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Structural Optimization Incorporating
Centrifugal and Coriolis Effects

Howard D. Gans*
Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433

and

William J. Andersont
University of Michigan, Ann Arbor, Michigan 48109

The problem of structural optimization in the presence of centrifugal and Coriolis effects was studied for a
rotating blade and for a rotating beam. A finite-element formulation was used and optimization was performed
by applying nonlinear inverse perturbation. Centrifugal forces were modeled by the use of differential stiffness
in a small displacement approximation, and Coriolis effects were obtained by employing Coriolis finite-element
matrices. The nonlinear inverse perturbation scheme was then modified to account for the mild geometric
nonlinearities posed by differential stiffness and was also modified to incorporate the complex phase changes
resulting from Coriolis effects. Finally, the method was applied to small and large changes in the fundamental
(bending) frequency of two rotating systems. Satisfactory results were obtained.
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Nomenclature
element planform area
element Coriolis matrix
desired value (super- or subscript)
elemental subscript
general system matrix
system stiffness matrix
infinitesimal displacement stiffness matrix
cubic expansion element stiffness
system mass matrix
generalized mass for the /th mode
element mass
predictor, corrector (super- or subscript)
first derivative, shape function matrix
displacement vector
radial distance to element centroid
element thickness
element change property
perturbation operator
matrix of eigenvectors
real eigenvector
complex eigenvector
imaginary eigenvector
rotational speed (hz)
eigenfrequency
diagonal matrix of eigenfrequencies
percent of desired frequency change
percent of weight change
time derivitave
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Introduction

T HE desire to minimize weight while meeting design re-
quirements is a key concept in optimal structural design.

When a particular structural component is being examined,
the engineer must consider many aspects of structural behav-
ior, such as dynamic response. These parameters must be
bounded in the design phase while still meeting the overall goal
of minimizing weight.

There are numerous occasions when the design of an existing
structure is found wanting and this creates the need for struc-
tural redesign. For example, the mission of a particular air-
craft that has been used for many years may change. The
aircraft structure may then be subjected to loads that could not
have been foreseen in the original design.

In any structural redesign problem, there are several possi-
ble candidate designs that would meet the new criteria. Struc-
tural optimization can be used in the redesign problem to find
the best possible configuration. The objective function for
redesign, however, may be quite different from the objective
function in the original design of a part. It may not be suitable
to concern oneself only with weight. If the dimensions of an
existing part are altered too much, it may no longer fit in the
aircraft. Existing fastener locations may no longer be suitable.
The balance of the entire aircraft may be thrown off. There-
fore, it may be necessary to obtain the optimal design that
requires the least possible change from the original design in
terms of some dimension, such as thickness. This is a mini-
mum design change criterion for optimization.

Some structures, because of their application, are subject to
body forces in addition to the loadings caused by boundary
forces. Rotating bodies experience centrifugal and Coriolis
effects. In the rotating frame, the centrifugal effects may be
viewed as a reversed-effective pseudoforce. If the rotational
speed is small enough, these forces can be neglected. In high-
speed applications, however, the body forces must be taken
into account. Centrifugal force in particular can result in stiff-
ening. This stiffening is particularly obvious for rotating heli-
copter blades. When the blades are at rest, they sag under their
own weight. As the blades speed up, they stiffen, to the point
where they can bear not only their own weight, but the weight
of the entire aircraft.

A similar effect occurs in aircraft gas-turbine engines. The
rotating blades in a high-speed compressor and turbine are
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subject to these body forces. With the advent of higher-speed
blading, it is necessary to include this effect in the design. This
introduces a nonlinearity in the finite element analysis and
optimization scheme.

Coriolis force is another body "force" that a rotating body
may experience when viewed in a rotating coordinate system.
This force, also known as gyroscopic force, couples motion in
one plane with motion in another plane. Gyroscopic effects are
velocity-dependent; that is, the greater the velocity in one
plane, the greater the effect in the other plane. In systems that
permit large amounts of out-of-plane motion, such as in
pretwisted blades, the Coriolis forces will become great at high
speeds, and thus will affect optimal redesign

Literature Survey

The basic equations of motion for rotating cantilevered
structures have been extensively investigated. Houbolt and
Brooks1 showed that centrifugal force increases the first bend-
ing frequency for a rotating blade. This subject was also stud-
ied by Carnegie and Dawson for pretwisted blades.

2
 Coriolis

effects have also been discussed by several authors. Hunter3

dismisses these effects as being insignificant in comparison
with centrifugal forces; however, Subrahmanyam and Kaza4

determined that Coriolis forces are an important influence
under certain geometries.

In the field of finite element solutions of rotating systems,
Thomas and Sabuncu,5 using a finite element method, solved
the problem for a twisted blade but did not include rotational
effects. Dokainish and Rawtani6 obtained a finite element so-
lution for a rotating plate that included centrifugal forces.
However, they neglected Coriolis effects.

If a baseline structure exists but it is found that the response
of the structure is unacceptable and modification is necessary,
perturbation techniques may be employed to obtain the de-
sired values. Stetson

7
 introduced small changes in the mass and

stiffness moduli of a structure. He used a first-order perturba-
tion method that obtained the mode shapes for the perturbed
structure. He introduced the concept of "admixture coeffi-
cients" that expressed the mode shapes of the perturbed struc-
ture in terms of combinations of the baseline mode shapes.
Stetson and Harrison8 expanded this technique to encompass
a finite element structural formulation and applied it to several
problems. Sandstrom and Anderson9 related Stetson's admix-
ture coefficients to physical changes in the finite element
model. Kim et al.10 obtained a complete nonlinear inverse
perturbation technique using the equations of dynamic equi-
librium. A sequential unconstrained minimization technique
(SUMT) penalty function method was used in which the objec-
tive function was minimum weight and the penalty term in-
volved a normalized set of residual force vectors.

One major problem of the nonlinear inverse perturbation
method is that for a large problem, the number of calculations
required become excessive. For that reason, Kim and Ander-
son11 used generalized dynamic reduction to transform the
problem into a small-sized subspace. Hoff et al.12 overcame
the difficulties in applying the nonlinear inverse perturbation
method by using an incremental predictor-corrector technique.
In the predictor phase, element changes necessary to enforce
the desired mode shape and frequency changes are obtained
through a first-order solution of the dynamic equations. In the
corrector, approximate eigenvectors are obtained for the ob-
jective system, which are then used to correct the elemental
changes.

Queau and Trompette13 applied changes in inertia properties
during the redesign process to determine changes in centrifugal
stiffening affecting optimization, neglecting Coriolis effects.
Their method also involved linear design sensitivities. It also
did not update the eigenvectors during the optimization pro-
cess, requiring a large number of calculations. Only beam
elements were used, and their procedure cannot be used on a
general class of problems, particularly platelike bodies. Keng-

tung and Gu14 studied the problem of rotating blades for small
(10-element) problems. However, Coriolis effects were not in-
cluded and they employed only plate elements.

As mentioned previously, rotational effects are evident in
helicopter problems. Dzygadlo and Sobieraj15 provided a finite
element solution for rotating helicopter blades including cen-
trifugal effects. Bennett16 examined the application of opti-
mization methods to problems in the design of helicopter ro-
tors. His optimization scheme involved a linear design
sensitivity approach. It did not account for the changes in
blade weight and inertia properties since these affect centrifu-
gal forces in a nonlinear manner. Therefore, he required that
blade weight and inertia remain fixed during the process of
optimal design.

In this analysis, the optimization problem of a rotating sys-
tem was studied with centrifugal effects included for both plate
and beam elements. Centrifugal forces and Coriolis effects
were both included in the optimization problem involving
beam elements. Elemental inertia, Coriolis, and stiffness prop-
erties were allowed to vary at all stages of the analysis. There-
fore, this approach is more general than those used previously.

Theoretical Formulation
Equation of Motion

The equation of motion for an unforced conservative system
including Coriolis but no damping may be written as

(D

To describe a rotating system in the presence of centrifugal
effects, the total stiffness matrix [Ktot] may be expressed by

(2)

[KD] is the differential stiffness matrix for the assembled
system, often called geometric stiffness or initial stress matrix,
and models the mild structural nonlinearity due to applied
loads. Centrifugal effects may be considered just such an ap-
plied load, and the element differential stiffness matrix may be
expressed by17

= I N ' ]
T
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where [s] is the matrix of applied stresses such that
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The matrix [B] represents the assembled, skew-symmetric,
system Coriolis matrix. The derivation of the element Coriolis
matrix is fully described by Cans.18

Eigenvalue Problem for Conservative Coriolis Systems

Equation (1) represents the problem in free vibration of a
conservative Coriolis system. The solution to this equation is
of the form

[ q ( t ) ] = e
p

' l q ] (5)

where p is a constant complex scalar and ( q } a constant
complex vector. Equation (5) is introduced into Eq. (1) and the
following characteristic equation is obtained:

\p
2
[M]+p[B] + = 0 (6)
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This equation gives a polynomial of degree 2n in p. Due to
the symmetry of the mass and stiffness matrices and the skew
symmetry of the Coriolis matrix, all of the odd powers of p are
absent from the characteristic equation. The eigenvalues will
consist of n pure imaginary conjugate pairs, pr = ±/c*v, where
r = 1,2,...,«. The eigenvectors will also occur in complex con-

jugate pairs, [q}r=[y]r + i(z}r, ( Q ) r = {>> )r ~ /U ) r, where

{y } r is the real part and / {z } r the imaginary part of the eigen-
vector (q }r. This implies that the amplitude ratios will not, in
general, be real. Therefore, the components of an eigenvector
pair for a given eigenvalue pair will oscillate at the same fre-
quency but not in phase.

Perturbation Methods Including Differential Stiffness

We first wish to determine the influence of element thickness
upon the differential stiffness matrix of beam and plate ele-
ments. Let 0 be the rotational frequency of a structure about
an axis perpendicular to its rotation. The centrifugal force F
as applied to an element of the structure with a centroid at a
radial distance r0 from the axis of rotation, and mass m is
given by

Eq. (15) is replaced by

F = 4<jr
2
Q

2
r0m (7)

This illustrates that the centrifugal force is linearly depen-
dent on thickness. In Eq. (3), the differential stiffness matrix
is linearly dependent on the centrifugal force, although the
constant of proportionality may be dependent on geometry.
Therefore, we can say

(8)

This implies that a change in thickness will affect the element
differential stiffness matrix linearly.

Stetson and Palma19 related baseline and objective systems
through perturbations of the baseline system quantities. The
stiffness and mass matrices are perturbed by

[*'] = [k] + [A*]

[m'} = [m] + [Am]

(9)

(10)

These perturbations will cause perturbations in the dynamic
response. The perturbations in the eigenvalue and eigenvector
matrices are given by

(12)

The structural changes described in Eqs. (9) and (10) can be
decomposed into p element change properties whereby a group
of elements may be allowed to change. Thus,

e=l

£
e=\

(13)

(14)

Furthermore, each element change can be expressed as a
fractional change ae from the baseline system. The change cte

may represent a change in element thickness. In general, ae can
be expressed by

= [me]ae

(15)

(16)

£ + a*)

(17)

where [kemcmb] contains the membrane components, [&ediff] the
differential stiffness components, and [kebend] the bending
components of [ke].

Equation (17) also holds for beams, with the exception that
the element stiffness matrix containing only extensional prop-
erties, [keaa\, replaces [kemmb].

Stetson developed a matrix eigenvalue and eigenvector re-
design method using perturbation. The generalized form with-
out Coriolis terms, for ij — 1,2, . . . ,« , is given by

(18)

For the case of nonrepeated eigenvalues, Sandstrom and
Anderson obtained the following expression, nonlinear in the
element change property ae, for the physical mode shape
change for the kth degree of freedom:

(for j * /) (19)

Similarly, using the relationship for the change in the ele-
ment mass matrix, Eq. (16), and the nonlinear relationship for
the change in the element stiffness matrix, Eq. (17), results in
the following expression, nonlinear in the element change
property cte, that describes the change in the natural frequency
to the ith mode:

For plates, the bending component of the stiffness matrix,
however, varies as the cube of the plate thickness. Therefore,

(20)

In applying the method just described in finite element anal-
ysis, practical considerations make it necessary to divide the
quadrilateral elements in the finite element model into two
elements: one with only membrane stiffness and one with only
out-of-plane (flexural) stiffness. These elements are then su-
perimposed. This permits multiplication of the stiffness terms
representing membrane properties by a linear element change
factor, whereas the stiffness terms containing the flexural
properties can be altered by a nonlinear change factor.

Perturbations of the System Including Coriolis Effects

When the original system is modified in the optimization
process, it can be said to be perturbed. The perturbed system
must also obey the equations of equilibrium. Let the perturbed
system be distinguished from the original by primes. There-
fore, the equations of motion for the perturbed system in free
vibration including Coriolis effects may be written as
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A solution is now assumed: where

(22)

This results in the following equation for the perturbed sys-
tem:

+ W}
T
[K'W] = 0 (23)

The perturbed system can be related to the original, un-
primed system by

[H'\ = [H] + [AH] (24)

The global changes in mass and stiffness in terms of element
change properties have been defined prevoiusly. Similarly, the
global change in the Coriolis matrix is given by

[AB] = £ [
e=l

(25)

(26)

The last equation is justified because, as we have seen, the
Coriolis matrix is linearly dependent on element mass. The
element mass is itself linearly dependent on changes in thick-
ness, the element change parameter.

Equations (25), (26), and the relationships for mass and
stiffness perturbations are applied to Eq. (23). Terms in A of
order 2 or higher are eliminated, as are the baseline equilib-
rium terms. The equations are expanded for all modes and an
expression for the change in the eigenvalue in terms of admix-
ture coefficients c// is obtained, such that

(27)

(30)

However, it must be remembered that the eigenvector itself
is a complex quantity with both amplitude and phase com-
ponents. Let us express the complex eigenvector for the /th
mode { \ / / ] as

Therefore, Eq. (30) becomes two equations: one that equates
real parts and another that equates imaginary parts. These are,
respectively,

(32)

and

(33)

Note that for the case of no Coriolis terms and purely real
eigenvectors, Eq. (32) degenerates to Eq. (20) and Eq. (33)
becomes identically satisfied.

To determine the eigenvector change in the Coriolis system,
the admixture coefficients c// previously defined in Eq. (27)
can be used. From these admixture coefficients, the eigenvec-
tors of the perturbed system can be obtained

A , =fe

(for j * i) (34)

where cu are small and c// = 0. This results in the following
expression for the change in natural frequency in scalar form:

(28)

Applying the definitions for the changes in the structural
matrices to the foregoing equation and setting i-j, one ob-
tains the following expression for the frequency change for the
/th mode due to application of the element changes ote:

(29)

Optimal Redesign Methodology

The predictor-corrector method for optimal redesign is de-
veloped by first defining the element change property ote by

ae = Ate/te (35)

The first design change seeks a 10% increase in the fundamen-
tal flexural modal frequency. In the predictor step, we will
assume that the element change ae is small; therefore, the
quantiy (1 + ae)

3
 - 1 may be approximated by 3ae. This results

in a 3.11% error, but is done so as to facilitate solving for ae,
which we shall see will be the unknown in the inverse perturba-
tion scheme.

The predictor relates the change in the element change prop-
erties to a prescribed change in the desired eigenfrequency. In
this way, the equation predicts what the system configuration
should be for a given amount of frequency change. In the
absence of Coriolis effects, Eq. (20) serves as the predictor
equation. For the complex case involving Coriolis effects, Eqs.
(32) and (33) act as the predictor equations. Note that in that
case there are two predictor equations.

For a single-element case, the predictor can be solved as one
equation with one unknown. For multiple elements, the excess
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unknown element change properties can be found by optimiz-
ing some function, such as minimum weight or minimum
structural change. The predictor then becomes an equality
constraint in the optimization scheme. In the Coriolis prob-
lem, there are two equality constraints. Therefore, it is seen
that the problem becomes one of parametric optimization,
with thickness as the parameter to be optimized.

In the examples that follow, the augmented Lagrange multi-
plier method is used to solve the problem in optimization using
the automated design synthesis (ADS) program.20 In addition
to the equality constraint or constraints provided by the pre-
dictor equations, inequality constraints are also formulated.
The first inequality constraint requires ae to be greater than
-0.5. This ensures that the element thickness will always be
positive during the redesign process and in no case will an
element be reduced by more than 50%. This makes certain that
unwanted secondary effects, such as static failure due to the
"applied" centrifugal load, will not occur.

The second inequality constraint forces the ote to be less than
1E5. This supplies an upper bound to the search procedure.
The function to be minimized in the first example is the design
change:

and

/({«,})= (36)

Alternatively, the function to be minimized could be mini-
mum weight. For a system of uniform density, this function is
given by

(37)

The element change properties determined from Eqs. (36) or
(37) are used to recompute the cross-sectional area and mo-
ments of inertia for each element. A reanalysis is then accom-
plished to determine the eigenvalues and eigenvectors. The
perturbed eigenvectors are necessary to perform the corrector.

The corrector examines the potential energy imbalance be-
tween the system output from the predictor and the desired
system and corrects the imbalance through additional element
changes. This enforces the natural frequency constraint on the
/th mode. The following equation represents that energy bal-
ance for the example with no Coriolis effects and is used as the
corrector equation:

jftAf] w)/ - (38)

If Coriolis effects are included, then two equations repre-
senting the energy balance equation, the first equating real
parts and the second equating imaginary parts, are used for the
corrector

£

(39)

E few}j[ke](r}/ + ({</> ' j f t&e
e=\ L

(40)

Notice that when the Coriolis effects are absent, the foregoing
equations degenerate to those used previously.

The perturbed eigenvectors may be obtained in one of two
ways. The first method, just mentioned, is to simply run the
predictor system. This yields the full, nonlinearly perturbed
matrix of eigenvectors and the desired mode can be easily
partitioned out. The second procedure involves the applica-
tions of Eq. (20) in the absence of Coriolis effects or Eqs. (39)
and (40) if Coriolis effects are present. These equations are
linear approximations of the perturbations in the eigevectors.
However, using the results of reanalysis, one obtains the full,
nonlinear changes in the eigenvector, as well as the intermedi-
ate results of the system resulting from the predictor step
alone. This comes at the price of an additional finite-element
analysis, but the matrix multiplications inherent in Eqs. (20) or
(39) and (40) are thereby avoided. In this paper, reanalysis was
used to obtain the intermediate eigenvectors.

Optimal Redesign Examples
Rotating Compressor Blade

The first example problem is a curved rotating blade, of
which the finite-element model is shown in Fig. 1. The blade is
made of Inconel 718 steel, has a radius of 254.0 mm, and
rotates at a speed of 200 hz. It has an angle of attack of 30 deg
and is modeled after a NACA 64 airfoil. This is a blade typi-
cally found in a jet engine high-pressure compressor.

The finite elements are each divided into two subelements;
one with membrane properties only and another superimposed
element with only bending properties. This particular finite-
element model has approximately 1000 degrees of freedom.
The elements are grouped (linked) into 12 regions (Fig. 2).
During the analysis, the thickness of the regions will change,
but the elements within each region will maintain a common
thickness. Each superimposed membrane and bending element
will also keep a common thickness. Regions 1 through 3 have
a thickness of 1.734 mm, regions 4 through 6 a thickness of
2.312 mm, regions 7 through 9 a thickness of 3.005 mm, and
regions 10 through 12 a thickness of 3.467 mm. This represents
an airfoil that is 5% thick at the tip and 10% thick at the root.

For the nonrotating system, the fundamental frequency is
7665.6 rad/s. For the rotating system including centrifugal

Fig. 2 Blade regions.

Fig. 1 Rotating blade. Fig. 3 Mode shape 1: blade rotational effects included.
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Table 1 Optimization results for blade, 10% change

Case Opt. o?f(E3) °7oAp %AC

1 C/C 8.380 9.218 9.246
2 W/W 8.380 9.218 9.210
3 W/C 8.380 9.218 9.210

103.0 4.09 9.220
99.1 -14.1 8.948
99.1 -14.1 9.217

100.0 0.025
67.7 -37.3
99.9 -14.0

Y

Fig. 4 Optimally redesigned blade: case 1, minimum change.

Fig. 5 Optimally redesigned blade: case 2, minimum weight.

Fig. 6 Optimally redesigned blade: case 3, hybrid.

effects, the fundamental frequency is 8380.2 rad/s. This im-
plies a 9.32% increase in fundamental frequency due to the
centrifugal effect of rotation. Figure 3 shows the first mode
shape for the rotating blade, including centrifugal effects.

The problem of the rotating blade was analyzed for several
cases and using several different methods to account for non-
linearities. In cases 1 and 2, a 10% increase in the fundamental
eigenfrequency was desired, with the objective function for
case 1 being minimum change and the objective function for
case 2 being minimum weight. Centrifugal effects were in-
cluded in both the structural analysis and optimization, but
Coriolis effects were neglected. Results of both predictor and
corrector are shown in Table 1. The predictor results can be
considered to be results from a linear, one-step analysis since
the effect of redesign on the eigenvectors does not enter into
the predictor procedure. Improvements from the predictor to
corrector step show the benefit of the use of nonlinear opti-
mization techniques.

In Table 1, the first column denotes the objective functions
used in the predictor and corrector, respectively. The symbol
C/C denotes minimum change in both steps. If W/W is indi-
cated, minimum weight was used in both the predictor and
corrector. The use of W/C, which symbolizes that minimum
weight was used in the predictor while minimum change was
used in the corrector, indicates a hybrid approach that shall be
described later.

Figure 4 shows the final spanwise optimized thickness of the
structure for case 1, with thickness differences exaggerated.
Figure 5 shows the final optimized shape (exaggerated) of the
structure for case 2. Notice that in the minimum change exam-
ple, emphasis is given to adding material at the root. In the

minimum weight-minimum weight example (case 2), all of the
regions except for the root have been reduced to the lower limit
on thickness. This is the pathological case in optimization
where the system is driven to an extreme. When this is done in
this example, undesirable side effects occur, such as mode
switching. The first bending mode is no longer the fundamen-
tal frequency and the solution to the problem in optimization
is no longer dependable. The frequency results shown for the
corrector are for the bending mode; however, this frequency is
technically no longer coi.

A way out of this quandary can be found by a close exami-
nation of the results of the predictor. This step obtains 99% of
the desired frequency change and also a weight reduction of
14%. Therefore, this solution is close to the frequency con-
straint, and only a small change is necessary to satisfy it. This
implies that a hybrid aproach involving a predictor step with a
minimum weight objective function and a corrector with a
minimum change objective function could work.

The results of this hybrid approach are shown in case 3 and
Fig. 6. In this example, material is added at the root but
proportionally less than in the minimum change-minimum
change situation. Emphasis is given to removing material from
the outboard regions, with most material removed from the
second set of elements from the end. Since minimum weight is
the objective of the predictor, it is not surprising that more
material is removed in case 3 than in the case 1 situation.

Two other problems were studied; both involved large
(30%) changes in the fundamental frequency. In case 4, the
30% change is accomplished in one step. A second iteration is
performed to obtain an improved solution (case 5). In another
situation, the 30% change is broken down into three 10%
increments (cases 6 through 8). In both of these examples, only
a minimum change optimization function is used. Table 2
shows the results of the iterative procedure. The linear predic-
tor step obtains the desired frequency change with less than
24% accuracy, but at the end of the first iteration, the desired
frequency change is accomplished to within less than 1%. The
second iteration is done for completeness and gives the desired
change in fundamental frequency to within 1/100 of 1%.

In Table 3, each increment obtains the desired change in
frequency for that increment. The final increment, which com-
pletes the 30% change, gives the desired change to within
9/100 of 1%. Tables 2 and 3 show that excellent accuracy on
the frequncy goal is obtained, indicating the feasibility of mak-
ing large changes.

In the optimization procedure, the optimizer itself is run
iteratively, with the solution of the previous step becoming the
starting point for the succeeding step (the initial starting point
is the origin). In nonlinear mathematical programming, the
approach is to minimize the objective function while driving
the equality constraint function to zero. In no case were more
than seven optimizer runs required.

Rotating Beam Incorporating Coriolis Effects

The next example will consider the case of a rotating
cantilever beam. The beam itself is aluminum 2024T-6 of
length L equal to 250 mm, with moment of inertia / equal to
32,552 mm4, cross-sectional area>l of 625 mm2, Young's mod-
ulus E of 73,770 MPa, Poisson's ratio v equal to 0.33, and
density p of 2.774E-9 MG/mm3. The beam rotates at a speed
of 300 hz.

For the nonrotating problem the frequency for the first
mode, which is a bending mode, is 209.3729 rad/s. When
centrifugal effects are included, the fundamental frequency is
295.2001 rad/s, an increase of 40.99%. When Coriolis effects
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Table 2 Optimization results for blade,
30% change iterative procedure, minimum change

Case Opt.

c/c
w/w

8.380
10.02

10.89
10.89

11.47
10.89

123.0
100.0

13.70
9.68

10.92
10.89

101.0
100.0

9.80
9.68

Table 3 Optimization results for blade,
30% change incremental procedure, minimum change

Case

6
7
8

Opt.

C/C
c/c
c/c

<o,(E3)

8.380
9.220

10.07

«f(E3)

9.218
10.06
10.90

c#E3)

9.246
10.08
10.91

%AP

103.0
103.0
102.0

%AWP

4.09
8.62

13.7

«J(E3)

9.220
10.07
10.90

%AC

100.0
100.0
100.0

<7oA*Fc

0.025
8.46

13.6

Table 4 Optimization results for beam, 10% change, Coriolis effects included

Case

9
10
11

Opt.

C/C
w/c
c/c

o)1(E3)

2.952
2.952
2.952

«f(E3)

3.247
3.247
3.247

o#E3)

3.202
3.142
3.235

%AP

84.6
64.5
95.9

%wrp

2.01
-16.1

2.63

«J(E3)

3.236
3.231
3.246

°/oAc

96.2
94.5
99.5

<7oA^c

1.86
-15.1

2.68

are included in addition, the fundamental frequency drops
slightly to 295.1942 rad/s. The inclusion of Coriolis forces in
the rotating problem decreases the fundamental frequency by
- 0.002% from the rotating problem that includes centrifugal
but not Coriolis effects.

Table 4 summarizes the results from the optimal redesign of
the rotating beam. The notation is the same as for the rotating
blade. In case 9, centrifugal effects are included in both the
structural analysis and in the optimization. A minimum
change objective was used. Case 10 was identical to case 9;
however, the hybrid procedure was utilized, incorporating a
minimum weight objective function in the predictor and a
minimum change objective function in the corrector. Coriolis
effects were included in case 11 in both the structural analysis
and equations of constraint. Optimization was accomplished
using a minimum change objective function.

Summary of Results

The predictor-corrector method breaks the solution of the
problem of nonlinear optimal redesign into two parts. The first
part, the predictor, solves for the required structural changes
for a given required change of frequency. In this step, the
effect of structural changes on the mode shapes is not consid-
ered. Therefore, this part of the solution may be considered
conventional linear structural analysis. In the corrector, the
effect of the structural changes on the mode shapes is taken
into account and the system is once again modified to obtain
an improved solution.

In all of the examples involving the rotating blade, the final
result of the predictor-corrector approach obtains the desired
frequency change to within 1%. In the minimum change cases,
the linear predictor overshoots the solution by a few percent.
The corrector changes the final solution so that the eigenfre-
quency is at the desired value. Even for large changes, the
predictor-corrector method obtains the desired solution if suit-
able iteration or incrementing is done.

For the rotating beam with a minimum weight objective
function, the linear predictor undershoots the desired fre-
quency goal by quite a bit, as much as 35%. The corrector
obtains the desired frequency to within 1%.

The rotating beam shows some other interesting results. In
case 9, the desired change is obtained within 4%. In case 10,
there is a lot of undershoot by the predictor, but the corrector
obtains the desired solution within 6%. When both centrifugal
and Coriolis forces are included in case 11, the best solution is
found. The linear aproach gives an answer to within 5% and
the corrector improves this to within 1 %. The method used in
case 11 represents the best theoretical formulation. The equa-
tions used represent the full nonlinear structural approach
with both centrifugal and Coriolis effects.

Naturally, there are some limitations inherent in the re-
design method proposed in this paper. Currently, only dy-
namic constrants are included. In a real-world design, static
considerations, such as design limits on stress or displacement
due to the "static" centrifugal loads, are important and must
be considered. Therefore, in future work, these static effects
must be included as constraints in the optimization process.
However, static reanalysis of the system resulting from dy-
namic optimization only was accomplished in the present
work, and side constraint on minimum blade or beam thick-
ness were imposed to avoid yielding, as mentioned previously.

Another potential difficulty with the optimization method
used is the real possibility of mode switching. Once again, side
constraints on thickness were imposed in an attempt to avoid
this problem. Additional constraint equations could be added
to the optimization problem to directly avoid the problem of
mode switching.

However, as noted in the design examples presented, mode
switching did occur when the objective function for both pre-
dictor and corrector was minimum weight. In fact, the solution
algorithm emphasized minimizing the objective function at the
expense of satisfying the frequency constraint. To avoid this
problem, the objective function as altered to minimum change
for the corrector step, and this minimum weight-minimum
change procedure is offered as the preferred mechanism for
obtaining net minimum weight while still meeting the fre-
quency constraint and avoiding mode switching.

Finally, in the large change procedures involving the blade,
the incremental change method gave slightly (less than 4%)
higher final configuration weight than the iterative procedure
(see Tables 2 and 3). This difference results from numerical
difficulties arising from the divergence of an approximate in-
cremental solution from the true solution. The iterative proce-
dure exhibited this problem to a lesser degree.

Comparison with Other Methods

Queau and Trompette obtained minimum weight designs
with constraints on frequency. Their method incorporated the
centrifugal effects but not Coriolis. In the method imple-
mented here, when minimum weight is employed, the second
station from the free end has the minimum thickness and the
end bulges out, although it remains less thick than the original
design. This result was also obtained by Queau and Trompette.

Olhoff and Parbery21 examined the optimization of rotating
beams with respect to frequency constraints. However, they
employed lumped masses that tend to alter the optimized shape
from the purely distributed mass approach. Their final shapes
indicated tapering except near the region surrounding a
lumped mass where bulging then occurred. Coriolis effects
were ignored.
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Conclusions
The predictor-corrector method for structural optimization

using inverse perturbation was extended to incorporate cen-
trifugal and Coriolis effects. Centrifugal forces were treated as
a static stiffening preload and the Coriolis terms were formu-
lated into a separate velocity-dependent matrix. With Coriolis
effects excluded and a frequency constraint involving a 10%
increase in the fundamental eigenfrequency, the linear predic-
tor obtained the required change within 2% for the blade or
5% for the beam. The nonlinear corrector obtained a final
optimized system that met the frequency constraint within 1 %.
Thus, the predictor-corrector method for nonlinear redesign
obtained excellent agreement between the desired eigenvalue
and the calculated eigenvalue.

When Coriolis effects were included, both the magnitude
and phase of the components of the fundamental eigenvector
were required to obtain the equations of constraint. This com-
plex eigenvalue analysis was adapted to the nonlinear inverse
perturbation predictor-corrector approach. The method was
applied to the problem of the rotating beam. Once again, the
desired frequency change was obtained to within 1 %.

The problem of large frequency change (30%) was tried for
the rotating blade incorporating centrifugal effects. Both an
iterative and incremental solution were accomplished, and in
each case the desired frequency was achieved almost exactly.
Thus, it is seen that the predictor-corrector method is extraor-
dinarily stable, obtaining even large changes with excellent
correlaton between the desired change in the eigenvalue and
the calculated change resulting from the redesign process.

The use of a minimum weight objective function in both the
predictor and corrector steps resulted in a pathological solu-
tion with all mass concentrated at one area. To correct this
deficiency, a minimum change objective function was used in
the corrector step. This hybrid approach combined the desired
goal of minimum weight with the stability of the minimum
change objective function.

In summary, the predictor-corrector method for optimal
redesign as extended in this work obtained the desired fre-
quency changes with excellent accuracy. The methods used
were applied to several test problems, one being a curved blade
with nearly 1000 degrees of freedom. In each case, the desired
frequency change was obtained to within a few percent. There-
fore, the approach works and can be applied to frequency
control problems in the optimal redesign of rotating systems.
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