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ABSTRACT  

Ultra-high performance fibre reinforced concrete (UHPFRC) is a relatively new construction 

material. In comparison with conventional high strength concrete UHPFRC usually does not 

contain coarse aggregates larger than 6-7 mm in size. This paper presents the outcomes of an 

experimental study of UHPFRC beams subjected to four-point loading. The effect of two 

parameters was studied, namely the fibre content and the temperature of curing water. Eight 

UHPFRC beams comprising 6 beams reinforced with rebars and two beams without rebars were 

tested. Three fibre contents were investigated in this study (1%, 2% and 4% in volume). The 

study investigated two curing temperatures of water which are 20°C and 90°C. The results 

presented in this paper include deflections, toughness energy and moment capacity and also 

includes a comparison with calculations according to EC2 provisions. A minor difference was 

observed in the deformation and flexural behaviour of beams with fibre contents of 1% and 2% 
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typically less than 1 mm [6, 7]. Being a relatively new material, UHPFRC has not yet 

been incorporated into design codes including ACI (American Concrete Institute) Code 

and Eurocodes.  The Association of French Civil Engineering (AFGC) [8] and Japan 

Society of Civil Engineers (JSCE) [9] have established design recommendations which 

serve merely as recommendations and are not yet approved codes. Mechanical properties 

of any concrete including UHPFRC are greatly influenced by the curing method. Hot 

water curing is used in order to obtain a high early age strength which is higher compared 

to concrete cured in cold water [10]. At an elevated curing temperature, the rate of 

hydration increases due to enhanced pozzolanic activity and it assists in modifying the 

structure of hydrates [11-13]. Silica fume reacts with calcium hydroxide which is released 

from cement paste, to form additional binder called calcium silicate hydrates (C-S-H). 

Zanni et. al. [12] observed that the pozzolanic reaction at 20°C is relatively slow 

compared to 90°C. This study further showed that the C-S-H chains are shorter in 

concrete cured at 20°C even after 28 days of curing, compared to longer chains which are 

formed at 90°C, during the same curing period. These additional C-S-H chains created at 

elevated curing temperature as a result of the pozzolanic reaction, fill up the pores of the 

concrete matrix to form a denser and compact structure. This results in a higher 

compressive strength of concrete and improves the bond properties between the steel 

fibres and the concrete matrix [14]. Yuan and Graybeal [15] investigated the bond 

behaviour of deformed steel reinforcing bars in UHPFRC elements and reported that the 

bond strength increases with compressive strength. This is the reason why heat treatment 

has been applied to enhance mechanical properties of UHPFRC. Kamen et. al. [14] 

performed four-point bending tests on UHPFRC plates measuring 30 x 200 x 500 mm
3
 at 

the age of 7 and 28 days. The specimens were cured in water at 30°C and 40°C. At 7 
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days, the specimen cured at 40°C had a load-carrying capacity that was 69% higher than 

the specimen cured at 30°C. However, at 28 days, the plates were produced with different 

curing conditions resulted in almost identical load-deflection curves, with similar 

maximum bending loads. The results show that an elevated curing temperature at early 

age has beneficial effects on strength development.  A number of experimental tests have 

been conducted on cubes, cylinders and small scale beams by Yang et. al. [16] who 

investigated the flexural behaviour and deflection patterns of steam-cured UHPFRC 

beams. Their study was limited to beams containing 2% steel fibres. The study further 

explored how flexural capacity is affected by different casting procedures. Yang and Bo 

[17] investigated the effects of hot and cold curing on the flexural behaviour, the ductility 

and the fracture energy though tests were only carried out with small prisms. According 

to the study findings, the UHPFRC prisms cured at 20°C, were more ductile and a had 

higher displacement at the peak stress than the 90°C cured specimens. Yang et. al. [18] 

determined the flexural strength and fracture energy of 50 × 50 × 200 mm
3
 UHPFRC 

prisms. The prisms were reinforced with 2% (in volume) steel fibres and were cured at 

different water temperatures. Results from the study indicated that UHPFRC elements 

cured at 20°C were approximately 20% lower in compressive strength, 10% lower in 

flexural strength and 15% lower in fracture energy than the elements cured at 90°C. 

Examining the available research literature demonstrates that UHPFRC has not been 

sufficiently investigated to cover important structural performance parameters.  Available 

literature mainly discusses the influence of the curing temperature on mechanical 

properties and the behaviour of UHPFRC structural elements is often based on small 

UHPFRC specimens such as cylinders, cubes and prisms. Previous studies on the flexural 

behaviour of medium and large scale beams, reinforced with rebars, were mainly 
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2.1 Materials 

The optimized mix proportions shown in Table 2 were used. The mix included no coarse 

aggregates. Only fine sand measuring less than 0.6mm in diameter was used. The aggregate size 

of 0.6 mm was used in this study as it was found to be the most commonly used size in previous 

research on UHPFRC [6, 7, and 16]. Portland cement, CEM I 52.5N, manufactured by Lafarge 

was used in this study. To attain a high density of concrete, pozzolanic silica fume, with a 

density of 2.36kg/dm
3
, averaging 1μm in size was added to the mix. The smallest granular 

particles in the mix, (silica fume) fill up the voids between hydrated cement and fine sand 

particles which results in a highly compact concrete of low permeability, which can effectively 

prevent the corrosion of concrete reinforcement. UHPFRC characteristically has a water-cement 

(w/c) ratio of 0.25 or lower. Although 0.25 or lower values of w/c are recommended to achieve 

high compressive strengths, it is worth noting that such values do pose challenges in achieving 

adequate workability. Therefore, a high performance superplasticizer, (HP3 Larsen Chemcrete), 

was used in the mix. HP3 is a polycarboxylate polymer and realizes a high workability and a 

water reduction of up to 30%. The material composition of the beams were the same with the 

steel fibre content being the only variable with 1%, 2% and 4% in volume per beam. Dramix® 

OL 13/0.2 fibres, manufactured by Bekaert were used in this study. These are straight fibres with 

a length (lf) of 13mm, a 0.2mm diameter (df) and an aspect ratio (lf/df) of 65. Dramix® fibres are 

cold drawn steel wires and come in a variety of sizes and configurations.  Straight fibres with a 

minimum high tensile strength of 2000 MPa were applied in this study. 
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 Table 2. Mix proportions and materials 

Components Type Dosage (kg/m
3
) 

Cement CEM I 52.5N 967 

Silica fume Larsen 60%<1μm 251 

Sand Natural sand ≤0.6mm  675 

superplasticizer Larsen Chemcrete HP3 77 

 

Steel fibres 

 

Dramix® OL 13/.2 

1% = 79 

2% = 158 

4% = 316 

Water w/c ≈ 0.25 244 

 

2.2 Casting Process 

A 150 litres pan concrete mixer was used for mixing. A dry mix comprising cement, sand and 

silica fume was poured into the mixer and mixed for 5 minutes. Then, water was added to the dry 

components and mixed for 2 minutes followed by adding the superplasticiser and the wet  

components were mixed for another 2 minutes. Finally, the steel fibres were added to the mix 

and allowed to mix for 3 minutes (total mixing time was 12 minutes). The moulds were placed 

on a vibrating table, where no specific dominating affect was observed on the fibres orientation. 

After casting, the moulds were covered with a damp hessian and left in the lab at room 

temperature. They were demoulded 24 hours after casting. The beams and the accompanying 

50mm cubes were left to cure in their designated curing mode.  

2.3 Curing 

The curing conditions of the water used in this study were: a) hot curing in a tank with water 

temperature kept constant at 90°C, b) curing in water at room temperature i.e. 20°C. The two 

tanks used are shown in Figure 2. In both cases the beams were fully immersed in water. The 

hot-cured beams were left in the curing tank for 7 days while the cold cured specimens were left 

to cure in an open tank for 7 days. The beams from both streams were then stored in the A
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conditioning room where the temperature and relative humidity were maintained respectively at 

21 to 25°C and 40% to 60% respectively until the day of testing. 

 

 

 

 

 

 

 

 

Figure 2. Left) cold curing tank, right) hot curing tank 

2.4 Instrumentations   

One of the main objectives of this research was to study the flexural performance of the 

UHPFRC beams and eventually to determine their ultimate load capacity Pu. A four-point 

loading according to Figure 1 was carried out and a 200 kN capacity load cell was used to 

measure the applied load as shown in Figure 3. The applied load was transmitted to the steel 

spreader beam and subsequently to the beam through two 30mm diameter rollers of which 

spacing was 400mm. The load was applied in increments of 10% of the estimated beam capacity. 

There was a two minute interval between each successive load increment to stabilise the load and 

to monitor and mark the cracks. Two linear variable displacement transducers (LVDTs) were 

attached at beams’ mid-span to measure the deflection as the load was applied. The 

instrumentation and the test set-up are shown in Figure 3. A
cc

ep
te

d
 A

rt
ic

le
 



ww

 
 

 

 EX3.

3.1 Co

The conc

cubes tes

these we

were test

was teste

Table 3. 

The resu

example,

approxim

ww.ernst‐un

Fig

XPERIMEN

oncrete com

crete compr

sted in a sta

ere cured an

ted at 7 and

ed in order t

The table i

ults show th

, the 7 days 

mately 1.5 to

nd‐sohn.de 

gure 3: Exp

NTAL RES

mpressive st

ressive stren

andard comp

nd stored in

d 28 days an

to determine

includes als

hat the stre

strengths fo

o 2 times h

perimental se

SULTS  

trength 

ngth was de

pression ma

n the same e

nd the other

e the test da

o the streng

ength gainin

or hot cured

higher than 

Page 10

 

etup for fou

etermined u

achine. Nine

environmen

r set of 3 w

ay strength.

gth growth 

ng factor d

d specimens

the cold sp

ur-point load

using the re

e cubes were

nt as the pa

was tested on

 The obtain

factor due t

decreases at

 ranged betw

pecimens cu

Structu

ding 

esults obtain

e cast along

arent beam. 

n the same 

ned cubes st

to a higher 

t increasing

ween 135 to

ured while t

ural Concret

ned from th

gside each b

Sets of thr

day when t

trengths are 

curing tem

g concrete 

o 164 MPa a

the 28 days

te 

he 50mm 

beam and 

ree cubes 

the beam 

given in 

mperature. 

age. For 

and were 

 strength A
cc

ep
te

d
 A

rt
ic

le
 



www.ernst‐und‐sohn.de  Page 11  Structural Concrete 
 
 

 

growth factor ranged between 1.34 to 1.59. From the results, it can be noticed that the strength of 

hot cured concrete peaked at 28 days, remaining about constant until the test day while that of 

cold cured concrete continued to increase steadily. Figure 4 shows the strength development 

graphs of concrete over a 120 days period for the three fibre contents.  The figure shows that the 

strength gaining rate with time is higher when specimens were cold cured than for concrete cured 

in hot water. It also shows that the differences between the two regimes reduces with time. This 

conclusion is true for all the tested fibre contents. Regardless of the curing method beams with 

4% fibres (RSC-4 and RSH-4) had the highest compressive strengths reaching 170 MPa at all the 

stages.  

 

Table 3. Compressive strength of tested cubes. 

Curing regime Beam 

ID 

 

 

 Fibre 

  (%) 

7 days 28 days 

 

Test day  

 

 fc, (MPa) fc hot/

fc cold 
fc, (MPa) fc hot/ 

 fc cold 
fc, (MPa) fc hot/ 

 fc cold  

 

Cold cured 

 at 20° C 

USC-2 2 67.6 N/A 87.2 N/A 124.9 N/A

RSC-1 1 72.9 N/A 97.2 N/A 130.0 N/A

RSC-2 1 86.8 N/A 93.7 N/A 133.9 N/A

RSC-4 4 95.3 N/A 131.1 N/A 170.0 N/A

 

Hot cured  

at 90° C 

USH-2 2 140.0 2.07 152.8 1.59 163.4 1.31 

RSH-1 1 135.7 1.86 154.6 1.52 147.3 1.13 

RSH-2 2 137.6 1.59 142.6 1.34 149.0 1.11 

RSH-4 4 164.9 1.73 176.3 1.59 176.9 1.04 
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3.2.  BEAM FLEXURAL TESTING 

Table 4 presents the experimentally obtained results from testing the concrete beams. The table 

includes results of maximum deflection, peak load values, and cube compressive strengths. All 

beams failed due to flexural failure (four beams are shown in Figure 5); no shear failure was 

observed in any of the failed beams. 

Table 4. Deflection and Peak Load Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. top) beams cured in hot water, bottom) beam cured in cold water 

 

Beam ID 
Fibre 

(%) 

fck test 

day 

(MPa) 

Beam 

age 

(days) 

Peak 

Load Pu 

(kN) 

Peak load 

deflection, Δ 

(mm) 

USH-2 2 163.4 200 19.1 2.3 

RSH-1 1 147.3 209 79.7 16.7 

RSH-2 2 149.0 224 77.9 16.1 

RSH-4 4 176.9 220 83.9 12.3 

USC-2 2 124.9 180 17.4 5.13 

RSC-1 1 130.0 154 88.3 19.4 

RSC-2 2 133.9 161 86.2 15.8 

RSC-4 4 170.0 148 95.3 15.8 
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loads while the 4% (in volume) fibre content beams had only a small number of cracks which 

were only visible at higher loads. This may be attributed to the bond forces between steel fibres 

and concrete matrix. The more fibres, the higher the transferred stress in the matrix, and the higher 

the resistance to the creation of cracks. The fibre-matrix bond, the fibre pullout energy and the 

tensile strength of concrete all increase at increasing fibre dosage. Concrete with a lower fibre 

dosage will develop cracks at a much lower applied flexural load.  With a higher tensile strength 

of specimens (having a higher fibre dosage) the formation of cracks is counteracted. Fibres 

prevent further opening of a crack and as a consequence new cracks develop in the vicinity of the 

initial crack. Cracking patterns of selected beams are shown in Figure 5. 

 

3.5 Effect of curing water temperature  

 

The compressive strengths of hot-cured beams were found to be higher than the cold cured ones. 

Figure 8 presents a graphical comparison of corresponding beams with the same fibre content for 

different curing conditions. Except for unreinforced beams, all cold cured beams failed at higher 

loads than the hot cured. The hot cured unreinforced beam on the other hand failed at a higher 

load, than the corresponding cold cured beam. The pattern shown by beams without rebars 

(where hot cured failed at higher loads), supports the finding of Yang et. al. [17], who carried out 

four-point loading tests on UHPFRC prisms. Hot cured beams with rebars had a higher testing 

day compressive strength than the cold cured specimens, and were reasonably expected to have 

stronger steel fibre-matrix and rebar-matrix bonds and therefore should fail at a higher load 

compared with specimens with rebars. However, they failed at a slightly lower load than the 

cold-cured specimens. The surprising behaviours could be attributed to factors such as concrete 

microstructure and the joined contribution of steel fibres and steel rebars. The microstructure of 

hot cured specimens is a lot denser and harder, with less pores volume due to the presence of 

additional hydrates. This could render the hot-cured specimens less ductile. At higher loads, as 

the stresses are distributed from the rebars to the concrete matrix, the more ductile cold-cured 

specimens would take more stresses than the less ductile hot-cured. This conclusion need to be 

confirmed by conducting more research. The strain hardening regions of the load-deflection 

curves in Figure 8 also confirm the more ductile nature of cold-cured beams. In terms of 

cracking behaviour, the curing temperature had no observed effect on the cracking pattern of 

beams.  
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applied to compute the toughness of the UHPFRC beams. The critical deflection δ at point A in 

Figure 10 on the load-deflection curve is defined as the first crack deflection, it’s also referred to 

as pre-peak flexural toughness and it is the load before the peak load is reached. This is the point 

on the load-deflection curve at which the curve deviates from linear behaviour. The area under 

the graph OAB (Figure 10) indicates as first-crack toughness. The toughness energy at peak load 

is calculated from the area under the curve OACD. The other points E and F of flexural 

toughness are known as post-peak points because their location on the load-deflection curves is 

typically in the strain softening region of the curve, after the peak load was surpassed. They are 

calculated as multiples of the critical deflection δ as; 3δ, 5.5δ and 10.5δ. In the graph, 3δ (see 

Figure 10) is represented under the area OACEF. In the tests conducted, all the beams had a 

smaller strain softening region, and hence the other two values of toughness (5.5δ and 10.5δ), 

could not be determined graphically. Using these post-peak values, useful ratios (I5, I10 and I20) 

known as toughness indices are then calculated as ratios of post-peak and first crack toughness. 

Since only 3δ could be extracted from the curves, the only index computed was the I5 which was 

calculated with this expression: 

	 		                               (1) 

Table 5, presents the flexural toughness values calculated using Equation 1. From both sets of 

beams, specimens with 1% fibres (RSH-1 and RSC-1) recorded the highest toughness fracture 

energy at peak load. The flexural toughness indices of I5 for the reinforced beams with 1% and 

2% fibresb (in volume) and both curing modes range between 3.10 to 3.25. As expected, the 

beams without longitudinal reinforcements (USC-2 and USH-2), had the lowest toughness. The 

first crack toughness for the reinforced hot cured beams were quite close to each other, ranging 

between 260 to 290N-m.  
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