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Abstract

Human skill learning requires fine-scale coordination of distributed networks of brain regions linked by white matter tracts

to allow for effective information transmission. Yet how individual differences in these anatomical pathways may impact

individual differences in learning remains far from understood. Here, we test the hypothesis that individual differences in

structural organization of networks supporting task performance predict individual differences in the rate at which humans

learn a visuomotor skill. Over the course of 6 weeks, 20 healthy adult subjects practiced a discrete sequence production task,

learning a sequence of finger movements based on discrete visual cues. We collected structural imaging data, and using

deterministic tractography generated structural networks for each participant to identify streamlines connecting cortical

and subcortical brain regions. We observed that increased white matter connectivity linking early visual regions was

associated with a faster learning rate. Moreover, the strength of multiedge paths between motor and visual modules was

also correlated with learning rate, supporting the potential role of extended sets of polysynaptic connections in successful

skill acquisition. Our results demonstrate that estimates of anatomical connectivity from white matter microstructure can

be used to predict future individual differences in the capacity to learn a new motor–visual skill, and that these predictions

are supported both by direct connectivity in visual cortex and indirect connectivity between visual cortex and motor cortex.
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Introduction

Human skill learning is a complex phenomenon that involves

the fine-scale coordination of disparate cortical and subcortical

regions (Dayan and Cohen 2011). This coordination critically

depends on the effective transmission of information across

white matter tracts, which link distant brain regions in cortico-

cortical networks and cortico-subcortical loops (Lynch and Tian

2006). Lesions or injuries to these interconnected tracts—

particularly in motor and visual systems—can directly cause

deficits in skill learning (Ding et al. 2001). The exact extent of
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these deficits is difficult to predict, largely due to the fact that

white matter tracts form a complex interconnected network

(Sporns et al. 2005). Damage to this network can have broadly

distributed repercussions on processing, causing loss of infor-

mation transmission (Scantlebury et al. 2014), or detrimental

alterations in transmission patterns (Crofts et al. 2011).

The interconnected nature of white matter tracts not only

complicates response to injury but it also forms a fundamental

substrate for individual differences in brain anatomy that may

have nontrivial effects on cognition and behavior. White mat-

ter connectivity displays large-scale differences across indivi-

duals (Bassett et al. 2011), being modulated by age (Betzel et al.

2014), gender (Ingalhalikar et al. 2014, Tunc et al. 2016), genet-

ics (Hong et al. 2015), and prior experience (Scholz et al. 2009,

Sampaio-Baptista et al. 2013). How these individual differences

may account for individual differences in skill learning is not

fully understood. Gaining such an understanding could dir-

ectly inform therapeutic interventions to enhance recovery of

motor skills after brain injury (Tomassini et al. 2011), and

furthermore could potentially inform training paradigms

to enhance motor–visual expertise in healthy individuals

(Neumann et al. 2016).

Here, we examine if connectivity networks defined by dif-

fusion magnetic resonance imaging (MRI) are predictive of

individual differences in the rate at which subjects acquire a

simple visuomotor task (Wymbs and Grafton 2015). In a dis-

crete sequence production (DSP) task, subjects perform a

sequence of finger movements based on visual cues (Rhodes

et al. 2004). Once the correct key for each movement is

pressed, the visual cue for the next sequence element is pre-

sented without delay. Consequently, a DSP task allows sub-

jects to develop exceptionally fast, contiguous movements,

much like an expert pianist performing a keyboard arpeggio.

Efficient acquisition of this specific visuomotor skill requires a

gradual autonomy of visual and motor functional subnet-

works (Bassett et al. 2013, 2015) (Fig. 1A, B). Initially, a person

relies on the visual cue to perform a finger movement, an

action that requires integration between motor and visual cor-

tices; however, once a sequence becomes overlearned, a sub-

ject has mastered direct motor–motor associations where a

given finger movement is the cue for the next finger

movement.

These functional network changes may depend on underlying

structure, shown to be a fundamental driver of brain dynamics at

rest (Honey et al. 2009, Becker et al. 2015, Goni et al. 2014) and

during task performance (Smith et al. 2009, Hermundstad et al.

2013, 2014, Jarbo and Verstynen 2015, Osher et al. 2016).

Furthermore, individual variability in behavior has been linked to

differences in structural networks (Johansen-Berg 2010), and IQ

and motor speed have been associated with greater white matter

connectivity (Li et al. 2009) and fractional anisotropy (FA)

(Hirsiger et al. 2016). Prior work in word learning tasks also sug-

gests that increased myelination, axonal diameter, and FA in

tracts implicated in task processing are associated with better

performance (Wong et al. 2011, Lopez-Barroso et al. 2013).

Building on these prior studies, we hypothesized that individuals

with greater structural connectivity in motor and visual cortices

(and particularly in primary motor and visual cortices) would

show faster learning rates than individuals with less connectiv-

ity. We also set out to test whether these structural differences

remained constant over the 6 weeks of practice (Le Bihan and

Johansen-Berg 2012) or changed appreciably with training (Scholz

et al. 2009, Blumenfeld-Katzir et al. 2011, Taubert et al. 2012).

Finally, due to the prevalence of physically extended sets of

polysynaptic connections in the visual–motor system, we

hypothesized that individual differences in long-distance walks

on the graph of structural connections between visual and motor

cortex would correspond to individual differences in learning

rate.

To address these hypotheses, we examined diffusion tensor

imaging (DTI) data acquired from 20 healthy young adult subjects

over the course of 6 weeks of training on the DSP task (Bassett

et al. 2013, 2014, 2015, Wymbs and Grafton 2015). Subjects were

scanned in 4 separate sessions, including a scan on Day 1 before

training began and then a scan approximately every 2 weeks.

Between scanning sessions, subjects practiced a set of 10-

element sequences at home using a program installed on their

laptop computers, and behavioral performance was assessed by

calculating the movement time (MT) for each sequence defined

as the duration between the first button press and the last button

press in the sequence. The learning rate for each participant was

computed as the first exponential drop-off parameter in a

double-exponential fit of the MT as a function of trials practiced

across the entire 6 weeks of training. To compare individual dif-

ferences in learning rate to the organization of white matter con-

nectivity, we generated structural networks from the 4 DTI scans

using a deterministic fiber tracking algorithm (Fig. 1C), which pro-

vided estimates of the number of streamlines connecting pairs of

cortical and subcortical regions derived from brain atlases

(Fig. 1D). We observe 3 main results: individual differences in

learning rate are significantly correlated with white matter con-

nectivity in visual (but not motor) cortex, these relationships are

consistent across the 6 weeks of task practice, and individuals

with faster learning rates also show greater walk strength linking

motor and visual cortices, a measure suggesting increased

strength of polysynaptic pathways.

C

A B

D

Figure 1. Structural connectivity in motor and visual networks of interest. (A, B)

Previous research suggests that increased skill on the DSP task requires concerted

functional network changes in distributed regions of motor (A) and visual (B) sys-

tems (Bassett et al. 2015, 2013); see Table 2 for region names. (C) To assess struc-

tural correlates of individual differences in learning rate on the DSP task, we

performed deterministic diffusion imaging tractography on 4 scans dispersed

evenly throughout the 6 weeks of training. (D) We constructed structural networks

using diffusion imaging tractography and the 111 cortical and subcortical regions

in the Harvard-Oxford atlas to examine individual variability in connectivity

strength. We also show that our results are robust across atlases, replicating our

findings in the 90 cortical and subcortical regions parcellation of the AAL atlas.
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Materials and Methods

Participants and Experimental Design

Participants: Twenty-two right-handed participants (13 females

and 9 males; mean age, 24 years) volunteered and provided

informed consent in writing in accordance with the guidelines

of the Institutional Review Board of the University of California,

Santa Barbara. All had normal or corrected vision and no his-

tory of neurological disease or psychiatric disorders. We

excluded 2 participants because 1 participant failed to complete

the experiment and the other had excessive head motion (per-

sistent head motion greater than 5mm during the MRI scan-

ning). We also had technical problems for 2 participants and

were unable to collect DTI data during the pretraining session

for Scan 1. Finally, for one additional subject, Scan 1 was

removed due to the total of estimated streamlines differing by

more than 3 standard deviations from the subject mean.

Therefore, the structural analysis includes 17 participants for

Scan 1 and 20 participants for Scans 2–4.

Experimental setup and procedure: The DSP training protocol

occurred over a 6-week period with 4 MRI scanning sessions

spaced 2 weeks apart on Day 1, Day 14, Day 28, and Day 42

(Fig. 2A). On Day 1 of the experimental protocol, the partici-

pants completed their first MRI session, Scan 1, and the experi-

menter (N.F.W.) installed the training module on the

participant’s personal laptop and taught them how to use it for

at-home training sessions. Participants were required to do the

training for a minimum of 10 out of the 14 days in each 2-week

period between the subsequent scanning sessions for Scans 2–

4. All participants completed the full expected training regi-

men; none completed less than 10 full training sessions.

In their at-home training sessions, participants practiced a

set of 10-element sequences using their right hand in a DSP task

(Bassett et al. 2013, 2014, 2015, Mattar et al. 2015, Wymbs and

Grafton 2015). Sequences were presented using a horizontal

array of 5 square stimuli, and the key responses were mapped

from left to right, such that the thumb corresponded to the left-

most stimulus and the pinky finger corresponded to the right-

most stimulus (Fig. 2B). A square highlighted in red served as the

imperative stimulus, and the next square in the sequence was

highlighted immediately after each correct key press. If an incor-

rect key was pressed, the sequence was paused at the error and

restarted upon the appropriate key press. Participants had an

unlimited amount of time to respond and complete each trial.

Each practice trial began with the presentation of a sequence-

identity cue that identified 1 of 6 sequences. These 6 sequences

were presented with 3 different levels of exposure, in order

to acquire data over a larger range of learning stages while con-

trolling for the effect of scanning day (Table 1). The 2 extensively

trained (EXT) sequences were identified with a colored circle

(cyan for sequence A and magenta for B), and they were each

practiced for 64 trials during every at-home training session. The

2 moderately trained (MOD) sequences were identified by trian-

gles (red for sequence C and green for D) and each practiced for 10

trials in every session. The 2 minimally trained (MIN) sequences

were identified by black outlined stars (filled with orange for

sequence E andwhite for F) and only practiced for 1 trial each dur-

ing the at-home training sessions. Participants were given feed-

back every 10 trials that reported the number of error-free

sequences and themean time required to complete them.

During each of the 4 MRI scanning sessions, we collected fun-

ctional echo planar imaging data and structural imaging data

from magnetization prepared rapid acquisition gradient-echo

(MPRAGE) and DTI scans. In the functional runs, participants per-

formed 300 trials of the self-paced DSP task using the same block

structure with feedback as the at-home practice sessions, but the

sequences were presented equally for a total of 50 trials for each of

the 6 trained sequences. We have previously reported results from

functional analyses (Bassett et al. 2013, 2014, 2015, Mattar et al.

2015, Wymbs and Grafton 2015). In this paper, we analyze the

structural data and examine individual variability in structural

connections among the distributed motor and visual regions of

interest that were derived directly from the functional neuroima-

ging studies of this same data set (Bassett et al. 2015). In this previ-

ous work, a set of motor and visual regions that formed functional

modules was identified in a data-driven fashionwhose task-based

modulation tracked the effects of training. Here we build on the

identification of these regions of interest by studying their struc-

tural connectivity derived fromdiffusion imaging.

14 days 14 days 14 days

#1-10

A B C

Figure 2. Overview of training, task paradigm, and MT estimation. (A) Training schedule. Subjects underwent 4 scans, each approximately 2 weeks apart. Subjects

practiced once a day for at least 10 days between each scanning session. (B) Subjects viewed a screen on which stimuli were displayed. Each sequence was preceded

with the display of a sequence-identity cue, which informed the subject which of 6 sequences would follow. During the sequence, subjects saw 5 horizontally

arranged squares. For each element of the sequence, one box was highlighted for the subject, providing information on the key to press. Upon completion of the task,

a fixation cross was displayed for a short inter-trial interval, and every 10 trials performance feedback was provided. The squares were spatially mapped onto a key-

pad, one corresponding to each finger in addition to the thumb (see insert). (C) Double-exponential fit of MT to the number of trials practiced. The fit is shown for the

fastest learner, the slowest learner, and the mean across all subjects.

Table 1 Number of trials practiced of each sequence type at the start
of each scanning session

Scan 1 Scan 2 Scan 3 Scan 4

MIN sequences 50 110 170 230

MOD sequences 50 200 350 500

EXT sequences 50 740 1430 2120

Structural Pathways of New Visuomotor Skills Kahn et al. | 175
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Estimating Learning Rates for Individual Participants

For each sequence, we defined the MT as the duration between

the time of the first button press and the time of the last button

press. For the set of sequences of a single type (i.e., sequence A, B,

C, D, E, and F), we estimated the learning rate by fitting a double-

exponential function to the MT data (Schmidt and Lee 2005,

Rosenbaum 2014) using a robust outlier correction in MATLAB

(using the function “fit.m” in the Curve Fitting Toolbox with

option “Robust” and type “Lar”): = +κ λ− −D DMT e et t
1 2 , where t is

time, κ is the exponential drop-off parameter (which we called

the learning rate) used to describe the fast rate of improvement, λ

is the exponential drop-off parameter used to describe the slow,

sustained rate of improvement, and D1 and D2 are real and posi-

tive constants. The magnitude of κ indicates the steepness of the

learning slope: individuals with larger κ values have a steeper

drop-off in MT, suggesting that they are faster learners (Yarrow

et al. 2009, Dayan and Cohen 2011). The decrease in MT has been

used to quantify learning for several decades (Snoddy 1926,

Crossman 2010). Several functional forms have been suggested

for the fit of MT (Newell and Rosenbloom 1993, Heathcote et al.

2000), and variants of an exponential are viewed as the most stat-

istically robust choices (Heathcote et al. 2000). In addition, the fit-

ting approach that we used has the advantage of estimating the

rate of learning independent of initial performance or perform-

ance ceiling. For the purpose of measuring effects on learning

rate, we used the average value of κ for the 2 extensively trained

sequences, for which we had the greatest number of trials prac-

ticed (Table 1).

While we do not have explicit information on the computing

power of each subject’s laptop, the learning rate that we study

is independent of the starting MT, the ending MT, and the

mean MT. Instead, it is a measure of the rate of change in MT.

Thus, any differences in computing power cannot be used to

explain the results. Moreover, we should mention that error

rates on this task are on the order of × −1 10 3 (Bassett et al.

2015), and error rates are not significantly correlated with

learning rates ( =r 0.34, =p 0.13) (Bassett et al. 2015).

Neuroanatomical Data and Associated Methods

In this section, we briefly describe the neuroanatomical data

acquired from participants, as well as computational methods

associated with data preprocessing, structural network con-

struction, and statistical analyses.

Data Acquisition

All scans were acquired on a 3T Siemens TIM Trio scanner with a

12-channel phased-array head coil at the University of California,

Santa Barbara. Each data acquisition session included both a DTI

scan as well as a high-resolution T1-weighted anatomical scan.

The structural scan was conducted with an echo planar diffusion

weighted technique acquired with iPAT using an acceleration

factor of 2. The diffusion scan was 30-directional with a b value of

1000 s/mm2 and TE/TR= 94/8400ms, in addition to 2 b0 images.

Matrix size was 128× 128 with a slice number of 60. Field of view

was 230× 230mm2 and slice thickness was 2mm. Acquisition

time per DTI scan was 9:09min. The anatomical scan was a high-

resolution 3D T1-weighted sagittal whole-brain image using an

MPRAGE sequence. It was acquired with TR= 2300ms;

TE= 2.98ms; flip angle= 9 degrees; 160 slices; 1.10mm thickness.

DTI Preprocessing

DTI is both highly sensitive to subject movement (Yendiki et al.

2013) and susceptible to directional eddy currents, which can cause

distortions in the brain volume (Jezzard et al. 1998). To address

these issues, we performed the following data preprocessing using

the FMRIB Software Library (FSL v5.0.8) (Smith et al. 2004, Jenkinson

et al. 2012). First, individual subject masks of the brain were created

with the brain extraction tool (Smith 2002) for use in later registra-

tion and correction tools, which require an accurate estimation of

the spatial extent of the brain. We applied the EDDY correction tool

(Andersson and Sotiropoulos 2016) which simultaneously models

both motion effects and eddy current distortions, and corrects

them relative to a b = 0 image collected at the beginning of the

scan.

Next, subject scans were transformed into a common space

to compare regional connectivity between subjects. Using

FMRIB’s linear image registration tool (Jenkinson and Smith

2001, Jenkinson et al. 2002), scans were registered to the anatom-

ical T1 image, and then the anatomical scan was in turn regis-

tered to the Montreal Neurological Institute (MNI) space MNI152

template using FMRIB’s nonlinear image registration tool

(FNIRT). Motion correction also impacts the effective b-matrix

directions since the rotated images are no longer aligned with

the scanner; therefore, we used the output of EDDY to rotate the

b-vectors to match the changes induced by the motion correc-

tion procedure (Leemans and Jones 2009).

Using DSI-Studio (http://dsi-studio.labsolver.org), orienta-

tion density functions (ODFs) within each voxel were recon-

structed from the corrected scans in native diffusion space in

order to minimize sampling distortions (Cieslak and Grafton

2014). We then used the reconstructed ODFs to perform a

whole-brain deterministic tractography using DSI-Studio (Yeh

et al. 2013). We generated 1,000,000 streamlines per subject,

with a maximum turning angle of 35 degrees (Bassett et al.

2011) and a maximum length of 500mm (Cieslak and Grafton

2014). By holding the number of streamlines between partici-

pants constant, we use the number of streamlines that connect

brain region pairs as an estimate of the strength of the connec-

tion and examine individual variability in structural connectiv-

ity (Griffa et al. 2013).

Network Construction

To examine the relationship between structural connectivity

and individual differences in learning rate, we constructed net-

works for each subject where nodes are atlas regions and edges

are the measured connection strength between region pairs

(Hagmann et al. 2008).

The nodes of the network were derived from spatially

defined regions of a brain atlas, and we utilized 2 complemen-

tary atlas parcellations to confirm that our results are not spe-

cific to the particular regional boundaries chosen by one atlas.

First, we used the Harvard-Oxford atlas to allow for direct com-

parison to functional network studies of this same task (Bassett

et al. 2013, 2014, 2015), and we combined the Harvard-Oxford

cortical and subcortical atlases into a single 111-region atlas by

giving cortical labels precedence whenever a single voxel was

assigned to both cortical and subcortical regions. In our intrahe-

misphere vs interhemisphere analysis, we exclude the brain-

stem region from this atlas since it crosses the midline. As a

complementary parcellation, we chose the anatomically defined

automated anatomical labeling (AAL) atlas, originally developed

in statistical parametric mapping (Tzourio-Mazoyer et al. 2002),

which divides each brain hemisphere into 45 regions. For both

atlases, we used a version in MNI-space that was then warped

into subject-specific native space using FNIRT. Across both

atlases, the edges of the network were derived from streamlines

176 | Cerebral Cortex, 2017, Vol. 27, No. 1
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that started and ended between the region pair and excluded

streamlines that passed through one or both of the regions.

Weighted connectivity matrices were then generated from the

atlases and DTI reconstructions such that the matrix W con-

tained elements Wij whose values were equal to the number of

streamlines with end-to-end connectivity between regions i and j.

All diagonal elements in the matrix were set to 0 to eliminate

self-connections. To correct for differing region sizes, eachmatrix

element was divided by the sum of the volumes of regions i and j

(Hagmann et al. 2008). That is, ( )= +B W v v/ , ,ij ij is js where vis is the

number of voxels in region i for subject s. The resultant connectiv-

ity matrix for each subject and scan was then normalized to give

a connection strength A such that = ∑A B B/ij ij i j ij,
, ensuring that all

scans had identical total connection strength.

Network Statistics

Based on the functional analysis of this data set (Bassett et al.

2015), we examined whether individual variability in structural

connectivity among distributed regions of the motor and visual

systems was correlated with learning rate (Mattar et al. 2015).

For both of these systems, we calculated the mean connection

strength within the system by averaging the weights of all

edges connecting pairs of nodes within the system (see

Table 2). We report our results both at the single-scan level as

well as an average over the 4 scans of each subject. Results are

consistent in the 2 cases.

To analyze the impact of indirect connectivity between motor

and visual regions, we computed walk strength, a measure of the

connection strength between 2 regions that accounts for indirect

paths of varying walk lengths. Here, a walk is defined as a path

from one point in the graph to another that may pass along the

same edge more than once (Fig. 6A). Given a graph G and its

adjacency matrix A, An provides the connection strength

between all pairs of nodes when examining walks of length n

(Estrada and Hatano 2007). For instance, streamlines directly

connecting primary visual cortex to primary motor cortex would

be a walk of length 1, whereas the combination of streamlines

connecting primary motor cortex first to thalamus and then to

primary visual cortex would be a walk of length 2. Note that the

term “length” is used in a topological sense, where walks with

more steps are considered to have longer length (Crofts and

Higham 2009). We base our analysis on a similar metric, commu-

nicability, which is defined such that walks of all lengths contrib-

ute to network communication, but longer walks increasingly

contribute less. For an unweighted graph, the network commu-

nicability is simply given as ∑ !
=

∞ A n/
n

n
1 (Estrada and Hatano

2007). In a weighted graph, an additional normalization is

needed to prevent highly connected nodes from unduly

dominating the estimate (Crofts and Higham 2009). A typical

solution is to divide all weights Aij by d di j , where di is the

degree of node i, given by = ∑
=

∞d Ai k ik1 (Higham et al. 2007).

While communicability provides a single metric of communica-

tion between nodes, it does not provide information on the con-

tributions of specific walk lengths. To address this limitation, we

define the walk strength as the normalized strength of walks of

length n, which is given as Sn, where = − −S D AD1/2 1/2 and

= ( )D ddiag i , or the matrix whose diagonal is given by the values

di (Crofts and Higham 2008).

Statistical Testing

Analysis was performed in Python using a collection of freely

available packages: Numpy/Scipy, Pandas, stastmodels, and

Jupyter. Correlations reported throughout the paper are

Pearson correlations at an α level of 0.05. Data were corrected

for multiple comparisons using Bonferroni, False Discovery

Rate (Benjamini and Hochberg 1995), and the form <p n0.05/ ,

where n is the number of comparisons.

Results

Visual Streamline Connectivity Correlates with

Learning

Our general aim was to uncover the structural network corre-

lates of individual differences in learning rate for a common

visuomotor task (Wymbs and Grafton 2015). Because direct

connections between motor and visual cortices are not pre-

sent at this large scale, we separately consider connectivity

within motor areas and within visual areas previously identi-

fied in a functional analysis of this data set (Mattar et al. 2015,

Bassett et al. 2015) (see Table 2 and Fig. 1A, B). We explicitly

test the fundamental hypothesis that individuals with greater

mean structural connectivity in motor and visual cortices

would show faster learning rates (κ; see Materials and

Methods) than individuals with less connectivity. We

observed a highly significant correlation between visual–vis-

ual streamlines and learning rate across all subjects (Pearson

correlation coefficient =r 0.50, with corresponding one-tailed

p value of =p 0.0125, significant after Bonferroni correction;

Fig. 3A). In contrast, we observed no significant correlation

between motor–motor streamlines and learning rate

( = =r p0.07, 0.389; Fig. 3B).

Within the subset of connections linking visual regions with

one another, we expected that connection strength within a given

hemisphere would be particularly relevant given that interhemi-

spheric transfer of information is not as relevant in this task as it

is in other tasks manipulating perceptual reference frames (Ber-

nier and Grafton 2010) or narrow visual fields (Doron et al. 2012).

Consistent with our hypothesis, we found that the observed cor-

relation between the visual-to-visual connection strength and

learning rate was largely driven by intrahemispheric streamlines

(Pearson correlation coefficient =r 0.68, =p 0.0005; Fig. 3C), while

no significant correlation was observed among interhemispheric

connections ( =r 0.01, =p 0.512; Fig. 3D).

We verified these same relationships in the AAL atlas

(Fig. 3E–H). The structural connection strength among visual–vis-

ual region pairs accounts for individual variability in learning

rate. It is again more pronounced in both overall visual ( =r 0.44,

=p 0.027) and intrahemispheric visual–visual connectivity

( =r 0.62, =p 0.0002), while no significant correlation is observed

either in motor–motor connectivity ( =r 0.03, =p 0.449) or in

interhemispheric visual connections ( =r 0.10, =p 0.666).

Table 2 Brain areas in motor and visual systems derived directly fr-
om functional neuroimaging studies of the same task (Bassett et al.
2015)

Motor Visual

L,R Precentral gyrus L,R Intracalcarine cortex

L,R Postcentral gyrus L,R Cuneus cortex

L,R Superior parietal lobule L,R Lingual gyrus

L,R Supramarginal gyrus, anterior L,R Supercalcarine cortex

L,R Supplemental motor area L,R Occipital pole

L, Parietal operculum cortex

R, Supramarginal gyrus, posterior
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Reliability of Connectivity-Based Predictors of Learning

Next, we asked whether individual differences in the white

matter connections that predicted learning rate would remain

constant (Le Bihan and Johansen-Berg 2012) or change appre-

ciably (Scholz et al. 2009, Blumenfeld-Katzir et al. 2011, Taubert

et al. 2012) over 6 weeks of practice. We performed the same

analysis as before but individually applied to each scan,

restricting ourselves to the set of visual intrahemispheric con-

nections (Fig. 4A–D). Across the 4 scan sessions, we observed a

positive relationship between the visual-to-visual connection

strength and learning rate: the p values for Scans 2–4 all pass a

Bonferroni correction for n = 4 tests and Scan 1 was close to sig-

nificant at =p 0.05. Pearson correlation coefficients and corre-

sponding p values for Scan 1 were = =r p0.41, 0.050, for Scan 2

were = =r p0.72, 0.0002, for Scan 3 were = =r p0.61, 0.002,

and for Scan 4 were = =r p0.71, 0.0003. These results suggest

that the connectivity-learning relationship remained constant

over 6 weeks of practice.

In addition to being robust across scanning sessions, the

connectivity-learning relationship is also robustly observed

when we segregated the brain into 90 (rather than 111) regions

using a separate atlas. Specifically, using the AAL atlas, we

observed a significant correlation between learning rate and

intrahemispheric visual connection strength across all 4 scan

sessions after Bonferroni correction for n = 4 tests (Fig. 4E–H).

Pearson correlation coefficients and corresponding p values for

Scan 1 were =r 0.51, =p 0.011, for Scan 2 were =r 0.62,

=p 0.002, for Scan 3 were =r 0.61, =p 0.002, and for Scan 4

were =r 0.54, =p 0.003.

The scan-independent relationship between learning rate

and visual-to-visual connectivity suggests the possibility that

visual-to-visual connectivity itself is consistent across the 6

weeks of training, consistent with previous reports in other

learning contexts (Le Bihan and Johansen-Berg 2012). To dir-

ectly assess the reliability of visual-to-visual connectivity, we

performed 2 separate analyses: first at the level of white matter

streamlines and the second at the level of FA across voxels.

First, we computed the intraclass correlation coefficient (ICC,

Shrout and Fleiss 1979) to assess the reliability of visual con-

nectivity across scanning sessions across the subset of subjects

present for all 4 scans (n = 17). Using a 2-way ANOVA on visual-

to-visual connection strength, we found no main effect of scan-

ning session ( =F 1.353,48 , =p 0.27). Furthermore, the ICC is

extremely high (ICC(1,1) = 0.83), which indicates the high reli-

ability of visual-to-visual connection strength across scanning

sessions. Additionally, we performed voxel-level univariate

analyses to test for reliability of FA across the whole brain over

the 6 weeks of learning. A repeated measures ANOVA was cal-

culated across the 4 DTI scan sessions. An f-omnibus test

demonstrated no significant effects ( >p 0.05, FDR corrected). In

addition, a paired t-test between Scans 1 and 4 was performed.

There were no significant differences of FA values ( >p 0.05,

FDR corrected). These results support the conclusion that white

matter microstructure remains consistent over the 4 scans,

supporting the observed inter-scan reliability of our results.

Anatomical Specificity of Connectivity-Learning

Relationship

To better understand the relationship between intrahemi-

spheric visual connectivity and variability in learning rate κ, we

examined which visual region pairs were driving this effect.

A B C D

HGFE

Figure 3. Correlations between mean connection strength and learning rate across all scanning sessions. (A) We observe a significant correlation between the average

strength of connections linking visual regions and the learning rate. (B) No such relationship is observed for connections linking motor regions. The correlation

between learning rate and visual–visual connectivity is largely driven by intrahemispheric (C) rather than interhemispheric (D) connections. (E–H) We observe the

same relationships in the AAL atlas as in the Harvard-Oxford atlas for each subset of connections.
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This examination had the added benefit of assessing whether

different connections predicted behavior differently: although a

positive trend was expected given the results in Figure 3, it is

possible that a few smaller regions might show the opposite

relationship. To address these questions, for each visual region

pair, we calculated the Pearson correlation coefficient between

the subject learning rate and the mean connection strength

between the 2 regions across scans (see Fig. 5A). We found sig-

nificant correlations (uncorrected) between learning rate and

individual differences in the connections between 5 pairs of

visual regions: right intracalcarine and right cuneal cortex

= = )r p0.64, 0.0012 , right cuneal cortex and right occipital pole

= = )r p0.42, 0.032 , left intracalcarine and left cuneal cortex

= = )r p0.56, 0.005 , left supracalcarine and left occipital cortex

= = )r p0.38, 0.049 , and left supracalcarine and left lingual

gyrus = = )r p0.4, 0.039 . Only the first of these relationships

passed FDR correction for multiple comparisons (Fig. 5B).

Role of Indirect Connectivity in Learning Prediction

Our results have revealed structural correlates in direct connec-

tions within visual and motor regions; however, prior fMRI stud-

ies have linked changes in learning rate to functional

connectivity between motor and visual areas (Bassett et al. 2015,

Mattar et al. 2015). To examine structural predictors between

regions, we turn to recently developed mathematical techni-

ques in the domain of network science that allow us to directly

examine the effects of indirect connectivity (an estimate of

polysynaptic transmission potential across extended physical

distances) in brain networks. Specifically, we compute variable

walk lengths between any 2 nodes in a network. Direct connec-

tions are a walk length of 1, while connections that pass through

one intermediary region have a walk length of 2; connections

that pass through 2 intermediary regions have a walk length of

3, and so on (Fig. 6A). We hypothesized that as we examined suf-

ficiently long walk lengths, the connectivity between motor and

visual regions would become increasingly correlated with indi-

vidual differences in learning rate.

Our results confirm this hypothesis, demonstrating that the

length-specific connectivity between motor and visual regions

was increasingly correlated with individual differences in

learning rate as walk length increased. As shown in Figure 6, at

walks of length 15, individual differences in walk strength

between motor and visual regions were significantly correlated

with individual differences in learning rate (Pearson correlation

coefficient =r 0.39, =p 0.004). As walk length continued to

increase, the correlation approached an asymptote which can

be observed at n = 40 with =r 0.56, =p 0.005. We confirmed

these assessments of statistical significance using a non-

parametric null model wherein we shuffled node assignments

to “visual” or “motor” sets, thereby choosing a random set of

pseudo visual–motor edges. We examined the correlation at

walks of n = 40 on repeated null model samples, and con-

structed a 95% threshold for the correlation coefficient from the

null distribution. We observed that walks of length n = 18 and

beyond all exceeded this threshold, and at n = 40 our data were

significant compared with the null model at =p 0.008. These

results indicate the importance of indirect connections

between motor and visual cortices in facilitating the learning of

a visuomotor task.

Discussion

In this study, we assess whether individual differences in struc-

tural connectivity can account for individual differences in

learning a visuomotor task. Participants practiced a set of

A B C D

E F G H

Figure 4. Connectivity-learning relationship by scan. (A–D) The structural connection strength between intrahemispheric visual–visual region pairs accounts for indi-

vidual variability in learning rate, and this relationship is stable across the 4 scanning sessions. This relationship is significant after Bonferroni correction for Scans 2,

3, and 4 in the Harvard-Oxford atlas, with near significance in Scan 1. (E–H) We replicated these results within the AAL atlas, showing significance in all 4 scan

sessions.
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10-element sequences over a 6-week period, and we collected

structural imaging data during 4 MRI scanning sessions spaced

2 weeks apart. We mapped structural connectivity between

brain regions in large networks of interest in motor and visual

systems, identified by prior assessments of functional neuroi-

maging data during task performance (Bassett et al. 2015). We

observed a significant correlation between visual (but not

motor) structural connectivity and learning rate across partici-

pants, and this relationship was consistent across the 4 scan-

ning sessions. Interestingly, this correlation was strongest in

direct connections among visual regions within the same

hemisphere. However, an assessment of network walk strength

also revealed a significant correlation between the strength of

indirect connections between motor and visual cortices and

individual differences in learning rate, suggesting the potential

importance of physically extended polysynaptic information

transmission for skill acquisition.

The relationship between white matter microstructure and human

behavior: Our primary hypothesis posited that individual vari-

ability in white matter microstructure connecting task-relevant

regions would account for individual differences in skill acqui-

sition. Consistent with our hypothesis, we observed a signifi-

cant relationship between intrahemispheric connections

among visual region pairs and variability in learning rate on a
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Right Intracalcarine Cortex

Right Cuneal Cortex

Figure 5. Anatomical specificity of visual-to-visual connection strength correlation with learning rate. (A) Significant correlation coefficients (uncorrected) between

connection strength and learning rate κ for intrahemispheric visual regions are shown in colored boxes. We note relationships that pass a correction for multiple

comparisons of the form <p n0.05/ , where n is the number of comparisons. Gray boxes were not included in the analysis, representing either duplicate entries or

interhemisphere connections. (B) The reconstructed streamlines are shown for the only region pair that survives FDR correction: the connection between right intra-

calcarine cortex (green region) and right cuneal cortex (purple region).

B

A

Figure 6. Indirect connections between visual and motor cortex facilitate learning. (A) Indirect connections between regions of interest can be quantified by walks on

a structural network. Consider a toy graph in which paths exist from the source (S) to the target (T). The eventual flow of information between S and T will not only

be influenced by direct connections, but also by indirect walks of length greater than one. (B) Correlation between individual differences in motor–visual connection

strength at increasing walk lengths (measured by ( )− −D AD n1/2 1/2 ) and individual differences in learning rate κ. The correlation becomes significant at a walk length of

n = 15. The red line indicates the =p 0.05 significance level calculated from the expectation of Pearson correlation coefficients in normal data; the black line indicates

the =p 0.05 significance level calculated from a nonparametric permutation based null model in which node labels have been shuffled uniformly at random.
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DSP task practiced over the course of 6 weeks. Previous studies

have offered preliminary evidence to suggest that structural

differences in specific brain regions (although not networks)

correlate with individual differences in skill learning (Tuch

et al. 2005, Tomassini et al. 2011). Our work extends these pre-

vious studies by demonstrating that the degree of connectiv-

ity within visual regions is correlated with individual

differences in learning rate on a simple motor–visual task.

While previous studies have focused on regional or tract-

specific changes in FA in white matter, we demonstrate that

tractography-based approaches capture individual differences

in white matter that directly support skill acquisition. Of note,

we do not observe longitudinal changes of FA in our study

population over the course of training, suggesting that our dif-

fusion measures of connectivity are remarkably stationary.

Not surprisingly then, we found a remarkably consistent rela-

tionship between individual differences of connectivity and

learning rate across all 4 DTI scanning sessions. While both

tractography and FA-based approaches can reveal important

structural differences, a tractography-based approach allows

us to leverage network-based tools to understand brain- and

system-wide dynamics.

Although we expected structural variability in both visual

and motor systems would correlate with individual variability

in learning rate, we only found a significant relationship with

intrahemispheric connections among visual regions. We specu-

late that this may be due to the nature of the motor task itself.

The participants learned to quickly press 1 of 5 buttons follow-

ing a visual cue. This specific action (a button press) is not a par-

ticularly novel movement for these participants, all of whom

have already developed a wide variety of dexterous skills such

as typing. Due to the ubiquity of this action over the course of

development, the structural connectivity within motor cortex

may already be at a ceiling, obscuring any correlation with

learning. Alternatively, it is possible that changes in motor con-

nectivity with learning may only be measured at smaller spatial

scales. In contrast to the simple button press, the more challen-

ging skill that the subjects mastered was the spatial mapping

between visual stimuli and motor commands. It is intuitively

plausible that the ability to learn this mapping efficiently is fun-

damentally dependent on visual resources for detailed encoding

of spatial information. Indeed, a wide range of visuomotor tasks

have demonstrated strong reliance on occipital areas in map-

ping arbitrary stimuli with specific motor responses as well as

sequences of responses (Grafton et al. 1994, 1995, Wiestler et al.

2014, Diedrichsen and Kornysheva 2015).

Structure is consistent across scanning sessions: Our results

demonstrated a relationship between individual variability in

learning rate and connection strength between visual regions

that was consistent across the 4 scanning sessions. This con-

sistency is particularly interesting in light of prior work show-

ing changes in brain network connectivity as a function of

experience-dependent plasticity (Pascual-Leone et al. 2005,

Lindenberger et al. 2006). Indeed, researchers actively debate

the time scales at which these structural changes occur (Holt-

maat and Svoboda 2009, May 2011, Keller and Just 2015)

and whether these changes can be detected using current diffu-

sion weighted imaging techniques (Lövdén et al. 2013, Thomas

and Baker 2013). Some of the most well-known experience-

dependent plasticity changes have been reported from motor

learning tasks (Zatorre et al. 2012). Using multiweek training

paradigms in juggling, some of these studies have identified

both volumetric changes in visual and parietal cortices (Scholz

et al. 2009, Draganski et al. 2004) and FA changes in the posterior

intraparietal sulcus (Scholz et al. 2009). Complementary work

has examined structural correlates for professional piano

players, identifying volumetric differences in motor and par-

ietal regions (Gaser and Schlaug 2003) as well as structural con-

nectivity differences in DTI data within the corticospinal tracts

that connect motor cortex with the brainstem and spinal cord

(Bengtsson et al. 2005). These training induced changes may

arise from activity-dependent myelination (Fields 2015), which

in turn may contribute to the observed changes in functional

connectivity during long-term motor learning (Sampaio-Bap-

tista et al. 2015). However, unlike juggling or extensive piano

practice, our participants did not train on a complex visuo-

motor task, but instead, they learned a pairing between a visual

cue and a required finger movement for a set of 6 sequences. In

the context of this fine-motor training, we observed a stable

relationship between visual connectivity and subject learning

rate across all 4 scans, independent of the number of trials

practiced.

A putative role for physically extended polysynaptic connections:

Because prior work in functional neuroimaging has linked

changes in learning rate to functional connectivity between

motor and visual areas (Bassett et al. 2015, Mattar et al. 2015),

we directly assessed indirect connectivity defined as a variant

of network communicability that we called walk strength. This

metric computes variable walk lengths where paths between 2

nodes can have increasing numbers of intermediary steps. For

example, a 2-step walk could be taken from visual cortex

through thalamus to motor cortex. We found that as walk

length increased, individual differences in motor–visual con-

nectivity were increasingly correlated with learning rate. These

results suggest a role for physically extended sets of polysynap-

tic connections between motor and visual cortices that support

the acquisition of this visuomotor skill. Such a role is consist-

ent with previous work in computational neuroscience high-

lighting the role of highly structured circuits in sequence

generation and memory (Hermundstad et al. 2011, Rajan et al.

2016). Indeed, in computational models at the neuron level,

architectures reminiscent of chains (Levy et al. 2001, Fiete et al.

2010) and rings are particularly conducive to the generation of

sequences. Our results complement these insights at small spa-

tial scales to suggest that long-distance (chain-like) paths at

the large scale of white matter tractography are supportive of

sequence production. In future, it may be interesting to assess

the generalizability of these results across other sequential

learning tasks, and to determine the degree to which additional

measurements of indirect connectivity (Goni et al. 2014) may

differentially relate to learning rate, performance accuracy, and

reaction time (Tuch et al. 2005).

Methodological Considerations

First, it is important to note that in this study, we rely on DTI

and white matter tractography to estimate subject-specific and

whole-brain structural connectivity. However, it is important to

note that DTI-based tractographic reconstructions present a

number of limitations. Among these is the tendency of current

methods to present false positives and false negatives when

compared with histological studies (Thomas et al. 2014, Reveley

et al. 2015). However, diffusion imaging remains the only reli-

able method for studying human white matter structure nonin-

vasively. Moreover, we expect potential tractography biases to

be consistent across subjects, allowing us to accurately access

individual differences in white matter architecture and its rela-

tionship to behavior. Second, it is also important to note that it

Structural Pathways of New Visuomotor Skills Kahn et al. | 181

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
7
/1

/1
7
3
/2

6
3
2
7
3
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



is not possible using these techniques to decipher the number

of synapses present along the tracts between 2 regions, nor is it

possible to decipher the number of synapses present along

long-distance paths in the network. Thus, while data support a

role for physically extended polysynaptic pathways, it do not

directly speak to their microstructure. Third, it is important to

note that while we hypothesized that interhemispheric connec-

tions would be less important for this task than for other tasks

that require the manipulation of perceptual reference frames

(Bernier and Grafton 2010) or that utilized a single visual hemi-

field (Doron et al. 2012), it is nevertheless possible that interhe-

mispheric connections also play a role. It will be important in

the future to implement higher resolution diffusion imaging to

clarify the potential role of interhemispheric connections in the

learning of this novel visuomotor skill. Fourth, it is interesting

to ask whether the structural drivers of individual differences in

learning rate are anatomically co-located with observed changes

in functional connectivity during task performance. In fact, evi-

dence suggests that this is not the case, and that instead regions

that show individual differences in structural connectivity that

are predictive of individual differences in learning rate are not

the same as the regions that display changes in functional con-

nectivity with training (Bassett et al. 2015). Together, these data

suggest that further study is needed to understand the relation-

ships between individual differences in structural connectivity

and functional connectivity, and how they relate to gross

changes in behavior or to individual differences in learning rate.

Finally, we note that the lack of longitudinal changes in the

strength of connectivity (measured both with FA and with the

number of reconstructed streamlines between pairs of large-

scale brain regions) could be explained either by neuroscientific

or methodological factors. It is important to note that with this

particular data set, we are unable to determine the origin of this

consistency with complete confidence.

Conclusion

We identified variability in structural connectivity that

accounts for individual differences in learning rate over 6 weeks

of training on a visuomotor skill. Our analysis revealed direct

connections among intrahemispheric visual regions as well as

indirect connections between visual and motor cortices that sug-

gest an underlying mechanism for differences in behavior.

Clinically, these results offer novel biomarkers that may prove

useful in predicting the time scales of motor rehabilitation fol-

lowing stroke and brain injury. In particular, because individuals

with greater visual connectivity show swifter learning rates, a

clinician may be able to predict the rate at which a patient will

relearn a motor skill after a stroke based on the degree to which

their visual system (and its indirect connections with the motor

system) remain intact. More generally, our results may inform

personalized training paradigms for healthy individuals; indivi-

duals with greater visual connectivity—and greater strength of

indirect connectivity between motor and visual systems—may

require less training to obtain the same proficiency as an indi-

vidual with lesser connectivity and greater training. While

speculative at this point, these possibilities motivate future work

in clarifying the utility of white matter architecture in optimizing

visuomotor training across healthy and injured populations.
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