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STRUCTURAL NONPARAMETRIC COINTEGRATING REGRESSION

BY QIYING WANG AND PETER C. B. PHILLIPS1

Nonparametric estimation of a structural cointegrating regression model is stud-
ied. As in the standard linear cointegrating regression model, the regressor and the
dependent variable are jointly dependent and contemporaneously correlated. In non-
parametric estimation problems, joint dependence is known to be a major complication
that affects identification, induces bias in conventional kernel estimates, and frequently
leads to ill-posed inverse problems. In functional cointegrating regressions where the
regressor is an integrated or near-integrated time series, it is shown here that inverse
and ill-posed inverse problems do not arise. Instead, simple nonparametric kernel esti-
mation of a structural nonparametric cointegrating regression is consistent and the limit
distribution theory is mixed normal, giving straightforward asymptotics that are useable
in practical work. It is further shown that use of augmented regression, as is common in
linear cointegration modeling to address endogeneity, does not lead to bias reduction
in nonparametric regression, but there is an asymptotic gain in variance reduction. The
results provide a convenient basis for inference in structural nonparametric regression
with nonstationary time series when there is a single integrated or near-integrated re-
gressor. The methods may be applied to a range of empirical models where functional
estimation of cointegrating relations is required.

KEYWORDS: Brownian local time, cointegration, functional regression, Gaussian
process, integrated process, kernel estimate, near integration, nonlinear functional,
nonparametric regression, structural estimation, unit root.

1. INTRODUCTION

A GOOD DEAL OF RECENT ATTENTION in econometrics has focused on func-
tional estimation in structural econometric models and the inverse problems
to which they frequently give rise. A leading example is a structural nonlin-
ear regression where the functional form is the object of primary interest. In
such systems, identification and estimation are typically much more challeng-
ing than in linear systems because they involve the inversion of integral oper-
ator equations which may be ill-posed in the sense that the solutions may not
exist, may not be unique, and may not be continuous. Some recent contribu-
tions to this field include Newey, Powell, and Vella (1999), Newey and Powell
(2003), Ai and Chen (2003), Florens (2003), and Hall and Horowitz (2005).
Overviews of the ill-posed inverse literature are given in Florens (2003) and
Carrasco, Florens, and Renault (2007). All of this literature has focused on
microeconometric and stationary time series settings.

In linear structural systems, problems of inversion from the reduced form
are much simpler, and conditions for identification and consistent estimation
techniques have been extensively studied. Under linearity, it is also well known

1The authors thank a co-editor and two referees for helpful comments. Wang acknowledges
partial research support from the Australian Research Council. Phillips acknowledges partial
research support from a Kelly Fellowship and NSF Grant SES 06-47086.
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that the presence of nonstationary regressors can provide a simplification. In
particular, for cointegrated systems involving time series with unit roots, struc-
tural relations are actually present in the reduced form (and therefore always
identified) because of the unit roots in a subset of the determining equations.
In fact, such models can always be written in error correction or reduced rank
regression format where the structural relations are immediately evident.

The present paper shows that nonstationarity leads to major simplifications
in the context of structural nonlinear functional regression. The primary sim-
plification arises because in nonlinear models with endogenous nonstationary
regressors, there is no ill-posed inverse problem. In fact, there is no inverse
problem at all in the functional treatment of such systems. Furthermore, iden-
tification does not require the existence of instrumental variables that are or-
thogonal to the equation errors. Finally, and perhaps most importantly for
practical work, consistent estimation may be accomplished using standard ker-
nel regression techniques, and inference may be conducted in the usual way
and is valid asymptotically under simple regularity conditions. These results
for kernel regression in structural nonlinear models of cointegration open up
new possibilities for empirical research.

The reason why there is no inverse problem in structural nonlinear nonsta-
tionary systems can be explained heuristically as follows. In a nonparametric
structural setting, it is conventional to impose on the disturbances a zero con-
ditional mean condition given certain instruments, so as to assist in identify-
ing an infinite-dimensional function. Such conditions lead to an integral equa-
tion involving the conditional probability distribution of the regressors and the
structural function integrated over the space of the regressor. This equation
describes the relation between the structure and reduced form, and its solu-
tion, if it exists and is unique, delivers the unknown structural function. But
when the endogenous regressor is nonstationary, there is no invariant proba-
bility distribution of the regressor, only the local time density of the limiting
stochastic process corresponding to a standardized version of the regressor
as it sojourns in the neighborhood of a particular spatial value. Accordingly,
there is no integral equation relating the structure to the reduced form. In
fact, the structural equation itself is locally also a reduced form equation in
the neighborhood of this spatial value, for when an endogenous regressor is in
the locality of a specific value, the systematic part of the structural equation
depends on that specific value and the equation is effectively a reduced form.
What is required is that the nonstationary regressor spends enough time in the
vicinity of a point in the space to ensure consistent estimation. This in turn re-
quires recurrence, so that the local time of the limit process corresponding to
the time series is positive. In addition, the random wandering nature of a sto-
chastically nonstationary regressor such as a unit root process ensures that the
regressor inevitably departs from any particular locality and thereby assists in
tracing out (and identifying) the structural function over a wide domain. The
process is similar to the manner in which instruments may shift the location in
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which a structural function is observed and in doing so assist in the process of
identification when the data are stationary.

Linear cointegrating systems reveal a strong form of this property. As men-
tioned above, in linear cointegration the inverse problem disappears com-
pletely because the structural relations continue to be present in the reduced
form. Indeed, they are the same as reduced form equations up to simple time
shifts, which are of no importance in linear long run relations. In nonlinear
structural cointegration, the same behavior applies locally in the vicinity of
a particular spatial value, thereby giving local identification of the structural
function and facilitating estimation.

In linear cointegration, the signal strength of a nonstationary regressor en-
sures that least squares estimation is consistent, although the estimates are well
known to have second order bias (Phillips and Durlauf (1986), Stock (1987))
and are therefore seldom used in practical work. Much attention has therefore
been given in the time series literature to the development of econometric esti-
mation methods that remove the second order bias and are asymptotically and
semiparametrically efficient.

In nonlinear structural functional estimation with a single nonstationary re-
gressor, this paper shows that local kernel regression methods are consistent
and that under some regularity conditions they are also asymptotically mixed
normally distributed, so that conventional approaches to inference are possi-
ble. It is not necessary to use special methods or even an augmented regression
equation where the cointegrating model is adjusted for the conditional mean
to account for endogeneity, such as the augmented regressions that underlie
semiparametric methods like FM regression or dynamic least squares in lin-
ear cointegrating models. These results constitute a major simplification in the
functional treatment of nonlinear cointegrated systems and they directly open
up empirical applications with existing methods.

In related recent work, Karlsen, Myklebust, and Tjøstheim (2007) and
Schienle (2008) used Markov chain methods to develop an asymptotic the-
ory of kernel regression that allows for some forms of nonstationarity and en-
dogeneity in the regressor. Schienle also considered additive nonparametric
models with many nonstationary regressors and smooth backfitting methods of
estimation.

The results in the current paper are obtained using local time convergence
techniques, extending those in Wang and Phillips (2009) to the endogenous
regressor case and allowing for both integrated and near-integrated regres-
sors with general forms of serial dependence in the generating mechanism and
equilibrium error. The validity of the limit theory in the case of near-integrated
regressors is important in practice because it is often convenient in empiri-
cal work not to insist on unit roots and to allow for roots near unity in the
regressors. By contrast, conventional methods of estimation and inference in
parametric models of linear cointegration are known to break down when the
regressors have roots local to unity.
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The paper is organized as follows. Section 2 introduces the model and as-
sumptions. Section 3 provides the main results on the consistency and limit
distribution of the kernel estimator in a structural model of nonlinear cointe-
gration and associated methods of inference. Section 4 reports some Monte
Carlo simulations that explore the finite sample performance of the kernel
estimator and the effects of augmented regression specification. Section 5 con-
cludes and outlines ways in which the present paper may be extended. Proofs
and various subsidiary technical results are given in Sections 6–9, which func-
tion as appendices to the paper.

2. MODEL AND ASSUMPTIONS

We consider the nonlinear structural model of cointegration

yt = f (xt)+ ut(2.1) (t = 1�2� � � � � n)�

where ut is a zero mean stationary equilibrium error, xt is a jointly dependent
nonstationary regressor, and f is an unknown function to be estimated with the
observed data {yt� xt}nt=1. The conventional kernel estimate of f (x) in model
(2.1) is given by

f̂ (x)=

n∑
t=1

ytKh(xt − x)
n∑
t=1

Kh(xt − x)
�(2.2)

where Kh(s) = (1/h)K(s/h), K(x) is a nonnegative real function, and the
bandwidth parameter h≡ hn → 0 as n→ ∞.

The limit behavior of f̂ (x) has been investigated in past work in some spe-
cial situations, notably where the error process ut is a martingale difference se-
quence and there is no contemporaneous correlation between xt and ut . These
are strong conditions, they are particularly restrictive in relation to the conven-
tional linear cointegrating regression framework, and they are unlikely to be
satisfied in econometric applications. However, they do facilitate the develop-
ment of a limit theory by various methods. In particular, Karlsen, Myklebust,
and Tjøstheim (2007) investigated f̂ (x) in the situation where xt is a recurrent
Markov chain, allowing for some dependence between xt and ut . Under sim-
ilar conditions and using related Markov chain methods, Schienle (2008) in-
vestigated additive nonlinear versions of (2.1) and obtained a limit theory for
nonparametric regressions under smooth backfitting. Wang and Phillips (2009,
hereafter WP) considered an alternative treatment by making use of local time
limit theory and, instead of recurrent Markov chains, worked with partial sum
representations of the type xt =∑t

j=1 ξj , where ξj is a general linear process.
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These authors showed that the limit theory for f̂ (x) has links to traditional
nonparametric asymptotics for stationary models with exogenous regressors
even though the rates of convergence are different and typically slower when
xt is nonstationary and the limit theory is mixed normal rather than normal.

In extending this work, it seems particularly important to relax conditions of
independence and permit joint determination of xt and yt , and to allow for se-
rial dependence in the equilibrium errors ut and the innovations driving xt , so
that the system is a time series structural model. The goal of the present paper
is to do so and to develop a limit theory for structural functional estimation in
the context of nonstationary time series that is more in line with the type of
assumptions made for parametric linear cointegrated systems.

Throughout the paper we let {εt}t≥1 be a sequence of independent and identi-
cally distributed (i.i.d.) continuous random variables with Eε1 = 0 and Eε2

1 = 1,
and with the characteristic function ϕ(t) of ε1 satisfying

∫ ∞
−∞ |ϕ(t)|dt < ∞.

The sequence {εt}t≥1 is assumed to be independent of another i.i.d. random se-
quence {λt}t≥1 that enters into the generating mechanism for the equilibrium
errors. These two sequences comprise the innovations that drive the time se-
ries structure of the model. We use the following assumptions in the asymptotic
development.

ASSUMPTION 1: xt = ρxt−1 + ηt , where x0 = 0�ρ = 1 + κ/n with κ being a
constant, and ηt =∑∞

k=0φkεt−k with φ≡∑∞
k=0φk �= 0 and

∑∞
k=0 |φk|<∞.

ASSUMPTION 2: ut = u(εt� εt−1� � � � � εt−m0+1�λt�λt−1� � � � � λt−m0+1) satisfies
Eut = 0 and Eu4

t < ∞ for t ≥ m0, where u(x1� � � � � xm0� y1� � � � � ym0) is a real
measurable function on R2m0 . We define ut = 0 for 1 ≤ t ≤m0 − 1.

ASSUMPTION 3: K(x) is a nonnegative bounded continuous function satisfying∫
K(x)dx <∞ and

∫ |K̂(x)|dx <∞, where K̂(x)= ∫
eixtK(t)dt.

ASSUMPTION 4: For given x, there exists a real function f1(s�x) and a 0 <
γ ≤ 1 such that, when h sufficiently small, |f (hy+x)− f (x)| ≤ hγf1(y�x) for all
y ∈R and

∫ ∞
−∞K(s)f1(s�x)ds <∞.

Assumption 1 allows for both a unit root (κ= 0) and a near unit root (κ �= 0)
regressor by virtue of the localizing coefficient κ, and is standard in the near-
integrated regression framework (Chan and Wei (1987), Phillips (1987, 1988)).
The regressor xt is then a triangular array formed from a (weighted) partial
sum of linear process innovations that satisfy a simple summability condition
with long run moving average coefficient φ �= 0. We remark that in the coin-
tegrating framework, it is conventional to set κ = 0 so that the regressor is
integrated and this turns out to be important in inference. Indeed, in linear
parametric cointegration, it is well known (e.g., Elliott (1998)) that near inte-
gration (κ �= 0) leads to failure of standard cointegration estimation and test
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procedures. As shown here, no such failures occur under near integration in
the nonparametric regression context.

Assumption 2 allows the equation error ut to be serially dependent and
cross-correlated with xs for |t − s| <m0, thereby inducing endogeneity in the
regressor. As a consequence, we may have cov(ut� xt) �= 0. This makes the
model in the current paper essentially different from the one investigated in
Theorem 3.2 of WP. WP imposed the condition that xt is adapted to Ft−1,
where (ut�Ft) forms a martingale difference. Hence, under the conditions of
WP, one always has cov(ut� xt) = E[xtE(ut | Ft−1)] = 0. This difference ex-
plains why the proof of the main result in the current paper is so different from
that in WP. In WP, we could use a general martingale central limit theorem
(CLT) result, but such an approach is not possible in the current framework
because the sample covariance function is not a martingale.

In the asymptotic development below, the lag parameterm0 in Assumption 2
is assumed to be finite, but this could likely be relaxed under some additional
conditions and with greater complexity in the proofs, although that is not done
here. It is not necessary for ut to depend on λs , in which case there would be
only a single innovation sequence. However, in most practical cases involving
cointegration between two variables, we can expect that there will be two in-
novation sequences. While ut is stationary in Assumption 2, we later discuss
some nonstationary cases where the conditional variance of ut may depend
on xt . Note also that Assumption 2 allows for a nonlinear generating mecha-
nism for the equilibrium error ut . This seems appropriate in a context where
the regression function itself is allowed to take a general nonlinear form.

Assumption 3 places stronger conditions on the kernel function than are
usual in kernel estimation, requiring that the Fourier transform of K(x) is in-
tegrable. This condition is needed for technical reasons in the proofs and is
clearly satisfied for many commonly used kernels, like the normal kernel or
kernels that have a compact support.

Assumption 4, which was used in WP, is quite weak and can be verified for
various kernels K(x) and regression functions f (x). For instance, if K(x) is a
standard normal kernel or has a compact support, a wide range of regression
functions f (x) are included. Thus, commonly occurring functions like f (x)=
|x|β and f (x) = 1/(1 + |x|β) for some β > 0 satisfy Assumption 4 with γ =
min{β�1}. When γ = 1, stronger smoothness conditions on f (x) can be used
to assist in developing analytic forms for the asymptotic bias function in kernel
estimation.

3. MAIN RESULT AND OUTLINE OF THE PROOF

The limit theory for the conventional kernel regression estimate f̂ (x) under
random normalization turns out to be very simple and is given in the following
theorem.
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THEOREM 3.1: For any h satisfying nh2 → ∞ and h→ 0,

f̂ (x)→p f (x)�(3.1)

Furthermore, for any h satisfying nh2 → ∞ and nh2(1+2γ) → 0,(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂ (x)− f (x))→D N(0�σ2)�(3.2)

where σ2 =E(u2
m0
)
∫ ∞

−∞K
2(s)ds/

∫ ∞
−∞K(x)dx.

REMARK A: The result (3.1) implies that f̂ (x) is a consistent estimate
of f (x). Furthermore, as in WP, we may show that

f̂ (x)− f (x)= oP
{
an
[
hγ + (√nh)−1/2

]}
�(3.3)

where γ is defined as in Assumption 4 and an diverges to infinity as slowly as
required. This indicates that a possible “optimal” bandwidth h which yields the
best rate in (3.3) or the minimal E(f̂ (x)− f (x))2 at least for general γ satisfies

h∗ ∼ aarg min
h

{
hγ + (√nh)−1/2

}∼ a′n−1/[2(1+2γ)]�

where a and a′ are positive constants. In the most common case that γ = 1,
this result suggests a possible optimal bandwidth to be h∗ ∼ a′n−1/6, so that
h = o(n−1/6) ensures undersmoothing. This is different from nonparametric
regression with a stationary regressor, which typically requires h= o(n−1/5) for
undersmoothing. Under stronger smoothness conditions on f (x), it is possible
to develop an explicit expression for the bias function and the weaker condition
h= o(n−1/10) applies for undersmoothing. Some further discussion and results
are given in Remark C and Section 9.

REMARK B: To outline the essentials of the argument in the proof of Theo-
rem 3.1, we split the error of estimation f̂ (x)− f (x) as

f̂ (x)− f (x)=

n∑
t=1

utK[(xt − x)/h]
n∑
t=1

K[(xt − x)/h]
(3.4)

+

n∑
t=1

[f (xt)− f (x)]K[(xt − x)/h]
n∑
t=1

K[(xt − x)/h]
�
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The result (3.3), which implies (3.1) by letting an = min{h−γ� (
√
nh)1/2}, will

follow if we prove

Θ1n :=
n∑
t=1

utK[(xt − x)/h] =OP
{
(
√
nh)1/2

}
�(3.5)

Θ2n :=
n∑
t=1

[f (xt)− f (x)]K[(xt − x)/h] =OP{
√
nh1+γ}�(3.6)

and if, for any an diverging to infinity as slowly as required,

Θ3n := 1
/ n∑

t=1

K[(xt − x)/h] = oP{an/(
√
nh)}�(3.7)

On the other hand, it is readily seen that

(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂ (x)− f (x))

=

n∑
t=1

utK[(xt − x)/h]
√√√√ n∑

t=1

K[(xt − x)/h]
+Θ2n

√
Θ3n�

By virtue of (3.6) and (3.7) with an = (nh2+4γ)−1/8, we obtain Θ2n
√
Θ3n →P 0,

since nh2+4γ → 0. The stated result (3.2) will then follow if we prove{
(nh2)−1/4

[nt]∑
k=1

ukK[(xk − x)/h]� (nh2)−1/2
n∑
k=1

K[(xk − x)/h]
}

(3.8)

→D {d0NL
1/2(t�0)�d1L(1�0)}

on D[0�1]2, where d2
0 = |φ|−1E(u2

m0
)
∫ ∞

−∞K
2(s)dt, d1 = |φ|−1

∫ ∞
−∞K(s)ds,

L(t�0) is the local time process at the origin of the Gaussian diffusion process
{Jκ(t)}t≥0 defined by

Jκ(t)=W (t)+ κ
∫ t

0
e(t−s)κW (s)ds(3.9)

and {W (t)}t≥0 being a standard Brownian motion, and where N is a standard
normal variate independent ofL(t�0). The local time processL(t�a) is defined
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by

L(t�a)= lim
ε→0

1
2ε

∫ t

0
I
{|Jκ(r)− a| ≤ ε}dr�(3.10)

Indeed, since P(L(1�0) > 0)= 1, the required result (3.2) follows by (3.8) and
the continuous mapping theorem. It remains to prove (3.5)–(3.8), which are
established in Section 6. As for (3.8), it is clearly sufficient for the required
result to show that the finite-dimensional distributions converge in (3.8).

REMARK C: Results (3.2) and (3.8) show that f̂ (x) has an asymptotic distri-
bution that is mixed normal and that this limit theory holds even in the pres-
ence of an endogenous regressor. The mixing variate in the limit distribution
depends on the local time process L(1�0), as follows from (3.8). Explicitly,

(nh2)1/4(f̂ (x)− f (x))→D d0d
−1
1 NL

−1/2(1�0)(3.11)

whenever nh2 → ∞ and nh2(1+2γ) → 0. Again, this is different from nonpara-
metric regression with a stationary regressor. As noticed in WP, in the nonsta-
tionary case, the amount of time spent by the process around any particular
spatial point is of order

√
n rather than n, so that the corresponding conver-

gence rate in such regressions is now
√√

nh = (nh2)1/4, which requires that
nh2 → ∞. In effect, the local sample size is

√
nh in nonstationary regression

involving integrated processes, rather than nh as in the case of stationary re-
gression. The condition that nh2(1+2γ) → 0 is required to remove bias. This con-
dition can be further relaxed if we add stronger smoothness conditions on f (x)
and incorporate an explicit bias term in (3.11). A full development requires
further conditions and a very detailed analysis, which we defer to later work.
In the simplest case where κ = 0, ut is a martingale difference sequence with
E(u2

t )= σ2
u , ut is independent of xt , K satisfies

∫
K(y)dy = 1�

∫
yK(y)dy = 0

and has compact support, and f has continuous, bounded third derivatives, it
is shown in Section 9 that

(nh2)1/4

[
f̂ (x)− f (x)− h2

2
f ′′(x)

∫ ∞

−∞
y2K(y)dy

]
(3.12)

⇒
N

(
0�σ2

u

∫ ∞

−∞
K2(s)ds

)
L(1�0)1/2

�

provided nh14 → 0 and nh2 → ∞. Importantly, there is no linear term in the
bias function appearing in (3.12), in contrast to the limit theory for local level
nonparametric regression for stationary time series.
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REMARK D: As is clear from the second member of (3.8), the signal strength
in the present kernel regression is O(

∑n

k=1K[(xk − x)/h])= O(
√
nh), which

gives the local sample size in this case, so consistency requires that the band-
width h does not pass to zero too fast (viz., nh2 → ∞). On the other hand,
when h tends to zero slowly, estimation bias is manifest even in very large sam-
ples. Some illustrative simulations are reported in the next section.

REMARK E: The limiting variance of the (randomly normalized) kernel es-
timator in (3.2) is simply a scalar multiple of the variance of the equilibrium
error, namely Eu2

m0
, rather than a conditional variance that depends on xt ∼ x,

as is commonly the case in kernel regression theory for stationary time series.
This difference is explained by the fact that, under Assumption 2, ut is station-
ary and, even though ut is correlated with the shocks εt� � � � � εt−m0+1 involved in
generating the regressor xt , the variation of ut when xt ∼ x is still measured by
Eu2

m0
in the limit theory. If Assumption 2 is relaxed to allow for some explicit

nonstationarity in the conditional variance of ut , then this may impact the limit
theory. The manner in which the limit theory is affected depends on the form of
the conditional variance function. For instance, suppose the equilibrium error
is u′

t = g(xt)ut , where ut satisfies Assumption 2 and is independent of xt , and
where g is a positive continuous function (e.g., g(x) = 1/(1 + |x|α) for some
α > 0). In this case under some additional regularity conditions, modifications
to the arguments given in Proposition 7.2 show that the variance of the limit
distribution is now given by σ2(x) = E(u2

m0
)g(x)2

∫ ∞
−∞K

2(s)ds/
∫ ∞

−∞K(x)dx�
The limiting variance of the kernel estimator is then simply a scalar multiple
of the variance of the equilibrium error, where the scalar depends on g(x).

REMARK F: Theorem 3.1 gives a pointwise result at the value x, while the
process xt itself is recurrent and wanders over the whole real line. For fixed
points x �= x′, the kernel cross-product

1√
nh

n∑
t=1

K

(
xt − x
h

)
K

(
xt − x′

h

)
= op(1) for x �= x′�(3.13)

To show (3.13), note that if xt/
√
t has a bounded density ht(y), as in WP, we

have

E

[
K

(
xt − x
h

)
K

(
xt − x′

h

)]

=
∫ [

K

(√
ty − x
h

)
K

(√
ty − x′

h

)]
ht(y)dy

= ht−1/2

∫
K(y)K

[
y + x− x′

h

]
ht

[
yh+ x√

t

]
dy
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∼ ht−1/2ht(0)
∫
K(y)K

[
y + x− x′

h

]
dy

= o(ht−1/2
)

whenever x �= x′, h→ 0, and t → ∞. Then

1√
nh

n∑
t=1

K

(
xt − x
h

)
K

(
xt − x′

h

)
= op

(
1√
n

n∑
t=1

1
t1/2

)
= op(1)�

This result and Theorem 2.1 of WP give

1√
nh

n∑
t=1

⎡
⎢⎢⎣

K

(
xt − x
h

)2

K

(
xt − x
h

)
K

(
xt − x′

h

)

K

(
xt − x
h

)
K

(
xt − x′

h

)
K

(
xt − x′

h

)2

⎤
⎥⎥⎦

⇒L(1�0)

⎡
⎢⎣
∫
K(s)2 ds 0

0
∫
K(s)2 ds

⎤
⎥⎦ �

Following the same line of argument as in the proof of Theorem 3.2 of WP, it
follows that in the special case where ut is a martingale difference sequence
independent of xt , the regression ordinates (f̂ (x)� f̂ (x′)) have a mixed normal
limit distribution with diagonal covariance matrix. The ordinates are then as-
ymptotically conditionally independent given the local time L(1�0)� Extension
of this theory to the general case where ut and xt are dependent involves more
complex limit theory and is left for later work.

REMARK G: The error variance term Eu2
m0

in the limit distribution (3.2)
may be estimated by a localized version of the usual residual based method.
Indeed, by letting

σ̂2
n =

n∑
t=1

[yt − f̂ (x)]2Kh(xt − x)
n∑
t=1

Kh(xt − x)
�(3.14)

we have the following theorem under minor additional conditions.
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THEOREM 3.2: In addition to Assumptions 1–4,Eu8
m0
<∞ and

∫ ∞
−∞K(s)f

2
1 (s�

x)ds <∞ for given x. Then, for any h satisfying nh2 → ∞ and h→ 0,

σ̂2
n →p Eu

2
m0
�(3.15)

Furthermore, for any h satisfying nh2 → ∞ and nh2(1+γ) → 0,

(nh2)1/4
(
σ̂2
n −Eu2

m0

)→D σ1NL
−1/2(1�0)�(3.16)

where N and L(1�0) are defined as in (3.8) and

σ2
1 =E(u2

m0
−Eu2

m0

)2
∫ ∞

−∞
K2(s)ds

/∫ ∞

−∞
K(x)dx�

While the estimator σ̂2
n is constructed from the regression residuals yt− f̂ (x),

it is also localized at x because of the action of the kernel function Kh(xt − x)
in (3.14). Note, however, that in the present case the limit theory for σ̂2

n is not
localized at x. In particular, the limit of σ̂2

n is the unconditional variance Eu2
m0

,
not a conditional variance, and the limit distribution of σ̂2

n given in (3.16) de-
pends only on the local time L(1�0) of the limit process at the origin, not on
the precise value of x. The explanation is that conditioning on the neighbor-
hood xt ∼ x is equivalent to xt/

√
n ∼ x/

√
n or xt/

√
n ∼ 0, which translates

into the local time of the limit process of xt at the origin irrespective of the
given value of x. For the same reason, as discussed in Remark E above, the
limit distribution of the kernel regression estimator given in (3.2) depends on
the variance Eu2

m0
. However, as discussed in Remark E, in the more general

context where there is nonstationary conditional heterogeneity, the limit of σ̂2
n

may be correspondingly affected. For instance, in the case considered there
where u′

t = g(xt)ut , ut satisfies Assumption 2, and g is a positive continuous
function, we find that σ̂2

n →p Eu
2
m0
g(x)2.

REMARK H: In parametric cointegrating regression, techniques such as FM
regression (Phillips and Hansen (1990)) have been developed to eliminate
the second order bias effects in the limit theory that arise from endogeneity,
thereby improving upon simple least squares regression. These techniques typ-
ically augment the regression equation to address the effects of endogeneity by
adjusting for the (long run) conditional mean. Interestingly, there is no need to
augment the regression equation in this way to achieve bias reduction in non-
parametric cointegrating regression. To illustrate, we take the case where the
regressor follows the simple model xt = xt−1 + εt and E(ut | εt)= λεt .

The augmented regression equation is, say,

yt = f (xt)+E(ut|εt)+ (ut −E(ut |εt))= f (xt)+ λ�xt + uy�ε�t�(3.17)
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which is the nonparametric analogue of the augmented regression used in lin-
ear cointegration models. From observations on �xt and the residuals ût =
yt − f̂ (xt)� where f̂ is defined by (2.2), the first stage nonparametric estimate
of f in model (2.1), the least squares estimate of λ is given by

λ̂=

n∑
t=1

[yt − f̂ (xt)]�xt
n∑
t=1

�x2
t

�

Using λ̂ in place of λ in (3.17) and conventional kernel regression to estimate
f in this equation, we have the following nonparametric augmented regression
estimate of f

f̂a(x)=

n∑
t=1

(yt − λ̂�xt)Kh(xt − x)
n∑
t=1

Kh(xt − x)
�(3.18)

We now show that the limit distribution of f̂a(x) is the same as that of f̂ (x) ex-
cept for a scale variance effect that arises from the adjusted error term uy�ε�t in
(3.17). Hence, there is no bias reduction in the use of the augmented regression
equation (3.17), unlike linear parametric cointegration.

Indeed we have the following theorem.

THEOREM 3.3: In addition to Assumptions 1–4, assume E(u2
m0
ε2
m0
) < ∞,

K(x) has a compact support, and f (x) satisfies |f (x)− f (y)| ≤ C|x− y| when-
ever x− y is sufficiently small. Then, for any h satisfying nh2 → ∞ and h→ 0,

λ̂→p λ�(3.19)

Furthermore, for any h satisfying hn1/2+δ0 → ∞ and nh6 → 0, where 0< δ0 < 1,

(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂a(x)− f (x))→D N(0�σ2
a)�(3.20)

where σ2
a =E(u2

y�ε�m0
)
∫ ∞

−∞K
2(s)ds/

∫ ∞
−∞K(x)dx.

Thus, the effect of estimating the augmented regression equation in (3.17)
is to deliver a scale variance reduction that corresponds to E(u2

y�ε�t)≤E(u2
t ) in
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the limit theory for the estimator f̂a(x). The variance reduction results from
the inclusion of the stationary regressor �xt in (3.17). There is no bias reduc-
tion, unlike the case of linear parametric cointegration. The same result and
the same limit theory apply for the infeasible kernel estimate

f̃a(x)=

n∑
t=1

(yt − λ�xt)K[(xt − x)/h]
n∑
t=1

K[(xt − x)/h]
�(3.21)

where λ is assumed known.

4. SIMULATIONS

This section reports the results of a simulation experiment investigating the
finite sample performance of the kernel regression estimator. The generating
mechanism follows (2.1) and has the explicit form

yt = f (xt)+ σut� �xt = εt�
ut = (λt + θεt)/(1 + θ2)1/2�

where (εt�λt) are i.i.d. N(0� I2) and x0 = 0. The following two regression func-
tions were used in the simulations:

fA(x)=
∞∑
j=1

(−1)j+1 sin(jπx)
j2

� fB(x)= x3�

The first function corresponds (up to a scale factor) to the function used in
Hall and Horowitz (2005) and is truncated at j = 4 for computation. Figures 1
and 2 graph these functions (the solid lines) and the mean simulated kernel
estimates (broken lines) over the intervals [0�1] and [−1�1] for kernel esti-
mates of fA and fB� respectively. Bias, variance, and mean squared error for the
estimates were computed on the grid of values {x = 0�01k;k = 0�1� � � � �100}
for [0�1] and {x = −1 + 0�02k;k = 0�1� � � � �100} for [−1�1] based on 20,000
replications. Simulations were performed for θ = 0�2 (weak endogeneity,
corr(ut� εt) = 0�2) and θ = 2�0 (strong endogeneity, corr(ut� εt) = 0�9) for
σ = 0�2 and for the sample size n = 500. An Epanechnikov kernel was used
with bandwidths h= n−10/18� n−1/2� n−1/3� n−1/5.

Table I shows the performance of the regression estimates f̂ , f̂a, and f̃a com-
puted for various bandwidths, two of which (n−1/3� n−1/5) satisfy and two of
which (n−10/18� n−1/2) violate the condition nh2 → ∞ of Theorem 3.1, thereby
showing the effects of bandwidth on estimation. While smaller bandwidths may
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FIGURE 1.—Graphs over the interval [0�1] of fA(x) and Monte Carlo estimates of E(f̂A(x))
for h= n−1/2 (short dashes), h= n−1/3 (dotted), and h= n−1/5 (long dashes) with θ= 2, σ = 0�2,
and n= 500.

reduce bias, when h → 0 so fast that nh2 �→ ∞� the “signal”
∑n

k=1K[(xk −
x)/h] no longer diverges and the estimate f̂ is inconsistent (see (3.8)). Also,
since xt is recurrent and wanders over the real line, some simulations are in-
evitably thin in subsets of the chosen domains (as in the simulation design

FIGURE 2.—Graphs over the interval [0�1] of estimation bands for fA(x) (solid line), the
Monte Carlo estimate of E(fA(x)) for h= n1/3 (short dashes), and 95% estimation bands (dot-
ted) with θ= 2, σ = 0�2, and n= 500.
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TABLE I

SUMMARY COMPARISONS (AVERAGED OVER THE GRIDS DESCRIBED IN THE TEXT) OF LOCAL
LEVEL, FEASIBLE AUGMENTED, AND INFEASIBLE AUGMENTED NONPARAMETRIC ESTIMATES

f̂ (x) f̃a(x) f̂a(x)

θ h Bias Std MSE Bias Std MSE Bias Std MSE

Model A: fA(x)=∑4
j=1

(−1)j+1 sin(jπx)
j2

2 n−10/18 −0�005 0.129 0.017 0�000 0.064 0.004 −0�001 0.069 0.005
n−1/2 0�000 0.126 0.016 0�001 0.063 0.004 0�001 0.070 0.005
n−1/3 0�011 0.122 0.016 0�015 0.076 0.008 0�014 0.083 0.009
n−1/5 0�067 0.141 0.032 0�073 0.114 0.027 0�071 0.117 0.027

0.2 n−10/18 −0�001 0.135 0.018 −0�000 0.133 0.018 −0�000 0.133 0.018
n−1/2 0�001 0.128 0.017 0�001 0.126 0.016 0�002 0.126 0.016
n−1/3 0�015 0.122 0.016 0�016 0.120 0.015 0�016 0.121 0.016
n−1/5 0�072 0.141 0.033 0�073 0.139 0.033 0�072 0.140 0.033

Model B: fB(x)= x3

2 n−10/18 0�000 0.125 0.164 0�000 0.058 0.004 −0�003 0.153 0.028
n−1/2 0�001 0.119 0.015 0�000 0.056 0.003 −0�000 0.171 0.030
n−1/3 0�000 0.104 0.011 0�000 0.055 0.003 −0�001 0.371 0.138
n−1/5 0�000 0.105 0.011 0�004 0.069 0.007 −0�002 0.491 0.244

0.2 n−10/18 0�001 0.127 0.017 0�001 0.124 0.016 −0�002 0.188 0.039
n−1/2 −0�001 0.121 0.015 −0�001 0.119 0.014 −0�002 0.203 0.042
n−1/3 0�000 0.104 0.011 0�000 0.102 0.010 −0�001 0.381 0.146
n−1/5 0�001 0.102 0.012 0�000 0.102 0.012 −0�002 0.497 0.249

here) and this inevitably affects performance due to the small “local” sample
size.

The results in Table I show that in both models the degree of endogeneity
(θ) in the regressor has a negligible effect on the properties of the kernel re-
gression estimate f̂ , although estimation bias does increase in Model A when
the bandwidth is h= n−1/5� which is the conventional rate for stationary series.
For both models, finite sample performance of f̂ in terms of mean squared
error (MSE) seems to be optimized for h around n−1/3.

Table I also enables a comparison between the local level estimate f̂ and
the feasible and infeasible augmented regression estimates f̂a(x) and f̃a(x)�
The infeasible estimate has uniformly smaller variance than f̂ (x), as may
be expected from asymptotic theory, and it also has smaller variance than
f̂a(x), resulting from the finite sample effects of estimating λ in the latter.
For Model A and the case of strong endogeneity, the variance of the fea-
sible estimate f̂a(x) is considerably smaller than that of f̂ (x), so the feasi-
ble procedure has a clear advantage in this case. But these gains do not ap-
pear under weak endogeneity or under either weak or strong endogeneity for
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Model B. The variance of the feasible estimate f̂a(x) is, in fact, much larger
than that of f̂ (x) for Model B. Both f̂a(x) and f̃a(x) display negligible bias,
just as f̂ (x)� but there is no apparent gain in terms of bias reduction from
the use of the augmented regression estimates, including the infeasible es-
timate. These results indicate that feasible nonparametric estimation of the
augmented regression equation (3.17), leading to f̂a(x), does not dominate
the simple nonparametric regression estimate f̂ (x) in terms of bias. Neither
does f̂a(x) always dominate f̂ (x) in terms of variance in finite samples, even
though asymptotic theory suggests an improvement and the equation error in
(3.17) has smaller variance than that of (2.1). This outcome contrasts with
linear parametric cointegrating regression, where it is generally beneficial—
and near universal empirical practice—to fit the augmented regression equa-
tion.

Figures 1 and 2 show results for the Monte Carlo approximations to
E(f̂A(x)) and E(f̂B(x)) corresponding to bandwidths h= n−1/2 (broken line),
h= n−1/3 (dotted line), and h= n−1/5 (dashed and dotted line) for θ= 2� Fig-
ures 3 and 4 show the Monte Carlo approximations to E(f̂A(x)) and E(f̂B(x))
together with a 95% pointwise “estimation band.” As in Hall and Horowitz
(2005), these bands connect points f (xj ± δj), where each δj is chosen so
that the interval [f (xj) − δj� f (xj) + δj] contains 95% of the 10,000 simu-
lated values of f̂ (xj) for Models A and B, respectively. Apparently, the bands
can be wide, reflecting the slower rate of convergence of the kernel esti-
mate f̂ (x) in the nonstationary case. In particular, since xt spends only

√
n

of its time in the neighborhood of any specific point, the effective sample

FIGURE 3.—Graphs of fB(x) and Monte Carlo estimates of E(f̂B(x)) for h = n−1/2 (short
dashes), h= n−1/3 (dotted), and h= n−1/5 (long dashes) with 6 = 2, σ = 0�2, and n= 500.
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FIGURE 4.—Graphs of estimation bands for fB(x) (solid line), the Monte Carlo estimate of
E(f̂B(x)) for h = n−1/3 (short dashes), and 95% estimation bands (dotted) with 6 = 2, σ = 0�2,
and n= 500.

size for pointwise estimation purposes is
√

500 ∼ 22� When h = n−1/3� it fol-
lows from Theorem 3.1 that the convergence rate is (nh2)1/4 = n1/12� which
is much slower than the rate (nh)1/2 = n2/5 for conventional kernel regres-
sion.

Using Theorems 3.1 and 3.2, an asymptotic 100(1 − α)% level confidence
interval for f (x) is given by

f̂ (x)± zα/2
(

σ̂2
nμK2/μK

n∑
t=1

K

(
xt − x
h

)
)1/2

�

where μK2 = ∫ ∞
−∞K

2(s)ds� μK = ∫ ∞
−∞K(s)ds� and zα/2 = �−1(1 − α/2) using

the standard normal cumulative distribution function (c.d.f.)�. Figures 5 and 6
show the empirical coverage probabilities of these pointwise asymptotic confi-
dence intervals for fA and fB over 100 equispaced points on the domains [0�1]
and [−1�1], using an Epanechnikov kernel, various bandwidths as shown, and
setting α= 0�05 and n= 500� For both functions, the coverage rates are more
uniform over the respective domains for the smaller bandwidth choices, but
the undercoverage also increases as the bandwidth gets smaller. For both fA
and fB there is evidence of substantial undercoverage with around 60% cover-
age over most of the domain when h= n−1/3 and around 70% coverage when
h = n−1/4. Coverage is higher (around 80%) when h = n−1/5, but for function
fA dips to below 60% in the region (around x∼ 0�7) where the nonparametric
estimator is most biased for larger bandwidths (see Figure 1).
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FIGURE 5.—Coverage probabilities of (nominal 95%) confidence intervals for fA(x) over [0�1]
for different bandwidths.

5. CONCLUSION

The main results in the paper have many implications. First, there is no
inverse problem in structural models of nonlinear cointegration of the form
(2.1), where the regressor is an endogenously generated integrated or near-
integrated process. This result reveals a major simplification in structural non-
parametric regression in cointegrating models, avoiding the need for instru-
mentation and eliminating ill-posed functional equation inversions. Second,

FIGURE 6.—Coverage probabilities of (nominal 95%) confidence intervals for fB(x) over [0�1]
for different bandwidths.
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functional estimation of (2.1) is straightforward in practice and may be accom-
plished by standard kernel methods with no modification. These methods yield
consistent estimates that have a mixed normal limit distribution, thereby vali-
dating conventional methods of inference in the nonstationary nonparametric
setting. Third, the methods are applicable without change when the regressor
is near-integrated with a root local to unity rather than unity, providing a major
departure from the parametric case where near integration presents substan-
tial difficulties in inference.

The results open up interesting possibilities for functional regression in em-
pirical research with integrated and near-integrated processes. There are some
possible extensions of the ideas presented here to other models involving non-
linear functions of integrated processes. In particular, additive nonlinear coin-
tegration models (cf. Schienle (2008)) and partial linear cointegration mod-
els may be treated in a similar way to (2.1). But multiple nonadditive regres-
sion models do present difficulties arising from the nonrecurrence of the limit
processes in high dimensions (cf. Park and Phillips (2001)). There are issues of
specification testing, functional form tests, and cointegration tests, which may
now be addressed using these methods. Also, the simulations reported here
indicate that there is a need to improve confidence interval coverage probabil-
ities in the use of these nonparametric methods. We hope to report progress
on some of these issues in later work.

6. PROOF OF THEOREM 3.1

As shown in Remark B, the proof of the theorem essentially amounts to
proving (3.5)–(3.8). To do so, we will make use of various subsidiary results
which are proved here and in the next section.

First, it is convenient to introduce the following definitions and notation. If
α(1)n , α(2)n � � � � �α

(k)
n (1 ≤ n≤ ∞) are random elements of D[0�1], we will under-

stand the condition(
α(1)n �α

(2)
n � � � � �α

(k)
n

)→D

(
α(1)∞ �α

(2)
∞ � � � � �α

(k)
∞
)

to mean that for all α(1)∞ , α(2)∞ � � � � �α
(k)
∞ continuity sets A1, A2� � � � �Ak,

P
(
α(1)n ∈A1�α

(2)
n ∈A1� � � � �α

(k)
n ∈Ak

)
→ P

(
α(1)∞ ∈A1�α

(2)
∞ ∈A2� � � � �α

(k)
∞ ∈Ak

)
(see Billingsley (1968, Theorem 3.1) or Hall (1977)). D[0�1]k will be used to
denoteD[0�1]× · · ·×D[0�1], the k-times coordinate product space ofD[0�1].
We still use ⇒ to denote weak convergence on D[0�1].

To prove (3.8), we use the following lemma.

LEMMA 6.1: Suppose that {Ft}t≥0 is an increasing sequence of σ-fields, q(t)
is a process that is Ft-measurable for each t and continuous with probability 1,
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Eq2(t) <∞, and q(0) = 0. Let ψ(t)� t ≥ 0� be a process that is nondecreasing
and continuous with probability 1, and satisfies ψ(0) = 0 and Eψ2(t) <∞. Let
ξ be a random variable which is Ft-measurable for each t ≥ 0. If, for any γj ≥
0� j = 1�2� � � � � r, and any 0 ≤ s < t ≤ t0 < t1 < · · ·< tr <∞,

E

(
exp

(
−

r∑
j=1

γj[ψ(tj)−ψ(tj−1)]
)

[q(t)− q(s)]
∣∣∣ Fs

)
= 0 a�s��

E

(
exp

(
−

r∑
j=1

γj[ψ(tj)−ψ(tj−1)]
)

× {[q(t)− q(s)]2 − [ψ(t)−ψ(s)]} ∣∣∣ Fs

)
= 0 a�s��

then the finite-dimensional distributions of the process (q(t)� ξ)t≥0 coincide with
those of the process (W [ψ(t)]� ξ)t≥0, where W (s) is a standard Brownian motion
with EW 2(s)= s independent of ψ(t).

PROOF: This lemma is an extension of Theorem 3.1 of Borodin and Ibragi-
mov (1995, p. 14) and the proof follows the same lines as in their work. Indeed,
by using the fact that ξ is Ft-measurable for each t ≥ 0, it follows from the
same arguments as in the proof of Theorem 3.1 of Borodin and Ibragimov
(1995) that, for any t0 < t1� � � � � tr <∞, αj ∈R and s ∈R,

E exp

(
i

r∑
j=1

αj[q(tj)− q(tj−1)] + isξ
)

=E
[

exp

(
i

r−1∑
j=1

αj[q(tj)− q(tj−1)] + isξ
)

×E(exp
(
iαr[q(tr)− q(tr−1)]

) | Ftr−1

)]

=E
[

exp
(

−α
2
r

2
[ψ(tr)−ψ(tr−1)]

)

× exp

(
i

r−1∑
j=1

αj[q(tj)− q(tj−1)] + isξ
)]

= · · · = E exp

(
−α

2
r

2

r∑
j=1

[ψ(tj)−ψ(tj−1)] + isξ
)
�
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which yields the stated result. Q.E.D.

By virtue of Lemma 6.1, we now obtain the proof of (3.8). Technical details of
some subsidiary results that are used in this proof are given in the next section.
Set

ζn(t)= 1√
n

[nt]∑
k=1

εk� ψ′
n(t)= 1

d1

√
nh2

[nt]∑
k=1

K

[
xk − x
h

]
�

Sn(t)= 1
d0(nh2)1/4

[nt]∑
k=1

ukK

[
xk − x
h

]
�

ψn(t)= 1

d2
0

√
nh2

[nt]∑
k=1

u2
kK

2

[
xk − x
h

]

for 0 ≤ t ≤ 1, where d0 and d1 are defined as in (3.8).
We will prove in Propositions 7.1 and 7.2 that ζn(t)⇒W (t), ψ′

n(t)⇒ ψ(t),
and ψn(t) ⇒ ψ(t) on D[0�1], where ψ(t) := L(t�0). Furthermore we will
prove in Proposition 7.4 that {Sn(t)}n≥1 is tight on D[0�1]. These facts imply
that

{Sn(t)�ψn(t)�ψ′
n(t)� ζn(t)}n≥1

is tight on D[0�1]4. Hence, for each {n′} ⊆ {n}, there exists a subsequence
{n′′} ⊆ {n′} such that

{Sn′′(t)�ψn′′(t)�ψ′
n′′(t)� ζn′′(t)} →d {η(t)�ψ(t)�ψ(t)�W (t)}(6.1)

on D[0�1]4, where η(t) is a process continuous with probability 1 by noting
(7.26) below. Write Fs = σ{W (t)�0 ≤ t ≤ 1;η(t)�0 ≤ t ≤ s}. It is readily seen
that Fs↑ and η(s) is Fs-measurable for each 0 ≤ s ≤ 1. Also note that ψ(t) (for
any fixed t ∈ [0�1]) is Fs-measurable for each 0 ≤ s ≤ 1. If we prove that for
any 0 ≤ s < t ≤ 1,

E
([η(t)−η(s)] | Fs

)= 0 a.s.�(6.2)

E
({[η(t)−η(s)]2 − [ψ(t)−ψ(s)]} | Fs

)= 0 a.s.�(6.3)

then it follows from Lemma 6.1 that the finite-dimensional distributions of
(η(t)�ψ(1)) coincide with those of {NL1/2(t�0)�L(1�0)}, where N is normal
variate independent of L(t�0). The result (3.8) therefore follows, since η(t)
does not depend on the choice of the subsequence.
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Let 0 ≤ t0 < t2 < · · ·< tr = 1, let r be an arbitrary integer, and let G(· · ·) be
an arbitrary bounded measurable function. To prove (6.2) and (6.3), it suffices
to show that

E[η(tj)−η(tj−1)]G[η(t0)� � � � �η(tj−1);W (t0)� � � � �W (tr)] = 0�(6.4)

E
{[η(tj)−η(tj−1)]2 − [ψ(tj)−ψ(tj−1)]

}
(6.5)

×G[η(t0)� � � � �η(tj−1);W (t0)� � � � �W (tr)] = 0�

Recall (6.1). Without loss of generality, we assume the sequence {n′′} is just
{n} itself. Since Sn(t)� S2

n(t), and ψn(t), for each 0 ≤ t ≤ 1 are uniformly inte-
grable (see Proposition 7.3), the statements (6.4) and (6.5) will follow if we
prove

E[Sn(tj)− Sn(tj−1)]G[· · ·] → 0�(6.6)

E
{[Sn(tj)− Sn(tj−1)]2 − [ψn(tj)−ψn(tj−1)]

}
G[· · ·] → 0�(6.7)

whereG[· · ·] =G[Sn(t0)� � � � � Sn(tj−1);ζn(t0)� � � � � ζn(tr)] (see, e.g., Theorem 5.4
of Billingsley (1968)). Furthermore, by using similar arguments to those in
the proofs of Lemmas 5.4 and 5.5 in Borodin and Ibragimov (1995), we may
choose

G(y0� y1� � � � � yj−1;z0� z1� � � � � zr)= exp

{
i

(
j−1∑
k=0

λkyk +
r∑
k=0

μkzk

)}
�

Therefore, by independence of εk, we only need to show that

E

{ [ntj ]∑
k=[ntj−1]+1

ukK[(xk − x)/h]exp
(
iμ∗

j [ζn(tj)− ζn(tj−1)] + iχ(tj−1)
)}

(6.8)

= o[(nh2)1/4
]
�

E

{[ [ntj ]∑
k=[ntj−1]+1

ukK[(xk − x)/h]
]2

−
[ntj ]∑

k=[ntj−1]+1

u2
kK

2[(xk − x)/h]
}

(6.9)

× exp
(
iμ∗

j [ζn(tj)− ζn(tj−1)] + iχ(tj−1)
)

= o[(nh2)1/2
]
�

where χ(s) = χ(x1� � � � � xs�u1� � � � � us), a functional of x1� � � � � xs�u1� � � � � us,
and μ∗

j =∑r

k=j μk.
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Note that χ(s) depends only on (� � � � εs−1� εs) and λ1� � � � � λs, and we may
write

xt =
t∑
j=1

ρt−jηj =
t∑
j=1

ρt−j
j∑

i=−∞
εiφj−i(6.10)

= ρt−sxs +
t∑

j=s+1

ρt−j
s∑

i=−∞
εiφj−i +

t∑
j=s+1

ρt−j
j∑

i=s+1

εiφj−i

:= x∗
s�t + x′

s�t�

where x∗
s�t depends only on (� � � � εs−1� εs) and

x′
s�t =

t−s∑
j=1

ρt−j−s
j∑
i=1

εi+sφj−i =
t∑

i=s+1

εi

t−i∑
j=0

ρt−j−iφj�

Now, by independence of εk again and conditioning arguments, it suffices to
show that, for any μ,

sup
y�0≤s<m≤n

E

{
m∑

k=s+1

ukK[(y + x′
s�k)/h]exp

(
iμ

m∑
i=1

εi/
√
n

)}
(6.11)

= o[(nh2)1/4
]
�

sup
y�0≤s<m≤n

E

({
m∑

k=s+1

ukK[(y + x′
s�k)/h]

}2

−
m∑

k=s+1

u2
kK

2[(y + x′
s�k)/h]

)
(6.12)

× exp

(
iμ

m∑
i=1

εi/
√
n

)

= o[(nh2)1/2
]
�

This follows from Proposition 7.5. The proof of (3.8) is now complete.
We next prove (3.5)–(3.7). In fact, it follows from Proposition 7.3 that, uni-

formly in n, EΘ2
1n/(nh

2)1/2 = d2
0ES

2
n(1) ≤ C. This yields (3.5) by the Markov’s

inequality. It follows from Claim 1 in the proof of Proposition 7.2 that xt/
√
nφ

satisfies Assumption 2.3 of WP. The same argument as in the proof of (5.18)
in WP yields (3.6). As for (3.7), it follows from Proposition 7.2, together
with the fact that P(L(t�0) > 0) = 1. The proof of Theorem 3.1 is now
complete. Q.E.D.
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7. SOME USEFUL SUBSIDIARY PROPOSITIONS

In this section we will prove the following propositions required in the proof
of Theorem 3.1. Notation will be the same as in the previous section except
when explicitly mentioned.

PROPOSITION 7.1: We have

ζn(t)⇒W (t) and(7.1)

ζ ′
n(t) := 1√

nφ

[nt]∑
k=1

ρ[nt]−kηk ⇒ Jκ(t) on D[0�1]�

where {W (t)� t ≥ 0} is a standard Brownian motion and Jκ(t) is defined as
in (3.9).

PROOF: The first statement of (7.1) is well known. So that to ζ ′
n(t)⇒ Jκ(t),

for each fixed l ≥ 1, put

Z(l)
1j =

l∑
k=0

φkεj−k and Z(l)
2j =

∞∑
k=l+1

φkεj−k�

It is readily seen that for any m≥ 1,

m∑
j=1

ρm−jZ(l)
1j =

m∑
j=1

ρm−j
l∑

k=0

φkεj−k

=
l∑

k=0

ρ−kφk
m∑
j=1

ρm−jεj +
l∑
s=1

ρm+s−1ε1−s
l∑
j=s
ρ−jφj

+
l−1∑
s=0

ρjεm−s
l∑

j=s+1

ρ−jφj

=
l∑

k=0

ρ−kφk
m∑
j=1

ρm−jεj +R(m� l)� say�

Therefore, for fixed l ≥ 1,

ζ ′
n(t)=

(
1
φ

l∑
k=0

ρ−kφk

)
1√
n

[nt]∑
j=1

ρ[nt]−jεj + 1√
nφ
R([nt]� l)(7.2)

+ 1√
nφ

[nt]∑
j=1

ρ[nt]−jZ(l)
2j �
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Note that 1√
n

∑[nt]
j=1 ρ

[nt]−jεj ⇒ Jκ(t) (see Chan and Wei (1987) and Phillips

(1987)) and
∑l

k=0 ρ
−kφk → φ as n → ∞ first and then l → ∞. By virtue of

Theorem 4.1 of Billingsley (1968, p. 25), to prove ζ ′
n(t)⇒ Jκ(t), it suffices to

show that for any δ > 0,

lim sup
n→∞

P
{

sup
0≤t≤1

∣∣R([nt]� l)∣∣≥ δ√n}= 0(7.3)

for fixed l ≥ 1 and

lim
l→∞

lim sup
n→∞

P

{
sup
0≤t≤1

∣∣∣∣∣
[nt]∑
j=1

Z(l)
2j

∣∣∣∣∣≥ δ√n
}

= 0�(7.4)

Recall limn→∞ ρn = eκ, which yields e−|κ|/2 ≤ ρk ≤ 2e|κ| for all −n≤ k≤ n and
n sufficiently large. The result (7.3) holds since

∑∞
k=0 |φk| <∞, and hence as

n→ ∞,

1√
n

sup
0≤t≤1

∣∣R([nt]� l)∣∣≤ 1√
n

max
−l≤j≤n

|εj|
l∑
s=0

(
l∑
j=s

|φj| +
l∑

j=s+1

|φj|
)

P−→ 0�

We next prove (7.4). Noting

m∑
j=1

ρm−jZ(l)
2j =

∞∑
k=l+1

φk

m∑
j=1

ρm−jεj−k for any m≥ 1�

by applying the Hölder inequality and the independence of εk, we have

E sup
0≤t≤1

(
kn(t)∑
j=1

Z(l)
2j

)2

≤
∞∑

k=l+1

|φk|
∞∑

k=l+1

|φk|E max
1≤m≤n

(
m∑
j=1

ρm−jεj−k

)2

≤ Cn
( ∞∑
k=l+1

|φk|
)2

�

Result (7.4) now follows immediately from the Markov inequality and∑∞
k=l+1 |φk| → 0 as l→ ∞. The proof of Proposition 7.1 is complete. Q.E.D.

PROPOSITION 7.2: For any h satisfying h→ 0 and nh2 → ∞, we have

1√
nh2

[nt]∑
k=1

Ki

[
xk − x
h

]
⇒ diL(t�0)(7.5) (i= 1�2)�

1√
nh2

[nt]∑
k=1

K2

[
xk − x
h

]
u2
k ⇒ d2

0L(t�0)(7.6)
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onD[0�1], where di = |φ|−1
∫ ∞

−∞K
i(s)ds� i= 1�2, d2

0 = |φ|−1Eu2
m0

∫ ∞
−∞K

2(s)ds,
and L(t� s) is the local time process of the Gaussian diffusion process {Jκ(t)� t ≥
0} defined by (3.9), in which {W (t)� t ≥ 0} is a standard Brownian motion.

PROPOSITION 7.3: For any fixed 0 ≤ t ≤ 1, Sn(t), S2
n(t), and ψn(t), n≥ 1, are

uniformly integrable.

PROPOSITION 7.4: {Sn(t)}n≥1 is tight on D[0�1].

PROPOSITION 7.5: Results (6.11) and (6.12) hold true for any u ∈R.

To prove Propositions 7.2–7.5, we need some preliminaries.
Let r(x) and r1(x) be bounded functions such that

∫ ∞
−∞(|r(x)|+ |r1(x)|)dx <

∞. We first calculate the values of I(s)k�l and II(s)k defined by

I(s)k�l =E
[
r(x′

s�k/h)r1(x
′
s�l/h)g(uk)g1(ul)exp

{
iμ

l∑
j=1

εj/
√
n

}]
�(7.7)

II(s)k =E
[
r(x′

s�k/h)g(uk)exp

{
iμ

k∑
j=1

εj/
√
n

}]
�

under different settings of g(x) and g1(x), where x′
s�k is defined as in (6.10). We

have the following lemmas, which will play a core rule in the proof of the main
results. We always assume k< l and let C denote a constant not dependent on
k, l, and n, which may be different from line to line.

LEMMA 7.1: Suppose
∫ |r̂(λ)|dλ <∞, where r̂(t)= ∫

eitxr(x)dx.
(a) If E|g(uk)|<∞, then, for all k≥ s+ 1,

∣∣II(s)k
∣∣≤ Ch/√k− s�(7.8)

(b) If Eg(uk)= 0 and Eg2(uk) <∞, then, for all k≥ s+ 1,∣∣II(s)k
∣∣≤ C[(k− s)−2 + h/(k− s)]�(7.9)

LEMMA 7.2: Suppose that
∫ |r̂(λ)|dλ < ∞ and

∫ |r̂1(λ)|dλ < ∞, where
r̂(t)= ∫

eitxr(x)dx and r̂1(t)= ∫
eitxr1(x)dx. Suppose thatEg(ul)=Eg1(uk)=

0 and Eg2(um0)+Eg2
1(um0) <∞� Then, for any ε > 0, there exists an n0 > 0 such

that, for all n≥ n0, all l− k≥ 1, and all k≥ s+ 1,

∣∣I(s)k�l∣∣≤ C[ε(l− k)−2 + h(l− k)−1][(k− s)−2 + h/
√
k− s]�(7.10)
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We only prove Lemma 7.2 with s = 0. The proofs of Lemmas 7.1 and 7.2 with
s �= 0 are the same and hence the details are omitted.

PROOF OF LEMMA 7.2: Write x′′
k = x′

0�k and Ik�l = I(0)k�l . As
∫
(|r̂(t)| +

|r̂1(t)|)dt <∞, we have r(x) = 1
2π

∫
e−ixt r̂(t) dt and r1(x) = 1

2π

∫
e−ixt r̂1(t)dt.

This yields that

Ik�l = E

[
r(x′′

k/h)r1(x
′′
l /h)g(uk)g1(ul)exp

{
iμ

l∑
j=1

εj/
√
n

}]

=
∫ ∫

E

{
exp(−itx′′

k/h)exp(iλx′′
l /h)g(uk)g1(ul)

× exp

(
iμ

l∑
j=1

εj/
√
n

)}
r̂(t)r̂1(λ)dt dλ�

Define
∑l

j=k = 0 if l < k, and put ∇(k)=∑k

j=0 ρ
−jφj and as�q = ρl−q∇(s − q).

Since

x′′
l =

l∑
q=1

εq

l−q∑
j=0

ρl−q−jφj =
(

k∑
q=1

+
l−m0∑
q=k+1

+
l∑

q=l−m0+1

)
εqal�q�

it follows from independence of the εk’s that, for l− k≥m0 + 1,

|Ik�l| ≤
∫ ∣∣E{eiz(2)/h}∣∣∣∣E{eiz(3)/hg1(ul)

}∣∣|r̂1(λ)|(7.11)

×
(∫ ∣∣E{eiz(1)/hg(uk)}∣∣∣∣r̂(t)∣∣dt

)
dλ�

where

z(1) =
k∑
q=1

εq(λal�q − tak�q + uh/√n)�

z(2) =
l−m0∑
q=k+1

εq(λal�q + uh/√n)�

z(3) =
l∑

q=l−m0+1

εq(λal�q + uh/√n)�
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We may take n sufficiently large so that u/
√
n is as small as required. Without

loss of generality, we assume u = 0 in the following proof for convenience of
notation. We first show that, for all k sufficiently large,

Λ(λ�k) :=
∫ ∣∣E{eiz(1)/hg(uk)}∣∣|r̂(t)|dt ≤ C(k−2 + h/√k)�(7.12)

To estimate Λ(λ�k), we need some preliminaries. Recall ρ = 1 + κ/n. For
any given s, we have limn→∞ |∇(s)| = |∑s

j=0φj|. This fact implies that k0 can
be taken sufficiently large such that whenever n is sufficiently large,

∞∑
j=k0/2+1

|φj| ≤ e−|κ||φ|/4 ≤ e−|κ||∇(k0)|�(7.13)

and hence for all k0 ≤ s ≤ n and 1 ≤ q≤ s/2,

|as�q| ≥ 2−1e−|κ|
(

|∇(k0/2)| − 2e|κ|
∞∑

j=k0/2+1

|φj|
)

≥ e−|κ||φ|/4�(7.14)

where we have used the well known fact that limn→∞ ρn = eκ, which yields
e−|κ|/2 ≤ ρk ≤ 2e|κ| for all −n ≤ k ≤ n. Further write Ω1 (Ω2, respectively) for
the set of 1 ≤ q ≤ k/2 such that |λal�q − tak�q| ≥ h (|λal�q − tak�q|< h, respec-
tively), and

B1 =
∑
q∈Ω2

a2
k�q� B2 =

∑
q∈Ω2

al�qak�q� B3 =
∑
q∈Ω2

a2
l�q�

By virtue of (7.13), it is readily seen that B1 ≥ Ck whenever #(Ω1) ≤ √
k,

where #(A) denotes the number of elements inA. We are now ready to prove
(7.12). First notice that there exist constants γ1 > 0 and γ2 > 0 such that

|Eeiε1t | ≤
{
e−γ1� if |t| ≥ 1,
e−γ2t

2
� if |t| ≤ 1,

(7.15)

since Eε1 = 0, Eε2
1 = 1, and ε1 has a density; see, for example, Chapter 1 of

Petrov (1995). Also note that

∑
q∈Ω2

(λal�q − tak�q)2 = λ2B3 − 2λtB2 + t2B1

= B1(t − λB2/B1)
2 + λ2(B3 −B2

2/B1)

≥ B1(t − λB2/B1)
2�
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since B2
2 ≤ B1B3, by Hölder’s inequality. It follows from the independence of εt

that, for all k≥ k0,

∣∣EeiW (1)/h
∣∣ ≤ exp

{
−γ1#(Ω1)− γ2h

−2
∑
q∈Ω2

(λal�q − tak�q)2

}

≤ exp{−γ1#(Ω1)− γ2B1h
−2(t − λB2/B1)

2}�

where W (1) =∑k/2
q=1 εq(λal�q − tak�q). This, together with the facts z(1) =W (1) +∑k

q=k/2+1 εq(λal�q − tak�q) and k/2 ≤ k−m0 (which implies that W (1) is inde-
pendent of uk) yield that

Λ(λ�k) ≤
∫ ∣∣E{exp(iW (1)/h)

}∣∣E|g(uk)||r̂(t)|dt

≤ C
∫

#(Ω1)≥
√
k

exp(−γ1#(Ω1))|r̂(t)|dt

+C
∫

#(Ω1)≤
√
k

exp(−γ2B1h
−2(t − λB2/B1)

2)dt

≤ Ck−2

∫
|r̂(t)|dt +

∫
exp(−γ2B1h

−2t2)dt

≤ C(k−2 + h/√k)�
This proves (7.12) for k≥ k0.

We now turn back to the proof of (7.10). We will estimate Ik�l in three sepa-
rate settings:

l− k≥ 2k0 and k≥ k0�

l− k≤ 2k0 and k≥ k0�

l > k and k≤ k0�

where, without loss of generality, we assume k0 ≥ 2m0.

CASE I: l − k ≥ 2k0 and k ≥ k0. We first notice that, for any δ > 0, there
exist constants γ3 > 0 and γ4 > 0 such that, for all s ≥ k0 and q≤ s/2,

|E exp(iε1λas�q/h)| ≤
{
e−γ3� if |λ| ≥ δh,
e−γ4λ

2/h2
� if |λ| ≤ δh.

This fact follows from (7.14) and (7.15) with a simple calculation. Hence it
follows from the facts l−m0 ≥ (l+k)/2 and l−q≥ k0 for all k≤ q≤ (l+k)/2,
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since l− k≥ 2k0 and k0 ≥ 2m0, that

∣∣Eeiz(2)/h∣∣ ≤ (l+k)/2∏
q=k

|E exp(iεqλal�q/h)|(7.16)

≤
{

exp(−γ3(l− k))� if |λ| ≥ δh,
exp(−γ4(l− k)λ2/h2)� if |λ| ≤ δh.

On the other hand, since Eg1(ul)= 0, we have

∣∣E{eiz(3)/hg1(ul)
}∣∣= ∣∣E{(eiz(3)/h − 1

)
g1(ul)

}∣∣(7.17)

≤ h−1E
[∣∣z(3)∣∣|g1(ul)|

]
≤ C(Eε2

1)
1/2(Eg2

1(ul))
1/2|λ|h−1�

We also have

∣∣E{eiz(3)/hg1(ul)
}∣∣→ 0� whenever λh−1 → ∞�(7.18)

uniformly for all l ≥ m0. Indeed, supposing φ0 �= 0 (if φ0 = 0, we may use
φ1 and so on), we have E{exp(iz(3)/h)g1(ul)} = E{exp(iεlφ0λρ

n−l/h)g∗(εl)}�
where g∗(εl)=E[exp(i(z(3) − εlφ0λρ

n−l)/h)g1(ul) | εl]. By recalling that εl has
a density d(x), it is readily seen that

∫
sup
λ

|g∗(x)|d(x)dx≤E|g1(ul)|<∞

uniformly for all l. The result (7.18) follows from the Riemann–Lebesgue the-
orem.

By virtue of (7.18), for any ε > 0, there exists an n0 (A0 respectively) such
that, for all n≥ n0 (|λ|/h≥A0, respectively), |E{exp(iz(3)/h)g1(ul)}| ≤ ε. This,
together with (7.12) and (7.16) with δ=A0, yields that

I(2)k�l :=
∫

|λ|>A0h

∣∣E{eiz(2)/h}∣∣∣∣E{eiz(3)/hg1(ul)
}∣∣Λ(λ�k)|r̂1(λ)|dλ

≤ Cεe−γ3(l−k)(k−2 + h/√k)
∫

|λ|>A0h

|r̂1(λ)|dλ

≤ Cε(l− k)−2(k−2 + h/√k)�
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Similarly it follows from (7.12), (7.16) with δ=A0, and (7.17) that

I(1)k�l :=
∫

|λ|≤A0h

∣∣E{eiz(2)/h}∣∣∣∣E{eiz(3)/hg1(ul)
}∣∣Λ(λ�k)|r̂1(λ)|dλ

≤ C(k−2 + h/√k)h−1

∫
|λ|≤A0h

λexp(−γ4(l− k)λ2/h2)dλ

≤ Ch(l− k)−1(k−2 + h/√k)�
The result (7.10) in Case I now follows from

Ik�l ≤ I(1)k�l + I(2)k�l ≤ C[ε(l− k)−2 + h(l− k)−1](k−2 + h/√k)�

CASE II: l− k≤ 2k0 and k≥ k0. In this case, we only need to show that

|Ik�l| ≤ C(ε+ h)(k−2 + h/√k)�(7.19)

In fact, as in (7.11), we have

|Ik�l| ≤
∫ ∫ ∣∣E{eiz(4)/h}∣∣∣∣E{eiz(5)/hg(uk)g1(ul)

}∣∣|r̂(t)||r̂1(λ)|dt dλ�(7.20)

where

z(4) =
k−m0∑
q=1

εq[λal�q − tak�q]�

z(5) =
l∑

q=k−m0+1

εq(λal�q + uh/√n)− t
k∑

q=k−m0+1

εqak�q�

Similar arguments to those in the proof of (7.12) give that, for all λ and all
k≥ k0,

Λ1(λ�k) :=
∫ ∣∣E{eiz(4)/h}∣∣|r̂(t)|dt ≤ C(k−2 + h/√k)�

Note that

E|g(uk)g1(ul)| ≤ (Eg2(uk))
1/2(Eg2

1(ul))
1/2 <∞�

For any ε > 0, similar to the proof of (7.18), there exists an n0 (A0, respectively)
such that, for all n≥ n0 (|λ|/h≥A0, respectively), |E{eiz(5)/hg(uk)g1(ul)}| ≤ ε.
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By virtue of these facts, we have

|Ik�l| ≤
(∫

|λ|≤A0h

+
∫

|λ|>A0h

)∣∣E{eiz(5)/hg(uk)g1(ul)
}∣∣|r̂1(λ)|Λ1(λ�k)dλ

≤ C
(∫

|λ|≤A0h

dλ+ ε
∫

|λ|>A0h

|r̂1(λ)|dλ
)
(k−2 + h/√k)

≤ C(ε+ h)(k−2 + h/√k)�
This proves (7.19) and hence the result (7.10) in Case II.

CASE III: l > k and k≤ k0. In this case, we only need to prove

|Ik�l| ≤ C[ε(l− k)−3/2 + h(l− k)−1
]
�(7.21)

To prove (7.21), split l > k into l− k≥ 2k0 and l− k≤ 2k0. The result (7.10)
then follows from the same arguments as in the proofs of Cases I and II but
replacing the estimate of Λ(λ�k) in (7.12) by

Λ(λ�k)≤E|g(uk)|
∫

|r̂(t)|dt ≤ C�

We omit the details. The proof of Lemma 7.2 is now complete. Q.E.D.

We are now ready to prove the propositions. We first mention that, under the
conditions for K(t), if we let r(t) = K(y/h + t) or r(t) = K2(y/h + t), then∫ |r(x)|dx = ∫ |K(x)|dx < ∞ and

∫ |r̂(λ)|dλ ≤ ∫ |K̂(λ)|dλ < ∞ uniformly
for all y ∈R.

PROOF OF PROPOSITION 7.5: Let r(t) = r1(t) = K(y/h + t) and g(x) =
g1(x) = x. It follows from Lemma 7.2 that for any ε > 0, there exists an n0

such that, whenever n≥ n0,∑
1≤k<l≤n

|Ik�l| ≤ C
∑

1≤k<l≤n
[ε(l− k)−2 + h(l− k)−1](k−2 + h/√k)

≤ C
(
ε+ h

n∑
k=1

k−1

)
n∑
k=1

(k−2 + h/√k)

≤ C(ε+ h logn)(C + √
nh)�

This implies (6.12) since h logn→ 0 and nh2 → ∞. The proof of (6.11) is sim-
ilar and the details are omitted. Q.E.D.
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PROOF OF PROPOSITION 7.2: We first note that, under a suitable proba-
bility space {Ω�F�P}, there exists an equivalent process ζ̂ ′

n(t) of ζ ′
n(t) (i.e.,

ζ̂ ′
n(i/n)=d ζ

′
n(i/n)�1 ≤ i≤ n� for each n≥ 1) such that

sup
0≤t≤1

|ζ̂ ′
n(t)− Jκ(t)| = oP(1)(7.22)

by Proposition 7.1 and the Skorohod–Dudley–Wichura representation theo-
rem. Also, we may make the following claim:

CLAIM 1: xj�n := ζ̂ ′
n(j/n) or, equivalently, xj�n = ζ ′

n(j/n) satisfies Assump-
tion 2.3 of WP.

The proof of this claim is similar to Corollary 2.2 of WP. Here we only give a
outline. Write

ζ ′
n(l/n)− ζ ′

n(k/n)= S1l + S2l�

where S1l = 1√
nφ

∑l

j=k+1 ρ
l−j∑j

i=−∞ εiφj−i + (ρl−k − 1)ζ ′
n(k/n) and

S2l = ρl√
nφ

l∑
j=k+1

ρ−j
j∑

i=k+1

εiφj−i = ρl√
nφ

l∑
i=k+1

ρ−iεi
l−i∑
j=0

ρ−jφj�

Furthermore let d2
l�k�n = (ρ2l/(nφ2))

∑l

i=k+1 ρ
−2i(

∑l−i
j=0 ρ

−jφj)2 and Ft�n =
σ(� � � � εt−1� εt). Recall (7.14). It is readily seen that d2

l�k�n ≥ C(l − k)/n when-
ever l−k is sufficiently large. This implies that dl�k�n satisfies Assumption 2.3(i)
of WP. On the other hand, by using a similar argument as in the proof of Corol-
lary 2.2 of WP with minor modifications, it may be shown that the standardized
sum

S2l/dl�k�n =
l∑

i=k+1

ρ−iεi
l−i∑
j=0

ρ−jφj

/√√√√ l∑
i=k+1

ρ−2i

(
l−i∑
j=0

ρ−jφj

)2

has a bounded density hl�k(x) satisfying

sup
x

|hl�k(x)− n(x)| → 0 as l− k≥ δn→ ∞�

where n(x) = e−x2/2/
√

2π is the standard normal density. Hence, conditional
on Fk�n, (xl�n − xk�n)/dl�k�n = (S1l + S2l)/dl�k�n has a density hl�k(x− S1l/dl�k�n),
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which is uniformly bounded by a constant C and

sup
l−k≥δn

sup
|u|≤δ

∣∣∣∣hl�k
(
x− S1l

dl�k�n

)
− hl�k

(−S1l

dl�k�n

)∣∣∣∣
≤ 2 sup

l−k≥δn

∣∣∣∣hl�k(x)−
(

1√
2π
e−x2/2

)∣∣∣∣
+ 1√

2π
sup
|u|≤δ

sup
x

∣∣∣∣exp
(−(x+ u)2

2
− e−x2/2

)∣∣∣∣
→ 0

as n→ ∞ first and then δ→ 0. This proves that Assumption 2.3(ii) holds true
for xk�n, and also completes the proof of Claim 1.

By virtue of all the above facts, it follows from Theorem 2.1 of WP with the
settings cn = √

n|φ|/h and g(t)=Ki(t − x/h), i= 1�2, that

sup
0≤t≤1

∣∣∣∣∣ φ√
nh2

[nt]∑
k=1

Ki

[√
nφζ̂ ′

n(k/n)− x
h

]
−L(t�0)

∫ ∞

−∞
Ki(s)ds

∣∣∣∣∣
→P 0�

This, together with the fact that ζ̂ ′
n(k/n) =d ζ

′
n(k/n) = xk/(

√
nφ)�1 ≤ k ≤ n

for each n ≥ 1, implies that the finite-dimensional distributions of Tin(t) :=
(1/

√
nh2)

∑[nt]
k=1K

i[(xk − x)/h] converge to those of diL(t�0). On the other
hand, by applying the same argument as in the proof of Proposition 7.4, it is
easy to show that Tin(t)�n≥ 1, is tight. Hence Tin(t)⇒ diL(t�0), i= 1 or 2, on
D[0�1]. This proves the result (7.5).

To prove (7.6), write ψ′
n(t) = 1√

nh

∑[nt]
k=1K

2[(xk − x)/h]u2
k and ψ′′

n(t) =
1√
nh

∑[nt]
k=1K

2[(xk − x)/h]Eu2
k. We first prove

sup
0≤t≤1

E|ψ′
n(t)−ψ′′

n(t)|2 = o(1)�(7.23)

In fact, by recalling xk = x∗
0�k + x′

0�k (see (6.10)), where x∗
0�k depends only on

ε0� ε−1� � � � � we have, almost surely,

E
[|ψ′

n(t)−ψ′′
n(t)|2 | ε0� ε−1� � � �

]

≤ 1
nh2

sup
y�1≤m≤n

E

[
m∑
k=1

K2

[
y + x′

0�k

h

]
(u2

k −Eu2
k)

]2
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≤ 1
nh2

sup
y

[
n∑
k=1

Er2

(
x′

0�k

h

)
g2(uk)

+ 2
∑

1≤k<l≤n

∣∣∣∣Er
(
x′

0�k

h

)
r

(
x′

0�l

h

)
g(uk)g1(ul)

∣∣∣∣
]
�

where r(t) = K2(y/h + t), g(t) = t2 − Eu2
k, and g1(t) = t2 − Eu2

l . Again it
follows from Lemmas 7.1 and 7.2 that, for any ε > 0, there exists an n0 such
that for all n≥ n0,

E[|ψ′
n(t)−ψ′′

n(t)|2 | ε0� ε−1� � � �] ≤ C 1
nh

n∑
k=m0

k−1/2 +C(ε+ h logn)

≤ C
[
ε+ h logn+ 1√

nh

]
�

almost surely. The result (7.23) follows from nh2 → ∞, h logn→ 0, and the
fact that ε is arbitrary.

The result (7.23) means that ψ′
n(t) and ψ′′

n(t) have the same finite-dimen-
sional limit distributions. Hence, the finite-dimensional distributions of ψ′

n(t)
converge to those of d2

0L(t�0), since ψ′′
n(t) ⇒ d2

0L(t�0) on D[0�1] by (7.5)
and the fact Eu2

k = Eu2
m0

whenever k ≥ m0. On the other hand, ψ′
n(t) is

tight on D[0�1], which follows from the same argument as in the proof of
Proposition 7.4. This proves ψ′

n(t) ⇒ d2
0L(t�0) on D[0�1], that is, the re-

sult (7.6). Q.E.D.

PROOF OF PROPOSITION 7.3: We first claim that, for each fixed t,

sup
n

E[ψ′′
n(t)]2 <∞�(7.24)

where ψ′′
n(t)= 1√

nh

∑[nt]
k=1K

2[(xk−x)/h]Eu2
k as above. In fact, by recalling xk =

x∗
s�k + x′

s�k (see (6.10)), where x∗
s�k depends only on εs� εs−1� � � � � it follows from

Lemma 7.1 with r(t)= ry(t)=K2(y/h+ t) and g(t)= 1 that, for each fixed t,

E|ψ′′
n(t)|2 ≤ C

nh2

[
n∑
k=1

EK4

[
xk − x
h

]

+ 2
∑

1≤k<l≤n
E

{
K2

[
xk − x
h

]
K2

[
xl − x
h

]}]

≤ C

nh2

[
n∑
k=1

sup
y

Er2
y

(
x′

0�k

h

)
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+ 2
∑

1≤k<l≤n
sup
y

Ery

(
x′

0k

h

)
sup
y

Ery

(
x′
kj

h

)]

≤ C

nh2

[
n∑
k=1

hk−1/2 + 2
∑

1≤k<l≤n
h2k−1/2(l− k)−1/2

]

<∞
uniformly on n, as required. The result (7.24), together with (7.23), implies that
supn E[ψn(t)]2 <∞ and hence ψn(t) is uniformly integrable.

To prove the uniform integrability of S2
n(t), we first notice that

sup
0≤t≤1

E|ψn(t)− S2
n(t)| = o(1)�(7.25)

This follows from the similar argument as in the proof of (7.23) and the fact
that

ψn(t)− S2
n(t)= 2d−2

0

nh2

∑
1≤k<l≤[nt]

ukulK

[
xk − x
h

]
K

[
xl − x
h

]
�

By virtue of (7.25), for any A> 0 and fixed t, we have∣∣ES2
n(t)IS2

n(t)≥A −Eψn(t)IS2
n(t)≥A

∣∣≤ sup
0≤t≤1

E|ψn(t)− S2
n(t)| = o(1)�

This, together with the fact that

Eψn(t)IS2
n(t)≥A ≤ Eψn(t)Iψn(t)≥√

A + √
AP(S2

n(t)≥A)
≤ Eψn(t)Iψn(t)≥√

A +A−1/2Eψn(t)+ o(1)�
implies that

lim
A→∞

sup
n

ES2
n(t)IS2

n(t)≥A ≤ lim
A→∞

sup
n

[
Eψn(t)Iψn(t)≥

√
A +A−1/2Eψn(t)

]
= 0�

where we have used the uniform integrability of ψn(t). That is, S2
n(t) is uni-

formly integrable. The integrability of Sn(t) follows from that of S2
n(t). The

proof of Proposition 7.3 is now complete. Q.E.D.

PROOF OF PROPOSITION 7.4: We will use Theorem 4 of Billingsley (1974) to
establish the tightness of Sn(t) on D[0�1]. According to this theorem, we only
need to show that

max
1≤k≤n

∣∣ukK[(xk − x)/h]∣∣= oP[(nh2)1/4
]

(7.26)
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and that there exists a sequence of αn(ε�δ) satisfying limδ→0 lim supn→∞ αn(ε�
δ)= 0 for each ε > 0 such that, for

0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ t ≤ 1� t − tm ≤ δ�
we have

P
[|Sn(t)− Sn(tm)| ≥ ε | Sn(t1)� Sn(t2)� � � � � Sn(tm)

]≤ αn(ε�δ) a.s.(7.27)

By noting max1≤k≤n |ukK[(xk − x)/h]| ≤ {∑n

j=1 u
4
jK

4[(xj − x)/h]}1/4, the re-
sult (7.26) follows from Eu4

jK
4[(xj − x)/h] ≤ Ch/

√
j by Lemma 7.1, with a

simple calculation. As for (7.27), it only needs to show that

sup
|t−s|≤δ

P

(∣∣∣∣∣
[nt]∑

k=[ns]+1

ukK[(xk − x)/h]
∣∣∣∣∣(7.28)

≥ εdn
∣∣∣ ε[ns]� ε[ns]−1� � � � ;η[ns]� � � � �η1

)

≤ αn(ε�δ)�
In terms of the independence, we may choose αn(ε�δ) as

αn(ε�δ) := ε−2(nh2)−1/2 sup
y�0≤t≤δ

E

{ [nt]∑
k=1

ukK[(y + x′
0�k)/h]

}2

�

As in the proof of (7.23) with a minor modification, it is clear that whenever n
is large enough,

αn(ε�δ) ≤ ε−2(nh2)−1/2 sup
y

[nδ]∑
k=1

E
{
u2
kK

2[(y + x′
0�k)/h]}

+ ε−2(nh2)−1/2 sup
y

2
∑

1≤k<l≤[nδ]

∣∣E{ukulK[(y + x′
0�k)/h]

×K[(y + x′
0�l)/h]}∣∣

≤ Cε−2(nh2)−1/2
[nδ]∑
k=1

h/
√
k(1 + ε+ h logn)�

This yields limδ→0 lim supn→∞ αn(ε�δ)= 0 for each ε > 0. The proof of Propo-
sition 7.4 is complete. Q.E.D.
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8. PROOF OF THEOREM 3.2

We may write

σ̂2
n −Eu2

m0
=Θ3n[Θ4n +Θ5n +Θ6n]�

where Θ3n is defined as in (3.7),

Θ4n =
n∑
t=1

(
u2
t −Eu2

m0

)
K[(xt − x)/h]�

Θ5n := 2
n∑
t=1

[f (xt)− f̂ (x)]utK[(xt − x)/h]�

Θ6n :=
n∑
t=1

[f (xt)− f̂ (x)]2K[(xt − x)/h]�

As in the proof of (3.6) with minor modifications, we have Θ6n =OP{√nh1+γ}.
As in the proof of (3.5), we obtain Θ4n =OP{(√nh)1/2} and

Θ′
1n :=

n∑
t=1

u2
t K[(xt − x)/h] =OP(

√
nh)�

These facts, together with (3.7), imply that

σ̂2
n −Eu2

m0
= oP

{
an
[
hγ/2 + (√nh)−1/2

]}
�(8.1)

where an diverges to infinity as slowly as required and where we use the fact
that by Hölder’s inequality,

|Θ5n| ≤ 2Θ1/2
6n Θ

′1/2
1n =OP

{
(
√
nh)hγ/2

}
�

Now, result (3.15) follows from (8.1) by choosing an = min{h−γ/4� (
√
nh)1/4}.

On the other hand, similar to the proof of (3.8), we may prove{
(nh2)−1/4

[nt]∑
k=1

(u2
k −Eu2

m0
)K[(xk − x)/h]�(8.2)

(nh2)−1/2
n∑
k=1

K[(xk − x)/h]
}

→D

{
d′

0NL
1/2(t�0)�d1L(1�0)

}
on D[0�1]2, where d′2

0 = |φ|−1E(u2
m0

− Eu2
m0
)2
∫ ∞

−∞K
2(s)dt, d1 = |φ|−1 ×∫ ∞

−∞K(s)ds, and N is a standard normal variate independent of L(1�0), as
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in (3.8). This, together with the fact that Θ3n(Θ4n +Θ5n)= oP(anhγ) for any an
diverging to infinity as slowly as required, yields

(nh2)1/4
(
σ̂2
n −Eu2

m0

) = (nh2)−1/2Θ3n

[
(nh2)−1/4Θ4n

]
+ (nh2)1/4Θ3n(Θ5n +Θ6n)

→D σ1NL(1�0)−1/2�

whenever nh2 → ∞ and nh2+2γ → 0. The proof of Theorem 3.2 is now com-
plete. Q.E.D.

9. BIAS ANALYSIS

We consider the special case where, in addition to earlier conditions, κ= 0,
ut is a martingale difference sequence with E(u2

t ) = σ2
u� ut is independent of

xt� K satisfies
∫
K(y)dy = 1�

∫
yK(y)dy = 0 and has compact support, and f

has continuous, bounded third derivatives. It follows from the proof of Theo-
rems 2.1 and 3.1 of WP that, on a suitably enlarged probability space

1√
nh

n∑
t=1

K

(
xt − x
h

)
→P L(1�0)�(9.1)

and

(nh2)1/4

n∑
t=1

utK

(
xt − x
h

)
n∑
t=1

K

(
xt − x
h

) ⇒
N

(
0�σ2

u

∫ ∞

−∞
K2(s)ds

)
L(1�0)1/2

(9.2)

whenever nh2 → ∞ and h→ 0. The error decomposition is

f̂ (xt)− f (x)=

n∑
t=1

{f (xt)− f (x)}K
(
xt − x
hn

)
n∑
t=1

K

(
xt − x
hn

)(9.3)

+

n∑
t=1

utK

(
xt − x
hn

)
n∑
t=1

K

(
xt − x
hn

) �
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The bias term in the numerator of the first term of (9.3) involves

n∑
t=1

{f (xt)− f (x)}K
(
xt − x
h

)
= Ia + Ib + Ic�(9.4)

where

Ia = f ′(x)
n∑
t=1

(xt − x)K
(
xt − x
h

)
�

Ib = 1
2
f ′′(x)

n∑
t=1

(xt − x)2K

(
xt − x
h

)
�

Ic =
n∑
t=1

{
f (xt)− f (x)− f ′(x)(xt − x)− 1

2
f ′′(x)(xt − x)2

}

×K
(
xt − x
h

)
�

As in (9.1) above, we have

Ib√
nh3

= 1
2
f ′′(x)

1√
nh

n∑
t=1

H

(
xt − x
h

)
(where H(s) := s2K(s))(9.5)

→P

1
2
f ′′(x)

∫ ∞

−∞
H(y)dy L(1�0)�

We show below that the remaining terms of (9.4) have the order

Ia + Ic =OP
(
(
√
nh3)1/2 + (√nh5 logn)1/2 + (√nh4)

)
�(9.6)

It follows from (9.1), (9.4), and (9.5) that

n∑
t=1

{f (xt)− f (x)}K
(
xt − x
h

)
n∑
t=1

K

(
xt − x
h

)(9.7)

=
1√
nh
(Ia + Ib + Ic)

1√
nh

n∑
t=1

K

(
xt − x
hn

)
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= h2

2
f ′′(x)

∫ ∞

−∞
y2K(y)dy {1 + op(1)}

+OP
((

h√
n

)1/2

+
(
h3 logn√

n

)1/2

+ h3

)
�

Then, from (9.3), (9.2), and (9.7),

(nh2)1/4

[
f̂ (xt)− f (x)− h2

2
f ′′(x)

∫ ∞

−∞
y2K(y)dy

]

=

1
(nh2)1/4

n∑
t=1

utK

(
xt − x
h

)

1√
nh

n∑
t=1

K

(
xt − x
h

)

+OP
(
h+ h2(logn)1/2 + n1/4h7/2

)

⇒
N

(
0�σ2

u

∫ ∞

−∞
K2(s)ds

)
L(1�0)1/2

�

provided h4 logn+ nh14 → 0� for which nh14 → 0 suffices.
It remains to prove (9.6). As shown in the proof of Proposition 7.2, xt�n =

n−1/2xt satisfies Assumption 2.3 of WP, so that for t > s� the scaled quantity√
n√
t−s (xt�n−xs�n) has a uniformly bounded density ht�s�n(y)� Furthermore we may

prove that ht�s�n is locally Lipschitz in the neighborhood of the origin, that is,

|ht�s�n(x)− ht�s�n(0)| ≤ c|x|�(9.8)

Then, for some constant C whose value may change in each occurrence, we
have

E|Ic| ≤
n∑
t=1

∫ ∞

−∞

{∣∣∣∣f (√ty)− f (x)− f ′(x)(
√
ty − x)(9.9)

− 1
2
f ′′(x)(

√
ty − x)2

∣∣∣∣K
(√

t

h
y − x

h

)}
ht�0�n(y)dy

≤ hC
n∑
t=1

1√
t

∫ ∞

−∞

∣∣∣∣
{
f (hy + x)− f (x)− f ′(x)(hy)
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− 1
2
f ′′(x)(hy)2

∣∣∣∣K(y)
}
dy

≤ Ch4
n∑
t=1

1√
t

∫ ∞

−∞
|s|3K(s)ds ≤ C√

nh4�

using the fact that K has compact support. As for Ia, we have

EI2
a ≤ Ch2E

[
n∑
t=1

H1

(
xt − x
h

)]2

(with H1(y) := yK(y))

≤ Ch2

[
n∑
t=1

EH2
1

(
xt − x
h

)
+

∑
1≤s<t≤n

EH1

(
xs − x
h

)
H1

(
xt − x
h

)]
�

It is readily seen that

EH2
1

(
xt − x
h

)
=
∫
H2

1

(√
ty − x
h

)
ht�0�n(y)dy ≤ Ch√

t
�(9.10)

Since
∫
H1(y)dy = 0 and using (9.8), we also have

E

{
H1

(
xt − x
h

) ∣∣∣ Fs

}

=
∫
H1

(√
t − sy + xs − x

h

)
ht�s�n(y)dy

= h√
t − s

∫
H1

(
y + xs − x

h

)
ht�s�n

(
hy√
t − s

)
dy

≤ h√
t − s

∫ ∣∣∣∣H1

(
y + xs − x

h

)∣∣∣∣
∣∣∣∣ht�s�n

(
hy√
t − s

)
− ht�s�n(0)

∣∣∣∣dy
≤ C

(
h√
t − s

)2 ∫ ∣∣∣∣H1

(
y + xs − x

h

)∣∣∣∣|y|dy�
since y is restricted to the compact support of K. Thus,∣∣∣∣EH1

(
xs − x
h

)
H1

(
xt − x
h

)∣∣∣∣(9.11)

≤E
{∣∣∣∣H1

(
xs − x
h

)∣∣∣∣
∣∣∣∣E
[
H1

(
xt − x
h

) ∣∣∣ Fs

]∣∣∣∣
}
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≤ C
(

h√
t − s

)2 ∫
E

∣∣∣∣H1

(
xs − x
h

)∣∣∣∣
∣∣∣∣H1

(
y + xs − x

h

)∣∣∣∣|y|dy
≤ C

(
h√
t − s

)2(
h√
s

)∫
|H1(y)||H1(y + z)||y|dz dy

≤ C
(

h√
t − s

)2(
h√
s

)
�

Taking the bounds (9.10) and (9.11) in EI2
a, we get

EI2
a ≤ Ch3

n∑
t=1

1√
t

+Ch5
∑

1≤s<t≤n

(
1√
t − s

)2( 1√
s

)
(9.12)

≤ Ch3√n+Ch5√n logn�

using the fact that
∑

1≤s<t≤n
1
t−s

1√
s
= 2

√
n logn+O(

√
n)� Combining (9.9) and

(9.12) gives (9.6) as required.

10. PROOF OF THEOREM 3.3

We rewrite f̂a(x) as

f̂a(x)=

n∑
t=1

(yt − λ�xt)K[(xt − x)/h]
n∑
t=1

K[(xt − x)/h]

+ (λ̂− λ)

n∑
t=1

�xtK[(xt − x)/h]
n∑
t=1

K[(xt − x)/h]
�

Recall that �xt = εt and yt − λ�xt = f (xt) + uy�ε�t . Since uy�ε�t and εt satisfy
Assumption 2, as in the proof of Theorem 3.1 which makes an application of
(3.8), Theorem 3.3 will follow if we prove λ̂ →P λ, that is, we only need to
prove the result (3.19).
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We may write

λ̂− λ=

n∑
t=1

[f (xt)− f̂ (xt)]εt
n∑
t=1

ε2
t

+

n∑
t=1

uy�ε�tεt

n∑
t=1

ε2
t

�

Since 1
n

∑n

t=1 ε
2
t →a�s� Eε

2
1 < ∞ and (

∑n

t=1[f (xt) − f̂ (xt)]εt)2 ≤ ∑n

t=1[f (xt) −
f̂ (xt)]2

∑n

t=1 ε
2
t by Hölder’s inequality, the result (3.19) will follow if we prove

1
n

n∑
t=1

uy�ε�tεt = oP(1)�(10.1)

1
n

n∑
t=1

[f (xt)− f̂ (xt)]2 = oP(1)�(10.2)

Note that {uy�ε�tεt�Ft}t≥1, where Ft = σ(ε1� � � � � εt), form a martingale differ-
ence and E(uy�ε�tεt)2 ≤E(u2

t ε
2
t ) <∞. Result (10.1) follows straightforwardly.

We next prove (10.2). Throughout the remaining part of the proof, we
denote by C�C1� � � � constants which may differ from line to line. Recall
that |f (x) − f (y)| ≤ C|x − y| and K has a compact support. We then have
(|xt − xj|/h)K[(xt − xj)/h] ≤ C1K[(xt − xj)/h] and hence

J1j :=

n∑
t=1

[f (xt)− f (xj)]K[(xt − xj)/h]
n∑
t=1

K[(xt − xj)/h]
(10.3)

≤
C

n∑
t=1

|xt − xj|K[(xt − xj)/h]
n∑
t=1

K[(xt − xj)/h]
≤ C1h�

Further, let Yj =∑n

t=j+1K[(xt − xj)/h] and

J2j =

n∑
t=1

utK[(xt − xj)/h]
n∑
t=1

K[(xt − xj)/h]
�
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Since
∑n

t=1K[(xt − xj)/h] ≥ Yj , result (10.3) together with (3.4) yields

1
n

n∑
j=1

[f (xj)− f̂ (xj)]2 ≤ 2
n

n∑
j=1

(J2
2j + J2

1j)(10.4)

≤ 2
n

n−2∑
j=1

Y−2
j

{
n∑
t=1

utK[(xt − xj)/h]
}2

+Ch2

:= Λn +Ch2� say�

Since xt − xj = ∑t

s=j+1 εs if t > j and xt − xj = −∑j

s=t+1 εs if t < j, by using
similar arguments as in the proofs of (6.12) and/or Proposition 7.2, we have

E

{
n∑
t=1

utK[(xt − xj)/h]
}2

≤ C(nh2)1/2�(10.5)

On the other hand, by noting that xt is a random walk and hence a 1/2-null
recurrent Markov chain with Lebesgue measure as an invariance measure (see
Section 6 of Karlsen and Tjøstheim (2001)), it follows from Lemmas 3.4 and
3.5 and Theorem 5.1 that, for all δ > 0,

1
h
√
n

n∑
t=1

K

[(
t∑
s=1

εs

)/
h

]
≥ Cn−δ a.s.(10.6)

Result (10.6), together with i.i.d. properties of εi, implies that ∀η> 0 and ∀δ >
0, there exists an n0 such that for all n≥ n0,

P

(
1

h
√
n− j Yj ≥ Cn

−δ�1 ≤ j ≤ n− 2
)

(10.7)

= P
(

1

h
√
j

j∑
t=1

K

[(
t∑
s=1

εs

)/
h

]
≥ Cn−δ�1 ≤ j ≤ n− 1

)

≥ 1 −η�
This, together with (10.5), yields that, for ∀η> 0 and ∀δ > 0,

P(Λn ≥ n−δ) ≤ η+ P
(
Λn ≥ n−δ�

1

h
√
n− j Yj ≥ Cn

−δ�1 ≤ j ≤ n− 2
)

≤ η+ P
(
n−2∑
j=1

1
n− j

{
n∑
t=1

utK

[
xt − xj
h

]}2

≥ Ch2n1−3δ

)
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≤ η+Ch−2n3δ−1(
√
nh)

n−2∑
j=1

1
n− j

≤ η+Ch−1n3δ−1/2 logn

whenever n≥ n0. Taking δ= δ0/4 and recalling hn1/2+δ0 → ∞, we obtain Λn =
oP(1). This, together with (10.4), proves (10.2) and also completes the proof of
Theorem 3.3. Q.E.D.
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