
and 12,500 kg/m3 for HSS and carbide tools, respect-
ively. The Poisson’s ratio is 0.3 for both the tool mate-
rials.
FE method is used to determine deformations of the

tool when a point force is applied at its free end. The
comparison of some deflections by analytical solutions
and FEA are shown in Table 1. Approximately 60
tools were tested.
Modeling and FEA can be unpractical and time con-

suming for each tool configuration in a virtual machin-
ing environment. Therefore, simplified equations are
generated to predict deflections of tools for given geo-
metric parameters and density. The static character-
istics of end mills can easily be

deflectionmax ¼ C
F

E

L13

D14
þ ðL23 � L13Þ

D24

� N
ð5Þ

where F is the applied force and E is the modulus of
elasticity (MPa) of the tool material. The geometric
properties of the end mill are in mm. The constant C is
9.05, 8.30 and 7.93 and N is 0.950, 0.965 and 0.974 for
4-flute, 3-flute and 2-flute cutters, respectively.
A 4-flute high speed steel long slender end mill is

selected to demonstrate the accuracy of analytical
results. The mill and shank diameter is 6 mm, the flute
length is 38 mm and the gauge length is 75 mm. A
force is applied to end point of the tool and measured
by dynamometer and displacements at the two points
of the tool are measured by dial gage. Total displace-
ment of the tool is equal to summation of clamping
displacement, beam displacement and rotational dis-
placement. Rotational displacement is assumed to be
zero. The experimental beam stiffness is 75 N/mm and
the stiffness of the tool, which is calculated by using
analytical equation, is 70.5 N/mm. The agreement
between two stiffness values is satisfactory.
3. Dynamic analysis of the tool

Dynamics of the tool is required for the stability
analysis and stability limit prediction. Two different
cases will be considered for analytical modeling of the
end mill dynamics. For slender end mills where the
dynamics is mostly dominated by the tool modes, flex-
ible tool–rigid holder model will be used. A general
case will also be presented where the tool, tool holder,
spindle and the clamping stiffness and damping are also
included.
3.1. Flexible tool–rigid holder

3.1.1. Analytical model
Dynamic analysis is used to determine mode shapes

and natural frequencies of the cutting tool structures.
A modeling method for transverse vibrations of an end
mill is developed. End mill is a segmented beam, one
segment for the part with flute and the other segment
for the shank. The beam model with two different geo-
metric segments is shown in Fig. 4 where I1, I2 and A1,
A2 are the moment of inertias and the areas of the seg-
ments, respectively. R(x) and S(y) are the mode shapes,
and w1(x, t) and w2(x, t) are the displacement func-
tions. The governing equations of motion, neglecting
the rotational inertia and shear formation, can be con-
verted into the well-known Euler–Bernoulli equations:

EI1
d4R

dx4
� qA1x2R ¼ 0; 0 � x � L1

EI2
d4S

dy4
� qA2x2S ¼ 0; 0 � y � L2

ð6Þ
Table 1

Results of the analytic equations and FE solutions
Flutes M
aterial D
1 (mm) D
2 (mm)
 L1 (mm) L
2 (mm)
 y-Analytical (mm),

force ¼ 50 N

y

fo
-FEA (mm),

rce ¼ 50 N
Difference (%)
4 H
SS
 6
 6
 13
 57
 0.248844 0
.251768
 1.16
3 H
SS
 6
 6
 13
 57
 0.245466 0
.250252
 1.91
2 H
SS
 6
 6
 13
 57
 0.244309 0
.249888
 1.23
4 H
SS 1
0 1
3
 22
 72
 0.027316 0
.028412
 3.86
3 H
SS 1
0 1
3
 22
 72
 0.025169 0
.026517
 5.08
2 H
SS 1
0 1
3
 22
 72
 0.024448 0
.026007
 5.99
4 C
arbide 1
6 1
6
 32
 92
 0.007281 0
.007580
 3.94
3 C
arbide 1
6 1
6
 32
 92
 0.006950 0
.007315
 4.99
2 C
arbide 1
6 1
6
 32
 92
 0.006777 0
.007163
 5.38
4 C
arbide 2
0 2
0
 38 1
04
 0.004368 0
.004630
 5.66
3 C
arbide 2
0 2
0
 38 1
04
 0.004138 0
.004463
 7.27
2 C
arbide 2
0 2
0
 38 1
04
 0.004062 0
.004409
 7.86
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where E is the modulus of elasticity and q is the den-

sity. The solution of Eq. (6) can be expressed as

RðxÞ ¼ A1 � coshðbxÞ þ A2 � sinhðbxÞ þ A3 � cosðbxÞ
þ A4 � sinðbxÞ

SðxÞ ¼ A5 � coshðaxÞ þ A6 � sinhðaxÞ þ A7 � cosðaxÞ
þ A8 � sinðaxÞ ð7Þ

where A1, A2, A3, A4, A5, A6, A7 and A8 are arbitrary

constants. It is necessary to accompany the general

solutions with the boundary conditions. The boundary

conditions are as follows. At x ¼ 0 (i.e. at the free

end), bending moment and shear force are defined as

d2Rð0Þ
dx2

¼ 0;
d3Rð0Þ
dx3

¼ 0 ð8Þ

At x ¼ L1 and y ¼ 0 the continuity equations for dis-

placement, slope, moment and shear force are as fol-

lows:

RðL1Þ ¼ Sð0Þ; dRðL1Þ
dx

¼ dSð0Þ
dy

;

d2RðL1Þ
dx2

¼ d2Sð0Þ
dy2

;
d3RðL1Þ

dx3
¼ d3Sð0Þ

dy3
ð9Þ

At y ¼ L2 (i.e. at the fixed end) displacement and slope

equations:

SðL2Þ ¼ 0;
dSðL2Þ

dy
¼ 0 ð10Þ
C½ 
 ¼

1 0 �1 0 0
0 1 0 �1 0
coshðbL1Þ sinhðbL1Þ cosðbL1Þ sinðbL1Þ �
sinhðbL1Þ coshðbL1Þ �sinðbL1Þ cosðbL1Þ 0

coshðbL1Þ sinhðbL1Þ �cosðbL1Þ �sinðbL1Þ �
b

sinhðbL1Þ coshðbL1Þ sinðbL1Þ �cosðbL1Þ 0

0 0 0 0 co
0 0 0 0 si

2
66666666666666664
These eight conditions defined by Eqs. (8)–(10) are
sufficient to solve for the eight arbitrary constants. The
equations involving these constants can be written in
the following form:

½C
 Af g ¼ 0

where Aj is the vector of the eight arbitrary constants
and the coefficient matrix [C] is of dimension (8 8),
and is given by
The characteristic equation is determined if jCj ¼ 0.

The natural frequencies are computed from the sol-
ution of characteristic equation as

x ¼ ðbL1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI1

qA1L14

s
or x ¼ ðaL2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI2

qA2L24

s
ð11Þ

The mode shapes according to the frequencies are
obtained by combining R(x) and S(y) from Eq. (7).
3.1.2. FE solution
In I-DEAS1, models are built to define geometry,

material properties, element types and constraints for
end mills. Natural frequencies and mode shapes are
obtained using FEA. Many end mills with different
material and geometric parameters are analyzed. In
case of a 2-flute end mill, lateral and vertical bending
Fig. 4. The geometry of the beam with two different geometric seg-

ments.
Fig. 5. Relationship between natural frequencies (mode1) of HSS

tool and tool length/diameter ratio.
0 0 0
0 0 0

1 0 �1 0
�a
b

0
�a
b

a2

2
0

a2

b2
0

�a3

b3
0

a3

b3

shðaL2Þ sinhðaL2Þ cosðaL2Þ sinðaL2Þ
nhðaL2Þ coshðaL2Þ �sinðaL2Þ cosðaL2Þ

3
77777777777777775
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frequencies are different as the cutter cross section is
not symmetric with respect to x and y axes.
As the tool length/diameter ratio increases, the natu-

ral frequency of the tool decreases (Fig. 5). 2-flute cut-
ters have the greatest natural frequency and 4-flute
cutters have the least because of the cross section. The
carbide tools have higher natural frequency than HSS
tools because of their high modulus of elasticity
(Fig. 6).
3.2. Tool dynamics including machine flexibility

3.2.1. Receptance coupling substructure analysis for tool
dynamics
In this model, the complete machine structure is div-

ided into two parts: tool and tool holder/spindle. The
description of the assembly model and the connection
parameters are shown in Fig. 7 [20]. The four connec-
tion parameters (linear and torsional springs and
dampers) must be determined to predict tool point
frequency response function (FRF). According to these
parameters, tool and tool holder/spindle FRFs are
coupled using receptance coupling substructure analy-
sis (RCSA). RCSA is a very efficient method to predict
dynamic response of tools without measurements for
each tool, tool holder and spindle combination. In this
study, the analytical model developed for the tool
dynamics given in Section 3.1 is used together with
RCSA to determine the total dynamics of the machine.
In RCSA, each component of the assembly must be

tested separately to determine the component FRFs.
Nevertheless, this is only possible if the impact tests on

the individual parts provide enough information to

predict accurately the dynamic properties of the assem-

bled structure. In case of low natural frequency modes,

the dynamics at the tool and tool holder/spindle inter-

face might not be adequately represented in the modal

data. Furthermore, in many cases the measurement of

component dynamics is not practical which is the case

for free–free end mill.
The direct and cross free–free FRFs of the tool are

calculated analytically using the model presented in this

paper. In the formulation, the component modes are

represented by H whereas G is for the assembly FRFs.

Direct and cross deflection receptance terms (H11, H22

and H12 ¼ �H21), displacement under applied force

(Lmn), rotation under applied force (Nmn) and the

rotation under applied moment (Pmn) for the compo-

nent A are derived analytically [22]. For the calcula-

tions, density (q), elastic modulus (E), viscous damping

coefficient (c) and second moment of inertia (I) are

required. In the static analysis section, an analytic

equation for the maximum displacement at the tool tip

was derived (Eq. (1)) which can be used to determine

the stiffness of the tool. The effective diameter of the

tool and the second moment of inertia can be calcu-

lated using the analytical equations developed in Sec-

tion 1 for segmented beam with different moments of

inertias and the cantilever beam equation of the uni-

form cylinder. The mass of the tool can then be determ-

ined using the natural frequency and stiffness both from

analytic equations. The damping ratios for many HSS

and carbide tools have been determined experimentally.

Average values of f ¼ 0:018 and f ¼ 0:012 have been

obtained from experimental data for HSS and carbide

tools, respectively. By using these dynamic properties,

approximate c values are estimated. Note that c values

determined this way includes the damping of the tool

only as they are identified from end mill’s component

mode dynamics. These damping ratio values can then

be used in the analysis of different tools.
For the tool holder/spindle component, the direct

deflection receptance term (H33) is measured at the

intersection location by impact test. L33, N33 and P33

are assumed to be zero. The holder and spindle

dynamic properties can also be determined using FEA

[26,27]. However, the number of spindle/holder combi-

nations for milling tools is much more limited on a

machining center, and thus they can be measured and

used for different end mill combinations.
Finally, after RCSA for the complete structure, the

analytical displacement/force relationship at the tool

tip (G11), which is required for stability and chatter
Fig. 6. Comparison between carbide and HSS natural frequencies.
Fig. 7. Tool and tool holder/spindle assembly.
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avoidance, is given as [20]:

G11 ¼
X1

F1
¼ H11 �H12E

�1
1 E2 � L12E

�1
3 ððkqN21 þ cqN

0
21Þ

�E4E
�1
1 E2Þ ð12Þ

where

E1 ¼ ðkxH33 þ kxH22 þ cxH
0
33 þ cxH

0
22 þ 1Þ

� E�1
3 E4ðkxL33 þ kxL22 þ cxL

0
33 þ cxL

0
22Þ

E2 ¼ ðkxH21 þ cxH
0
21Þ � E�1

3 ðkqN21 þ cqN
0
21Þ

 ðkxL33 þ kxL22 þ cxL
0
33 þ cxL

0
22Þ

E3 ¼ kqP33 þ kqP22 þ cqP
0
33 þ cqP

0
22 þ 1

E4 ¼ kqN33 þ kqN22 þ cqN
0
33 þ cqN

0
22

3.2.2. Identification of connection parameters
In experiments, the tool point FRFs (G11) of the tool/

tool holder/spindle assembly are measured for different
tools. From RCSA point of view, this resultant FRF
includes the dynamics of tool holder at the tip, clamping
and the tool. From the analytical component modes pre-
sented here, and the experimental data, all these except
the clamping parameters are known. Therefore, the
clamping stiffness and damping can be identified from
tool point FRF. This should be done using least squares
error minimization method in order to minimize the
overall error in the considered frequency range for the
FRF. The connection parameters (kx, kq, cx, cq) are
determined using lsqnonlin command of Matlab Optimi-
zation Toolbox [28,29]. Isqnonlin solves nonlinear least
squares problems, including nonlinear data fitting. X ¼
lsqnonlin (fnctn, Xo) starts at a pointX0 and finds a mini-
mum to the sum of squares of the functions described
in fnctn. Our syntax is ½X ; resnorm; residual; exitflag;
output
 ¼ lsqnonlin ðfnctn; X0; lb; ub; optionsÞ. The sol-
ution is always in the range lb � X � ub. The optimiza-
tion parameters (max iteration number, max function
evaluation number, tolerances for function and X values)
are specified in the structure options. The value of the
residual for a solution X, the value exitflag (0,1) that
describes the exit condition and the structure output that
contains information about the optimization are
returned. According to the calculated spring and
damper parameters, the tool point FRF of the assembly
is predicted analytically using Eq. (12). The measure-
ments and predictions for G11 are compared in the next
section.
The knowledge of the FRF of the tool point can be

used to predict the stability lobe diagrams. The critical
axial depth of cut can be determined easily from the
stability lobes. Therefore, for a given end mill on a
particular machining center, the stable milling con-
ditions can be determined completely analytically. This
is very useful information in a virtual machining
environment, which is the next step in CAM.
4. Experimental verification

4.1. Tool deflection and maximum surface error

Milling forces can be modeled for given cutting and
cutter geometry, cutting conditions, and work material
[1]. The cutting forces in both directions can be used to
determine milling tool deflections. In milling, the sur-
face is generated when the cutting flutes intersect the
finished surface. Thus, deflections of the tool at those
points are imprinted as surface form errors. The simu-
lation of the surface form error in milling is given in [2].
The stiffness of an end mill can be calculated using

the analytic model. The stiffness values are used to pre-
dict the maximum surface error generated by the end
mill. For surface error calculation, the cutting forces
are determined according to work material properties,
cutting and tool conditions in [2] using the milling
force model [1]. The results are verified using the
experimental results in [2]. 4-flute high speed steel end
mill with 30

v
helix angle is used for the comparison.

The tool diameter is 19.05 mm and the tool gauge
length is 54.5 mm. The stiffness of this tool is calcu-
lated as 12,761 N/mm. The model results agree with
the experimental results (Table 2). The difference
between the measured and the predicted maximum sur-
face error (Emax) is less than 6%.

4.2. Flexible tool and rigid holder

4-flute carbide end-mill with long overhang is selec-
ted to demonstrate the accuracy of analytical results.
The mill and shank diameter is 8 mm, the flute length
is 41 mm and the gauge length is 80 mm. FRF
measurement was performed to determine the transfer
function of the end mill which is shown in Fig. 8.
Table 3 shows the identified frequency, stiffness, damp-
ing and mass values for the end mill. For comparison
with analytical model predictions, the results obtained
using the cylinder approximation for the end mill are
also shown in Table 3 and Fig. 8. The cylinder with the
same diameter and length is used in calculations. Due
to the long flute length of the tool, the cylinder
approximation is very poor in this case as shown in
Fig. 8. The approximation results could be improved
Table 2

Experimental and calculated maximum surface error results
Axial

depth of

cut (mm)

F

(

eedrate

mm)
Emax

experimental

(mm)

E

(m

max model

m)
Difference

(%)
19.05 0
.14
 0.0944 0
.0912
 3.38
15.00 0
.10
 0.0722 0
.0677
 6.23
15.00 0
.06
 0.0444 0
.0438
 1.35
15.00 0
.02
 0.0178 0
.0167
 6.18
18.00 0
.02
 0.0166 0
.0158
 4.82
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by using an effective diameter for the cylinder. As the

end mills do not have circular cross sections along the

flute length, the analytical solution is the most power-

ful approximation to find the dynamic properties. The

model presented in this paper can be used to determine

the dynamics of end mills for a given geometry,

material and clamping conditions.
4.3. Flexible tool and flexible holder/spindle

In this section, the FRFs using analytical models and

the RCSA are compared with experimental results for

verification. For the identification of the interface stiff-

ness and damping between the tool and tool holder,
different tool geometries, materials and clamping con-

ditions are used. Contact parameters are identified and

presented.
The tool holder/spindle direct FRF (H33) is mea-

sured at the free end in x/y directions by using low

mass accelerometer and impact hammer. The measured

FRF of the CAT40 tool holder/spindle is shown in

Fig. 9. The same tool holder is used with different end

mills, and therefore the same FRF (H33) is used in

RCSA in the following examples.
4.3.1. Experiment 1—model verification
A carbide end mill with 4-flutes, 8 mm diameter, and

100 mm length is used for test. Different lengths (length

to diameter ratios of 8:1, 9:1, 10:1, 11:1) are selected

for the measurement. A clamping torque of 25 N m is

applied on CAT40 holder. The tool effective diameter

and damping coefficient were determined as 7.49 mm

and 5 N s/m, respectively. After the nonlinear least

square evaluation, the stiffness and damping coeffi-
. Magnitude of the transfer function for the experim
Fig. 8 ental,

analytical and cylindrical beam methods.
Table 3

The comparison of the dynamic properties obtained from experi-

mental, analytical and cylindrical beam methods
Transfer

function

F

(

requency

Hz)
Stiffness

(N/m)

D

(

amping

f)

Mass

(kg)
Experiment
 935
 5:11 105 0
.012
 0.0150
Analytical
 922
 5:50 105 0
.012
 0.0164
Cylinder 1
216
 7:12 105 0
.012
 0.0122
Fig. 9. Measured FRF at the tip of CAT40 tool holder/spindle

combination.
Table 4

Stiffness and damping coefficients for experiment 1
L
=D ¼ 8

Lcontact ¼ 36
L=D ¼ 9

Lcontact ¼ 28

L

L

=D ¼ 10

contact ¼ 20

L

L

=D ¼ 11

contact ¼ 12
kx
(N/m)

9
:036 106
 6:885 106 3
:614 106 1
:304 106
kq
(N m/rad)

1
:02 107
 5:3 106 3
:8 106 1
:277 106
cx
(N s/m)

4
45
 368 2
28 1
41
cq
(N m s/rad)

5
4.17
 71.44 7
8.09 7
9.34
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cients are determined as shown in Table 4. The mea-

sured and predicted FRFs using analytical component

FRFs and RCSA are given for the shortest and longest

tools Fig. 10. The response is governed by only the first

mode of the tool, and thus only the first beam mode is

used in the analytical component modes. As the con-

tact length (Lcontact) that is in the tool holder decreases,

natural frequency decreases and flexibility increases.

All connection parameters except rotational damping

increase, when Lcontact increases. The agreement

between the experimental results and the predictions is

satisfactory.
4.3.2. Experiment 2—holder and tool interaction
In the experiment 2, the HSS end mill, which has 16

mm diameter, 85 mm overhang and 4-flute, was moun-
ted in CAT40 tool holder. The effective diameter of the
end mill and the damping ratio were determined as
15.56 mm and 20 N s/m, respectively. The linear and
rotational spring and damping coefficients for the con-
nection between the tool and tool holder/spindle are
given in Table 5. The agreement between the predicted
and measured results can be seen from the Fig. 11.
Because of the interaction between tool holder/spin-

dle dynamics and the tool dynamics, two close modes
are experienced as shown in the figure. The tool
holder/spindle mode at the approximately 1042 Hz and
the cantilever tool mode affect each other strongly
resulting in two separate peaks. As a result, G11 is
reduced which indicates that the tool holder/spindle is
acting like a dynamic absorber for the tool.
4.3.3. Experiment 3—effect of clamping torque
HSS and carbide end mills with 4-flutes, 20 mm

diameter, and 104 mm length are used for test. Differ-
ent clamping torque values (25, 35 and 45 N m) are
applied on CAT40 holder. The tool effective diameter
was determined as 19.498 mm. Damping coefficients
for HSS and carbide tools were 26 and 60 N s/m,
respectively. The nonlinear least square evaluation is
used to find the stiffness and damping coefficients for
HSS and carbide tool and tool holder/spindle combi-
nation (Table 6). The stiffness and damping coefficients
Fig. 10. Predicted and measured FRFs for experiment 1, (a)

L=D ¼ 8; (b) L=D ¼ 11.
Table 5

Stiffness and damping coefficients for experiment 2
kx (N/m) k
q (N m/rad) c
x (N s/m) c
q (N m s/rad)
84:8 105 8
 104 1
022 6
.3
Fig. 11. Predicted and measured FRFs for experiment 2.
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for the HSS tool and tool holder pair are slightly less

than connection coefficients for carbide tool and tool

holder pair. As the clamping torque applied on tool

holder is increased, all coefficients increase. These

values can be used to predict the effect of the clamping

torque on tool dynamics and its stability.
Fig. 12 shows an example of the experimental and

predicted direct tool point FRFs (G11) for tool material

of HSS and carbide. The overall agreement between

the predicted and measured results is good.
5. Conclusion

Dynamic and static properties of milling tools are

very important for machining precision and chatter

stability. In general, approximate analytical or experi-

mental results are used to determine these character-

istics. Approximate results do not provide accurate

information particularly for the dynamics and chatter

stability. Experimental methods, on the other hand, are

time consuming considering the possible number of

tool and tool holder combinations, tool geometry and

material in an industrial setting. The analytical models

presented in this work eliminate the need for transfer

function measurements for every tool assembly. The

models consider the complex geometry of flutes in

development of cross sectional properties. End mills

have flutes and unfluted sections, which further compli-

cate their geometry. This segmented characteristic has

also been considered in static and dynamic modeling.

RCSA model has been used for combining the mea-

sured dynamics of the tool holder/spindle and the ana-

lytically determined end mill modes. Both static and

dynamic predictions are demonstrated to be extremely

accurate for variety of cases. The approach presented

here is very useful for implementation in a virtual

machining system where the form errors and stability

limits for a milling application can be determined auto-

matically.
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