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Abstract l,u lower and upper bounds,
respectively

A method has been described for decomposing M mass or moment
an optimizationproblem into a set of subproblems NE number of elements
and a coordinationproblem which preserves cou- n length of vector
pling between the subproblems. The decomposition n(e) number of y-variables in element e
is achieved by separating the structural element p load in eq. (7); concentrated
optimization subproblems from the assembled struc- force in numerical example
ture optimizationproblem. Each element optimiza- Q elemental force vector

tion yields the cross-sectionaldimensions that STOC acronym for subject to constraints
minimize a cumulative measure of the element t(e) number of el_mental pr---op-ertiesin
constraint violations, assuming that the elemental element e

forces and stiffness are held constant. The X vector of elemental properties,
assembled structure optimization produces the which are design variables at the
overall mass and stiffness distributions optimized system level

for minimum total mass subject to constraints y vector of detailed design variables
which include the cumulative measures of the of length n at the subsystem level
element constraint violations extrapolated z loading case superscript,z = I+NLC
linearly with respect to the element forces and (number of loading cases)stiffnesses. - _

overbar denotes optTmum values

The method is introduced as a special case of Other notations defined in the text.
a multilevel, multidisciplinary system optimiza-
tion and its algorithm is fully described for

Lwo-level optimization for structures assembled of Introduction
finite elements of arbitrary type. Numerical

results are given for an example of a framework to The application of formal optimization
show that the decomposition method converges and techniques to the design of large engineering
yields results comparable to those obtained with- structures such as aircraft is presently hindered
out decomposition. It is pointed out that optimi- because the number of design variables and
zation by decomposition should reduce the design constraints is so large that the optimization is
time by allowing groups of engineers, using both intractable and costly and can easily satu-
different computers to work concurrently on the rate even the most advanced computers available
same large problem, today. A remedy is to break the problem into

several smaller subproblems and a single coordina-
tion problem, the latter being formulated in aNomenclature
manner which preserves the couplings between the
subproblems. In addition to making the problem

A cross-sectional area more tractable, this approach would be compatible
C cumulative constraint with the organizationof a typical design office
e equality constraint, element in which diverse engineering groups work concur-

subscript or superscript rently on different parts of the problem. Such an
f functional relation approach would also lend itself to parallel or

F objective function multiple computer processing, thereby shortening
g inequality constraint vector of the design cycle time.length m

ge elemental inequality constraint Several procedures for breaking large struc-
vector of length m(e) tural optimizationproblems into subproblems have

gS system inequality constraint been proposed in the literature. A typical effort
• vector of length m(s) is represented by ref. 1 which describes a proce-

K stiffness matrix dure consisting of an analysis of the structure
I cross-sectional moment of inertia followed by optimization of each substructure

about centroidal axis y shown in while holding invariant the forces acting on it
fig. 3 (inset) from the contiguous substructures. Since the

optimizations change the stiffnesses of the sub-
structures, analysis of the assembled structure
has to be repeated to update the forces acting on
the substructures for the next round of substruc-
ture optimizations,and so on, in an iterative
manner. A similar approach was formulated in
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ref. 2. Although computationally efficient, these comparison with the results of a conventional,approaches do not subject the overall stiffness one-level optimization.
distribution to the optimization algorithm. That
algorithm, therefore, cannot be guaranteed to find

the minimum structural weight because, in general, Two-Level Optimizationa controlled trade-off of the structural material

among the substructures is necessary to find such This section describes two-level optimization
a minimum. Because of this lack of controlled of a structure assembled of finite elements of
trade-off, the methods of refs. I and 2 are genera] type.
basically generalizationsof the Fully Stressed

Design method. A method designed to incorporate Definitions
control of the material distribution among the _--_

finite elements of an assembled structure has been For the purposes of structural analysis by a
offered in ref. 3 for a two-level optimization, finite-elementmethod, one defines n cross-

sectional dimensions of the finite-element model
The optimization schemes cited above are all as entries in the vector yrather specialized and would not be suitable for

application to multidisciplinaryoptimization of Y = {Yi}" i = 1 .n
large engineering systems. Recently, ref. 4 ' (1)

proposed a method for decomposing a large multi- that can also be organized into NE partitionsdisciplinary optimization problem into a number of

small subproblems and provided a blueprint for y = (yl ..ye.....yNE } (2)*development of a computer implementation for the "'"
method. The method decomposes a large problem in

the manner shown in fig. I. Each subproblem Each partition of length n(e) corresponds to
depicted by a box in fig. 1 is meant to represent a finite element of the total of NE finite

a physical subsystem of the total system, e.g., elements. Stiffness and mass properties of each
airframe or engines in an aircraft, so that the finite element, e, are defined by t(e)quantities
method is entirely genera] and admits various X2, collected in a vector Xe which is aengineering disciplines for analysis of the system

and the subsystems. In a particular application partition e of a vector X for all elements. In
to structures, the decomposition for optimization further discussion, the quantities Xe are
purposes coincides with a general, multilevel t •

substructuring (refs. 5, 6, and l) in structural referred to as elemental properties. They are
analysis, so that the system acquires a meaning of computable as functions of ye:a complete structure, the subsystems become

substructures, and the subsystems of the lowest xe= f_(ye) (3a)level, J=Jmax, correspond to the individual
finite elements by which the structure is
idealized. In this application, the method of

ref. 4 is in the same category as ref. 3 but X = {XI. 'xe... xNE } (3b)differs in that it allows several levels of sub- "" "

problems and in the way the levels of optimization Examples of Xe are: cross-sectional area,are coupled through the concept of optimum t

sensitivity to problem parameters given in ref. 8. A, and moment of inertia, I, for a beam element,
Execution of the method would proceed from polar moment of inertia, J, of a shaft, and

bending stiffness coefficient, D11, of an
the lowest level upward by: (I) minimizing the orthotroplc plate. One can calculate for elementconstraint violation in each subproblem using its e, its mass:
local design variables while the higher level

variables are held as constant parameters, (2) Me = f_(Xe) (4)calculating the sensitivity derivatives of the
subproblem minimum solution to the parameters,

(3) optimizing the system for minimum mass subject and stiffness matrix referred to the global
to constraints which include the subproblem coordinate system. Each entry of the matrix Keconstraint violations extrapolated linearly with is:
respect to the parameters, and (4) repeating

operations (i) through (3) until convergence is Ke : fe (Xe) (5)attained, pq pq

Because ref. 4 was intended to only provide In the above mass and stiffness expressions,
the blueprint for development of a computer code, the relevant material properties, e.g., density
no numerical substantiation of the method was and Young's modulus are implicit in the functional
included. The method has recently been imple- relations fe and fe, so that in a most
mented for two-level optimization and applied to a 2 pq

framework structure as a prelude to proceeding genera] case, each finite element, e, could be
with implementation of a general multilevel made of a different but constant material. It is
optimization procedure. The purpose of this paper possible to make the material choice a designis to describe the two-level procedure for the

general case of a structure modeled by an assembly *( } deno_s a column vector written on a singleof arbitrary type finite elements, and to line to save space
illustrate its validity in a numerical application
to a simple framework structure which includes a



variable, in which case the material properties single problem at the assembled structure level

would be included with the cross-sectional and NE subproblems,one for each finite element,
dimensions in vector, ye. However, the variable at the lower level. The two levels are referred

material case is outside of the scope of this to as system and subsystem levels, respectively.
report. With respect to a general, multilevel sub-

structuring scheme shown in fig, 1, the two-level
Although the element mass and stiffness case corresponds to the upper two levels of the

appear in eq. (4) and (5) as functions of Xe figure, with the " .,• , substructures of the second
ultimately they are functions of ye through eq. level acquiring the physical meaning of individual(3). Consequently, the elemental properties Xe finite elements.
and the finite-element cross-sectional dimensions

, ye are hierachically related as shown by a Venn Conversion to a two-level optimization scheme
diagram in fig. 2. The vector ye carries begins with partitioning the vector of constraints
information which, for given fe and a set of g into

fe , is sufficient to calculate mass and g = {gS, gl.....ge.....gNE } (10)
Pq

stiffness for element e, while the vector Xe where gS contains the constraints on the system
carries the information needed to quantify mass behavior, and the remaining constraints are local
and stiffness of the entire structure, to each element. Examples are a nodal point

displacement for the former and an element stress
Proceeding from an element to the assembled for the latter. Tracing the functional relations

structure, its stiffness matrix K is generated as: for gS through eqs. (7) and (3b) one obtains:

K = S(Ke ) (6) gS = f3(X) (11)Pq

Similarly, for ge, the trace through eqs. (8),
where S symbolizes a procedure for direct sum- (6), (5), and (3a) leads to:
mation of stiffnesses. Formation and solution of

the load deflection equations for displacements u: ge = f_(ye,xe,Qe) (12)

Ku = pz, z = I.NLC (7)

Furthermore, the structural mass, F, in eq. (9a),
where superscript z refers to a loading case, becomes:
yields displacements u and elemental forces

Qe,z for element e. Expressed in element F = f5(X) (13)r

coordinate system, when the element masses expressed by eq. (4) aresummed.

Qe,z = He Ke ue,Z (8)

Subsystem lelement) level.- For conversion to
a two:level optlmization, it _s necessary for each

where each vector, Qe,z contains r(e) forces finite element e, that the number n(e) of itsQe,z. The forces in vector Qe,z are
r cross-sectional variables be no less than the

number t(e) of its elemental properties, Xe.
statically independent and are related to the full t
set of elemental forces by the matrix He that

represents the element equilibrium, t(e) _ n(e); e = i +NE (14)

One-Level Optimization The above equation may be satisfied in both
its equality and inequality parts, or only in its

A conventional, one-level optimization for equality part, dependent on the type of structural
minimum mass can be based on the quantities element, as shown by examples in Appendix A. If
defined by eqs. (I)-(7)• Namely, taking y as eq. (14) holds in its inequality part, then it is
the vector of design variables one has possible to carry out an isolated, local operation

min F(y) of changing values of the entries in ge by
{y } (9a) manipulating the design variables in ye in such

a way that Xe and, consequently, Qe,z remain
' constant. In other words, if the inequality in

subject to constraints (STOC): eq. (14) is true, there is design freedom to
proportion the element in a new way, improved in

, gj(y) _ O; j = I +m (gb) some sense, without affecting the assembled

structure solution• Translated into a formally
stated optimization problem, that means for

Yl _ Y _ Yu (9c) element e:

where constraints, g, are imposed on the static min ce(ge)
behavior variables, such as stresses and displace- {ye } (15a)ments, and Yl, Yu are side constraints.

Xe _ f_(ye) = 0Two-Level Optimization Procedure (15b)

Under a two-level optimization approach, the
problem defined by eq. (9) is decomposed into a



e < ye < ye (15c) variables. Presence of the constraints on Ce in
Yl -- -- u eq. (17c) and ye in eq. (17d) assures that when

a solution to the system level optimization
Constraints of the problem are the side problem is found, satisfaction of all the local

constraints on y as in eq. (9c) and equality constraints will be a part of that solution.
constraints to enforce invariance of Xe for the

duration of the solution of eq. (15). Regardless Coupling between the levels.- The optimiza-
of the technique used to satisfy the equality tion problems in the form givenby eq. (15) at the
Constraints in eq. (15b), their presence has the subsystem level are coupled to the system level
effect of reducing the number of free variables in problem. It is a two-way coupling: as input,
ye by t(e), hence, the condition of eq. (14). each subsystem problem receives the system level

variables Xe and the system level analysis
The problem's objective function, Ce, is a results Qe,z (eqs. (12), (15), (16)) and returns

single number that nmasures the degree of its optimal Ce and ye (eqs. (17c) and (17d)).
constraint violation for all constraints that make However, in practical implementation the
up vector ge. The quantity Ce is known in the constraints on Ce and ye cannot remain in the
literature (refs. 4, 9, 10) as a cumulative form of eq. (17c) and (17d) because their
constraint and can be formulated in a number of evaluation for each new X would require a new
ways. In general, the Ce(ge) should be such solution to the subsystem problem in eq. (15)-a
that: reoptimization of the elements affected by new X.

i Computationally, that would be prohibitively

>0, if ge > O; j (1...m(e)); costly in large problems.J

Ce (at least one violated) There is a way to bypass these costly
= (16) subsystem reopt_mizations in the system level

<0, if ge < O; j = l+m(e); optimization. It is available in the concept of
- 3 - the sensitivity of the optimum to problem

(all satisfied) parameters and an associated algorithm for
computation of the derivatives to quantify that

and must have continuous derivatives, sensitivity proposed in (ref. 8). Applying that
concept to the optimization represented by eq.

Two specific formulations for Ce will be (15), one recognizes immediately that the
discussed later (eqs. (23)-(25)). optimization constant parameters are Xe and

t

The choice of Ce for the objective function Qe,z (eq. (12)). Consequently, the optimum
in the element optimization subproblem, eq. (15), r
is consistent with eq. (4) which for constant

Xe, and for eq. (14) holding, renders F solution, _e and _e of eq. (15) is a function
Unaffected by changes of ye. It means that, as of these parameters and has derivatives

similarly proposed in ref. 3, there is no control d_Te/dX_,dCe/dQe,z, dye/dX_ andof the objective function at the lower level of r '

optimization; the only objective of optimization d_e/dQe,z, termed optimum sensitivity
at that level is to achieve the best possible r
satisfaction of constraints consistent with the derivatives.
element forces Qe,z and the elemental properties

xe. The algorithm of ref. 8 is based on differen-
tiation of the Lagrange equations that hold at a

S_stem (structure)level.- The objective constrained minimum with respect to the problem
function and the remaining constraints, gS, are parameters. This leads to a set of linear,
controlled at the assembled structure level. The algebraical equations in which the optimum
single optimization problem to be solved at that sensitivity derivatives appear as unknown and
level is then: whose matrix of coefficients and the vector of

free terms include first and second order

min F(X) derivatives of the behavior variables with respect
{X } (17a) to the design variables (ye in this application)

and parameters. Since the computational cost of
STOC g_ _ O; j = 1+m(s) (17b) the second derivatives may be significant, it is

J of interest to know that a version of the
algorithm without the second derivatives of the

Ce _ O; e = I+NE (17c) behavior is given in ref. 11. Alternative means
to reduce the cost of computing these derivatives

Yle--<ye_< Ye;ue = I+NE (17d) are proposed in refs. 12 and 13.

When the optimum sensitivity derivatives are
X1 _ X _ Xu (17e) available, they can be used in a Taylor series to

convert the nonlinear dependence of Ce and ye
where the objective function: on X in eqs. (17c) and (17d) into the linear

extrapolation approximations:
F = _ Me (18)e

depends on X through eq. (4), and the entries of
the vector X are the system level design



min F{X)
a_ e e IX } (20a)

ce= Ca --__ +_ s
e (Xt Xto) STOC gj <0 j = 1+m(s) (20b)t BXt

e,z e e a_e e e

ate aQr e e _a =_o + Xe (xt + Xto)

+ Zze t rBZZ Z -roe'ZaXt (xt - xt°) (19a) a t4

aCe aQ_ "z e e

e e a_e e e + _ Z Z __^e,z aX_ (Xt " Xt°) _ O; (20c)ye -- -- e t aqr

=Ya7o+ (xtXt°> e= I+NE

e -e -e _ @_ye(xe + Xe

e,z Yl _Ya = Yo + _Uax_ to)aTe aQr e e

+ Zze trZZ Z aQ_,z axT- (xt - Xto) (19b)

where subscripts a and o denote, respectively, the aCe aQ_'Z e e e

approximate and exact values. The above extrapo- + _ Z Z Z Oe,z e (Xt Xto) _Yu; (20d)
lation turns _a and Ya into linear functions z e t r a_r BXt
of X only; the dependence on Qe,z is accounted e = 1.NE

r

for by the chain differentiation in the third term

in each of the two equations. This chain XI _ X _ Xu (20e)
differentiation reflects the dependence of Qe,z
on X that occurs in redundant structures. In such

structures, generally speaking, each Qe,z f6(Yl,Yu) < X < f7(Yl,Yu) (2Of)
r

depends on each X_, therefore, the summation in

the chain differentiation spans the entire vector X? < X < XM (20g)-- _ U
X. The derivatives dQe,z/dxe are in the

r t Two new groups of constraints appear in

category of behavior derivatives that are eqs.(2Of) and (20g). The constraints of eq. (2Of)
routinely available through analytical techniques are added to keep the optimization algorithm from
applied to eqs. (7) and (8) (refs. 14,15,16). generating such combinations of Xe values that

t

The relations established in eq. (19) will be cannot be physically implemented at the

referred to as a linear representation of the finite-element level (for an example, see eqs.
subsystem. (Cl)-(C5)). The constraints in eq. (20g)

introduce additional bounds on X as move limits,
In summary, the two optimization levels XM and XM, needed to control the linearization

couple through the information flowing between l u
them as shown in Table 1. The data passed from errors.

the system level to the subsystem level carry the Two-level _rocedure algorithm and salient
information defining the X quantities that were features.- The minearization of eqs. (I"7c)and
input into the system level analysis, and the "_sembles the local linearization technique
output of that analysis in the form of the based on the behavior sensitivity derivatives that

, finite-element forces Qe,z. The data are known to be very effective in nonlinear

transmitted in the opposite direction conveys the mathematical programing (refs. 16,17,18)information on the subsystem optima and their
sensitivity to the data received from the system

J level, for use in the subsystem linear
representations at that level.

System (structure) level problem with
embedded coupling.- Substituting eq. (19) into
eq. (17>, the system level optimization problem
becomes:



Incidentally, that technique could also be used in Moreover, if the Kuhn-lucker conditions are
eq. (20b) to linearize gS; whether to exercise satisfied in the subsystem and system level

this option is a problem-dependent decision. As problems in the two-level procedure, one can infer
it is the case with any linearization technique that they are also satisfied in the y-space in the
applied to solve an intrinsically nonlinear one-level optimization (eq. (g)). Discussion of
problem, an iterative procedure has to be the inference is given in Appendix B. In these
constructed to allow recovery from the respects then, the two procedures _re equivalent.
linearization errors and the error controlled by However,,it does not follow that both will lead to

appropriate move limits (eq. (20g)). In the case the same design point in nonconvex problems having
at hand, the procedure algorithm consists of the multiple local mininla. In suc_ problems, that
following steps: include many practical applications, the solution

depends on the co_putational path through the

1. initialize y design space and tilepath taken in turn, depends2. compute X (eq. (3)) , ,
on the algorithm, Since the two procedures are

3. analyze assembled structure, obtain Qe,z. algorithmicallydifferent, a difference in their
gS, and their derivatives with respect to results in nonconvex applications should beXe (eqs. (7), (8), and appropriate gradientt expected.

calculation technique) This aspect of the procedure performance, as
4. solve subsystem optimization, eq. (15), for well as its convergence characteristics andeach element

overall computational behavior, can only be
5. Calculate optimum sensitivity derivatives for assessed by numerical experiments. Suchthe optima found in step 4

experiments are described in the next two
6. Solve the system optimization, eq. (20) sections.
7. Update X and repeat from step 3 until a

converged solution is obtained

In this procedure, optimizations performed in Framework Structure as a Test Case

step 4 are iterative within themselves and nested A portal framework shown in fig. 3 is an
in the overall iteration spanning steps 3 and 7. example of a hierarchical system that can be
In further discussion, the latter will be referred optimized for miminum mass under static load
to as a cycle while the term "iteration" will be subject to strength and displacement constraints
used in conjunction with step 4. using the linear decomposition approach. The

decomposition is two-level and results directly
Since the calculations performed in steps 4 from the fact that one can use an engineering beam

and 5 of the procedure are executed separately for theory to analyze the framework for internal
each finite element, they can be carried out forces (the end forces on each beam) and
concurrently using distributed computing displacements, assuming that A and I for each beamtechnology.

are given but without knowing the detailed cross-
section dimensions (bl,tI....). These dimen-

Information flow between the two levels of sions can be optimized separately for each beam as
the procedure is restated in Table 1. Readers long as the end forces in each beam are known and
familiar with system analysis as formulated in the assumed fixed which, in i:urn,requires holding
discipline of operations research (ref. 19) will constant A and I of each beam, The correspondence
recognize the information returned to the system of the basic elements of a two-level decomposition
level as a particular means to solve the so-called approach to the framework example is given insystem coordination problem. Table 2.

In the two-level procedure, the system The Case Definition and Its One-Level Formulation•objective function (e.g., structural mass) is

entirely controlled at the system level by The framework is composed of three I-beams
variables X which can be regarded as generalized made of the same material and having cross-
design variables that determine the structure mass sectional dimensions as shown in the inset in
and stiffness distribution. The system objective fig. 3. Structural optimization is to be carried
function is not directly included in the subsystem out for a minimum mass subject to constraints on
optimizations whose only purpose is to achieve the static response induced by two loading cases: abest possible satisfactionof the local

concentrated force and a concentrated moment. The
constraints consistent with the parameters imposed constraints are imposed on the framework displace-
from the system level. The procedure is entirely ments--horizontal translation and rotation at the
open to accommodate the designer's judgment as to loaded point of the framework, and on the stresses
the type and number of design variables at each in each beam. The extreme normal stresses caused
level. The familiar device of variable linking by bending moment and axial force, and the extreme
(ref. 20) can be freely used at both levels to shear stress due to the transverse force are

keep the number of design variables as small constrained at both ends of each beam to stay
as possible and, for the same purpose, one may below the material allowable stress and below the
refrain from including all the available elemental critical stresses of local buckling. The latter

properties in the set of design variables X (see account for buckling of flange and web but ignoreexample of a composite panel in Appendix A).
the column buckling. The framework is assumed to

According to eqs. (20), (16), and (15), the--two- be supported against displacements ouc of theEquivalence to a one-level optimization.- plane of fig. 3 to eliminate the need for

constraints on the framework overall instability
level procedure, when converged in the Kuhn-Tucker and the lateral-torsionalbuckling of its beams.(ref. 14) sense, produces a feasible design, just
as a slngle-level optimization (eq. (9)) does.



Constraints include the bounds on the design suggested by the concept of a quadratic exterior
variables. Detailed formulations of a11 the penalty function:
constraints are provided in Appendix C.

Ce : _ (<gj>)2 (23a)Analysis of the framework for displacements 3
and internal forces employs a standard,

displacement-based, finite-elementmethod _gj, if gj > 0representing each beam by a sing]e beam element. <gj> = (23b)
Beam stresses are calculated according to the L.O.O, if gj < 0engineering beam bending theory. The critical , -
buckling stresses are computed for each part of

the beam, e.g., a flange, as for an isolated plate For continuous g_ functions, this formulation
with appropriate boundary conditions using routine has continuous first derivatives which permits use
techniques (ref. 21). of gradient-dependentalgorithms in solution of

eq. (3). Another function that can be used for
Taking the detailed cross-sectional the same purpose is a function proposed in ref. 22

dimensions of each beam as the design variables of and applied in ref. 10 to approximate the maximum
the problem, the vector y in eq. (2) has 3 constraint. The function, henceforth referred to
partitions, each containing 6 variables for one by the acronym KS, has the form:
beam, for a total of 18 design variables:

=1 m
Y = {{b1'tl'b2""} I, {bl,tl,b2...}2, KS(B.) _ In ( Z exp ( pg )) (24)

{bl,tl,b2... }3 } (21) J j=1 J

and has the property of following the maximum
Optimization for minimum mass can be replaced constraint:

with optimization for minimum material volume

because of the material homogeneity. Denoting the

beam length by Ii, the objective function MAX(gj) < KS < MAX(gj) +_ In (m) (25)
becomes a function of cross-sectionalarea A: - - P

F _ M = s Alli (22) with a tolerance that depends on the constant p
i supplied by the user. The KS function, like the

quadratic exterior penalty function, has
The problem can be solved as a one-level optimiza- continuous derivatives; in addition it performs as
tion with n=18 design variables in a conventional an extended penalty function because it is defined
formulation such as given in eq. (9). throughout the infeasible as well as the feasible
Two-Level Formulation domains.

The seven-step iterative procedure for
Under the two-level approach, the framework solution of the two-level optimization listed

(system) is considered decomposed into three beams previously has been implemented for the framework
(subsystems, finite elements) under the action of test case in the manner described in Table 3.the beam-end forces shown in fig. 3 (inset). If
the decomposed framework were superimposedon the

general, multilevel decomposition scheme shown in Numerical Resultsfig. 1, the assembled framework would fall in the

"entire structure" box at level 1 and each beam Two-level structural optimization by linear
would coincide with a substructure at level 2, decomposition is demonstrated for the framework
although in this case "substructure" simplifies to example. The procedure given in Table 3 is

a single finite element. For the purposes of the implemented in a Fortran main program that calls a
framework analysis, each beam's stiffness and mass finite-element analysis subroutine based on a
properties are determined by two elemental stiffness method and an optimization subroutine
properties: cross-sectionalarea A and moment of (program CONMIN, ref. 23) that employs a usable-
inertia I. These quantities become the system feasible direction technique. Results obtained on
level design variables in vector X, eq. (3b) as a PRIME 750 computer include benchmark data for a
indicated in Table 2. The framework displacement conventional, one-level optimization and the
constraints are in the gS category, while the two-level optimization data. The detailed

beam stress constraints are included as ge in formulation of the constraint functions, including
eq. (10). Since the condition in eq. (14) holds equality constraints on Aj and Ii used in all

t (t(e)=2<n(e)=6) (see Table 2) for each beam, the the numerical tests are glven in Appendix C.original problem can be solved decomposed into

three subsystem problems of six design variables Results for a Conventional, One-Level Approachye each and a system problem of six design

variables X, according to eq. (15) and eq. (20), Several variants of the optimization and
respectively, several different starting points in both the

feasible and infeasible domains were used to
Solution of eq. (20) coupled with eq. (15) obtain the benchmark results. In variant 1, which

requires a specific form of the cumulative was chosen to be the reference technique, all
constraint Ce in eq. (20c). Two different constraints were kept separate, while in variant 2
formulations for the cumulative constraint were the constraints, except side constraints, were
studied in the test case. One of them is collected in a cumulative constraint. A

piecewise-linearprocedure combined with the



cumulative constraint (in the form given in eq. from the near-minimum-gage starting point toward
(24)) was carried out in variant 3 using move the feasible domain. However, it was unable to
limits of 15 percent. The purpose of including reduce the structural mass whi]e maintaining a
variants 2 and 3 in the benchmark testing was to feasible design once the feasible design space was
determine to what extent the optimization results entered. It was concluded that the quadratic
were influenced by the use of a cumulative exterior penalty function is not a proper choice
constraint and a piecewise-linearprocedure, which for a cumulative constraint to be used in the
are both embedded in the two-level optimization, context of the proposed multilevel optimization
It turned out that the three variants and method and attention was then directed to the use
different starting points generate designs having of the KS function (eq. (24)), for the cumulative
masses which fell within 5 percent of the variant constraint_
1 result. However, there was as much as a 300

percent difference in some design variables. Cumulative constraint in form of KS
functTonTi--S'atTs-f_-€-_ryresuTt-_--_-r_-_-l_ained

The dependence of the optimum on the starting uslng the KS function. They are collected in

point and search path indicates that the problem Table 4 and show the method's ability to generate
_s nonconvex and has local optima, and that a weak designs comparable to the benchmark design when
functional relationshipexists between the starting from the same point, either feasible or
objective function and constraints and at least infeasible. In fact, the objective functions
some of the design variables (a "shallow" obtained by means of the two-level optimization
optimum). In this particular example, the scatter started from infeasible and feasible points
of the local minima is bounded by two extreme exceeded the benchmark value of the objective
cases both obtained by variant I starting from a function by only 1.6 percent and ].9 percent,
feasible design and from an infeasibledesign near respectively. Another way to assess the
minimum gage. The two local minima differ effectiveness of new optimization method relative
Significantly in their distributions of A and I to the reference method is through comparing the
shown in fig. 4 and also their local dimensions changes they generate in the objective function.
given in Table 4. The optimum design shown in Denoting by "r" the ratio of the final to initial
fig. 4a transmits the load to the ground support values of the objective function, one may take
primarily through flexural stiffness of the right- Ii-rl as a measure of the change relative to the
hand side vertical beam. In the optimum design initial value. Table 4 shows that the two-level
depicted in fig. 4b, the load is transmitted optimizationoverestimated the above measure of

primarily through flexural and extensional change by 2.2 percent when starting from an
stiffness of the horizontal beam to the left-hand infeasible point and underestimating it by 95
side vertical beam which is relatively stiff in percent when starting from a feasible point. To
bending due to its shorter length. Despite the make this comparison meaningful, the starting
differences reaching 58 percent in I, the points were deliberately chosen to make the ratios
structural masses differ by only 6 percent, and "r" significantly different from unity, 3.43 and
all constraints are satisfied. The deliberate 0.329 for the infeasible and feasible starting
exclusion of the displacements out of the plane of points, respectively.
the framework eliminated beam torsional-bending
buckling and resulted, predictably, in the More significant differences were recorded
unusually large depth-to-flange-widthratio among the individual design variables, at both
indicated in Table 4. However, since these local and system levels, in the optimal designs
proportions have no bearing on the purpose of the corresponding to different initial points. As one
numerical verification of the method, the two may see in Table 4, these differences reach 350
bounding cases of variant 1 were selected as percent. They conflrm the distinctly nonconvex
acceptable benchmark results, and "shallow" optimum nature of this particular

example problem. Since these are consistent with
Results for the Two-Level Procedure similar differences observed in the one-level

optimization, they were not introduced by the
Numerical studies with the two-level two-level method itself.

optimization were carried out for two formulations

of the subsystem cumulative constraint: the Convergence history.- Convergence of
quadratic exterior penalty function defined in optimTz-ati-onTil_t-r-ated by history plots in
eq. (23) and the KS function defined in eq. (24). fig. 5 for the one-level optimization and in

figs. 6 through 12 for'the two-level procedure.
Cumulative constraint in form of an exterior Abscissas of these plots refer to iterations of

Renalty function.- Optimization with the quadratic the all-in-one optimization and cycles of the
exterlor penalty function formulation (eq. (23)) two-level optimization. One iteration is one of
consistently yielded designs about 15 percent many consecutive executions of the usable-feasible
heavier than the reference result. It was clear directions algorithm (for more precise definition

from examination of the history of iterations that see description of program CONMIN in ref. 23)
the discrepancy was caused by the loss of the while one cycle is one execution of steps 4
gHadient information near and in the feasible through 11 of the procedure described in Table 3.
domain where the exterior penalty function and its The convergence was found to be similar in

d#rivatives vanish. The gradient information was character to that of the conventional, one-level
needed by the optimization program (which is based method as illustrated by comparison uf figure 6
on the usable-feasible directions method) and the with figure 5 for an infeasible starting point.
iteration history showed that as long as that In both figures, the objective function rises,
information was available the optimization program overshoots the optimal level and the,_returns to
successfully guided the growth of the structure it asymptotically. Constraints are reduced to



feasible (negative) values as i11ustrated by an Characteristically,the relative error is
individual stress constraint in fig. 5 and the larger when the optimization is started from an
cumulative constraint of beam 1 in fig. 6. (The infeasible design, apparently because the

factor of 5 in fig. 6 is for scale uniformity.) procedure then goes through a number of changes in
The jagged character of the plots is inherent in the membership of the active constraint set that

any algorithm based on the usable-feasible comprises constraints defined in eq. (15c) for
directions method and is more pronounced in each beam. Consistent with observations reported
two-level than in one-level optimization for in refs. 8 and 24, these changes tend to degrade

, reasons to be discussed later, the accuracy of the optimum sensitivity
derivatives as the behavior predictors. The

Objective function history starting with a larger prediction errors apparently cause the
feasible design which is also shown in fig. 6 history plots to be somewhat more ,jaggedin all
indicates convergence after 18 cycles as compared cases for which the optimization is started from
to about 28 cycles for an infeasible starting an infeasible design rather than from a feasible
point. An example of the behavior of the system one. They also slow down the convergence, so that
level variables is illustrated by the histories of a larger number of cycles is required when
the cross-sectional areas of the beams in fig. 7a starting from an infeasible design. However, the
and 7b. It is apparent from comparison of fig. 7b procedure exhibits a good ability to recover from
with fig. 6 that the design variables require a occasional large prediction errors, e.g., cycle 8
few more cycles to converge than the objective in fig. 13 (infeasibledesign start) and cycles 11
function. To complete the illustrationof the and 13 in fig. 13 (feasible design start), and
system level optimization history, the framework gets back on track with remarkable robustness.
displacement constraints are plotted in fig. 8.

Computational cost Since the purpose of the
At the subsystem level, the optimization reported work was a demonstration of a concept, no

history graphs are given in figs. 9 through 12 for attempt was made to refine either the reference,
beam 1. The behavior in the other two beams is one-level procedure or the two-level procedure for
similar. Graphs for variables bl, tl, b_, maximum computational efficiency, especially since
and t2 (see fig. 3) are shown in fig_. 9a and the framework example is much too small to
9b. They repeat the familiar pattern of rise- demonstrate efficiency of any optimization or
overshoot-descendfor infeasible starting designs analysis method. Nevertheless, one may obseve
and a smoother asymptotic descent for the feasible that the two-level optimization converges in a
starting designs. The variation of the beam number of cycles about equal to the number of
objective function (cumulativeconstraint) is iterations in the one-level optimization, with the
shown in fig. 10 which depicts clearly the numerical workload in a cycle being less than in
elimination of local constraint violations when an iteration. While the precise workload
starting from an infeasible design, and a difference depends on the algorithmic and
reduction of their oversatisfactionas the beam is implementationdetails, the major difference stems
being slimmed down in the optimization that begins from having to calculate a number of gradient
from a feasible design. One of the subsystem vectors equal to the number of design variables
level constraints that makes up that objective which at the system level of the two-level
function is local buckling of the beam flange; its optimization is smaller than in the one-level
history plots in fig. 11 correspond to those in optimization. Specifically, in the framework
fig. 10. Each graph plotted in fig. 11 shows the example the number is reduced from 18 to 6.

value of constraint at the end of subsystem level Computational cost savings resulting from that
optimization (step 6, Table 3) that was carried reduction are partly offset by the cost of the
out for beam 1 in each cycle. To illustrate the subsystem level optimizations and the associated
character of the constraint changes during the sensitivity analysis. Approximating computational
subsystem optimization, the constraint history for cost by the CPU time and setting the time for one
cycle 8 for the infeasible design start case is cycle at 100 percent, the times spent at the
plotted in fig. 12. system and subsystem levels within one cycle were

28 percent and 72 percent, respectively. Thus,
Accuracy of linear extrapolation.-The the total time share for each of the three beams

multilevel optimization approach is predicated on (subsystems)was 24 percent, a nearly uniform
the accuracy of the linear extrapolations based on distribution of time among the system and each of
the optimum sensitivity derivatives. Therefore, the subsystems. These relative cost values are,
it is interesting to see how the cumulative of course, strongly problem dependent as is the
constraint predicted by the linear extrapolation total cost of execution of the entire procedure.

• at the end of one cycle (Table 3, steps 10 and 11) That cost is expected to become smaller relatively
compares with the result of full analysis carried to the cost of a one-level procedure as the system
out at the beginning of the next cycle (Table 3, grows in terms of the number of elastic degrees of

j step 4). Such a comparison is displayed in fig. freedom and number of structural components
13 and shows that the prediction error eventually (subsystems).
vanishes for a sufficient number of cycles thus

permitting the procedure to converge. The graphs Concluding Remarksshow that before the convergence is reached the

linear extrapolation consistently underpredicts A method has been described for decomposing
the cumulative constraint value when proceeding an optimization problem into a set of subproblems
from an infeasible design starting point and and a single coordination problem which preserves
overpredicts it when the start is made from a the coupling between the subproblems. The
feasible design point, resulting procedure is iterative and calls for

repetitive analysis of the assembled structure,
optimization of the individual components as



subproblems, followed by optimization of the 7. Aaraldsen, P. 0.: The Application of the

assembled structure in which the component optimum Superelement Method in Analysis and Design
solutions are extrapolated linearly using their of Ship Structures and Machinery
optimum sensitivity derivatives with respect to Components. Presented at the National
the system level design variables and internal Symposium on Computerized Structural
forces. The subproblems are organized Analysis and Design, George Washington
hierarchically into two levels. The variables at University, Washington, DC, Mar. 27-29,
the lowest level (the subsystem level) are 1972.
physical cross-sectional dimensions; the variables

at the highest level (the system level) are 8. Sobieszczanski-Sobieski,J.; Barthelemy,
quantities that govern the stiffness and mass J.-F; and Riley, K. M.: Sensitivity of
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Appendix A Suppose that the two-level optimization
procedure converged to a design in which the

Discussion of the Problem Dimensionality with Kuhn-Tucker (K-T) optimality criteria are
Examples satisfied at the system level and for each element

at the subsystem level. A natural question to
A stiffened panel of the type frequently used ask at that point is whether it would be possible

in aircraft wing covers is an example of an to obtain a better design, i.e., lower objective
element satisfying eq. (14). Assuming the panel function value, without violation of the
cross-section to be as in fig. A1, the number of constraints by continuing the optimization in the
cross-sectional design variables is n(e)=8, if y-space in a conventional one-level way. In other

stringers are laid in one direction only. To words, the question is whether there is anything
represent the panel as an orthotropic membrane in the two-level approach that would make it stop

'" finite element in structural analysis and in a short of the design that could be generated by a
minimum mass optimization, the stiffnesses Axx, one-level procedure. Examination of the K-T
Ayy, Axy, and mass M are needed which, for an conditions at the design point to which the
isotropic material, are uniquely defined by only two-level procedure has converged provides the
two elemental properties: TS-skin thickness, and answer. For the two-level procedure, the K-T
TR-equivalent ("smeared")thickness of the conditions corresponding to the system level
stringers to be used as the system level design eq. (20) are:
variables. Thus, t(e)=2 < n(e)=8.

"_• If the panel were made of several layers of a _F s _g_ _Ce

composite material, laid in, say, four different _t + _ _j _t + _ _e _t + O; t = 1 . n(e) * NEorientation angles then, including the angles

withassociated thicknesses in the set of the (B1a)
cross-sectional design variables, n(e)=2*4=8. The
panel mass and membrane stiffness definition s

requires, as above, total mass M, and g = O; (Blb)
orthotropic stiffness coefficientsAxx, Ayy, and r
Axy. The total mass is defined by total thickness
T, but, in contrast to the stiffened panel, the
stiffness coefficients depend on a11 cross- e

sectional design variables in an arithmetically C = O; e = 1+ NE (Blc)
complex w_y which does not make it practical
expressing them in a closed analytical form by a
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>0

j" (Bld) 0.015 rd, respectively. In addition, there are
constraints on the system ]eve] design variables
to guard against occurrence of physically

_e"> 0 (Ble) impossible combinations of these variables (e.g,,
moment of inertia disproportionately large with
respect to cross-sectional area). These

Simultaneously, at the subsystem ]eve] the additional constraints, which correspond to eq.K-T conditions for each element are consistent (2Of) are:with the formulation in eq. (15):

@Ce + +
BYi _ _t @gt @gb Ii blmintlmin b2mint_min@Y--_"_ _b _ = O; i = 1+ n(e) rain= + +12 12

(B2a)
e 3

gt = xt - f_ (ye) = O; t = I + t(e) (b2b) + t3minhmin

12

gb = 0 (B2c)

_b.> 0 (B2d) + blmintlmin(Ymin tlmin ) +
2

where gb denotes active side constraints on
variables y. t2

+ b2mint2min(tlmin+hmin+_mln .
2

"Equation (Bla) means that no further movement _ _min)2 +away from the design point is possible in the

X-space without violating constraints in eq. (Bib) )2through (B1e). + " (CI)Since eq. (B2b) can be interpreted hmlnt2min(tlmin+hmin-Ymin
as ]inking t(e) of the n(e) variables y in each

element to the variables Xe, it follows that where
the ].inkedvariables y can not be changed also.
However, the remaining n(e)-t(e) variables y in -- blmintlmin

each element also can not be changed because eq. Ymin = + b2mint2min(tlmin(B2) indicates that no further reduction of the 2
cumulative constraint Ce is possible without

violating the constraints in eq. (B2b) through + hmin + t2min )
(B2d). Thus, none of the y variables can be 2

changed and no movement away from the point is o hmin
possible in the y-design space which is exactly + hmint3min(tlmin + )/
the same conclus|on that would result from 2

satisfactionof the K-T conditions at the same (blmintlmin
point for a one-level optimization conducted

entirely in that space. Hence, one may assert + b2mint2min * hmint3min) (C1a)
that If the two-level procedure terminates because

of satisfaction of the K-T conditions at both ]]max = as above, replace subscript "min" with
levels, the K-T conditions at the corresponding "max."
point -inthe y-space for a one-level procedure are (C2)
satisfied also. Therefore, the termination point

of the_two-Ieve] procedure must be at ]east a Aimin = blmintlmin+b2mint2min+l°cal_constrainedminimum.

+ hmint3min (C3)
As noted in the body of the paper, this

assertion does not mean, however, that the two

procedures wil] arrive at the same result, Aimax = as above, replace subscript "min" with
evenwhen started from the same point, if the "max."
optimizationproblem is nonconvex. (C4)

limax = liA _ lib _ limaX (C5)Appendix C

Detailed Formulation of the Framework Test Cas,. where

This appendix provides details of the

constraint formulation for the framework at the 3 3

system level and at the subsystem (individual blmintlmin b2mint2min
beam) ]eve]. Constraints at the system level are liA = + +
imposed on the horizontal translation and ro_ation 12 12
at the upper right-hand corner of the framework in
both loading cases; the limits are 4.0 cm and t3minh3

+

12

12 •



h s = 2 (AlblC1 + A2B2C2 + A3B3C3) "_
+ b2mlnt2min(tlmtn + _ _ y)2 + (C9a)

/+ ht3min(tlmin+h. y)2 (CSa) T = AIB( + A2B_ + A3B_ - Im
2

in which

2 ( .Im = I - Alt2/12 - A2t /12

2

AI = b2t2
= [ blmintlmin+ b2mint2min(tlmin+h (Cgb)

12 A2 = bltI

t2min A3 = A - AI - A2

+ --2 ) + ht3min(tlmin+ _)/
Bo = (A1t2/2+ A2t2 + A3t2 +

(blmintlmin+b2mint2min+ht3min) (C5b) + A2tl/2)/A

and

BI = Bo - t2/2 ( (Cgc)

h = (A-blmintlmin-b2mint2min)/ (C5c) B2 = Bo - t2 - ti/2 (

t3min B3 = Bo - t2 J

and C1 = (A3/2+ A2)/A

C2 = CI - 1.0 I (C9d)liB = [1+2 (MOVELIMIT)]Iyi (C5d) C3 = C1 - 0.5

Constraintsin eqs. (C1),(C2),(C3),and
(C4)relatethe upperand lowerlimitsof the and the remainingproblemis constrainedonly by
systemleveldesignvariablesto thoseof the the sideconstraintsand inequalityconstraints.
localdesignvariables.The constraintsgivenin The expedientof usinga closed-formsolutionfor
eqs. (CSa)to (CSd)keep the cross-sectional the equalityconstraints(whichwas usedalso In
momentof inertiacommensuratewiththe ref. 25)does not detractfromgeneralitybecause
cross-sectionalarea. any establishedtechniquefor handlingequality

constraintscouldhavebeensubstitutedfor the
At the subsystem(individualbeam)level,the closed-formsolutionif sucha solutionwere

constraintsare prescribedfor an I-shaped unobtainable.
cross-sectionas shownin fig.3 whichalso
definesthe dimensionsusedas local (subsystem) The sideconstraintsare minimumgagesand
designvariables.Sincethereare two equality upperboundsas follows:
constraints:

bmin = 10.0,bmaX = 100.0,etc.
ei = Ai/AS-1= 0 (C6)
i i The inequalityconstraintsare imposedto

preventoverstressand buckling. The overstress
ei = li/IS-1= 0 (C7) constraintsare writtenin a standardform:2 i

one can eliminatetwo localdesignvariablesby gJ = o -1 (CLO)
expressingthem in termsof the remaining,
independentvariables.The appropriaterelations

- obtainedfromeq. (C6)and eq. (C7)are: wher_the materialallowableoa = 20,000
N/cm_ and o is a normalstressdue to axial

h = (-s + /s2 - 4RT)/2R (C8) forcecombinedwith a bendingmomentand computed
by meansof a textbookformulaN/A + Mc/I.

t3 = A3/h (C9) Equation(C10)is evaluatedat fourpoints,top
and bottomof the cross-sectionat bothendsof

where the beamand,thus,representsfourconstraints.
Similarly,a constrainton the maximumshear
stressis:

A3112+AIC +A2C +A3C (Cga> _T

gj T_a - 1 (Cll)
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where the allowable T = 11,600 N/cm2 and

T = VQ/It. Equation (_11) is evaluated at the Table 1 Interlevel flow of information
cross-section centroid at both ends of the beam --
and so it represents two constraints. System level (assembledstructure)

Buckling constraints guard the beam flange

stability under action of normal compressive elemental properties elemental optimum
stress, and the beamweb stability under action of and forces solutions and
shear stress. It ts assumedfor buckling their derivatives
evaluation purposes that each flange is a plate of xe; qe,z

thicknesst and widthb simplysupportedalong l_e;_e
threesidesand freealongthe fourthside. The
web is similarlytreatedas a platesimply ace/aT
supportedalongfoursides. The standardform
constraintsare: _?_e/@Qe,z

gJ= (/oab-I (C12) x

@ye/@Q_,Z

gj=(,(I,ab-I (C13)
Subsystemlevel (individualelements)

where o and T are computedas for the
overstressconstraintsand the criticalvaluesof
stressare obtainedfromthe familiarformulae:

Oab = 0.4 (0.904)E (C14) frameworkexampleto the genericquantities

tab = 5.5 (0.904)E (C15) (y = {...{y_}....} y = {....{bl,tl,b2,t2,h,t3}..

The bucklingconstraintsare evaluatedfor Xe = fe(ye) )A )e
boththe upperand lowerflangesand the web at = fe {bl,tl,b2,tz,h,t3}
bothends of the beam. (lyl 1

e = I, 2, 3.

Qe,z {N, M, T }e,z

'gS constraintson the loadednode
horizontaltranslationand
rotationdue to P and M

ge beam stressand localbucklingconstraints

F beammass M = f(AI,A2,A3)
NLC 2
NE 3
n 18
n(e) 6
t(e) 2
NE x t(e) 6
q(e) 3
r(e) 3x NLC = 6
z 2
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Table 3 Two-level procedure implemented for the framework test case

This table contains a step-by-step summary of the two-level optimization
procedure for the framework.

System level - whole framework Component(subsystem) level -
each separate beam

i. Defineloads. I. Initializedetaileddimensions.

2. Definedisplacementconstraints. 2. Compute A, I for eachbeam.

3. HOveto the systemlevel.

4. Analyzethe frameworkto compute
its displacementsand the end
forces(N,M,T,fig.2) on each
beam. Computederivativesof
thesequantitieswithrespectto
the A, I of eachbeam.

). _ve to the componentlevel.

6. For beam I, holdconstantthe end
forces N, M, T and the values
A and I.

Analyzethe beamto evaluateits
constraints,suchas stressand
localbuckling.

Forma singlemeasureof the
constraintviolationusing,for
example,an exteriorpenalty
function.

Optimize6 cross-sectional
dimensions as subsystem design
variables to minimize the measure
of constraintviolationas an
objectivefunctionsubjectto
minimumgageand other side
constraints,includingequality
constraintson A and I.
The equalityconstraintsassure
thatthe beams A and I
computedfromthe cross-sectional
dimensionsare equalto those
prescribedat the systemlevel.

7. For optimizedbeam,computede-
rivativesof the minimizedmeas-
of the constraintviolationand
the subsystemdesignvariables
with respectto the constants:
N, M, T and A, I.
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Table 3 Concluded.

8. Repeat steps 6 and 7 for beams
2 and 3.

9. Rove to the System level.

10. Approximate the minimized

measures of the constraint viola-
tion in each beam as linear func-
tions of 6 quantities A and

I by a linear Taylor expansion,
using the derivatives computed
in step 7. In this expansion
each of the end forces N, M, T
is also approximated as a linear

function of all 6 quantities A,
and I using derivatives cot_
puted in step 4.

1. Optimize 6 S_Stem level variables
A, |, to minimize structural
mass subject to:

(a)framework displacement con-
straints approximated as func-
tions of A and I by
linear Taylor expansion using
derivatives computed in
step 4.

(b)constraints requiring that the
minimized measure of the con-
straints violation in each

beam be reduced by a pre-
determined decrement.

(c)move limits on the variables
A and ! to protect
accuracy of the linear Taylor
expansions and to account for
side constraints of the sub-
system design variables. The
latter are approximated as
functions of A and ! by a
linear Taylor expansion using
derivatives computed In
step 7.

(d)side constaints un A and I.

12. Go back to step 4 with the system
level design variables A and
I obtained in step 11, and the
corresponding approximate sub-
system deign variables estimated
by a linear extrapolation as
described in step ]]c.

Terminate when:

(a)the framework displacements
are within constraints.

(b)the minimized measure of con-
straint violation for each
beam is reduced to at least
zero.

(c)no further reduction of the

framework mass appears
possible.
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Table 4 Comparison of Optimization Results

FINAL FINAL FINAL FINAL
INITIAL RESULTS RESULTS INITIAL RESULTS RESULTS

VALUES ONE LEVEL TWO-LEVEL VALUES ONELEVEL TWO-LEVEL
OPTIHI- OPTIHI- OPTINI- OPTIMI-

ZATION ZATION ZATION ZATION

Obj. 26,469 cm3 90,682 cm3 92,090 cm3 275,000 cm3 90,592 cm3 92,330 cm3

Beam I

bt II.0 10.0 10.3 30.0 13.0 I0:3
tI 0.275 0.491 0.571 1.0 0.450 0.569
h 22.0 78.1 73.9 50.0 74.9 74.0
t 3 0,275 0.517 0.518 1.0 0.497 0,519
b2 5.5 8.08 5.08 30.0 12.1 5.13
t 2 0.275 0.511 1.18 1.0 0.487 1.16

Beam 2

bl 11.0 10.3 10.3 30.0 11.4 10.7
ti 0.275 0.439 0.476 1.0 0.404 0.451

h 22.0 95.7 89.4 50.0 89.9 90.1
t3 0.275 0.421 0.414 1.0 0.397 0.417
b2 5.5 8.46 5.14 30.0 10.7 5.12
t 2 0.275 0.539 0.984 1.0 0.435 0.960

Beam 3

bt 5.5 5.0 5.03 30.0 7.50 4.98
tt 0.275 0.267 0.253 1.0 0.268 0.253
h 22.0 47.8 59.1 50.0 61.9 59.0
t 3 0.275 0.25 0.251 1.0 0.25 0.25
b2 11.0 10.0 10.0 30.0 10.0 10.0
t 2 0.275 0.332 0,400 1.0 0.369 0.393

NOTES: See Figure 3 for dimension definitions.
All beam dimensions are in centimeters.

LEVEL1 ENTIRESTRUCTURE

LEVEL2

l

i+l I

LEVEL I
_mEVa__ E +1--IJ

Fig. 1 Multilevel substructuring. Fig. 2 A Venn diagram for a two-level system
hierarchy of design variables.
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Fig. 8 History of one of the system level Fig. 10 History of the cumulative constraint
constraints--horizontal displacement usedas objective function in optimi-
due to force P. (a) infeasible design zatton of beam1, (a) Infeasible design
start. - (b) feasibledesignstart, start. - (b)feasibledesignstart.
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Fig. 12 Detailed history of the constraint from

fig. 11(a) over the iterations of the
Fig. 9 History of local design variables for beamlevel optimization during cycle

beam1, (b) feasible design start. No. 8.
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Fig. 13 Comparison of the cumulative

constraint of beam1 as predicted
by linear extrapolation at the
system level and calculated in
fullanalysis,(a) infeasible
design start. - (b) feasible designstart.
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Fig. A1 An example of detailed design
variables y of a stiffened panel.

20





1, Report No. 2. Government Accession No. 3, Recipient's Catalog No.

NASATM 84641
4, Title and Subtitle 5. Report Date

March 1983
STRUCTURALOPTIMIZATIONBY MULTILEVELDECOMPOSITION 6. Performing Organization Code

505-33-53-12

7. Author(s) 8. Performing Organization Report No.

Jaroslaw Sobieszczanski-Sobieski*, Benjamin James**, and

AugustineDovi** 10.WorkUnitNo.
9. Performing Organization Name and Address

NASA LangleyResearchCenter 11.Contractor Grant No.

Hampton,VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address TechnicalMemorandum
NationalAeronauticsand Space Administration 14 SponsoringAgencyCode
Washington,DC 20546

15. SupplementaryNotes*LangleyResearchCenter,**KentronInternationalInc.
Presentedat AIAA/ASME/ASCE/AHS24th Structures,StructuralDynamicsand Materials
Conference,Lake Tahoe, Nevada,May 2-4, 1983. AIAA No. 83-0832-CP

16. Abstract

A method has been described for decomposing an optimization problem into a set of sub-

problems and a coordination problem which preserves coupling between the subproblems.
The decomposition is achieved by separating the structural element optimization sub-
problems from the assembled structure optimization problem. Each element optimization
yields the cross-sectional dimensions that minimize a cumulative measure of the element
constraintviolations,assuming that the elementalforcesand stiffnessare held
constant. The assembledstructureoptimizationproducesthe overallmass and stiffness
distributionsoptimizedfor minimum total mass subjectto constraintswhich includethe
cumulativemeasures of the elementconstraintviolationsextrapolatedlinearlywith

respectto the elementforces and stiffnesses. The method is introducedas a special
case of a multilevel,multidisciplinarysystem optimizationand its algorithmis fully
describedfor two-leveloptimizationfor structuresassembledof finite elementsof
arbitrarytype. Numericalresultsare given for an exampleof a frameworkto show that
the decompositionmethod convergesand yields resultscomparableto those obtained
withoutdecomposition. It is pointedout that optimizationby decompositionshould
reducethe design time by allowing groupsof engineers,using differentcomputersto
work concurrentlyon the same large problem.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

decomposing optimization problem Unclassified - Unlimited
multilevel,multidisciplinarysystem
optimization, SubjectCategory- 05

mass and stiffnessdistributions

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 21 A02

N-3O5 ForsalebytheNationalTechnicalInformationService,Springfield,Virginia22161





4472
31


